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Abstract 

 

Proteins are the active players in performing essential molecular activities throughout biology, and 

their dynamics has been broadly demonstrated to relate to their mechanisms. The intrinsic 

fluctuations have often been used to represent their dynamics and then compared to the 

experimental B-factors. However, proteins do not move in a vacuum and their motions are 

modulated by solvent which can impose forces on the structure. In this paper, we introduce a new 

structural concept, which has been called the structural compliance, for the evaluation of the global 

and local deformability of the protein structure in response to intramolecular and solvent forces. 

Based on the application of pairwise pulling forces to a protein elastic network, this structural 

quantity has been computed and sometimes is even found to yield an improved correlation with the 

experimental B-factors, meaning that it may serve as a better metric for protein flexibility. The 

inverse of structural compliance, namely the structural stiffness, has also been defined, which 

shows a clear anti-correlation with the experimental data. Although the present applications are 

made to proteins, this approach can also be applied to other biomolecular structures such as RNA. 

This present study considers only elastic network models, but the approach could be applied further 

to conventional atomic molecular dynamics. Compliance is found to have slightly better agreement 

with the experimental B-factors, perhaps reflecting its bias toward the effects of local perturbations, 

in contrast to mean square fluctuations. The code for calculating protein compliance and stiffness is 

freely accessible at bit.ly/PACKMAN-compliance. 

 

Keywords: Elastic Network Model, Protein Flexibility, Structural Compliance, Protein Stiffness, 

B-factor. 
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Introduction 

 

Elastic network models have been used for several decades by researchers to understand the 

features and mechanisms of proteins and macromolecules. Since the seminal work of Tirion
1
, 

models exploiting simple harmonic potentials have been found to provide significant information 

about the equilibrium fluctuations of the proteins, without the need to include detailed potentials 

and run computationally-expensive Molecular Dynamics (MD) simulations. 

Among the different elastic models previously studied, one of the most popular has been the 

coarse-grained Anisotropic Network Models (ANM), firstly developed by Atilgan et al.
2
, which 

treats the protein as a simple network of nodes connected by linear springs, all having the same 

force constant. Also, it has been shown that even coarse-grained models at the residue-level, i.e. 

considering only C
α
 atoms, are able to accurately predict the protein dynamics

2,3
. Surprisingly, 

atomic and coarse-grained models yield nearly identical results
4-6

. This is largely because the 

overall shape of the structure is the most important property for its dynamics. This model, although 

very simple, generally has been effective in describing the directions of protein motions in their 

thermal fluctuations. Furthermore, the low-frequency motions arising from ANM calculations were 

found to agree well with the conformational changes shown by some proteins upon ligand-

binding
7,8

. Several variations of the original ANM were developed, e.g. taking into account 

distance-dependent spring constants
9,10

, considering groups of residues as rigid blocks
11,12

, using 

finite-element-based approaches
13

, etc. 

Besides the evaluation of the low-frequency modes and thermal fluctuations, the ANM was also 

useful for understanding the pathway and the nature of conformational changes. For example, Kim 

et al.
14

 used elastic network models in order to generate realistic, feasible transition pathways for a 

protein between two conformations. With the aim of predicting the end conformation starting from 

one known structure of the protein, Atilgan et al.
15,16

 developed a perturbation-response scanning 

(PRS) method, where localized forces were applied to the network at specific positions and the 

response of the structure was evaluated and compared to the conformational transition. Following 

the same linear-response approach, more recently, Liu et al.
17

 made use of the ANM to investigate 

the conformational change of the GroEL subunit and the directionality of the force applied from the 

ATP hydrolysis site. 

The usual procedure to validate the accuracy of an ANM-like elastic network has been based on 

the evaluation of the computed fluctuations which are calculated from the ANM normal modes
18

, 

and compare these to the experimental B-factors which are extracted from crystallographic 

experiments and reported into the PDB file
19

. Experimental B-factors result from the local 

uncertainty about the position of a certain atom and, although they can result from a combination of 

different factors, for very high-resolution structures they can provide information about the inherent 

flexibility of the protein. Other comparisons have been made between sets of experimental 

structures and the computed normal modes
20,21

. Khade et al.
22

 recently used the experimental B-

factors to verify a packing-based method for the prediction of the flexible and rigid parts of 

proteins. 

In Structural Mechanics, the flexibility of a structure can be assessed in several ways. One of 

these is based on the concept of structural compliance, which can be defined as the displacement in 

a certain direction per unit force. According to this definition, it is clear that compliance is the 

inverse of structural stiffness. Since we know that experimental B-factors should account for the 

local and global flexibility, the idea behind the present work was to use the concept of structural 



compliance as a measure of a protein’s inherent flexibility. For this purpose, we model a large 

number of proteins by means of the pfANM
10

, we then evaluate the distribution of the structural 

compliance along the protein chain, based on a pairwise force application methodology (see 

Methods), and compare the resulting distribution with the experimental B-factors. In order to judge 

the efficacy of the structural compliance for predicting the protein flexibility, we also evaluate the 

theoretical fluctuations from the pfANM normal modes and compare them against the experimental 

B-factors. From the results, we conclude that structural compliance can be effectively used as a 

novel and, in some cases, better measure to describe the protein flexibility. Note that the 

methodology we use for deriving the compliance is substantially different from the concept recently 

introduced by Arikawa
23

 to study the softer motions. 

In addition to providing some evaluation of the intrinsic flexibility of a protein, the concept of 

compliance here is also presumed to simulate effects of Brownian motions resulting from random 

collisions between protein and solvent molecules. The ability of a protein to switch from one 

conformation to another is central to its function. It is therefore essential to study the protein 

dynamics under the influence of surrounding water and any other intermolecular interactions. 

Because proteins are usually surrounded by water and other small molecules and ions, they undergo 

constant bombardment by these molecules. However, there are no effective models to account for 

these effects on protein dynamics, except for Brownian dynamics. Other possible approaches to 

deal with the effect of external solvent rely on Langevin dynamics
24

. We know that a particle 

undergoes Brownian motion if it is in a medium containing discrete particles such as water 

molecules
25

. Because of this, many studies have tested
26-28

 and modelled protein motions as 

Brownian motions in Brownian dynamics simulations. Along with the Brownian motion resulted 

from solvent, intramolecular interactions contribute to details of the overall motion. Often these 

intramolecular interactions and/or random collisions can affect kinetics in a protein
16,29,30

 making it 

important to properly model these motions. The concept of structural compliance considered here 

essentially relies on stretching two atoms of the protein apart as if this motion were resulting from 

the collision/repulsion with solvent (besides intramolecular interactions). This points towards the 

possibility of using compliance to model the effects of the Brownian motions resulting from 

random collisions with solvent. This is fundamentally different from the intrinsic fluctuations of a 

protein, calculated by the traditional elastic network models, where the dynamics do not include any 

effects from solvent. As we will show, these two quantities exhibit subtle differences between them. 

The software for the calculation of compliance and stiffness values has been inserted into the 

PACKMAN package, developed by Khade et al.
22

, which is an open source Python-based package 

and can be freely accessed at bit.ly/PACKMAN-compliance . 

 

Methods 

 

In this Section, we recount the fundamentals of the Anisotropic Network Model (ANM), which 

allows the evaluation of the intrinsic fluctuations based on normal modes, and then provide the 

framework for the definition and calculation of the structural compliance. 

 

Anisotropic Network Model (ANM) 

 

 The main idea behind the ANM is that the most important features of proteins and 

macromolecules, such as their fluctuations and global mechanisms, can be derived making use of 

bit.ly/PACKMAN-compliance


simple elastic networks, made up of nodes connected by linear springs, without the need to include 

different interaction potentials depending on specific atom or residue types. 

 For a system of N points, e.g. N residues in the C
α
-atom only representation, the Hessian 

matrix of the structure takes the following form
2
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where each 3×3      submatrix contains the interaction information between nodes i and j. Each of 

the submatrices can be computed based on the harmonic potential associated with the elastic spring 

connecting nodes i and j, which can be written as 
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where      stands for the force constant of the spring connecting nodes i and j,     
  is the initial 

equilibrium distance between the two points, with      being their separation distance after 

deformation. By computing the second derivatives of      with respect to the three Cartesian XYZ 

directions, one can then express the off-diagonal      submatrix as 
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 Finally the diagonal terms      can be calculated as a summation involving all the nodes 

connected to node i, according to the following equation 
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 It is clear that the evaluation of the Hessian matrix is dependent on some model parameters, 

which are the geometrical cut-off and the distribution of the force constants among the springs of 

the network
9
. The original ANM was developed by ignoring the interaction specificity between 

different residues and their separation distance in the three-dimensional space, so that equal spring 

constants were assigned between all close members of the network and a geometrical cut-off was 



applied in order to consider springs placed only between nodes having an initial distance below this 

chosen parameter
9
. Later on, distance-dependent force constants were introduced, as 
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p being the parameter which reduces the spring constants for longer interaction distances. It was 

shown that non-zero p values enable obtaining better results for predicting the protein 

fluctuations
9,10

. The concept of an inverse power dependence has also been exploited in order to 

remove the need to consider an explicit geometrical cut-off limit (pfANM)
10

. Here, we use the 

pfANM, with a value of p = 3, which we found yields the best results. A complete analysis was 

performed by considering different values of the exponent p, i.e. 1, 2, 3, 4, 6, 12, and those results 

are available in the Supplementary Material. 

 

Calculation of the computed fluctuations 

 

Once the pfANM Hessian matrix is computed based on the protein coordinates obtained from 

the PDB file, the standard eigenvalue-eigenvector decomposition is carried out in order to evaluate 

the 3N eigenvalues and 3N eigenvectors. Since the protein structure is not externally constrained, 

the first six eigenvalues are all zero and the corresponding mode shapes are associated with the 6 

rigid body rotation and translation motions. The modal decomposition takes the following form 

 

         (6) 

 

where   represents the matrix containing the 3N-6 non-trivial eigenvectors and   is the diagonal 

matrix containing the 3N-6 non-zero eigenvalues   . Each column n of   represents the 3N×1 

vector   , containing the displacements of the N residues according to the mode shape n. For each 

residue i, the 3i-2, 3i-1 and 3i entries of vector    reflect the node’s mode displacements along X, 

Y and Z direction, respectively. Once the dynamical features are extracted from the Hessian matrix, 

one can easily calculate the computed fluctuations as
18 
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where    represents the computed B-factor for residue i,    is the Boltzmann constant,   is the 

absolute temperature and      stands for the total absolute displacement of node i according to the 

eigenvector n.      is evaluated as the square root of the sum of the squares of the displacements 

along the X, Y and Z direction. Finally, the Pearson correlation coefficient can be calculated 

between the distributions of the computed fluctuations from Eq. (7) and the experimental B-factors, 

in order to assess the accuracy of the elastic network model. 

 

 

 



Calculation of the structural compliance 

 

Compliance is a measure of the flexibility of a structure in a certain direction, when subjected 

to specific loading conditions, and it is usually measured in units of meters per newton (m/N). For 

instance, consider a simple unidimensional spring, having a force constant  . If we apply a couplet 

of forces   along the spring direction, the process will result in an elongation of the spring   =     

(see Fig. 1a). The structural compliance of the system is then defined as the total resulting 

displacement in the direction of the force divided by the absolute value of the force, i.e.   =     = 

   . As can be seen, in this elementary case, the compliance can be simply expressed as the inverse 

of the spring stiffness. 

Here, we use this structural concept in order to obtain insight into the flexibility of a protein, 

modeled as an elastic network. Specifically, the value of the structural compliance for each couplet 

of residues i and j is first calculated by applying equal and opposite forces to each pair of residues i 

and j (Fig. 1b). The unit force vectors    and    are defined so that their orientation corresponds to 

the direction of    
 , being    

                     
  the distance vector separating residues i 

and j in the initial configuration. The three components of the force vectors can then be simply 

calculated from 

 

 
   

    
 

        
         

         
 
      

   
 

        
         

         
 
   (8) 

 

where   ,    and    are the crystallographic coordinates of residue i, and   ,    and    the 

coordinates of residue j. The force components in Eq. (8) are then inserted into the global force 

vector   (3N×1), which contains all the forces acting upon each node of the network. Note that, 

since we are pulling only two residues at a time, the global force vector   will only have six non-

zero components, corresponding to the six values reported in Eq. (8). 

Defining   as the 3N×1 displacement vector, which contains the displacements of the nodes, 

and under the assumption of linear elastic behavior and small displacements, we can express the 

Hooke’s generalized law for this elastic network as 

 

       (9) 

 

Defining the force vector   from Eq. (8), and computing the Hessian matrix from Eqs. (3) and 

(4), the displacements of the structure, when subjected to the couplets of forces, are 

straightforwardly computed from 
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where      denotes the pseudo-inverse of the Hessian matrix. This is calculated from the 3N-6 

eigenvalues    and eigenvectors    

 



 

      
    

 

  

  

   

  (11) 

 

The pairwise structural compliance     , referring to residues i and j (i, j = 1 … N, i ≠ j), can finally 

be evaluated by calculating the total distance variation between the residues along the pulling 

direction, i.e. the total directional displacement, divided by the magnitude of the force acting on the 

nodes. Note that, since the forces have been defined as unit vectors, the structural compliance 

basically corresponds to the total displacement along the pulling direction. Therefore, once the 

displacements of residues i (  ) and j (  ) are selected from the global displacement vector  ,      

can be simply computed as 

 

 
     

       
 
  

    
 

       
    

 

        
         

         
 
  (12) 

 

By iterating the procedure over each pair of residues i and j, ignoring i = j, a compliance map is 

generated for the entire protein, which provides significant details about the rigidity and flexibility 

of the structure. If we calculate the inverse of     , we can obtain a measure of the stiffness along 

the i-j direction, i.e.            , and consequently obtain the stiffness map of the structure as well. 

Finally, we define the total compliance for each residue i, i.e.   , as the average value of all the 

pairwise compliances involving residue i, i.e. 
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Similarly, given the pairwise stiffness values      for each residue pair, the global stiffness values 

can be calculated by averaging all the pairwise stiffnesses 

 

 
   

 

   
     

   

  (14) 

 

The Pearson correlation coefficient can then be calculated between the compliance/stiffness profiles 

from Eqs. (13) and (14) and the experimental B-factors distribution. Note that, although the 

simplest one, the standard averaging procedure from Eqs. (13) and (14) is not the only one possible 

choice, e.g. one might employ a weighted average depending on the distance between residues i and 

j, etc. Obviously, different averaging strategies might cause slight differences in the 

compliance/stiffness profile and, ultimately, in the prediction of protein flexibility, which can be the 

objective for further optimization purposes. 

The approach presented here to evaluate the pairwise stiffness      is quite different to the one 

used by Eyal and Bahar
31

, although it provides a similar metric. In that paper, the authors showed 

that the mechanical resistance maps derived from elastic network models were effective to predict 

the anisotropic response of proteins when subjected to external forces, e.g. during single-molecule 

manipulation experiments. However, in that case, the mechanical resistance in the i-j direction was 



not computed based on the direct structural definition, as in the present work, but was rather based 

on the ANM normal modes. 

 

Protein datasets 

 

The correlation analyses were performed on two different datasets, which are referred to as 

Dataset 1 and Dataset 2. Both include X-ray protein structures downloaded from the PDB
19

. Dataset 

1 includes only single-chain proteins, whereas Dataset 2 contains only multi-chain proteins. Table 1 

gives the characteristics of the high-quality PDB structures in each set. 

 

Results and Discussion 

 

In Fig. 2a and 2b the results are reported for the calculations performed on Dataset 1, for the 

single-chain proteins. Specifically, Fig. 2a shows the distributions of the correlation coefficients 

obtained with the experimental B-factors when considering the normal-mode-based fluctuations 

(grey histogram) or the structural compliance (black histogram). The distribution of the Pearson 

correlation coefficients with the experimental B-factors are strongly similar for both the fluctuations 

and the structural compliance. We observe that the median value (M) of the distributions referring 

to the structural compliance (0.66) is slightly higher than the one associated with the ANM 

fluctuations (0.63), and that the standard deviation ( ) for the compliance is slightly lower. This 

confirms that the structural compliance introduced here is useful as a measure of protein flexibility. 

Besides compliance, the other structural concept which was introduced above and was found to 

provide useful insights about the protein flexibility, is the structural stiffness, which can be 

calculated according Eq. (14). The correlation between the stiffness and experimental B-factors has 

been tested for all the 921 single-chain proteins in Dataset 1 and the results are shown in Fig. 2b. 

The stiffness and the experimental B-factors are strongly anti-correlated, with the median value 

equal to -0.64. These results confirm that the stiffness defined here can be an effective additional 

metric to characterize protein rigidity and flexibility. The results from the complete analysis, 

varying the values of p, are reported into the Supplementary Material in Figs. S1 and S2. 

In some individual cases, we also observe that the compliance is more strongly correlated with 

the experimental B-factors than the computed fluctuations. For example, by considering the X-ray 

structure of the Human Complement Protein C8γ (PDB: 1LF7) and taking into account the elastic 

network model with p = 3, a correlation coefficient of 0.61 is obtained when considering the 

fluctuations (Fig. 3a), whereas a value of 0.79 is found for the compliance (Fig. 3b). As can clearly 

be seen in Fig. 3b, the profile of the structural compliance, calculated according Eq. (13), shows 

good agreement with the experimental B-factors, and therefore it allows the identification of the 

flexible and rigid portions of the protein. Figure 3b also compares the experimental B-factors for 

Human Complement Protein C8γ with the stiffness values. A Pearson coefficient of -0.76 was 

obtained for this comparison. It can be seen that the two profiles are strongly anti-correlated, 

meaning that when the experimental B-factors show upward peaks (high-flexibility regions), the 

stiffness profile shows downward peaks (low-stiffness regions). This allows us to conclude that the 

structural stiffness defined here can provide insights on the internal protein flexibility. Note that the 

anti-correlation value of the stiffness and the correlation for the compliance are very similar, i.e. -

0.76 and 0.79, but they are not identical. In fact, although the pairwise stiffness      is defined as the 



inverse of the pairwise compliance     , the strict inverse relationship is lost in the total    and    

values, because of the averaging procedure reported in Eqs. (13) and (14). For this reason, the 

stiffness and compliance profiles are nearly, but not exactly, mirrored (see Fig. 3b). In Fig. 3c, the 

normalized values presented in Fig. 3a and 3b are mapped onto the protein structure. As can be 

seen, although there are similarities between compliances and fluctuations, compliances agree 

qualitatively more closely with the experimental B-factors. 

As specified above, in order to calculate the profiles of the structural compliance, it is first 

necessary to generate a map of pairwise compliances, which provides information about the 

distribution of the deformability over the structure. In Fig. S3, the complete compliance and 

stiffness maps for the elastic network model of Human Complement Protein C8γ are reported. See 

the Supplementary Material for more details.  

As indicated above, Dataset 2 has a smaller number of proteins with multiple chains. 

Considering the two separate datasets was carried out to assess whether the concepts of structural 

compliance and stiffness can provide insights on the flexibility of proteins, regardless the number of 

amino acid chains. 

Similarly to the results presented in Fig. 2a, Fig. 4a shows the outcomes of the correlation 

coefficients for the fluctuations and compliance when compared to the experimental B-factors for 

Dataset 2. The results are almost identical to what has been already obtained for Dataset 1. This 

means that the concept of structural compliance is indeed useful also for predicting the flexibility of 

multi-chain macromolecules. In the same way, Fig. 4b shows the distributions of the correlation 

coefficients which were obtained when comparing the stiffness profiles to the experimental B-

factors for Dataset 2. Again, a good anti-correlation was found, showing that the stiffness concept 

can be also used for multi-chain proteins as a measure of their inherent flexibility. The results from 

the complete analysis, by varying the values of p, are reported into the Supplementary Material in 

Figs. S4 and S5. 

An example is shown in Fig. 5 for the profiles of the fluctuations, compliance and stiffness 

compared to the experimental B-factors of the dimeric protein Clitocybe nebularis ricin B-like 

lectin (PDB: 3NBC). The correlation with the computed fluctuations is found to be 0.73; whereas 

the correlations with the structural compliance and stiffness are 0.80 and -0.78, respectively. As can 

be seen from Fig. 5b, the peaks corresponding to the high-flexibility regions found in the 

experimental B-factors distribution are well described by the compliance profile. In the same way, a 

good anti-correlation is found with the stiffness profile. In Fig. 5c, the normalized values are 

mapped onto the structure of the dimeric protein. In this case the compliance is more able to 

quantify the flexibility on the external tips of the protein as well as its deformability in the cores. In 

the Supplementary Material, in Fig. S6, the complete normalized compliance and stiffness maps for 

the same protein are reported, which show a clear symmetry for the two chains of the molecule. 

Another useful consideration is related to the concept of packing. Protein packing is a 

multiscale phenomenon which influences the local and global dynamics of the protein. It is often 

informative to study which parts of a protein are so densely packed as to be completely immobile 

and which are less dense, where internal movements are possible, to make conclusions about the 

mechanism and function of the protein
22

. The compliance and stiffness maps proposed in this paper 

can serve as another way to study protein packing. The compliance and stiffness profiles can help 

us to determine the dynamic communities
32-34

 and to coarse-grain them for further analysis. We can 

use a hinge prediction method (PACKMAN
22

) based on packing densities to identify the hinges in 

the parts of the protein that tend to be more flexible, making these sites responsible for the global 



deformability. So, if these regions are predicted to be hinges and show high compliance values, they 

can most likely represent global deformability, whereas local deformability occurs otherwise. 

As shown in Figs. 2 and 4, the distributions of the correlation coefficients obtained when 

comparing the structural compliance or fluctuations to the experimental B-factors were very similar. 

That means that, on average, when considering a large number of protein structures, almost the 

same correlation coefficient could be obtained when comparing the compliance or the fluctuations 

profiles to the experimental data. However, as already shown in Figs. 3 and 5, for various cases an 

enhanced agreement with the experimental data was found when calculating the structural 

compliance, rather than considering the computed fluctuations. In some other cases, the correlation 

between the structural compliance and the experimental B-factors is found to be lower than the one 

obtained with the computed fluctuations. This outcome can be understood by considering the plots 

in Fig. 6, which shows the statistical distribution of the differences   between the correlation 

coefficients for Dataset 1 (Fig. 6a) and Dataset 2 (Fig. 6b). For each protein structure, the value of   

is defined as 

 

           
        

  (15) 

 

where        
 is the correlation coefficient from comparing the compliance to the experimental B-

factors, and        
 the same quantity related to the fluctuations. It is then clear that positive   

values imply higher correlations with the structural compliance, whereas negative   values indicate 

higher correlations with the fluctuations. 

It can be seen from Figs. 6a and 6b that the histogram of   values resembles a zero-centered 

Gaussian distribution, although a certain right-oriented skewness is recognizable toward positive   

values. Therefore, we cannot conclude that the structural compliance improves the correlation with 

experimental data for all cases, but this is true at least for more than half of the protein set. At this 

point, one could try and understand why, for certain cases, the experimental B-factors show an 

improved agreement with the structural compliance while, for some other cases, they are more 

correlated to the normal-mode-based fluctuations. Although one might argue that this should 

depend on certain protein features, e.g. the overall size, the globularity, etc., it was not possible to 

identify any correlation. 

One possible explanation could be related to the very definition of the fluctuations and 

structural compliance introduced here. As can be seen from Eq. (7), the fluctuations are evaluated 

based on the eigenvectors derived from the ANM Hessian matrix, weighting their contribution 

according to the corresponding eigenvalues. In this way, the low-frequency modes, which are 

usually the larger-scale global motions of the protein, reflecting the global deformability, play a 

major role in defining the fluctuations. Therefore, the local deformability is not usually well-

reflected into the computed fluctuations, since the corresponding motions usually occur at higher 

frequencies and, for this reason, they are underweighted. Contrarily, when calculating the structural 

compliance according to Eqs. (12) and (13), both the local and global flexibility of the molecule are 

probed equally. As a matter of fact, when applying pairwise pulling forces on close residues the 

local flexibility of the protein is probed, whereas when the forces act on a distant pair of amino 

acids the global deformability of the structure is assessed for the most part. Therefore, the different 

correlation coefficients obtained when comparing the fluctuations or the structural compliance 



against the experimental B-factors might just be related to the different amount of local vs global 

flexibility that the experimental data reflect. 

Moreover, it must be also noted that the experimental B-factors are not error-free and might not 

necessarily account for the actual relative balance between global-local flexibility of the protein 

structure, as they may contain some unavoidable errors from the crystallography experiment. 

Nevertheless, properties extracted from these simple models, like the fluctuations and structural 

compliance, can still provide significant information about the protein flexibility. 

 

Conclusions 

 

In this paper a new Structural Mechanics-based concept was introduced in order to investigate 

protein flexibility, which has been referred to as the structural compliance. The calculation of this 

new quantity was based on application of pairwise pulling forces at the all pairs of nodes in an 

elastic network model, in order to probe both the global and local flexibility of the protein. This 

concept has been used here since it may also simulate some of the effects of Brownian motions 

resulting from random collisions with the external environment. Interestingly, the profiles of the 

structural compliance along the protein chain have been found to show good correlation with the 

experimental B-factors derived from crystallographic experiments. The results have been confirmed 

by investigating large datasets of single- and multi-chain protein structures. Also, for various cases, 

it has been found that the structural compliance shows a slightly enhanced agreement with 

experimental data, higher than the one obtained when considering the classical ANM-based 

fluctuations. Therefore, it can be concluded that this structural quantity can be effectively used as a 

new measure for predicting the protein inherent flexibility. Also, it suggests that the ANM 

fluctuations do not always adequately represent the importance of the local fluctuations. Another 

structural concept was also introduced, which is strictly related to the structural compliance, and 

which has been defined as the structural stiffness. Likewise, a good anti-correlation has been found 

when comparing the experimental B-factors against the stiffness profiles, showing that regions with 

high B-factors are likely to show low stiffness values. 

Both of the structural concepts introduced here not only allow the investigation of the 

flexibility of protein structures, but they can also lead to two-dimensional representations, showing 

the pairwise residue-residue deformability/rigidity. These compliance/stiffness maps can provide 

meaningful information for predicting the local and global resistance of the molecule against 

external pulling forces and, for example, they can be very useful when investigating the anisotropic 

response of proteins during mechanical unfolding experiments, at least for small pulling forces. 

Also, these maps can be used in the future to predict the packing of proteins. 

The ANM is not the only model that has been developed for the prediction of protein 

flexibility. As a matter of fact, it has been shown that the Gaussian Network Model (GNM)
3
 often 

outperforms the ANM for B-factors predictions. Although the GNM does not consider the 

directionality of protein motion, the compliance and stiffness metrics can also be applied within the 

GNM with some modification. This is shown in the Supplementary Material, where the GNM 

compliance and stiffness maps and profiles have been derived and compared to B-factors and GNM 

cross-correlations maps. From the results, we observe that the GNM-based compliance and stiffness 

maps are, of course, less informative compared to the ANM-based ones, since they lack the 

information about the directionality of force application. Moreover, it is found that the GNM 

compliance profile basically overlaps with the fluctuations, thus leading to the same correlation 



coefficient with the experimental data. Therefore, although the GNM fluctuations are often found to 

yield better correlations with B-factors compared to ANM ones, the application of compliance and 

stiffness concepts within the GNM seems less suitable, compared to the ANM, due to the lack of 

the directionality in the GNM. 

In this paper, only the isotropic experimental B-factors have been considered for comparison 

with the fluctuations, compliances and stiffness profiles. Due to the directionality element within 

the suggested force application method, pairwise compliances and stiffnesses might be developed to 

provide also a metric of the anisotropic B-factors, which would be one further advancement of this 

research. However, to this purpose, several issues would need to be first addressed. First, the ANM-

based fluctuations have already been compared to a limited extent to the anisotropic B-factors and 

the correlations were not found as good as in the comparison against the isotropic counterpart
10

. 

Second, the suggested force application methodology is strongly dependent on the protein 

geometry, so that residues on specific part of the molecule, e.g. on the surface, may experience a 

more limited directionality pattern in the force application compared to other residues. Also, 

although the pairwise force application seems the most rational choice to simulate the intra-

molecular interactions among residues, the effect of external solvent is believed to be more random 

in nature. For all these reasons, the model and methodology presented here should be improved 

before making anisotropic B-factors prediction. This might be achieved: by considering explicitly 

solvent molecules embedded within the protein ENM, e.g. by taking also into account the layer of 

tightly bound water, ions, and small molecules; by considering a more random force application 

pattern, that allows accounting for both intra-molecular interactions and the bombardment due to 

external solvent; by considering an enhanced ENM, e.g. with more accurate spring connectivity and 

force constants. All these elements might be beneficial for the improvement of the model and the 

prediction of protein anisotropic B-factors. 

Eventually, it should be also observed that B-factors may not be the best benchmarks, as some 

contribution may also arise from rigid-body motions
35

. It was also shown that models that provide 

better correlations with crystallographic B-factors might still model collective motions less 

reliably
36

. All these aspects should therefore be taken into account. 

Finally, it is remarkable that the concepts of compliance and stiffness, which are used in the 

field of engineering to assess civil and mechanical structures and to analyze their structural 

responses, have found application to the field of protein dynamics. As an example, some of the 

authors recently developed a stiffness-based methodology based on matrix calculus, for the 

investigation of the structural behavior of special types of tall buildings, called diagrid, which are 

made up of diagonal members placed all over the exterior of the building
37

. The matrix-based 

method proposed for the diagrid systems is found to share many mutual features with the ANM, 

which has originally been developed for the investigation of protein vibrations. It is thus fascinating 

that such different systems having extremely different distance scales, such as proteins and tall 

buildings, can be effectively investigated by the same structural approaches. 
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Table 1. Datasets characteristics 

Dataset 1 2 

Number of chains [-] Single (1) Multiple (2-10) 

Resolution [Å] 0.0 – 1.3 0.0 – 1.1 

Sequence identity [%] 30 50 

Number of structures [-] 921 149 

Protein size (number of residues) [min – max] 101 – 1174 104 – 2484 

 



Figure Legends 

 

Fig. 1. Calculation of structural compliance. (a) Compliance for a linear spring with force 

constant  . The spring is initially in the undeformed configuration (upper) and is then subjected to 

two equal and opposite forces  , resulting in a total elongation   (lower). The compliance of the 

system is defined as the total resulting displacement in the direction of the force, divided by the 

value of the force, i.e.   =    . (b) Compliance related to residues i and j within the protein elastic 

network. A couplet of opposite unitary forces are applied at residues i and j, in the i-j direction, and 

the corresponding displacements    and    are evaluated. Note that the displacements    and    will 

not necessarily be parallel to the direction of the applied forces. Pairwise compliance is then 

evaluated according to Eq. (12). 

 

Fig. 2. Comparison of the fluctuation, compliance and stiffness correlations with the 

experimental B-factors for Dataset 1 (p = 3). (a) Distribution of the correlation coefficients for 

fluctuations (grey histogram) and compliance (black histogram). (b) Distribution of the correlation 

coefficients for stiffness. Median values (M) and standard deviations ( ) are reported in the keys. 

 

Fig. 3. Comparison of the fluctuation, compliance and stiffness correlations with the 

experimental B-factors for Human Complement Protein C8γ (PDB: 1LF7). In (a) fluctuations; 

(b) compliances and stiffnesses; (c) graphical versions of these values shown on the structure – left, 

compliance; center, normalized B-factors; and right, normalized fluctuations. Coloring is spectral 

with red for higher values and dark blue for lower values. 

 

Fig. 4. Comparison of the fluctuation, compliance and stiffness correlations with the 

experimental B-factors for Dataset 2 (p = 3). (a) Distribution of the correlation coefficients for 

fluctuations and compliance. (b) Distribution of the correlation coefficients for stiffness. Median 

values (M) and standard deviations ( ) are reported in the keys at the top. 

 

Fig. 5. Comparison of the fluctuation, compliance and stiffness correlations with the 

experimental B-factors for Clitocybe nebularis ricin B-like lectin (PDB: 3NBC). In (a) 

fluctuations; (b) compliances and stiffnesses; (c) graphical versions of these values shown on the 

structure – left, compliance; center, normalized B-factors; and right, normalized fluctuations. 

Coloring is spectral with red for higher values and dark blue for lower values. 

 

Fig. 6. Distribution of the correlation coefficient differences   (p = 3). (a) Dataset 1; (b) Dataset 

2.   is defined as the difference between the correlation coefficient for compliance and the 

correlation coefficient for the fluctuation with respect to the experimental B-factors. Positive   

values mean that the compliance has a better agreement with experimental data; negative   values 

imply a better agreement for the ANM fluctuations. For both Dataset 1 and Dataset 2, the 

distribution of   values is almost centered at zero, with a slight bias towards positive values. 
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Fig. 4. Comparison of the fluctuation, compliance and stiffness correlations with the 

experimental B-factors for Dataset 2 (p = 3). (a) Distribution of the correlation coefficients for 

fluctuations and compliance. (b) Distribution of the correlation coefficients for stiffness. Median 

values (M) and standard deviations ( ) are reported in the keys at the top. 
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structure – left, compliance; center, normalized B-factors; and right, normalized fluctuations. 

Coloring is spectral with red for higher values and dark blue for lower values. 

  



 
Fig. 6. Distribution of the correlation coefficient differences   (p = 3). (a) Dataset 1; (b) Dataset 

2.   is defined as the difference between the correlation coefficient for compliance and the 

correlation coefficient for the fluctuation with respect to the experimental B-factors. Positive   

values mean that the compliance has a better agreement with experimental data; negative   values 

imply a better agreement for the ANM fluctuations. For both Dataset 1 and Dataset 2, the 

distribution of   values is almost centered at zero, with a slight bias towards positive values. 

 

 

 

 

 

 

 


