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1 Introduction
A smooth irreducible closed subscheme X ⊆ ℙN of dimension 3 is called a Fano threefold if its anticanon-
ical line bundle ω−1X is ample (see [10] for the results about Fano threefold mentioned in what follows).
The index iX of a Fano threefold is the greatest integer such that ωX ≅ OX(−iXh) for some ample line bun-
dle OX(h) ∈ Pic(X). Such a line bundle OX(h) is uniquely determined, and it is called the fundamental line
bundle of X.

One has 1 ≤ iX ≤ 4, and for each iX in this range, there is a finite number of deformation families of Fano
threefolds of index iX. For example, iX = 4, 3 if and only if X is isomorphic to eitherℙ3 or the smooth quadric
in ℙ4, respectively. There exist 8 deformation families of Fano threefolds with iX = 2 and 95 with iX = 1.

In the seminal paper [4], the authors introduced for the first time instanton bundles on ℙ3 as rank 2
bundles E such that c1(E) = 0 and h0(ℙ3, E) = h1(ℙ3, E(−2)) = 0. Since then, instanton bundles have been
widely studied, especially from the viewpoint of the smoothness and connectedness of their moduli space.

Also a number of generalizations of instantons appeared. For example, in [6] (see also [12]), the author
extends the notion of instanton bundle to each Fano threefold with cyclic Picard group as those rank two
bundles such that c1(E) = (2qX − iX)h and h0(X, E) = h1(X, E(−qXh)) = 0, where

qX := [ iX2 ].
The author also studied therein instanton bundles on several Fano threefolds X with indices 1 ≤ iX ≤ 3. In
[5, 14], the authors extended the definition of instanton bundle to each Fano threefold.

In order to understand such a definition, we recall the notion of μ-(semi)stability. For each sheaf F on X,
the slope of F with respect to OX(h) is the rational number μ(F) := c1(F)h2/ rk(F). We say that the coherent
torsion-free sheafF is μ-stable (resp. μ-semistable) with respect toOX(h) if μ(G) < μ(F) (resp. μ(G) ≤ μ(F)) for
each subsheaf G with 0 < rk(G) < rk(F).
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Definition 1.1. Let X be a Fano threefold. A vector bundle E of rank 2 on X is called an instanton bundle if
the following properties hold:∙ c1(E) = (2qX − iX)h;∙ E is μ-semistable with respect to OX(h) and h0(X, E) = 0;∙ h1(X, E(−qXh)) = 0.
The class c2(E) ∈ A2(X) is called the charge of E.
When Pic(X) ≅ ℤ and E is a rank 2 bundle with c1(E) ∈ {0, −h}, then the vanishing h0(X, E) = 0 is equivalent
to the μ-stability of E. This is no longer true if rk Pic(X) ≥ 2.

Nevertheless, a bundle E which is either μ-stable with c1(E) = 0 or μ-semistable with c1(E) = −h always
satisfies h0(X, E) = 0. In particular, the latter vanishing on Fano threefolds with odd iX is an immediate
consequence of the other properties in Definition 1.1.

In [14], the authors studied bundles which are instanton in the sense of the previous definition on the
flag threefold, i.e. the general hyperplane section of the Segre image of ℙ2 × ℙ2. In [5], a similar description
has been given for the blow up ofℙ3 at a point, where the condition on a class ζ ∈ A2(X) for being the charge
of an instanton bundle are also given. An analogous study on ℙ1 × ℙ1 × ℙ1 is the object of [2].

All these threefolds are important examples of Fano threefolds of index 2, and they complete the analysis
of instanton bundles on Fano threefolds of index 2 with very ample fundamental divisor.

In the paper [5], the authors introduced the following definitions, where Λ denotes the Hilbert scheme
of lines in X.

Definition 1.2. Let E be an instanton bundle on a Fano threefold X.∙ We say that E is generically trivial on Λ (resp. on the component Λ0 ⊆ Λ) if
h1(L, E((iX − 2qX − 1)h) ⊗ OL) = 0

when L ∈ Λ (resp. L ∈ Λ0) is general.∙ We say that E is earnest if h1(X, E(−qXh − D)) = 0 when |D| ̸= 0 contains smooth integral elements.

If iX is even, generically trivial instanton bundles on the component Λ0 ⊆ Λ are the instanton bundles such
that E ⊗ OL ≅ O⊕2ℙ1 for each general L ∈ Λ0, while when iX is odd, the ones such that E ⊗ OL ≅ Oℙ1 (−1) ⊕ Oℙ1 .
Each instanton bundle is generically trivial if iX ≥ 3 (see [6]). When iX ≤ 2, the generic triviality of each
instanton bundle has been conjectured in [12, Section 3.7 and Conjecture 3.16].

The notion of earnest instanton bundle is related to the μ-semistability of its restriction to general hyper-
surface sections; see the introduction of [5] for some details. In particular, if Pic(X) ≅ ℤ, each instanton
bundle is earnest, thanks to a theorem of Maruyama (see [5, Examples 3.2 and 3.3]). One can prove that
the same is true when X is either the flag threefold (see [5, Example 3.4]) or ℙ1 × ℙ1 × ℙ1 (see [2]).

When X is the blow up ofℙ3 at a point, it is not immediate whether instanton bundles are earnest or not.
Indeed, in [5], the authors are able only to prove that the apparently infinite set of vanishing in the above
definition reduces to the single vanishing for the exceptional divisor of the blow up. Moreover, the existence
of earnest instanton bundles on that Fano threefold is proved for every admissible choice of the charge.

In the present paper, we focus our attention on F0 := ℙ1 × ℙ2 and on the blow up F1 ofℙ3 along a line R.
Notice that Fe is a Fano threefold with iFe = 1 for e = 0, 1. We have a natural isomorphism Fe ≅ ℙ(Pe) π→ ℙ1,
where Pe := O⊕2ℙ1 ⊕ Oℙ1 (e); throughout the whole paper, following [7], for each coherent sheaf G on Fe, we
set P(G) := Proj(Sym(G)). We denote by ξe and f the classes of Oℙ(Pe)(1) and π∗Oℙ1 (1), respectively. Thus we
have an isomorphism

A(Fe) ≅ ℤ[ξe , f]/(f 2, ξ3e − eξ2e f).
The fundamental line bundle is OFe (3ξe + (2 − e)f). If e = 1, it corresponds to the quartic surfaces through-
out R. From now on, E ⊆ F1 denotes the exceptional divisor of the blow up. The arguments used in the two
cases e = 0 and e = 1 are definitely similar. Indeed, the two threefolds behave in a very similar way, as we
show in Section 3.

Wefirst dealwith the threefold F1 in Sections4, 5, 6 and7.We thendescribe the changes in the arguments
which are necessary for dealing with F0 in the last Section 8.
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Section 2 contains some general and well-known results concerning instanton bundles on Fano three-
folds, while Section 3 is devoted to list some results on the threefolds Fe.

In Section 4, we first prove that the coefficients α and β for the charge αξ21 + βξ1f of an instanton bundle
satisfy a list of restrictions; among them α ≥ 2, α + β ≥ 4 and, for earnest instanton bundles, β ≥ 1. Then we
prove the existence of a monad associated to each instanton bundle on F1.

More precisely, for every choice of integers α, β, γ, δ with α ≥ 2, γ ≥ 0 and
β ≥ max{4 − α, α − δ − 2, 1 − γ}, δ ≥ 2γ, (1.1)

we set

C−11 := OF1 (−2ξ1 − f)⊕α+β−4 ⊕ OF1 (−2ξ1)⊕γ ,
C01 := OF1 (−2ξ1)⊕β+γ−1 ⊕ ΩF1|ℙ1 (−f)⊕α−2 ⊕ OF1 (−ξ1)⊕δ+β−α+2,
C11 := OF1 (−ξ1 − f)⊕γ ⊕ OF1 (−ξ1)⊕δ−2γ ⊕ OF1 (−ξ1 + f)⊕β+γ−1.

Our first main result is as follows.

Theorem 1.3. LetE be an instanton bundle with charge αξ21 + βξ1f on F1. ThenE is the cohomology of amonad
C∙1 of the form

0→ C−11 → C01 → C11 → 0, (1.2)

where γ := h1(F1, E(−ξ1 + f)) and δ := h1(F1, E(−ξ1 + 2f)). Conversely, if the cohomology E of the monad C∙1 is
a μ-semistable bundle for some integers α, β, γ, δ, then E is an instanton bundle with charge αξ21 + βξ1f on F1
such that
(1) h1(F1, E(−ξ1 + f)) = γ,
(2) h1(F1, E(−ξ1 + 2f)) ≤ δ,
(3) h1(F1, E(−D)) = 0 for each integral smooth effective divisor D ∉ |ξ − f|.
As an almost immediate by-product of the abovemonadic description,we characterize earnest instantonbun-
dles E as the ones such that the single vanishing h1(F1, E(−ξ + f)) = 0 holds (see Corollary 4.10). Moreover,
we also prove that the charge αξ21 + βξ1f of an instanton bundle always satisfies 4α + 3β ≥ 15.

In Section 5, we deal with the existence of instanton bundles for all the admissible values of their charge
αξ21 + βξ1f , i.e. α ≥ 2, α + β ≥ 4 and 4α + 3β ≥ 15. More precisely, we describe therein a construction (see
Construction 5.1) leading to certain bundles E of rank 2 with c2(E) = αξ21 + βξ1f , and then we prove the
following result.

Theorem 1.4. If α ≥ 2, α + β ≥ 4, 4α + 3β ≥ 15, then the bundleE obtained via Construction 5.1 is a generically
trivial μ-stable instanton bundle E with charge αξ21 + βξ1f on F1 such that

dimExt1F1 (E, E) = 8α + 6β − 30, Ext2F1 (E, E) = Ext3F1 (E, E) = 0.
We then conclude the section proving that all the bundles above represent points in a single component of
the moduli space of instanton bundles.

It is noteworthy to remark that Construction 5.1 often returns non-earnest bundles. For example, such
bundles are certainly non-earnest when either β ≤ 0 (indeed, in this case, h1(F1, E(−ξ1 + f)) = γ ≥ 1 thanks
to Corollary 4.5 or inequalities (1.1) above) or α ≥ 4 without restrictions on β (see Remark 5.3). Thus it is
quite natural to ask if it is possible to find different constructions leading to earnest instanton bundle.

A first trivial remark is that this is certainly not possible when β ≤ 0 because 1 − γ ≤ β. But even if
β ≥ 1, we are not able of deducing the existence of earnest instanton bundles because of the aforementioned
Remark 5.3.

For this reason, in Section 6, we describe a second alternative construction (see Construction 6.1)
which returns earnest instanton bundles for all the admissible values of α and β, i.e. when α ≥ 2, β ≥ 1
and 4α + 3β ≥ 15. More precisely, we prove the existence of bundles E of rank 2with c2(E) = αξ21 + βξ1f such
that the following result holds true.



1318 | G. Casnati and O. Genc, Instanton bundles

Theorem 1.5. If α ≥ 2, β ≥ 1, 4α + 3β ≥ 15, then the bundle E obtained via Construction 6.1 is an earnest,
generically trivial, μ-stable instanton bundle E with charge αξ21 + βξ1f on F1 such that

dimExt1F1 (E, E) = 8α + 6β − 30,
Ext2F1 (E, E) = Ext3F1 (E, E) = 0.

As in the previous case, we finally prove that all the bundles above represent points in a single component of
the moduli space of instanton bundles.

Inwhat follows,wewill denote by IF1 (αξ21 + βξ1f) the locus of points representing instantonbundleswith
charge αξ21 + βξ1f in the moduli spaceMF1 (2; 0, αξ21 + βξ1f) of vector bundles E of rank 2with c1(E) = 0 and
c2(E) = αξ21 + βξ1f which are μ-stable with respect to OF1 (h).

In view of the irreducibility of the moduli space of instanton bundles on ℙ3, recently proved in [17, 18],
and the results listed above, it is natural to ask whether IF1 (αξ21 + βξ1f) is irreducible as well, or at least if
Constructions 5.1 and 6.1 actually give bundles in the same component when α ≥ 2, β ≥ 1, 4α + 3β ≥ 15.

We are not able to answer the above natural questions. Nevertheless, in Section 7, we deal with them,
giving very partial answers in few particular cases.

In Section 8, we turn our attention to the threefold F0. The following two theorems are proved with the
same arguments used in Theorem 1.3, in Construction 6.1 and in Theorem 1.5. More precisely, for every
choice of integers α, β with α ≥ 2, β ≥ 3, α + β ≥ 6, we set

C−10 := OF0 (−2ξ0 − f)⊕α+β−6,
C00 := OF0 (−2ξ0)⊕β−3 ⊕ ΩF0|ℙ1 (−f)⊕α−2 ⊕ OF0 (−ξ0 − f)⊕γ ,
C10 := OF0 (−ξ0 − f)⊕α−β+γ ⊕ OF0 (−ξ0)⊕β−3.

The first main result of Section 8 is as follows.

Theorem 1.6. LetE be an instanton bundle with charge αξ20 + βξ0f on F0. ThenE is the cohomology of amonad
C∙0 of the form

0→ C−10 → C00 → C10 → 0, (1.3)

where γ := h1(F0, E(ξ0 − f)). Conversely, if the cohomology E of the monad C∙0 is a μ-semistable bundle for some
integers α, β, γ, then E is an earnest instanton bundle with charge αξ20 + βξ0f such that h1(F0, E(ξ0 − f)) ≤ γ.
Thenwedescribe a construction (see Construction 8.6) leading to bundlesE of rank2with c2(E) = αξ20 + βξ0f
such that the following result holds.

Theorem 1.7. If α ≥ 2, β ≥ 3, α + β ≥ 6, then the bundle E obtained via Construction 8.6 is an earnest, generi-
cally trivial, μ-stable instanton bundle E with charge αξ20 + βξ0f on F0 such that

dimExt1F0 (E, E) = 4α + 6β − 30,
Ext2F0 (E, E) = Ext3F0 (E, E) = 0.

2 General facts
We list below some general helpful results used throughout the whole paper. Let X be any smooth projective
variety with canonical line bundle ωX.

If G andH are coherent sheaves on X, then the Serre duality holds:

ExtiX(H, G ⊗ ωX) ≅ Extdim(X)−iX (G,H)∨ (2.1)

(see [8, Proposition 7.4]).
Let F be a vector bundle of rank 2 on X, and let s ∈ H0(X,F). In general, its zero-locus (s)0 ⊆ X is either

empty or its codimension is at most 2. We can always write (s)0 = S ∪ Z, where Z has codimension 2 (or it is
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empty) and S has pure codimension 1 (or it is empty). In particular, F(−S) has a section vanishing on Z; thus
we can consider its Koszul complex

0→ OX(S)→ F → IZ|X(−S) ⊗ det(F)→ 0. (2.2)

Sequence 2.2 tensored by OZ yields IZ|X/I2Z|X ≅ F∨(S) ⊗ OZ, whence
NZ|X ≅ F(−S) ⊗ OZ . (2.3)

If S = 0, then Z is locally complete intersection inside X because rk(F) = 2. In particular, it has no embedded
components.

The above construction can be reversed by the Serre correspondence as follows.

Theorem 2.1. Let Z ⊆ X be a local complete intersection subscheme of codimension 2. If det(NZ|X) ≅ OZ ⊗ L
for some L ∈ Pic(X) such that h2(X,L∨) = 0, then there exists a vector bundle F of rank 2 on X such that
(1) det(F) ≅ L,
(2) F has a section s such that Z coincides with the zero locus (s)0 of s.
Moreover, if H1(X,L∨) = 0, the above two conditions determine F up to isomorphism.

Proof. See [3].

The Riemann–Roch formula for a vector bundle F on a threefold X is

χ(F) = rk(F)χ(OX) + 16 (c1(F)3 − 3c1(F)c2(F) + 3c3(F))− 14 (ωXc1(F)2 − 2ωXc2(F)) + 1
12 (ω2

Xc1(F) + c2(ΩX)c1(F)) (2.4)

(see [7, Theorem A.4.1]).
We close the section by listing some results on instanton bundles which hold true on Fano three-

fold X with iX = 1. The first result is the following trivial specialization of formula (2.1) for bundles F with
c1(F) = −h:

hi(X,F(D)) = h3−i(X,F(−D)) (2.5)

for each line bundle OX(D) ∈ Pic(X). In particular, h0(X,F) = h3(X,F); hence the following lemma is easy to
prove. Moreover, χ(OX) = 1 and

c2(ΩX)c1(F) = −24 (2.6)

(see [7, Exercise A.6.7]).

Lemma 2.2. Let X be a Fano threefold with iX = 1. A μ-semistable bundle E of rank 2 on X such that c1(E)=−h
is an instanton bundle if and only if hi(X, E) = 0 for each i.
Proof. If E is an instanton bundle, the statement follows from the definition and equality (2.5). The converse
is true by definition.

If E is an instanton bundle on X, then we know that E ⊗ OH is μ-semistable for each a general hyperplane
section H of X thanks to [15, Theorem 3.1]); hence the Bogomolov inequality for E ⊗ OH yields

c2(E)h ≥ deg(X)4 . (2.7)

Moreover, if E is also simple, then dimHomX(E, E) = 1. It follows from equality (2.1) that

Ext3X(E, E)∨ ≅ HomX(E, E(−h)) ⊆ HomX(E, E).
If φ ∈ HomX(E, E(−h)), then det(φ) ∈ H0(X,OX(−2h)) = 0. Since, being E simple, each non-zero endomor-
phism of E is an automorphism, it follows that φ = 0, i.e.

dimExt3X(E, E) = 0 (2.8)

Thus formula (2.4) for E ⊗ E∨ yields
dimExt1X(E, E) − dimExt2X(E, E) = 2c2(E)h − deg(X)2 − 3. (2.9)
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3 The threefolds F0 and F1
In this section,we list all the basic results on the two threefolds F0 and F1 thatwewill use in the next sections.

The threefold F0 = ℙ1 × ℙ2 is trivially endowed with the projections σ0 : F0 → ℙ2, π : F0 ≅ ℙ(P0)→ ℙ1,
whereP0 := O⊕3ℙ1 . The classes ξ0 and f of σ∗0Oℙ2 (1) ≅ Oℙ(P0)(1)and π∗Oℙ1 (1)are obviously globally generated.

Also F1 is endowed with two natural morphisms, the blow up map σ1 : F1 → ℙ3 and the natural
projection π : F1 ≅ ℙ(P1)→ ℙ1, where P1 := O⊕2ℙ1 ⊕ Oℙ1 (1). Since the normal bundle of the blown up R
inside ℙ3 satisfies NR|ℙ3 ≅ Oℙ1 (1)⊕2, it follows that E := σ−11 (R) ≅ ℙ1 × ℙ1 and σ1 induces an isomorphism
F1 \ σ−11 (R) ≅ ℙ3 \ {R}. Recall that ξ1 and f are the classes of Oℙ(P1)(1) and π∗Oℙ1 (1), respectively. Triv-
ially, π∗Oℙ1 (1) is globally generated. Since P1 is globally generated, it follows that the same holds for
OF1 (ξ1) ≅ Oℙ(P1)(1); moreover, OF1 (ξ1) ≅ σ∗1Oℙ3 (1).

In both the cases, we have an embedding Fe ⊆ ℙ29 induced by the linear system
OFe (he) = OFe (3ξe + (2 − e)f), ωFe ≅ OFe (−he);

in particular, Fe is a Fano threefold with iFe = 1 and deg(Fe) = h3e = 54.
If e = 1, then let H ⊆ ℙ3 be a plane through R. On the one hand, σ−11 (H) is in the class of ξ1. On the other

hand, σ−11 (H) is the union of E with the strict transform of H. Such a strict transform is in the linear system|f|; hence E is the unique element in |ξ1 − f|. Notice that Eh21 = 6.
Recall that ξ3e = eξ2e f , and ξ2e f is the class of a point. The morphism π is smooth; hence we have the

relative Euler exact sequence

0→ ΩFe |ℙ1 → OFe (−ξe)⊕2 ⊕ OFe (−ξe + ef)→ OFe → 0 (3.1)

and the exact sequence of sheaves of differentials

0→ OFe (−2f)→ ΩFe → ΩFe |ℙ1 → 0.

A simple Chern class computation then yields c2(ΩFe ) = 3ξ2e + (6 − 2e)ξe f . In particular, if E is an instanton
bundle with charge αξ2e + βξe f on Fe, then c1(E) = −he; hence equalities (2.4) and (2.6) yield

χ(E(aξe + bf)) = e(a33 + 2a3 − aα) + a2b + 3a + 2b − bα − aβ. (3.2)

Notice that the pull-back via π of the Euler sequence on ℙ1 returns the exact sequence
0→ OFe (−f)→ O⊕2Fe → OFe (f)→ 0. (3.3)

We now describe three interesting families of smooth rational curves inside Fe.

Remark 3.1. Let L be a line on Fe, i.e. a curve such that Lhe = 1. If we denote by aξ2e + bξe f its class in A2(Fe),
then we must have

1 = (aξ2e + bξe f)(3ξe + (2 − e)f) = 2(1 + e)a + 3b.
Since OFe (f) and OFe (ξe) are globally generated, it follows that a = Lf ≥ 0 and ae + b = Lξe ≥ 0. Thus e = 1
necessarily.

If b = LE ≥ 0, then a ≤ 0; hence a = b = 0 necessarily. It follows that b ≤ −1; hence
0 ≤ 4(a + b) = 1 + b ≤ 0

finally yields a = 1 and b = −1; hence the class of L is ξ21 − ξ1f . Notice that, in this case, L ⊆ E because L is
integral and LE = −1. In particular, L is cut out on E by a divisor in |ξ1|. The cohomology of the exact sequence

0→ OF1 (−ξ1 + f)→ OF1 → OE → 0

tensored by OF1 (ξ1), the isomorphism π∗OF1 (ξ1) ≅ P1 (see [7, Exercise III.8.4 (a)]) and [7, Exercises III.8.1
and III.8.3] imply that the linear system |L| on the surface E ≅ ℙ1 × ℙ1 has dimension 1; hence |L| is one of
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the rulings of lines on E; in particular, distinct elements in |L| do not intersect each other. The Hilbert scheme
Λ of lines inside F1 is then isomorphic to ℙ1, and OL fits into the exact sequence

0→ OF1 (−2ξ1 + f)→ OF1 (−ξ1 + f) ⊕ OF1 (−ξ1)→ OF1 → OL → 0.

Restricting the above sequence to L, we finally obtain NL|F1 ≅ Oℙ1 ⊕ Oℙ1 (−1). Conversely, the intersection L
of general elements in |ξ1 − f| and |ξ1| is a smooth curve. Since Lh1 = 1, it follows that L represents a point
in Λ, thanks to the Bertini theorem.

Remark 3.2. If e = 0, letM be a fiber of σ0. If e = 1, letM be the pull-back of a line not intersecting the blown
up line R ⊆ ℙ3. Trivially, M ≅ ℙ1, its class inside A2(Fe) is ξ2e , and we have Mhe = 2(1 + e). Consider now
the very ample line bundle OFe (ĥe) := OFe (ξe + f); it is easy to check that Mĥe = 1 + e. In what follows, we
will denote by ΛM the Hilbert scheme of curves in Fe obtained as described above; ΛM is isomorphic to ℙ2 if
e = 0 and to an open set of the Grassmann variety of lines in ℙ3 if e = 1; hence it is irreducible and rational
of dimension 2(1 + e).

Notice that not all curves in the class ξ21 ∈ A2(F1) represent a point in ΛM; e.g., every union of a curve
in Λ with a curve with class ξ1f has class ξ21 .

The structure sheaf OM fits into the exact sequence

0→ OFe (−2ξe)→ OFe (−ξe)⊕2 → OFe → OM → 0.

In particular, we have NM|Fe ≅ Oℙ1 (e)⊕2. Conversely, the intersection M of two general elements in |ξe| is
a smooth curve representing a point in ΛM by the Bertini theorem.

Clearly, distinct general elements in ΛM do not intersect each other, and it is easy to check that they
similarly do not intersect the general element in Λ.

Remark 3.3. In Remark 3.1 we dealt with lines on Fe embedded in ℙ29 via OFe (he). It is easy to check that
every line L on Fe also satisfies Lĥe = 1. Conversely, if N is any curvewith class aξ2e + bξe f such that Nĥe = 1,
then N ≅ ℙ1, because OFe (ĥe) is very ample. Moreover,

1 = (aξ2e + bξe f)(ξe + f) = (1 + e)a + b,
where a and ea + b are still non-negative; hence 0 ≤ a ≤ 1 and 0 ≤ ea + b ≤ 1.

If a = 0, then b = 1, i.e. the class of N is ξe f . If a = 1, then ea + b = 0. If e = 0, then b = 0, i.e. the class of
N is ξ2e ; if e = 1, then b = −1 and the class of N is ξ21 − ξ1f . The latter case has been studied in the Remark 3.1,
while the former case has been described in Remark 3.2.

Let us deal with the case a = 0 and b = 1. To this purpose, we will denote by ΛN the Hilbert scheme of
curves in Fe whose class in A2(Fe) is ξe f . The equality Nf = 0 implies that N is contained in a fiber of π; hence
N is cut out on that fiber by a divisor in the linear system |ξe|. In particular, ΛN is dominated by a projective
bundle on |f| with fiber |ξe|; hence it is irreducible and rational of dimension 3.

The structure sheaf ON fits into the exact sequence

0→ OFe (−ξe − f)→ OFe (−ξe) ⊕ OFe (−f)→ OFe → ON → 0.

In particular, we have NN|Fe ≅ Oℙ1 ⊕ Oℙ1 (1). Conversely, the intersection N of two general elements in |ξe|
and |f| is a smooth curve representing a point in ΛN by the Bertini theorem.

Moreover, both OFe (ξe) and OFe (f) being globally generated, we know that distinct general elements in
ΛN do not intersect each other; for the same reason, they do not intersect the general elements in Λ and ΛM.

We close this section by stating the following lemma which we will also be widely used in the next sections.

Lemma 3.4. LetG be a rank2 vector bundle on Fe. ThenG is μ-stable (resp. μ-semistable) with respect toOFe (h)
if and only if h0(Fe , G(−aξe − bf)) = 0 for each a, b ∈ ℤ such that 3(1 + e)a + 9(a + b) ≥ μ(G) (resp. > μ(G)).
Proof. The group Pic(Fe) is generated by the classes of ξe and f ; hence it suffices to apply [11, Corollary 4];
see also [9].



1322 | G. Casnati and O. Genc, Instanton bundles

4 Monadic description of instanton bundles on the blow up of ℙ3
In Sections 4, 5, 6 and 7, we deal with the blow up F1 ofℙ3 along a line R. For this reason, we will omit e = 1
in the subscripts, simply writing F, ξ , σ,P, h, C∙. In this case, ξ3 = ξ2f = 1 and 3(1+ e)a+9(a+b) = 15a+9b
in Lemma 3.4.

In this section, we will construct a monad associated to each instanton bundle on F. In what follows, we
repeatedly need the cohomology of OF(aξ + bf). We compute it in the next proposition.

Proposition 4.1. We have

h0(F,OF(aξ + bf)) = a+1∑
j=1
j(a + b + 2 − j1 ),

h1(F,OF(aξ + bf)) = a+1∑
j=1
j(−a − b − 2 + j1 ),

h2(F,OF(aξ + bf)) = −a−2∑
j=1

j(a + b + 2 + j1 ),
h3(F,OF(aξ + bf)) = −a−2∑

j=1
j(−a − b − 2 − j1 ),

where the summation is 0 if the upper limit is smaller than the lower limit.

Proof. On the one hand, if a ≥ −1, then [7, Exercises III.8.1, III.8.3 and III.8.4] implies that

hi(F,OF(aξ + bf)) = hi(ℙ1,Oℙ1 (b) ⊗ π∗OF(aξ)) = a+1∑
j=1
hi(ℙ1,Oℙ1 (a + b + 1 − j)⊕j).

On the other hand, if a ≤ −1, then equality (2.1) yields
hi(F,OF(aξ + bf)) = h3−i(F,OF(−(a + 3)ξ − (b + 1)f)).

The statement then follows by combining the above equalities.

A trivial consequence of the above proposition is that OF(aξ + bf) is an effective line bundle if and only if
a, a + b ≥ 0.

Recall that Mov(F) ⊆ A2(F) is the dual of the pseudo-effective cone of F, i.e. it is the closure inside A2(F)
of the set of cycles ζ ∈ A2(F) such that ζD ≥ 0 for each effective divisor D ⊆ F; for further details on Mov(X),
see [13, Section 11,4.C]).

Corollary 4.2. The cycle αξ2 + βξf ∈ A2(F) is inMov(F) if and only if α, β ≥ 0.
Proof. The pseudo-effective cone is generated by the effective divisor aξ + bf , i.e. such that a, a + b ≥ 0. Thus
the equality (αξ2 + βξf)(aξ + bf) = α(a + b) + βa
implies αξ2 + βξf ∈ Mov(F) if and only if α, β ≥ 0, which is trivial.
Consider the following ordered sets of vector bundles on F:(F−5,F−4,F−3,F−2,F−1,F0) := (OF(−ξ),OF(−ξ + f),OF(−f),OF ,OF(ξ − 2f),OF(ξ − f)),(G0, G1, G2, G3, G4, G5) := (OF(−ξ + f),OF(−ξ), Ω1

F|ℙ1 , Ω
1
F|ℙ1 (−f),OF(−2ξ),OF(−2ξ − f)).

(these are the Orlov collection with respect to OF(ξ − f) and its dual tensored by OF(ξ − f) and OF(−ξ + f),
respectively; see [16, Corollary 2.6]).

Lemma 4.3. Let E be an instanton bundle on F. Then E is the cohomology in degree 0 of a complex Ĉ∙ with
i-th module

Ĉi := ⨁
q+p=i

Hq+⌈
p
2 ⌉(F, E ⊗ Fp) ⊗ G−p .
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Proof. Recall that F ≅ ℙ(P); hence we can apply [1, Theorem 8]; notice that, with the notation in that paper,ℙ(H) := ℙ(Sym(H∨)).
In our case, we haveH = P(−1) ≅ Oℙ1 ⊕ Oℙ1 (−1)⊕2; in order to apply [1, Theorem 8], we must consider

H(1); hence the relative universal line bundle therein (i.e. the tautological line bundle of π) is OF(f − ξ). The
relative universal quotient bundle Q can be computed by dualizing sequence (3.1); hence Q∨ ≅ ΩF|ℙ1 (ξ − f).

Recall that there is a natural functorA → A∙ from the category of coherent sheaves on F to the category
of complexes of coherent sheaves on F, where

Ai = {{{0 if i ̸= 0,
A if i = 0.

In particular, [1, Theorem 8] applied to E(ξ − f)∙ yields that it is the cohomology of a complex with⨁
s+p=i
⨁
a+b=p

Hs(F, E((a + 1)ξ + (b − a − 1)f)) ⊗ ∧−a(ΩF|ℙ1 (ξ − f)) ⊗ π∗∧−b(Ωℙ1 (1))
in degree i. It turns out that such a complex is everywhere exact but in degree 0, where its cohomology is
exactly E(ξ − f). Thus the definitions of Fp, Gp and simple computations lead to the statement.

We deduce from the above statement that, in order to prove Theorem 1.3, we have to compute the cohomolo-
gies ep,q := hq+⌈ p2 ⌉(F, E ⊗ Fp) for 0 ≤ q ≤ 5 and −5 ≤ p ≤ 0.
Proposition 4.4. Let E be an instanton bundle on F. If c2(E) = αξ2 + βξf and

γ := h1(F, E(−ξ + f)), δ := h1(F, E(−ξ + 2f)),
then ep,q is the number in position (p, q) in Table 1.

p = −5 p = −4 p = −3 p = −2 p = −1 p = 0
q = 5 0 0 0 0 0 0
q = 4 α + β − 4 β + γ − 1 0 0 0 0
q = 3 0 γ α − 2 0 0 0
q = 2 0 0 0 0 δ γ
q = 1 0 0 0 0 δ + β − α + 2 β + γ − 1
q = 0 0 0 0 0 0 0

Table 1: The values of ep,q.

Proof. By definition, ep,q = 0 for p ≤ −2 and q = 0, p ≤ −4 and q = 1, p ≥ −1 and q = 4, p ≥ −3 and q = 5.
The vanishings hs(F, E ⊗ Fp) = 0 for s = 0 and each p follow from Lemma 3.4 because E is μ-semistable.

The same argument and equality (2.1) yield the vanishings also for s = 3 and each p. Thus ep,q = 0 also for
p = 0, −1 and q = 0, 3, p = −2, −3 and q = 1, 4, p = −4, −5 and q = 2, 5.

Lemma 2.2 yields e−2,q = hq−1(F, E ⊗ F−2) = 0 for q = 2, 3. Thanks to such a vanishing for q = 2, the
cohomology of sequence (3.3) yields

e−3,2 = h1(F, E ⊗ F−3) ≤ h0(F, E(f)) = 0,
thanks to Lemma 3.4.

The cohomology of sequence (3.1) and its dual tensored by E(ξ) and E(−2ξ + f), respectively, the vanish-
ings proved above and equality (2.5) yield

e−5,3 = h1(F, E ⊗ F−5) = h1(F, E(−ξ)) = h2(F, E(ξ)) ≤ h3(F, E ⊗ ΩF|ℙ1 (ξ)) = 0.
By definition, e−4,3 = h1(F, E ⊗ F−4) = γ and e−1,2 = h2(F, E ⊗ F−1) = δ. Equality (2.5) then also returns

e0,2 = h2(F, E ⊗ F0) = γ. All the remaining values of ep,q = hq+⌈ p2 ⌉(F, E ⊗ Fp) are computed bymeans of equal-
ity (3.2). The statement is then completely proved.
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Proposition 4.4 has some interesting consequences for an instanton bundle on F.

Corollary 4.5. Let E be an instanton bundle with c2(E) = αξ2 + βξf on F. Then α ≥ 2 and
β ≥ max{4 − α, α − 2 − δ, 1 − γ}, α + β − 4 + 2γ ≥ δ ≥ 2γ.

Proof. All the inequalities follow from the obvious non-negativity of the ep,q’s but the last line which is
obtained by computing the cohomology of sequence (3.3) tensored by E(−ξ + f).
Secondly, c2(E)h ≥ 27

2 (see inequality (2.7)). Thus14 is the first integral value that c2(E)h could attain. Propo-
sition 4.4 allows us to give the following sharper lower bound on the degree of the charge.

Corollary 4.6. If E is an instanton bundle on F with c2(E) = αξ2 + βξf , then c2(E)h = 4α + 3β ≥ 15.
Proof. Notice that α ≥ 2 and α + β ≥ 4 (see Corollary 4.5) and c2(E)h ≥ 14. If equality occurs and α ≥ 3, then

4 ≤ α + β = 14 − α3 < 4,
a contradiction. Thus we deduce α = 2. The same argument used above yields α = β = 2 necessarily; hence
δ = 2γ, thanks to Corollary 4.5.

The cohomology of sequence (3.3) tensored byE(ξ), equality (2.5) and the equality h1(F, E(ξ − f)) = γ + 1
(see the computation of e0,1 in the proof of Proposition 4.4) imply h0(F, E(ξ + f)) = γ + 1. Thus E is not μ-
semistable thanks to Lemma 3.4; hence it is not an instanton bundle.

The following remark will be helpful for proving Theorem 1.3 stated in the introduction.

Remark 4.7. We show that |aξ + bf| contains a smooth integral divisor D if and only if either a, b ≥ 0 or
a = −b = 1.

To this purpose, we first notice that OF(aξ + bf) is globally generated if and only if a, b ≥ 0. Indeed,
on the one hand, if a, b ≥ 0, the assertion is a trivial consequence of the existence of a surjective mor-
phism π∗P→ OF(ξ). On the other hand, if OF(aξ + bf) is globally generated, then a = (aξ + bf)ξf and
b = (aξ + bf)(ξ2 − ξf)must be non-negative.

If a = −b = 1, then D = E ≅ ℙ1 × ℙ1 which is trivially smooth and integral. If a, b ≥ 0, then OF(aξ + bf)
is globally generated; hence |aξ + bf| contains a smooth integral divisor thanks to the Bertini theorem.

Conversely, assume that |aξ + bf| contains a smooth integral divisor. Thus if OF(aξ + bf) is not globally
generated, then a ≥ 1 and −1 ≥ b ≥ −a, thanks to Proposition 4.1. If E ⊈ D, then there is a line L ⊆ E inter-
secting D properly; hence 0 ≤ DL = b ≤ −1, a contradiction. Thus E ⊆ D which is smooth and integral; hence
D = E.
Also, thanks to Proposition 4.4, we can prove Theorem 1.3 stated in the introduction.

Proof of Theorem 1.3. By applying Lemma 4.3 using the values hq(F, E ⊗ F−p) calculated in Proposition 4.4,
we obtain a complex Ĉ∙, where

Ĉ−1 := OF(−2ξ − f)⊕α+β−4 ⊕ OF(−2ξ)⊕γ ,
Ĉ0 := OF(−2ξ)⊕β+γ−1 ⊕ ΩF|ℙ1 (−f)⊕α−2 ⊕ OF(−ξ)⊕δ+β−α+2,
Ĉ1 := OF(−ξ)⊕δ ⊕ OF(−ξ + f)⊕β+γ−1,
Ĉ2 := OF(−ξ + f)⊕γ ,

which is exact everywhere but at Ĉ0, where its cohomology is E. Notice that Ci ≅ Ĉi for i = −1, 0; thus the
statement is proved if we check that C1 is isomorphic to the kernel of the differential Ĉ1 → Ĉ2.

Let φ and ψ be the differentials Ĉ1 → Ĉ2 and Ĉ0 → Ĉ1 twisted by the identity of OF(ξ − f). We have
OF(−f) ≅ π∗Oℙ1 (−1) andOF ≅ π∗Oℙ1 ; hence [7, Exercise III.8.3] implies Riπ∗OF = Riπ∗OF(−f) = 0. The func-
tor π∗ then induces an isomorphism

θ : HomF(Ĉ1(ξ − f), Ĉ2(ξ − f))→ Homℙ1 (Oℙ1 (−1)⊕δ ⊕ O⊕β+γ−1ℙ1 ,O⊕γℙ1 )
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thanks to the projection formula (see [7, Exercise III.8.1], where we are using that HomX( ⋅ , ⋅ ) are the global
sections ofHomX( ⋅ , ⋅ )). Let θ(φ) = ϕ; if ϕ is not surjective at x ∈ ℙ1, then φ is not surjective at the points of
π−1(x). It follows that ϕ is surjective; hence

ker(φ) ≅ δ+β−1⨁
i=1

OF(−λi f)
for suitable integers λi. Since

ker(φ) ⊆ Ĉ1(ξ − f) := OF(−f)⊕δ ⊕ O⊕β+γ−1F ,

it follows that λi ≥ 0.
By composing ψ with the projections on the summands of ker(φ) = im(ψ), we obtain epimorphisms

ψi : Ĉ0 → OF(−λi f). We have

HomF(OF(−f),OF(−λi f)) = H0(F,OF((1 − λi)f)),
HomF(OF(−ξ − f),OF(−λi f)) = H0(F,OF(ξ + (1 − λi)f)),

Thanks to Proposition 4.1, it is easy to check that the first space vanishes if λi ≥ 2 and that the same is true
for the second one when λi ≥ 3. By applying HomF(⋅,OF(−λi f)) to sequence (3.1), one also deduces that

HomF(ΩF|ℙ1 (ξ − 2f),OF(−λi f)) = 0
if λi ≥ 3. In particular, ψi cannot be surjective when λi ≥ 3; hence we deduce

ker(φ) ≅ OF(−2f)⊕ε ⊕ OF(−f)⊕η ⊕ O⊕β+δ−η−ε−1F .

By computing the cohomology of the exact sequence

0→ ker(φ)→ Ĉ1(ξ − f)→ Ĉ2(ξ − f)→ 0,

we finally deduce that η = δ − 2ε, i.e.
ker(φ) ≅ OF(−2f)⊕ε ⊕ OF(−f)⊕δ−2ε ⊕ O⊕β+ε−1F .

Let C−1 := Ĉ−1, C0 := Ĉ0 and C1 := ker(φ) ⊗ OF(−ξ + f). We have then amonad C∙ whose cohomology isE.
In order to complete the proof of the first part of the statement, it suffices to check that ε = γ. To this purpose,
consider the two short exact sequences

0→ K→ C0 → C1 → 0, 0→ C−1 → K→ E→ 0. (4.1)

Proposition 4.1 and the cohomology of the dual of sequence (3.1) tensored by OF(−2ξ − f) yield
hi(F, ΩF|ℙ1 (ξ − 2f)) = 0, i = 1, 2.

Thus the cohomology of the above sequences (4.1) tensored by OF(ξ − f) and equality (2.5) finally returns
ε = h2(F, E(ξ − f)) = γ.

Conversely, assume that the cohomology E of monad (1.2) is a μ-semistable vector bundle of rank 2 (so
that h0(F, E) = 0 as pointed out in the introduction).

Easy and tedious computations lead to the equalities

c1(E) = c1(C0) − c1(C1) − c1(C−1) = −3ξ − f,
c2(E) = c2(C0) − c2(C1) − c2(C−1) − c1(C0)c1(C−1) − c1(C0)c1(C1)+ c1(C−1)2 + c1(C−1)c1(C1) + c1(C1)2 = αξ2 + βf 2.

Moreover, we can still consider sequences (4.1) which easily lead to the inequality

hi(F, E ⊗ L) ≤ 1∑
j=−1

hi−j(F, Cj ⊗ L) (4.2)

for each L ∈ Pic(F).
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Let D be either 0 or any smooth element in |aξ + bf|, D ̸= E; thanks to Remark 4.7, we then know that
a, b ≥ 0. Thanks to Proposition 4.1 and the cohomology of sequence (3.1) tensored byOF(−aξ − bf), inequal-
ity (4.2) with

L := OF(−D) ≅ OF(−aξ − bf)
finally yields h1(F, E(−D)) = 0. If D = 0, then we deduce that E satisfies the instantonic condition; hence it is
an instanton because it is assumed μ-semistable. If D ̸= 0, we obtain assertion (3) of the statement.

Proposition 4.1 and the cohomology of the dual of sequence (3.1) tensored by OF(−2ξ − df) yield
hi(F, ΩF|ℙ1 (ξ − f − df)) = 0 for i = 1, 2. Thus assertions (1) and (2) can be obtained by computing the coho-
mology of sequences (4.1) tensored by OF(ξ − df), respectively, because h1(F, E(−ξ + df)) = h2(F, E(ξ − df))
thanks to equality (2.5), where d = 1, 2.
Remark 4.8. It is natural to ask if the required μ-semistability of the cohomology E of the monad C∙ in the
second part of the statement of Theorem 1.3 is actually necessary for proving that E is an instanton, or if it
can be at least relaxed.

For example, one could wonder if it can be replaced by the weaker vanishing h0(F, E) = 0, as in the state-
ment of [14, Theorem 4.2]. The μ-semistability of E has been used in the proof of Proposition 4.4 (and hence
in the construction of monad (1.2)) in order to get the vanishings h0(F, E(ξ − f)) = h0(F, E(ξ − 2f)) = 0which
do not seem to follow from the vanishing of h0(F, E).

Indeed, let us consider a morphism φ : OF(−2ξ) ⊕ OF(−ξ)⊕2 → OF(−ξ + f) with matrix A := (0 a1 a2),
where a1, a2 ∈ H0(F,OF(f)) have no common zeros. Thus φ is surjective; hence it defines a monad Φ∙

coinciding with monad (1.2) when α = β = 2 and γ = δ = 0.
Taking into account of the definition of φ and of sequence (3.3), we deduce that the cohomology ofΦ∙ is

E ≅ ker(φ) ≅ OF(−2ξ) ⊕ OF(−ξ − f).
ThusE is not μ-semistable because μ(OF(−2ξ)) = −30 ̸= −24 = μ(OF(−ξ − f)). In particular,E is not an instan-
ton bundle, though h0(F, E) = 0.
Remark 4.9. If E is earnest, then monad (1.2) becomes

0→ OF(−2ξ − f)⊕α+β−4→ OF(−2ξ)⊕β−1 ⊕ΩF|ℙ1 (−f)⊕α−2 ⊕OF(−ξ)⊕δ+β−α+2→ OF(−ξ)⊕δ ⊕OF(−ξ + f)⊕β−1→ 0.

The following corollary is an immediate consequence of Theorem 1.3 and Corollary 4.2.

Corollary 4.10. Let E be an instanton on F. Then E is earnest if and only if h1(F, E(−ξ + f)) = 0. If this is true,
then c2(E) ∈ Mov(F),
5 Existence of instanton bundles on the blow up of ℙ3
In this section, we will prove the existence of instanton bundles satisfying some extra important properties
for all the admissible charges. Again, ξ and F denote ξ1 and F1, respectively.

Construction 5.1. Let α and β be integers such that α ≥ 2, α + β ≥ 4 and 4α + 3β ≥ 15. We take L1, . . . , Lα−2
and N1, . . . , Nα+β−4 pairwise disjoint curves corresponding to points in Λ and ΛN , respectively, and define

Z := α−2⋃
i=1
Li ∪ α+β−4⋃

j=1
Nj ⊆ F. (5.1)

If α = 2 and α + β = 4, then 4α + 3β = 14; hence the condition 4α + 3β ≥ 15 implies Z ̸= 0. As pointed out in
Remarks 3.1 and 3.3, both Li and Nj are isomorphic to ℙ1.

We claim that det(NZ|F) ≅ OF(ξ − f) ⊗ OZ . Such an isomorphism can be checked component by compo-
nent. The aforementioned remarks show that

det(NZ|F) ⊗ OLi ≅ Oℙ1 (−1) ≅ OF(ξ − f) ⊗ OLi ,
det(NZ|F) ⊗ ONj ≅ Oℙ1 (1) ≅ OF(ξ − f) ⊗ ONj .
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Since we have h2(F,OF(−ξ + f)) = 0 thanks to Proposition 4.1, it follows from Theorem 2.1 the existence of
a vector bundle F on F with a section s vanishing exactly along Z and with c1(F) = ξ − f , c2(F) = Z.

Sequence (2.2) for such an s tensored by OF(−2ξ) gives the exact sequence
0→ OF(−2ξ)→ E→ IZ|F(−ξ − f)→ 0, (5.2)

where E := F(−2ξ). Since h1(F,OF(−ξ + f)) = 0, it follows that the bundle E is uniquely determined by the
scheme Z.

The main result of the section is the following proof of Theorem 1.4 stated in the introduction.

Proof of Theorem 1.4. We trivially have c1(E) = −h and c2(E) = αξ2 + βξf by construction.Moreover, we have
h1(F, E) = h1(F, IZ|F(−ξ − f)) from the cohomology of sequence (5.2).

For each connected component Y ≅ ℙ1 of Z, we have (−ξ − f)Y = −1; hence h0(Z,OF(−ξ − f) ⊗ OZ) = 0.
The cohomology of the exact sequence

0→ IZ|F → OF → OZ → 0 (5.3)

tensored by OF(−ξ − f) then yields h1(F, E) = h1(F, IZ|F(−ξ − f)) = 0.
We will now show that E is μ-stable. To this purpose, we will make use of Lemma 3.4, proving that if

15a + 9b = μ(OF(aξ + bf)) ≥ μ(E) = −27, i.e.
b ≥ −3 − 53a, (5.4)

then the cohomology of sequence (5.2) tensored by OF(−aξ − bf), i.e.
0→ OF(−(a + 2)ξ − bf)→ E(−aξ − bf)→ IZ|F(−(a + 1)ξ − (b + 1)f)→ 0,

returns h0(F, E(−aξ − bf)) = 0. If a ≥ 0, such a vanishing is trivial; hence we restrict our attention to the case
a ≤ −1.

If a = −1, then
h0(F,OF(−(a + 2)ξ − bf)) = h0(F,OF(−ξ − bf)) = 0.

Moreover, inequality (5.4) implies b ≥ −1; hence
h0(F, IZ|F(−(a + 1)ξ − (b + 1)f)) = h0(F, IZ|F(−(b + 1)f)) = 0

because Z ̸= 0.
If a ≤ −2, then inequality (5.4) yields −(a + 2) − b = −(a + 1) − (b + 1) ≤ −1; hence, again,

h0(F,OF(−(a + 2)ξ − bf)) = 0,
h0(F, IZ|F(−(a + 1)ξ − (b + 1)f)) ≤ h0(F,OF(−(a + 1)ξ − (b + 1)f)) = 0.

We now prove that E is generically trivial. Indeed, if we restrict sequence (5.2) to a line L ∈ Λ not inter-
secting Z, one easily obtains the exact sequence

0→ Oℙ1 → E ⊗ OL → Oℙ1 (−1)→ 0;

hence E ⊗ OL ≅ Oℙ1 ⊕ Oℙ1 (−1) for such lines.
We now prove the assertion on the dimensions of the Ext groups. Since E is μ-stable, then it is simple;

hence the equality Ext3F(E, E) = 0 follows from equality (2.8). We will show below that

Ext2F(E, E) ≅ H2(F, E ⊗ E∨) = 0;
hence

dimExt1F(E, E) = 8α + 6β − 30
thanks to equality (2.9).
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To this purpose, the cohomology of sequence (5.2) tensored by E∨ ≅ E(h) returns
H2(F, E(ξ + f))→ H2(F, E ⊗ E∨)→ H2(F, E ⊗ IZ|F(2ξ));

hence it suffices to check that h2(F, E(ξ + f)) = h2(F, E ⊗ IZ|F(2ξ)) = 0.
We first check that h2(F, E(ξ + f)) = 0. Indeed, thanks to Proposition 4.1, the cohomologies of sequences

(5.2) tensored by OF(ξ + f) and (5.3) return
h2(F, E(ξ + f)) ≤ h1(F,OZ).

The dimension on the right is zero because Z is the disjoint union of smooth rational curves.
Finally, we check that h2(F, E ⊗ IZ|F(2ξ)) = 0. Thanks to Proposition 4.1, the cohomology of sequence

(5.3) tensored by OF(ξ − f) then yields
h2(F, IZ|F(ξ − f)) ≤ h1(Z,OF(ξ − f) ⊗ OZ).

Since OF(ξ − f) restricts to each component of Z to a line bundle of degree either 1 (if the component is
in ΛN), or −1 (if the component is in Λ), it follows that the dimension on the right is zero. In particular,
h2(F, IZ|F(ξ − f)) = 0; hence the cohomology of sequence (5.2) tensored byOF(2ξ) and Proposition 4.1 imply
h2(F, E(2ξ)) = 0. We deduce that the cohomology of sequence (5.3) tensored by E(2ξ) returns

h2(F, E ⊗ IZ|F(2ξ)) ≤ h1(Z, E(2ξ) ⊗ OZ)= α−2∑
i=1
h1(Z, E(2ξ) ⊗ OLi ) + α+β−4∑

j=1
h1(Z, E(2ξ) ⊗ ONj ).

Equality (2.3) and the definition of E imply E(2ξ) ⊗ OZ ≅ NZ|F . Thus

E(2ξ) ⊗ OLi ≅ Oℙ1 ⊕ Oℙ1 (−1), E(2ξ) ⊗ ONj ≅ Oℙ1 (1) ⊕ Oℙ1 ;
hence h2(F, E ⊗ IZ|F(2ξ)) = 0.
Recall that IF(αξ2 + βξf) has been defined in the introduction as the locus of points representing instanton
bundleswith charge αξ2 + βξf in themoduli spaceMF(2; 0, αξ2 + βξf)of μ-stable vector bundleswith respect
to OF(h). The following corollary is almost immediate.

Corollary 5.2. For each α, β ∈ ℤ such that α ≥ 2, α + β ≥ 4and4α + 3β ≥ 15, there is an irreducible component
I0F(αξ2 + βξf) ⊆ IF(αξ2 + βξf)

which is generically smooth of dimension 8α + 6β − 30 and containing all the points corresponding to the bun-
dles obtained via Construction 5.1.

Proof. The schemes as in equality (5.1) represent points in a non-empty open subset U ⊆ Λ×α−2 × Λ×α+β−4N .
Since the latter product is irreducible (see Remarks 3.1 and 3.3), it follows that U is irreducible as well.

Since the bundle E in sequence (5.2) is uniquely determined by the scheme Z, we obtain in this way
a flat family of bundles containing all the bundles obtained via Construction 5.1 and parameterized by U.
Thus we deduce the existence of a morphism u : U→ IF(αξ2 + βξf). Every point in u(U) is smooth because
Ext2F(E, E) = 0 (see Theorem 1.4); thus there is a unique component I0F(αξ2 + βξf) containing u(U); Theo-
rem 1.4 then implies

dim I0F(αξ2 + βξf) = dimExt1F(E, E) = 8α + 6β − 30.
This last equality completes the proof of the corollary.

Remark 5.3. The bundles constructed in the previous proof are certainly not earnest if α ≥ 4, thanks to Corol-
lary 4.10. Indeed, the cohomology of sequence (5.2) tensored by OF(−E) ≅ OF(−ξ + f) and Proposition 4.1
yield the exact sequence

0→ H1(F, E(−E))→ H1(F, IZ|F(−2ξ))→ ℂ;
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hence h1(F, E(−E)) ≥ h1(F, IZ|F(−2ξ)) − 1. In order to compute h1(F, IZ|F(−2ξ)), we consider the cohomology
of sequence (5.3) tensored by OF(−2ξ), taking into account that h0(F,OF(−2ξ)) = h1(F,OF(−2ξ)) = 0 and

OF(−2ξ) ⊗ OLi ≅ Oℙ1 , OF(−2ξ) ⊗ ONj ≅ Oℙ1 (−2).
It follows that h1(F, IZ|F(−2ξ)) = h0(Z,OF(−2ξ) ⊗ OZ) = α − 2; hence

α − 2 ≥ h1(F, E(−E)) ≥ α − 3.
6 Existence of earnest instanton bundles on the blow up of ℙ3
In this section, we complete the study of instanton bundles on the blow up F := F1 ofℙ3 along a line; again ξ
denotes ξ1. In spite of Remark 5.3, a different choice of the scheme Z allows us to construct earnest instanton
bundles E on F which are generically trivial and μ-stable with c2(E) = αξ2 + βξf for each admissible non-
negative integers α, β.

Construction 6.1. Let α and β be integers such that α ≥ 2, β ≥ 1 and 4α + 3β ≥ 15. We take M1, . . . ,Mα−2
and N1, . . . , Nβ−1 pairwise disjoint curves corresponding to points in ΛM and ΛN , respectively, and define

Z := α−2⋃
i=1
Mi ∪ β−1⋃

j=1
Nj ⊆ F. (6.1)

Notice that the restriction 4α + 3β ≥ 15 implies Z ̸= 0.
We claim that det(NZ|F) ≅ OF(ξ + f) ⊗ OZ . We check such an isomorphism component by component;

indeed,
det(NZ|F) ⊗ OMi ≅ Oℙ1 (2) ≅ OF(ξ + f) ⊗ OMi ,
det(NZ|F) ⊗ ONj ≅ Oℙ1 (1) ≅ OF(ξ + f) ⊗ ONj ,

thanks to Remarks 3.2 and 3.3.
The equality h2(F,OF(−ξ − f)) = 0 and Theorem 2.1 guarantee the existence of a vector bundle F on F

with a section s vanishing exactly along Z and with c1(F) = ξ + f , c2(F) = Z, fitting into sequence (2.2).
Tensoring such sequence by OF(−2ξ − f), we obtain the exact sequence

0→ OF(−2ξ − f)→ E→ IZ|F(−ξ)→ 0, (6.2)

where E := F(−2ξ − f). The bundle E is uniquely determined by Z because h1(F,OF(−ξ − f)) = 0.
The main result of the section is the following proof of Theorem 1.5 stated in the introduction.

Proof of Theorem 1.5. We trivially have c1(E) = −h and c2(E) = αξ2 + βξf by construction. Arguing as in the
proof of Theorem1.4, one easily obtains from the cohomology of sequence (6.2) that h1(F, E) = 0. Let us prove
that E is μ-stable, i.e. that h0(F, E(−aξ − bf)) = 0 for each pair of integers a and b satisfying inequality (5.4).
We will check this by showing that

h0(F,OF(−(a + 2)ξ − (b + 1)f)) = h0(F, IZ|F(−(a + 1)ξ − bf)) = 0
in that range, again computing the cohomology of sequence (6.2).

This is obvious if either a ≥ 0. If a ≤ −1, then−(a + 2) − (b + 1) ≤ 23a ≤ −1.
Similarly, − (a + 1) − b ≤ 2 + 23a ≤ −1 (6.3)

for a ≤ −4.
Arguing as above, if a = −1, then the only caseswe need to handle are b = 0, −1 because all the other val-

ues of b satisfying inequality (5.4) satisfy inequality (6.3) aswell. If b = 0, thenwehave to check the vanishing
h0(F, IZ|F) = 0, which is trivial because Z ̸= 0. If b = −1, thenwehave to check the vanishing h0(F, IZ|F(f)) = 0.
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If α ≥ 3, then no fibers of π contain a curve in ΛM. If α = 2, then the restriction on the charge forces β ≥ 3 and
the vanishing is still trivial because no fiber of π can contain two or more disjoint curves in ΛN .

If a = −2, then we have only to deal with b = 1, i.e. we have to check that h0(F, IZ|F(E)) = 0, which is easy
to check, similarly for the case a = −3. It follows that E is an instanton bundle.

Restricting sequence (6.2) to a general line L ∈ Λ, one deduces that E is generically trivial. In order to
show that E is earnest, we can use the same argument of Remark 5.3. The cohomology of sequence (6.2)
tensored by OF(−ξ + f) and Proposition 4.1 yield h1(F, E(−ξ + f)) = h1(F, IZ|F(−2ξ + f)). The cohomology of
sequence (5.3) tensored by OF(−2ξ + f) yields

h1(F, IZ|F(−2ξ + f)) = h0(Z,OF(−2ξ + f) ⊗ OZ).
Finally, since

OF(−2ξ + f) ⊗ OMi ≅ Oℙ1 (−1), OF(−2ξ + f) ⊗ ONj ≅ Oℙ1 (−2),
it follows that h0(Z,OF(−2ξ + f) ⊗ OZ) = 0. Thus E is earnest, thanks to Corollary 4.10.

As in the proof of Theorem 1.4, we know that E is simple, and Ext3F(E, E) = 0. It remains to check that
h2(F, E ⊗ E∨) = 0 computing the cohomology of sequence (5.2) tensored by E∨ ≅ E(h); again, it suffices to
check that

h2(F, E(ξ)) = h2(F, E ⊗ IZ|F(2ξ + f)) = 0.
Thanks to equality (2.5), the former vanishing has been proved in Proposition 4.4 because

h2(F, E(ξ)) = h1(F, E(−ξ)) = 0.
The latter can be obtained imitating verbatim the argument for proving the analogous vanishing in the proof
of Theorem 1.4.

In particular, we have proved the existence of earnest instanton bundles inside IF(αξ2 + βξf). The same
argument of the proof of Corollary 5.2 also proves the following corollary.

Corollary 6.2. For each α, β ∈ ℤ such that α ≥ 2, β ≥ 1 and 4α + 3β ≥ 15, there is an irreducible component
I1F(αξ2 + βξf) ⊆ IF(αξ2 + βξf)

which is generically smooth of dimension 8α + 6β − 30 and containing all the points corresponding to the bun-
dles obtained via Construction 6.1.

Proof. The schemes as in equality (6.1) represent points in a non-empty open subset V ⊆ Λ×α−2M × Λ×β−1N
which is irreducible. Thus the proof runs along the same lines of the proof of Corollary 5.2.

7 Some remarks and questions on the blow up of ℙ3
In this section, we collect some comments and questions on the structure of the moduli space of instanton
bundles on F := F1.

In view of the irreducibility of the moduli space of instanton bundles on ℙ3 recently proved in [17, 18],
the following question seems to be natural.

Question 7.1. Is it true that the scheme IF(αξ2 + βξf) is irreducible and smooth?
Let us deal with the above question for instanton bundles E ofminimal charge, i.e. instanton bundles whose
charge has minimal degree. Corollary 4.6 implies that c2(E)h ≥ 15. When equality holds, arguing as in the
proof of Corollary 4.6, we deduce c2(E) = 3ξ2 + ξf , andwe have the following affirmative answer to the above
question:

IF(3ξ2 + ξf) = {ΩF|ℙ1 (−f)},
thanks to the proposition below.
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Proposition 7.2. If E is an instanton bundle on F with c2(E)h = 15, then E ≅ ΩF|ℙ1 (−f).
Proof. As pointed out above, we know that if there is an instanton bundle E with c2(E)h = 15, then we have
c2(E) = 3ξ2 + ξf . Moreover, Construction 5.1 with α = 3 and β = 1 guarantees the existence of at least one
such instanton bundle E.

We now prove that E ≅ ΩF|ℙ1 (−f). Since α = 3, β = 1, it follows from Corollary 4.5 that δ = 2γ. On the one
hand, the cohomology of sequence (3.3) tensored by E and Proposition 4.4 return

h3(F, E(−ξ − f)) = h2(F, E(−ξ + f)) = h1(F, E(−ξ + f)) = γ.
On the other hand, equality (2.5) and Lemma 3.4 yield

h3(F, E(−ξ − f)) = h0(F, E(ξ + f)) = 0.
It follows δ = 0 and that E is earnest, thanks to Corollary 4.10. Thus Theorem 1.3 implies that E is the
cohomology of monad (1.2) with α = 3, β = 1 and γ = δ = 0; hence E ≅ ΩF|ℙ1 (−f).
Remark 7.3. By combining the above proposition and Theorem 1.5, we also deduce that ΩF|ℙ1 (−f) can be
obtained via Construction 6.1 starting from a general section in H0(F, ΩF|ℙ1 (2ξ)).
Recall that α + β ≥ 4 for each instanton bundle E with c2(E) = αξ2 + βξf . Thus the aforementioned bun-
dle ΩF|ℙ1 (−f) can be viewed as a particular case of instanton bundles such that β = 4 − α, i.e. with charge
αξ2 + βξf . We spend some words about such bundles in what follows.

In the case α + β = 4, one has δ = 2γ. As in the proof of Theorem 1.3, the cohomology of sequences (4.1)
tensored by OF(2ξ) returns h0(F, E(2ξ)) ≥ 2.

Let s ∈ H0(F, E(2ξ)) be a non-zero section. Then (s)0 = C ∪ S, where C is either empty or a subscheme
of pure codimension 2, and S is either 0 or S ∈ |aξ + bf| with a ≥ 0, a + b ≥ 0. We deduce that E(2ξ − S) has
a section vanishing on C; hence h0(F, E((2 − a)ξ − bf)) ̸= 0. SinceE is μ-semistable, it follows fromLemma3.4
that 15(a − 2) + 9b ≤ −27; hence 2a ≤ 5a + 3b ≤ 1.

Thus S = 0 necessarily, and the general s ∈ H0(F, E(2ξ)) vanishes exactly along a subscheme C ⊆ F of
pure codimension 2whose class in A2(F) is c2(E(2ξ)) = (α − 2)(ξ2 − ξf). Thus E fits into an exact sequence of
the form

0→ OF(−2ξ)→ E→ IC|F(−ξ − f)→ 0.
Since CE = 2 − α and α ≥ 3 because c2(E)h ≥ 15 (see Corollary 4.6), we deduce that a component Y of

C is contained in E. The line bundle OF(ξ) is globally generated; hence both Yξ and (C − Y)ξ must be non-
negative.Wededuce that the class of Y insideA2(F) is u(ξ2 − ξf) for somepositive u ∈ ℤ. The natural injection
Pic(E) ≅ A1(E) ⊆ A2(F) yields that the support of Y is actually a line in Λ ≅ ℙ1 because E ≅ ℙ1 × ℙ1.

Let α ≥ 4. On the one hand, E cannot be earnest because 0 ≥ β ≥ 1 − γ, thanks to Corollary 4.5. On the
other hand, in Construction 5.1, we defined a rational map

λ : Symα−2Λ  IF(αξ2 + βξf)
on the complement of the union of the diagonals. Its image is contained in the component I0F(αξ2 + βξf).
The map λ can never be dominant because the fiber at a point in im(λ) has dimension h0(F, E(2ξ)) − 1 ≥ 1. In
particular, unreduced schemes supported on lines in Λ play a non-trivial role in the structure of IF(αξ2 + βξf).

The discussion above shows that the study of the irreducibility and smoothness of IF(αξ2 + βξf) could
be quite hard in general. Nevertheless, when α, β ∈ ℤ satisfy α ≥ 2, β ≥ 1 and 4α + 3β ≥ 15, we constructed
in the previous section at least the two irreducible components I0F(αξ2 + βξf) and I1F(αξ2 + βξf).

Let IearnestF (αξ2 + βξf) be the closure inside IF(αξ2 + βξf) of the locus of points representing earnest bun-
dles. The condition h1(F, E(−E)) is open on flat family; hence I1F(αξ2 + βξf) ⊆ IearnestF (αξ2 + βξf). Moreover, if
α = 2, then I0F(αξ2 + βξf) ⊆ IearnestF (αξ2 + βξf), thanks to Remark 5.3.

Thus the following perhaps simpler question arises naturally.

Question 7.4. Is it true that I0F(αξ2 + βξf) = I1F(αξ2 + βξf) = IearnestF (αξ2 + βξf) when β is a positive integer?
Wealready described above the trivial case α = 3 and β = 1 corresponding to c2(E)h = 15.When c2(E)h = 16,
one easily checks β ≤ 0. Thus the first non-trivial case is c2(E)h = 17, which results in α = 2 and β = 3when β
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is positive. We will show below that the answer to the above question is affirmative in this case. To this
purpose, it suffices to check that IearnestF (2ξ2 + 3ξf) is irreducible of dimension 4.

LetEbe an earnest instantonbundlewith c2(E) = 2ξ2 + 3ξf . The cohomology of sequences (3.3) tensored
by E(ξ) and E(ξ + f) yields h0(F, E(ξ + 2f)) = 1.

Let s ∈ H0(F, E(ξ + 2f)) be a non-zero section. Then (s)0 = C ∪ S, where C is either empty or a subscheme
of pure codimension 2, and S is either 0 or S ∈ |aξ + bf| with a ≥ 0, a + b ≥ 0. We deduce that E(−S) has
a section vanishing on C; hence h0(F, E((1 − a)ξ + (2 − b)f)) ̸= 0. Since E is μ-semistable, it follows from
Lemma 3.4 that 15(a − 1) + 9(b − 2) ≤ −27; hence 2a ≤ 5a + 3b ≤ 2. Thus either a = 1, hence b = −1, or
S = 0.

The case a = 1, b = −1 does not occur. Indeed, on the one hand, we checked above that h0(F, E(3f)) ̸= 0.
On the other hand, the cohomology of sequences (3.3) tensored by E(f) and E(2f) returns h0(F, E(3f)) = 0,
a contradiction.

We deduce that S = 0. Since c2(E(ξ + 2f)) = 0, it follows that E fits into a sequence of the form

0→ OF(−ξ − 2f)→ E→ OF(−2ξ + f)→ 0.

Since
dimExt1F(OF(−2ξ + f),OF(−ξ − 2f)) = h1(F,OF(ξ − 3f)) = 5,

it follows that IearnestF (2ξ2 + 3ξf) is isomorphic to a non-empty open subset of ℙ4. In particular, we have that
IearnestF (2ξ2 + 3ξf) is irreducible of dimension 4, which is what we claimed above.

Remark 7.5. One can easily prove, using Lemma 3.4, that each non-zero element

Ext1F(OF(−2ξ + f),OF(−ξ − 2f))
returns a μ-semistable instanton bundle. The above discussion implies that the general element actually
induces an earnest, generically trivial, μ-stable instanton bundle.

Remark 7.6. It is not difficult to check that the unique value of the charge such that there are instanton
bundles which are extensions of line bundles is exactly 2ξ2 + 3ξf .
8 Instanton bundles on ℙ1 × ℙ2
In this last section,wewill describe thedue changes to the argumentsused in theprevious sections for dealing
with instanton bundles on F0 = ℙ1 × ℙ2. Again, we will omit the subscript e = 0 in the formulas; thus wewill
simply write F, ξ , σ, P, h, C∙ for F0, ξ0, σ0, P0, h0, C∙0.

In this case, ξ3 = 0, ξ2f = 1 and 3(1 + e)a + 9(a + b) = 12a + 9b in Lemma3.4.Moreover, sequence (3.1)
is the pull-back of the standard Euler sequence on ℙ2 via σ and

ΩF|ℙ1 ≅ σ∗Ωℙ2 , ΩF ≅ OF(−2f) ⊕ σ∗Ωℙ2 .
The first step is to compute the cohomology of OF(aξ + bf).

Proposition 8.1. We have

h0(F,OF(aξ + bf)) = (a + 22 )(b + 11 ),
h1(F,OF(aξ + bf)) = (a + 22 )(−1 − b1 ),
h2(F,OF(aξ + bf)) = (−1 − a2 )(b + 11 ),
h3(F,OF(aξ + bf)) = (−1 − a2 )(−1 − b1 ).

Proof. It suffices to apply the Künneth formulas.
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We follow the same methods used in the previous sections. Indeed, we set(F−5,F−4,F−3,F−2,F−1,F0) := (OF(−ξ − f),OF(−ξ),OF(−f),OF ,OF(ξ − f),OF(ξ)),(G0, G1, G2, G3, G4, G5) := (OF(−ξ),OF(−ξ − f), ΩF|ℙ1 , ΩF|ℙ1 (−f),OF(−2ξ),OF(−2ξ − f)),
(the Orlov collection with respect to OF(ξ) and its dual tensored by OF(ξ) and OF(−ξ), respectively; see [16,
Corollary 2.6]).

Lemma 8.2. Let E be an instanton bundle on F. Then E is the cohomology in degree 0 of a complex Ĉ∙ with

Ci := ⨁
q+p=i

Ep,q := Hq+⌈ p2 ⌉(F, E ⊗ F−p) ⊗ Gp .
Proof. The proof is the same as the one of Lemma 4.3.

In order to prove Theorem 1.6, we compute below ep,q := Hq+⌈ p2 ⌉(F, E ⊗ F−p) for 0 ≤ q ≤ 5 and −5 ≤ p ≤ 0.
Proposition 8.3. Let E be an instanton bundle on F. If c2(E) = αξ2 + βξf , then ep,q is the number in position(p, q) in Table 2.

p = −5 p = −4 p = −3 p = −2 p = −1 p = 0
q = 5 0 0 0 0 0 0
q = 4 α + β − 6 β − 3 0 0 0 0
q = 3 0 0 α − 2 0 0 0
q = 2 0 0 0 0 α − β + γ 0
q = 1 0 0 0 0 γ β − 3
q = 0 0 0 0 0 0 0

Table 2: The values of ep,q.

Proof. For each (p, q) but (−4, 3), (0, 2) and (−1, 1), the corresponding values of ep,q are obtained repeating
word by word the arguments in the proof of Proposition 4.4.

By definition e−1,1 = h1(F, E ⊗ F−1) = γ. Moreover, equality (2.5) implies e−4,3 = e0,2. The cohomology of
sequence (3.1) and its dual tensored by E(ξ) and E(−2ξ), respectively, and the vanishings e−4,5 = e−2,3 = 0
yield

e0,2 = h2(F, E ⊗ F0) = h2(F, E(ξ)) = h3(F, E ⊗ ΩF|ℙ1 (ξ)) = 0.
The statement is then completely proved.

The following corollary and proof of Theorem 1.6 are immediate.

Corollary 8.4. Let E be an instanton bundle with c2(E) = αξ2 + βξf on F. Then α ≥ 2, β ≥ 3 and α + β ≥ 6.
Proof. The statement follows from the obvious non-negativity of the ep,q’s.

Proof of Theorem 1.6. The proof is completely analogous to the one of Theorem 1.3. If E is an instanton bun-
dle on F, then it suffices to apply 8.2 using the values ep,q calculated in Proposition 8.3 in order to obtain the
complex C∙, where

C−1 := OF(−2ξ − f)⊕α+β−6,
C0 := OF(−2ξ)⊕β−3 ⊕ ΩF|ℙ1 (−f)⊕α−2 ⊕ OF(−ξ − f)⊕γ ,
C1 := OF(−ξ − f)⊕α−β+γ ⊕ OF(−ξ)⊕β−3.

Conversely, let E be the cohomology C∙. Arguing as in the analogous part of the proof of Theorem 1.3, one
deduces that c1(E) = −3ξ − 2f , c2(E) = αξ2 + βξf , h1(F, E(ξ − f)) ≤ γ and that E is earnest.

Remark 8.5. Again, the μ-semistability of the cohomology E of the monad C∙ in the second part of the state-
ment of Theorem 1.6 is necessary. Indeed, the same argument used in Remark 8.5 leads to a surjective mor-
phism φ : OF(−2ξ) ⊕ OF(−ξ − f)⊕2 → OF(−ξ). Thus we still obtain monad (1.3) when α = 2, β = 4 and γ = 2,
whose cohomology E ≅ ker(φ) ≅ OF(−2ξ) ⊕ OF(−ξ − 2f), which is not μ-semistable.
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We now prove the existence of instanton bundles via the Serre construction.

Construction 8.6. Let α and β be integers such that α ≥ 2, β ≥ 3 and α + β ≥ 6. We take M1, . . . ,Mα−2 and
N1, . . . , Nβ−3 pairwise disjoint curves corresponding to points in ΛM and ΛN , respectively, and define

Z := α−2⋃
i=1
Mi ∪ β−3⋃

j=1
Nj ⊆ F. (8.1)

Notice that the restriction α + β ≥ 6 implies Z ̸= 0.
Since we have the isomorphisms (see Remarks 3.2, 3.3 and equality (2.3))

det(NZ|F) ⊗ OMi ≅ Oℙ1 ≅ OF(ξ) ⊗ OMi ,
det(NZ|F) ⊗ ONj ≅ Oℙ1 (1) ≅ OF(ξ) ⊗ ONj ,

it follows that det(NZ|F) ≅ OF(ξ) ⊗ OZ .
Thus the equality h2(F,OF(−ξ)) = 0 and Theorem 2.1 guarantee the existence of a vector bundle F on F

with a section s vanishing exactly along Z andwith c1(F) = ξ , c2(F) = Z, fitting into sequence (2.2). Tensoring
such sequence by OF(−2ξ − f), we obtain the exact sequence

0→ OF(−2ξ − f)→ E→ IZ|F(−ξ − f)→ 0, (8.2)

where E := F(−2ξ − f). The bundle E is uniquely determined by Z because h1(F,OF(−ξ)) = 0.
We are now able to prove Theorem 1.7 stated in the introduction.

Proof of Theorem 1.7. By construction, c1(E) = −h and c2(E) = αξ2 + βξf . One easily obtains h1(F, E) = 0
from the cohomology of sequence (8.2). Let us prove that E is μ-stable, i.e. that h0(F, E(−aξ − bf)) = 0 for
each pair of integers a and b such that 12a + 9b ≥ μ(E) = −27, i.e. satisfying the inequality

b ≥ −3 − 43a. (8.3)

We will check this by showing that

h0(F,OF(−(a + 2)ξ − (b + 1)f)) = h0(F, IZ|F(−(a + 1)ξ − (b + 1)f)) = 0 (8.4)

in that range. This is obvious if either a ≥ 0 or b ≥ 0.
Let a, b ≤ −1; if a ≤ −2, then inequality (8.3) implies b ≥ 0, and the assertion follows from the former

case. Let a = −1; inequality (8.3) implies −(b + 1) ≤ 0, i.e. b ≥ −1; hence, again, the statement follows from
Proposition 8.1 unless b = −1. In this case, equalities (8.4) are trivial. It follows thatE is an instanton bundle.

Thanks to Remark 3.1, we know that F does not contain lines; hence E is generically trivial by defini-
tion. Since E is an instanton bundle on F, it follows that it is the cohomology of monad (1.3); hence it is
automatically earnest thanks to Theorem 1.6.

We know that E, being μ-stable, is also simple; hence Ext3F(E, E) = 0. The vanishing h2(F, E ⊗ E∨) = 0
follows from the cohomology of sequence (8.2) tensored by E∨ ≅ E(h) once we check that

h2(F, E(ξ + f)) = h2(F, E ⊗ IZ|F(2ξ + f)) = 0.
Thanks to Proposition 8.1, we know that h2(F,OF(−ξ)) = 0; hence the cohomology of sequences (8.2)

tensored by OF(ξ + f) and (5.3) return
h2(F, E(ξ + f)) ≤ h2(F, IZ|F) ≤ h1(Z,OZ).

The dimension on the right is zero because Z is the disjoint union of smooth rational curves.
A similar argument shows that h2(F, E(2ξ + f)) ≤ h1(Z,OZ(ξ)) = 0; hence the cohomology of sequence

(5.3) tensored by E(2ξ + f) returns
h2(F, E ⊗ IZ|F(2ξ + f)) ≤ h1(Z,OZ ⊗ E(2ξ + f))= α−1∑

i=1
h1(Ni ,ONi ⊗ E(2ξ + f)) + β−3∑

j=1
h1(Mj ,OMj ⊗ E(2ξ + f)).
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Equality (2.3) yields E(2ξ + f) ⊗ OZ ≅ NZ|F; hence

ONi ⊗ E(2ξ + f) ≅ ONi ⊕ ONi (1),
OMj ⊗ E(2ξ + f) ≅ O⊕2Mj

;

hence h2(F, E ⊗ IZ|F(2ξ + f)) = 0.
In particular, we have proved the existence of earnest instanton bundles inside IF(αξ2 + βξf).
Corollary 8.7. For each α, β ∈ ℤ such that α ≥ 2, β ≥ 3 and α + β ≥ 6, there is an irreducible component inside
IF(αξ2 + βξf) which is generically smooth of dimension 4α + 6β − 30 and containing all the points correspond-
ing to the bundles obtained via Construction 8.6.

Proof. The schemes as in equality (8.1) represent points in a non-empty open subset W ⊆ Λ×α−2M × Λ×β−3N
which is irreducible (see Remarks 3.2 and 3.3). Thus we deduce the statement as in the proofs of Corollar-
ies 5.2 and 6.2.

Let E be an instanton bundle with c2(E) = αξ2 + βξf . Thus inequality (2.7) yields c2(E)h = 2α + 3β ≥ 14.
Moreover, it is easy to check using Corollary 8.4 that the case c2(E)h = 14 cannot occur. In particular, an
instanton bundle E of minimal charge still satisfies c2(E)h = 15. The description of such an E is easy, thanks
to Theorem 1.6.

Proposition 8.8. If E is an instanton bundle on F with c2(E)h = 15, then E ≅ ΩF|ℙ1 (−f).
Proof. The restrictions α + β ≥ 6 and β ≥ 3 imply c2(E)h = 2α + 3β ≥ 15 for each instanton bundle on F.

If equality holds, then α + β = 6; hence α = β = 3, and we know that such an E exists thanks to Construc-
tion 8.6. The same argument used in the proof of Proposition 7.2 still shows that γ = 0, hence still yields
E ≅ ΩF|ℙ1 (−f) thanks to Theorem 1.6.
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