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EXAMPLES OF SURFACES WHICH ARE ULRICH–WILD

GIANFRANCO CASNATI

Abstract. We give examples of surfaces which are Ulrich–wild, i.e. that support fam-
ilies of dimension p of pairwise non–isomorphic, indecomposable, Ulrich bundles for ar-
bitrary large p.

1. Introduction and Notation

Throughout the whole paper k will denote an algebraically closed field and P
N the

projective space over k of dimension N .
If X ⊆ P

N is a variety, i.e. an integral closed subscheme, then the study of coherent
sheaves on X is an important tool for understanding its geometric properties. From a
cohomological viewpoint, the simplest sheaves on such an X are the Ulrich ones with re-
spect to the very ample line bundleOX(hX) := OPN (1)⊗OX . There are several equivalent
characterizations for such sheaves (e.g. see Proposition 2.1 of [22]). In this paper we call
the sheaf F Ulrich if

hi
(

X,F(−ihX )
)

= hj
(

X,F(−(j + 1)hX )
)

= 0

for each i > 0 and j < dim(X). Ulrich sheaves are aCM, i.e. hi
(

X,F(thX )
)

= 0 for
0 < i < dim(X) and each t ∈ Z: thus they are vector bundles when restricted to the
smooth part of X.

In [22], the authors asked the following questions.

Question 1.1. Is every variety (or even scheme) X ⊆ P
N the support of an Ulrich sheaf?

If so, what is the smallest possible rank for such a sheaf?

At present, answers to the questions above are known in a number of particular cases:
e.g., see [2], [4], [6], [7], [12], [13], [14], [18], [19], [20], [35], [36], [37], [41].

The existence of many Ulrich sheaves on a variety X can be viewed as a sign of the
complexity of the variety itself. For example one could ask if X ⊆ P

N is of Ulrich–wild
representation type, i.e. if it supports families of dimension p of pairwise non–isomorphic,
indecomposable, Ulrich sheaves for arbitrary large p.

Ulrich–wildness is known for several classes of varieties. The case of surfaces, i.e. smooth
integral projective varieties of dimension 2 is of particular interest. In this paper we prove
the following result (KS denotes the canonical class of S).

Theorem 1.2. Let S be a surface endowed with a very ample line bundle OS(hS) and let
d := h2S.

If S supports an Ulrich bundle with respect to OS(hS) and

d2 + 4(χ(OS)− 2)d− (hSKS)
2 > 0, (1.1)
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2 GIANFRANCO CASNATI

then S is Ulrich–wild with respect to OS(hS).

Unfortunately, the above result is not sharp. E.g. if S is a del Pezzo surface, hSKS = −d
and χ(OS) = 1, thus the first member of Inequality (1.1) is strictly negative. Nevertheless
del Pezzo surfaces are Ulrich–wild as shown in [41] and [36]: see also Section 5.3 of [24]
where the authors prove the Ulrich–wildness of each 2–dimensional maximally del Pezzo
variety (see [11] and the references therein for details about such varieties).

In particular, Theorem 1.2 yields some interesting examples. The first one are complete
intersection surfaces of degree 4 ≤ d ≤ 9 in P

N (see Example 3.1). As a consequence of
results by A. Beauville and D. Faenzi, we show in Example 3.2 that abelian surfaces (i.e.
surfaces S with KS = 0 and q(S) = 2) and K3 surfaces (i.e., surfaces S with KS = 0
and q(S) = 0) are Ulrich–wild. A similar result has been recently proved in [23] for K3
surfaces (i.e. surfaces S with KS = 0 and q(S) = 0) extending the previous works [19]
and [4]. Thus each minimal surface S with Kodaira dimension κ(S) = 0 is Ulrich–wild
(see Proposition 6 of [8]).

We also deal with surfaces of general type (i.e. minimal surfaces S with κ(S) = 2: see
Corollary 3.3) such that OS(hS) ∼= OS(λKS) for some positive λ ∈ Z.

In order to find other examples, we prove the following helpful theorem: it makes slightly
more precise the results from [27].

Theorem 1.3. Let X,Y ⊆ P
N be varieties endowed with Ulrich sheaves A and B respec-

tively.
If X and Y intersect properly, A and B are locally free of respective ranks a and b along

X ∩Y and Y is locally complete intersection at the points of X, then A⊗PN B is an Ulrich
bundle of rank ab on X ∩ Y .

Since OPn is the unique Ulrich bundle on P
n with respect to OPn(1), it follows that the

above Theorem generalizes the well–known obvious fact that the restriction of an Ulrich
sheaf to a general linear section of a variety is still Ulrich. One can construct some other
applications besides hyperplane sections.

E.g. in [10] the authors considered the intersection of two varieties G1, G2 ⊆ P
9 pro-

jectively isomorphic to the Plücker model of the grassmannian G(2, 5) of lines in P
4. If

G1 and G2 are general, then F := G1 ∩ G2 is a smooth threefold which is Calabi–Yau,
i.e. OF (KF ) ∼= OF and h1

(

F,OF

)

= 0: F is called a GPK3 threefold. In Example 4.1 we
show that F supports Ulrich bundles by applying Theorem 1.3 above, though F is not a
hypersurface section.

A second application is the construction of Ulrich bundles on hypersurface sections of
del Pezzo threefolds (see Example 4.2).

We end the paper by collecting what we know about surfaces of degree up to 8. We call
special each Ulrich bundle E on S of even rank such that

c1(E) =
rk(E)

2
(3h+KS).

If E is any Ulrich bundle on S, then E ⊕ E∨(3hS +KS) is special: thus S supports Ulrich
bundles if and only if it supports special ones. The existence of a special Ulrich bundle
E on S has some interesting consequences: e.g. if rk(E) = 2, then the Chow form of S is
pfaffian.

We then prove the following results over the complex field C (if S ⊆ P
N , then π(S) is

the genus of a general hyperplane section of S).

Theorem 1.4. Let S ⊆ PN be a surface of degree d ≤ 8 and κ(S) 6= 1.
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Then S supports special Ulrich bundles of rank rspUlrich as indicated in the Table A.

Theorem 1.5. Let S ⊆ P
N be a surface of degree d ≤ 8 and κ(S) 6= 1.

Then S is Ulrich–wild if and only if either d ≥ 5, or d ≤ 4 and π(S) ≥ 1.

When κ(S) = 1 we are not able to prove or disprove the existence of Ulrich bundles,
though [37] provides some evidences in this direction.

In Section 2 we list some results about Ulrich bundles. In Section 3 we prove Theorem
1.2. In Section 4 we prove Theorem 1.3. In Section 5 we prove Theorems 1.4 and 1.5.

For reader’s benefit we incorporate in Table A below all the important informations
about surfaces in P

N of degree up to 8. Their classification can be essentially found in [31]
and [32]: see also [39] and the references therein. In [32] and [39] the authors ruled out
the case of irregular surfaces of degree 8 in P

4 with different incomplete arguments. Such
a case is completely described in the proof of Proposition 2.1 of [1]: see also [42], Section
1.3 and Lemma 1.4 for some further details.

Remark 1.6. In Table A we use the following notation.

• Xd1,...,dN−2
denotes any complete intersection of hypersurfaces of degrees d1, . . . , dN−2

in P
N . In particular there is a natural rational map from a non–empty open subset

of a Segre product
∏N−2

i=1 P
(

H0
(

P
N ,OPN (di)

))

to the Hilbert scheme whose image
corresponds to the locus of points representing such surfaces.

• Consider a ruled surface X ∼= P(H), where H is a rank 2 vector bundle on a curve
C which is normalized in the sense of Section V.2 of [26]. Then p : X → C denotes
the canonical map, e := − deg(det(H)) the invariant of X, ξ the class of the divisor
OX(1) and af the class of the pull back of the divisor a on the curve C via p: if
a := deg(a) we will also write af for its numerical class in Num(X). If C ∼= P

1 we
set Fe := P(OP1 ⊕OP1(−e)), for each e ≥ 0.

• BlP1,...,Pt X denotes the blow up of X at the points P1, . . . , Pt: in this case σ
denotes the blow up map, ei := σ−1(Pi).

• The number rspUlrich, if any, denotes the minimal rank of a special (not necessarily
indecomposable) Ulrich bundle on S: in the case S is also known to support or
not Ulrich line bundles ‘∃ line bundles’ and ‘no line bundles’ are added here. For
the details see the proof of Theorem 1.4.

In two cases, denoted by the sentence ‘no results’ in the last column in the table,
we are unable to prove or disprove the existence of Ulrich bundles on S: these are
exactly the cases when κ(S) = 1 (see Remark 5.1).
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S hSKS N rspUlrich

(I) X1
∼= P2, OP2(1) 1 −∞ 0 0 9 −3 2 2, ∃ line bundles

(II) X2
∼= P1 × P1, OP1(1)⊠OP1(1) 2 −∞ 0 0 8 −4 3 2, ∃ line bundles

(III) X3
∼= BlP1,...,P6

P2, σ∗OP2(3)⊗OS

(

−
∑6

i=1
ei

)

3 −∞ 0 0 3 −3 3 2, ∃ line bundles

(IV) F1, OS (ξ + 2f) 3 −∞ 0 0 8 −5 4 2, ∃ line bundles

(V) X2,2
∼= BlP1,...,P5

P2, σ∗OP2(3)⊗OS

(

−
∑5

i=1
ei

)

4 −∞ 0 0 4 −4 4 2, ∃ line bundles

(VI) Fe, e = 0, 2, OS

(

ξ + e+4

2
f
)

4 −∞ 0 0 8 −6 5 2, ∃ line bundles
(VII) P2, OP2(2) 4 −∞ 0 0 9 −6 5 2, no line bundles
(VIII) X4, OP3(1)⊗OS 4 0 1 0 0 0 3 2

(IX) BlP1,...,P8
P
2, σ∗OP2(4)⊗OS

(

−2e1 −
∑8

i=2
ei

)

5 −∞ 0 0 2 −3 4 2, ∃ line bundles

(X) BlP1,...,P4
P2, σ∗OP2(3)⊗OS

(

−
∑4

i=1
ei

)

5 −∞ 0 0 5 −5 5 2, ∃ line bundles

(XI) Fe, e = 1, 3, OS

(

ξ + e+5

2
f
)

5 −∞ 0 0 8 −7 6 2, ∃ line bundles
(XII) elliptic ruled surface with e = −1, OS (ξ + 2f) 5 −∞ 0 1 0 −5 6 2, ∃ line bundles
(XIII) X5, OP3(1)⊗OS 5 2 4 0 5 5 3 ≫ 0, generically ≤ 2

(XIV) BlP1,...,P10
P2, σ∗OP2(4)⊗OS

(

−
∑10

i=1
ei

)

6 −∞ 0 0 −1 −2 4 2, ∃ line bundles

(XV) BlP1,...,P3
P
2, σ∗OP2(3)⊗OS

(

−
∑3

i=1
ei

)

6 −∞ 0 0 6 −6 6 2, ∃ line bundles

(XVI) Fe, e = 0, 2, 4, OS

(

ξ + e+6

2
f
)

6 −∞ 0 0 8 −8 7 2, ∃ line bundles
(XVII) elliptic ruled surface with e = 0, OS (ξ + 3f) 6 −∞ 0 1 0 −6 5 2, ∃ line bundles
(XVIII) X2,3, OP4(1)⊗OS 6 0 1 0 0 0 4 2
(XIX) X6, OP3(1)⊗OS 6 2 10 0 24 12 3 ≫ 0, generically ≤ 2

(XX) BlP1,...,P11
P2, σ∗OP2(6)⊗OS

(

−2
∑6

i=1
ei −

∑11

j=7
ej

)

7 −∞ 0 0 −2 −1 4 2

(XXI) BlP1,...,P8
P2, σ∗OP2(6)⊗OS

(

−2
∑7

i=1
ei − e8

)

7 −∞ 0 0 1 −3 5 2

(XXII) BlP1,...,P9
P2, σ∗OP2(4)⊗OS

(

−
∑9

i=1
ei

)

7 −∞ 0 0 0 −3 5 2

(XXIII) BlP1,...,P9
Fe, e = 0, . . . , 3,

σ∗OFe
(2ξ + (4 + e)f)⊗OS

(

−
∑9

i=1
ei

)

7 −∞ 0 0 −1 −3 5 2

(XXIV) BlP1,...,P6
P
2, σ∗OP2(4)⊗OS

(

−2e1 −
∑6

i=2
ei

)

7 −∞ 0 0 3 −5 6 2

(XXV) BlP1,P2
P2, σ∗OP2(3)⊗OS

(

−
∑2

i=1
ei

)

7 −∞ 0 0 7 −7 7 2, ∃ line bundles

(XXVI) Fe, e = 1, 3, 5, OS

(

ξ + e+7

2
f
)

7 −∞ 0 0 8 −9 8 2, ∃ line bundles
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(XXVII) elliptic ruled surface with e = −1, 1, OS

(

ξ + (4 + ⌈ e
2
⌉)f

)

7 −∞ 0 1 0 −7 8 2, ∃ line bundles
(XXVIII) BlP1

X2,2,2, σ∗OX(hX)⊗OS (−e1) 7 0 1 0 −1 1 4 2
(XXIX) Proper elliptic, OP4(1)⊗OS 7 1 2 0 0 3 4 no results
(XXX) X7 7 2 20 0 63 21 3 ≫ 0, generically 2

(XXXI) BlP1,...,P16
P2, σ∗OP2(6)⊗OS

(

−2
∑4

i=1
ei −

∑16

j=5
ej

)

8 −∞ 0 0 −7 2 4 2

(XXXII) BlP1,...,P12
Fe, e = 0, . . . , 4,

σ∗OFe
(2ξ + (5 + e)f)⊗OS

(

−
∑12

i=1
ei

)

8 −∞ 0 0 −4 −2 5 2

(XXXIII) BlP1,...,P10
P1 × P1, σ∗(OP1(3)⊠OP1(3))⊗OS

(

−
∑10

i=1
ei

)

8 −∞ 0 0 −2 −2 5 2

(XXXIV) BlP1,...,P11
P2, σ∗OP2(7)⊗OS

(

−2
∑10

i=1
ei − e11

)

8 −∞ 0 0 −2 0 4 2

(XXXV) BlP1,...,P10
P
2, σ∗OP2(6)⊗OS

(

−2
∑6

i=1
ei −

∑10

j=7
ej

)

8 −∞ 0 0 −1 −2 5 2

(XXXVI) BlP1,...,P8
Fe, e = 0, . . . , 3,

σ∗OFe
(2ξ + (4 + e)f)⊗OS

(

−
∑8

i=1
ei

)

8 −∞ 0 0 0 −4 6 2

(XXXVII) BlP1,...,P8
P2, σ∗OP2(4)⊗OS

(

−
∑8

i=1
ei

)

8 −∞ 0 0 1 −4 6 2

(XXXVIII) BlP1,...,P7
P2, σ∗OP2(6)⊗OS

(

−2
∑7

i=1
ei

)

8 −∞ 0 0 2 −4 6 2

(XXXIX) BlP1,...,P5
P2, σ∗OP2(4)⊗OS

(

−2e1 −
∑5

i=2
ei

)

8 −∞ 0 0 4 −6 7 2

(XL) Fe, e = 0, 2, 4, 6, OS

(

ξ + e+8

2
f
)

8 −∞ 0 0 8 −10 9 2, ∃ line bundles
(XLI) BlP1

P2, σ∗OP2(3)⊗OS (−e1) 8 −∞ 0 0 8 −8 8 2, no line bundles
(XLII) P1 × P1, OP1(2)⊠OP1(2) 8 −∞ 0 0 8 −8 8 2, ∃ line bundles

(XLIII) elliptic ruled surface with e = 0, 2, OS

(

ξ + (4 + e
2
)f
)

8 −∞ 0 1 0 −8 7 2, ∃ line bundles
(XLIV) BlP1,...,P8

X , X elliptic ruled surface with e = −1, 1,

σ∗OX(2ξ + (4 + e)f)⊗OS

(

−
∑8

i=1
ei

)

8 −∞ 0 1 −8 0 4 2

(XLV) elliptic ruled surface with e = −1, OS (2ξ + f) 8 −∞ 0 1 0 4 5 2, no line bundles
(XLVI) scroll with e = −2 over a curve C of genus 2, OS (ξ + 3f) 8 −∞ 0 2 −8 −6 5 2, ∃ line bundles
(XLVII) C × P1, C ⊆ P2 smooth with deg(C) = 4, OC(1)⊠OP1(1) 8 −∞ 0 3 −16 −4 5 2, ∃ line bundles
(XLVIII) BlP1

X , X ⊆ P7 K3 surface, σ∗OX(hX)⊗OS (−2e1) 8 0 1 0 −1 2 4 2
(IL) K3, OP5(1)⊗OS 8 0 1 0 0 0 5 2
(L) Proper elliptic, OP4(1)⊗OS 8 1 2 0 0 4 4 no results
(LI) X2,4, OP4(1)⊗OS 8 2 5 0 8 8 4 ≫ 0, generically ≤ 4
(LII) X8, OP3(1)⊗OS 8 2 35 0 128 32 3 ≫ 0, generically 2
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2. General results

Let E be an Ulrich sheaf on a variety X ⊆ P
N with dim(X) = n. As pointed out in

Section 2 of [22] (see in particular Proposition 2.1 therein) we know that E is aCM and
E :=

⊕

t∈Z H
0
(

X, E(thX )
)

has a minimal free resolution over P := k[x0, . . . , xN ] of the
form

0 −→ P (n−N)⊕αN−n −→ P (n−N + 1)⊕αN−n−1 −→ . . .

−→ P (−1)⊕α1 −→ P⊕α0 −→ E −→ 0.
(2.1)

Ulrich bundles also behave well with respect to the notions of (semi)stability and µ–
(semi)stability. For each coherent sheaf F on X, the slope µ(F) and the reduced Hilbert
polynomial pF (t) (with respect to OX(hX)) are defined as follows:

µ(F) = c1(F)h
dim(X)−1
X /rk(F), pF (t) = χ(F(thX ))/rk(F).

The coherent sheaf F is µ–semistable (resp. µ–stable) if for all subsheaves G with 0 <
rk(G) < rk(F) we have µ(G) ≤ µ(F) (resp. µ(G) < µ(F)).

The coherent sheaf F is called semistable (resp. stable) if for all proper non–zero
subsheaves G, pG(t) ≤ pF (t) (resp. pG(t) < pF (t)) for t ≫ 0. We recall that in order to
check the semistability and stability of F one can restrict the attention to subsheaves with
torsion–free quotient. The following chain of implications holds for F :

F is µ–stable ⇒ F is stable ⇒ F is semistable ⇒ F is µ–semistable.

We revert below some of the above implications.

Theorem 2.1. Let X ⊆ P
N be a smooth variety. If E is a Ulrich bundle on X the

following assertions hold.

(1) E is semistable and µ–semistable.
(2) E is stable if and only if it is µ–stable.
(3) If

0 −→ G −→ E −→ H −→ 0

is an exact sequence of coherent sheaves with H torsion free and µ(G) = µ(E), then
both G and H are Ulrich bundles.

Proof. See Theorem 2.9 of [12]. �

Thus, Ulrich bundles on X of minimal rank (if any) are both stable and µ–stable. It is
interesting to estimate the size of the families of Ulrich bundles.

Theorem 2.2. Let X be a smooth variety endowed with a very ample line bundle OX(hX).
If A and B are simple Ulrich bundles on X such that h1

(

X,A⊗B∨
)

≥ 3 and every non–
zero morphism A → B is an isomorphism, then X is Ulrich–wild.

Proof. See [24, Theorem A, Corollary 2.1 and Remark 1.6 iii)]. Indeed A and B, being
Ulrich, satisfy pA(t) = pB(t) by [12, Lemma 2.6] and are semistable by [12, Theorem
2.9]. �

From now on we restrict our attention to Ulrich bundles E on a surface S. The Serre
duality for E is hi

(

S, E
)

= h2−i
(

S, E∨(KS)
)

, for i = 0, 1, 2. The Riemann–Roch theorem
for E is

h0
(

S, E
)

+ h2
(

S, E
)

= rk(E)χ(OS) +
c1(E)(c1(E)−KS)

2
− c2(E) + h1

(

S, E
)

, (2.2)

where χ(OS) := 1− q(S) + pg(S).
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Proposition 2.3. Let S be a surface endowed with a very ample line bundle OS(hS) and
let d := h2S. If E is a vector bundle on S, then the following assertions are equivalent:

(1) E is an Ulrich bundle;
(2) E∨(3hS +KS) is an Ulrich bundle;
(3) E is an aCM bundle and

c1(E)hS =
rk(E)

2
(3d+ hSKS),

c2(E) =
1

2
(c1(E)

2 − c1(E)KS)− rk(E)(d − χ(OS));

(2.3)

(4) h0
(

S, E(−hS)
)

= h0
(

S, E∨(2hS +KS)
)

= 0 and Equalities (2.3) hold.

Proof. See [13, Proposition 2.1]. �

If E is an Ulrich bundle on S, then the first Equality (2.3) and the Hodge theorem
applied to hS and c1(E) yields

c1(E)
2 ≤

rk(E)2

4d
(3d+ hSKS)

2. (2.4)

If F is another Ulrich bundle on S

χ(E∨ ⊗F) = rk(F)c1(E)KS − c1(E)c1(F) + rk(E)rk(F)(2d − χ(OS)) (2.5)

(see Proposition 2.12 of [12] for the details).
Finally, the hypothesis rk(E) = 1 yields c2(E) = 0. Thus, if E ∼= OS(D), then Equalities

(2.3) become

DhS =
1

2
(3d+ hSKS), D2 = 2(d− χ(OS)) +DKS . (2.6)

3. Ulrich–wildness of surfaces

In this section we first prove Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2. Let E be an Ulrich bundle of minimal rank r on S: Theorem 2.1
implies that E is stable, hence simple (see [30], Corollary 1.2.8).

The bundle F := E∨(3hS +KS) is stable and simple too. In particular, every non–zero
morphism E → F is an isomorphism, thanks to [30, Proposition 1.2.7]. Moreover, F is
Ulrich by Proposition 2.3.

Since c1(F) = r(3hS +KS)− c1(E), it follows from Equality (2.5) that

h1
(

S, E∨ ⊗F) = −χ(E∨ ⊗F) + h2
(

S, E∨ ⊗F) ≥ −χ(E∨ ⊗F) =

= −rc1(E)KS + rc1(E)(3hS +KS)− c1(E)
2 − r2(2d − χ(OS)).

The first Equality (2.3) combined with Inequalities (2.4) and (1.1) yield

h1
(

S, E∨ ⊗F) ≥
r2

4d
(d2 + 4χ(OS)d− (hSKS)

2) > 2.

Thus the statement follows from Theorem 2.2. �

Example 3.1. Thanks to [9] and [27] each complete intersection surface is the support of
an Ulrich bundle as well.

Let S ⊆ P
N be a non–degenerate complete intersection surface of degree d. Then

Theorem 1.2 implies that S is certainly Ulrich–wild if either 5 ≤ d ≤ 9, or N = 3 and
d = 4. When d = N = 3 (resp. d = N = 4) the Ulrich–wildness of S was proved in
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[12] (resp [41]). If d ≤ 2, then S supports a finite number of indecomposable Ulrich (and
aCM) bundles. If d ≥ 10 and N = 3, S does not satisfy Inequality (1.1), thus we cannot
say anything about its Ulrich–wildness.

Example 3.2. Let S be a minimal surface with κ(S) = 0 over C. The Enriques–Kodaira
classification implies that S is either abelian, or a K3 surface, or an Enriques surface, or
a bielliptic surface. The Riemann–Roch and the Kodaira vanishing theorems on S imply
that

d = 2h0
(

S,OS(hS)
)

− 2χ(OS) > 4(2− χ(OS)).

Since trivially hSKS = 0 in all these cases, we immediately deduce from Theorem 1.2, [8,
Proposition 6] and [23, Theorem 1] that every such S is Ulrich–wild.

The Ulrich–wildness of Enriques, K3 and bielliptic surfaces were already shown in [13],
[23] and [14].

We close this section with the following corollary of Theorem 1.2, where k = C.

Corollary 3.3. Let S be a surface endowed with a very ample line bundle OS(hS) such
that OS(hS) ∼= OS(λKS) for some positive integer λ. If S supports a bundle which is
Ulrich with respect to OS(hS), then S is Ulrich–wild.

Proof. If OS(hS) := OS(λKS) is very ample, then OS(KS) is ample. The ampleness of
OS(KS) and the Nakai criterion yield that S is minimal. Thus both K2

S and χ(OS) are
positive (see Theorem VII.1.1 of [5]).

Since the degree of S is d = λ2K2
S and hSKS = λK2

S , it follows that Inequality (1.1) is
equivalent to

(λ2 − 1)K2
S + 4χ(OS) > 8, (3.1)

which is immediately satisfied if λ ≥ 3.
If λ = 2, then OS(2KS) is very ample, hence h0

(

S,OS(2KS)
)

≥ 4. Proposition VII.5.3

of [5] implies K2
S + χ(OS) ≥ 4, whence we deduce Inequality (3.1).

If λ = 1, then OS(KS) is very ample, hence pg(S) ≥ 4. In this case Inequality (3.1) is
equivalent to χ(OS) > 2. If χ(OS) ≤ 2, then either q(S) = pg(S), or q(S) + 1 = pg(S).

The Bogomolov–Miyaoka–Yau inequality (see Theorem VII.4.1 of [5]) and the equality
12χ(OS) = K2

S + c2(Ω
1
S) imply K2

S ≤ 9χ(OS). By combining the latter inequality with
Theorem 3.2 of [21] we obtain q(S) = pg(S) = 4 if χ(OS) = 1, and 6 ≥ q(S)+1 = pg(S) ≥ 4
if χ(OS) = 2. Since every surface in P

3 is regular, it follows that we can restrict to the
case 6 ≥ q(S) + 1 = pg(S) ≥ 5.

If pg(S) = 5, then the double point formula for S (see [26, Example A.4.1.3]) implies
that d = h2S = hSKS = K2

S satisfies d2 − 17d + 24 = 0 which has no integral solutions.
We deduce that q(S) + 1 = pg(S) = 6, hence S should be the product of a curve of genus
2 and a curve of genus 3 (see the Theorem in the Appendix of [21]): since the canonical
map for such a surface has degree at least 2, it follows a contradiction.

Thus, if S supports an Ulrich bundle, then it is Ulrich–wild by Theorem 1.2. �

4. Ulrich bundles on intersections

In this section we prove the following generalization of the main result of [27], which is
usually stated only for complete intersections.

Proof of Theorem 1.3. Let n := dim(X), m := dim(Y ): thanks to the hypothesis we have
that dim(X ∩ Y ) = m+ n−N . If m+ n ≤ N , then the statement is trivial, thus we will
assume m+ n > N from now on.
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There is an exact sequence of the form

0 −→ OPN (n−N)⊕αN−n −→ OPN (n−N + 1)⊕αN−n−1 −→ . . .

−→ OPN (−1)⊕α1 −→ O⊕α0

PN −→ A −→ 0

obtained by sheafifying Sequence (2.1) with E :=
⊕

t∈Z H
0
(

X,A(thX)
)

.
The variety Y intersects properly X and it is locally complete intersection at each point

x ∈ X ∩ Y . Thus its local equations in OPN ,x are regular elements for OX,x, hence also in

Ax
∼= O⊕a

X,x. When x ∈ Y \X then Ax is zero. Thus the above sequence tensored by OY

is everywhere exact along Y , thanks to Theorem 7 of [38].
Taking into account that A ⊗PN OY ⊗Y B ∼= A ⊗PN B, by tensoring such a restricted

sequence with B, we obtain the complex on Y

0 −→ B((n−N)hY )
⊕αN−n

ϕN−n
−→ B((n−N + 1)hY )

⊕αN−n−1
ϕN−n−1
−→ . . .

ϕ2
−→B(−hY )

⊕α1
ϕ1
−→B⊕α0 −→ A⊗PN B −→ 0.

Such a complex is actually exact on X ∩Y , because Bx
∼= O⊕b

Y,x. When x ∈ Y \X it is still
exact because Ax is zero.

Since B is Ulrich on Y , it follows that

hi
(

Y,B(−ihY )
)

= hj
(

Y,B(−(j + 1)hY )
)

= 0, (4.1)

for i > 0 and j < m by definition (see the introduction).
Let C0 := A ⊗PN B and Cλ := im(ϕλ) for 1 ≤ λ ≤ N − n: notice that CN−n =

B((n−N)hY )
⊕αN−n . We have the exact sequences

0 −→ Cλ+1 −→ B(−λhY )
⊕αλ −→ Cλ −→ 0.

Tensoring the above exact sequences by OY ((λ− i)hY ) and OY ((λ− j− 1)hY ) and taking
their cohomologies, Equalities (4.1) yield respectively

hi
(

Y, Cλ((λ− i)hY )
)

≤ hi+1
(

Y, Cλ+1((λ+ 1− i− 1)hY )
)

,

hj
(

Y, Cλ((λ− j − 1)hY )
)

≤ hj+1
(

Y, Cλ+1((λ+ 1− j − 2)hY )
)

,

for each i > 0, j < m and 0 ≤ λ ≤ N − n − 1. Taking into account that C0 = A⊗PN B
and CN−n = B((n−N)hY )

⊕αN−n , the above inequalities return

0 ≤ hi
(

X ∩ Y,A⊗PN B(−ihY )
)

≤ hi+N−n
(

Y,B((n −N − i)hY )
⊕αN−n

)

,

0 ≤ hj
(

X ∩ Y,A⊗PN B(−(j + 1)hY )
)

≤ hj+N−n
(

Y,B((n−N − j − 1)hY )
⊕αN−n

)

,

for i > 0 and j+N−n < m, i.e. j < n+m−N . Equalities (4.1) then imply that A⊗PN B
is also Ulrich by definition.

Finally, A and B are locally free along X ∩ Y , hence the same is true for A⊗ B. �

Example 4.1. Let F := G1 ∩G2 be a GPK3 threefold over C (see the introduction).
Theorem 3.5 and Corollary 4.6 of [20] guarantee the existence of an Ulrich bundle Ei

on Gi of rank 3. Since Pic(Gi) is generated by OGi
(hGi

), there is αi ∈ Z such that
c1(Ei) = αihGi

. The rational number µ(Ei) does not depend on the choice of the Ulrich
bundle on Gi (this is a standard property of Ulrich bundles: e.g. see [20], Proposition
2.5), hence we finally obtain αi = 3 by combining the previous discussion with Corollary
3.7 in [20].

Theorem 1.3 implies that F supports the Ulrich bundle E := E1 ⊗P9 E2 which has rank
9. Moreover, c1(E) = rk(E1)c1(E2)F + rk(E2)c1(E1)F = 18hF .
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Each hyperplane section S of F supports Ulrich bundles as well. The adjunction formula
implies that S is canonically embedded, hence it is Ulrich–wild thanks to Corollary 3.3.
It is not difficult to check that q(S) = 0, pg(S) = 9, and K2

S = 25. In particular S is not
complete intersection.

Example 4.2. If F is a del Pezzo threefold over C, F ⊆ P
a+1, 3 ≤ a ≤ 8, then it supports

an Ulrich bundle of rank 2 with c1(F) = 2hF (see [8, Proposition 8]: see also [3], [15],
[16], [17] and the methods described therein). By combining this fact with the existence
of Ulrich bundles on each hypersurface in ∆ ⊆ P

N of degree δ (see [9]), we deduce that
each smooth hypersurface section S = F ∩ ∆ certainly supports Ulrich bundles of high
rank.

The surface S has degree δa and KS = (δ − 2)hS by adjunction. In particular hSKS =
(δ − 2)δa. Moreover the cohomology of

0 −→ OF (−δhF ) −→ OF −→ OS −→ 0

yields χ(OS) = 1 − χ(OF (−δhF )). The Riemann–Roch theorem on F and the equality
hF c2(Ω

1
F |k) = 12 finally return

χ(OS) = −
1

6
δ(δ − 1)(δ − 2)a+ δ.

Simple computations show that Inequality (1.1) is then equivalent to

−δ(δ − 1)(δ − 5)a > 24− 12δ.

When a ≥ 3, the above inequality is satisfied if and only if 2 ≤ δ ≤ 5. Thus S is Ulrich–
wild in this range, thanks to Theorem 1.2. Notice that S is a surface of general type when
δ ≥ 3 and it is a K3 surface when δ = 2: the existence of special Ulrich bundles of rank 2
on each K3 surface has been recently proved in [23].

We spend some further words in the latter case. If the rank of ∆ ⊆ P
a+1 is 4, then ∆ is

endowed with two pencils of linear spaces of dimension a− 1. They induce two fibrations
on S with elliptic normal curves of degree a as fibres.

If we choose projective coordinates in P
a+1 such that ∆ = { x0x2 − x1x3 = 0 }, then

the matrix
(

x0 x3
x1 x2

)

,

defines a monomorphism ϕ : OPa+1(−1)⊕2 → O⊕2
Pa+1, whose cokernel S is an Ulrich sheaf

of rank 1 on ∆. Theorem 1.3 yields that E := F ⊗ S is an Ulrich bundle of rank 2 on S.
Each non–zero section of S vanishes on a linear space of one of the aforementioned pencils,
thus S ⊗OS is the line bundle OS(A) associated to the corresponding elliptic fibration on
S. It follows that c1(E) = 2hS + 2A.

Notice that A2 = 0 and hSA = a, thus c1(E)
2 = 16a 6= 18a = (3hS)

2: in particular E is
not special. For further examples in this direction see [18].

Remark 4.3. Even if A and B are Ulrich vector bundles of minimal rank on X and Y ,
the bundle A⊗ B need not be of minimal rank on X ∩ Y .

For example, let F ⊆ P
4 be a smooth cubic threefold and L ∈ Pic(F ). If L were Ulrich,

then h0
(

F,L(−hF )
)

= 0 and h0
(

F,L
)

6= 0. Since the Pic(F ) is generated by OF (hF ), it

follows that L ∼= OF , which is not Ulrich because h3
(

F,OF (−3hF )
)

6= 0.

Nevertheless, for each general hyperplane H ⊆ P
4, the surface S := F ∩ H supports

Ulrich line bundles (see [6], Corollaries 6.4 and 1.12).
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5. Ulrich wildness of some surfaces

In this section we will prove Theorems 1.4 and 1.5 stated in the introduction.

Proof of Theorem 1.4. If S is in the classes (VIII), (XVIII), (IL) the existence of special
Ulrich bundles of rank 2 have been proved in [19, Proposition 7.6] and [23, Theorem 1].
Every surface in class (XXVIII) is the blow up of a polarized surface in class (IL) at a
point. Thus [33, Theorem 0.1] implies that S supports a special Ulrich bundle of rank 2.

In the cases (XIII), (XIX), (XXX), (LI) and (LII), then S is either a surface in P
3

of degree 5 ≤ d ≤ 8, or quadro–quartic complete intersection in P
4. For the existence

of Ulrich bundles (possibly of very high rank) in these cases see [27] and the references
therein.

In [7, Proposition 7.6] the author proves the existence of special Ulrich bundles of rank
2 on the general surface in P

3 of degree d ≤ 15. This proves the statement in cases (XIII),
(XIX), (XXX) and (LII).

We now examine the case (LI). We know the existence of a quadric Q and a quartic F in
P
4 such that S = Q∩F . If F is general, then Proposition 8.9 of [7] guarantees the existence

of a special Ulrich bundle F of rank 2 on F : we have c1(F) = 3hF . If Q is smooth, then it
supports a unique spinor bundle S. Theorem 2.3 and Remark 2.9 of [40] imply that S(hQ)
is aCM, initialized and the Serre duality implies h3

(

Q,S(−2hQ)
)

= h0
(

Q,S
)

. Thus S(hQ)
is Ulrich: we have c1(S(hQ)) = hQ thanks to Remark 2.9 of [40]. Theorem 1.3 implies
that E := F ⊗S(hQ) is Ulrich on S of rank 4 with c1(E) = 2c1(F)S+2c1(S(hQ))S = 8hS .
Since KS = hS , it follows that E is special.

Surfaces S in classes (I), (II), (IV), (VI), (XI), (XII), (XVI), (XVII), (XXVI), (XXVII),
(XL), (XLIII), (XLVI), (XLVII) support Ulrich line bundles, because they are embedded
as scroll in these cases (see [8, Proposition 5]). The Bordiga (that is the surfaces in class
(IX)) and Castelnuovo surfaces (surfaces in class (XIV)) also carry Ulrich line bundles (see
[35]). The same is true for del Pezzo surfaces of degree d = 3, . . . , 7 (surfaces in classes
(III), (V), (X), (XV), (XXV): see [41]).

Surfaces in classes (VII), (XLI), (XLV) do not support Ulrich line bundles (see [13],
Example 2.1, [41], [13] respectively).

Surfaces in classes (VII), (XX), (XXI), (XXII), (XXIII), (XXIV), (XXXII), (XXXIII),
(XXXIV), (XXXV), (XXXVI), (XXXVII), (XXXVIII), (XXXIX), (XLI), (XLII) have
pg(S) = q(S) = 0. Moreover, the line bundle OS(hS) is non–special (i.e. h

1
(

S,OS(hS)
)

=
0), as one can check by confronting the value of N listed in the penultimate column in
Table A with the expected dimension of the linear system. Thus the existence of a special
Ulrich bundle of rank 2 on them follows from Theorem 1.1 of [13].

Surfaces S in class (XLV) have pg(S) = 0 and q(S) = 1. Moreover the linear system
OS(hS) is non–special thanks to [25], Proposition 3.1. The existence of a special Ulrich
bundle of rank 2 on such an S follows from Theorem 1.1 of [14] (the case e = 1 is also
covered by [2]).

In the case (XXXI) the linear system OS(hS) is special with h1
(

S,OS(hS)
)

= 1. The
surface S can be obtained in two steps as follows.

In the first step we blow up P
2 at some points P1, . . . , P4, obtaining a surface S1: if

σ1 : S1 → P
2 is the blow up morphism, then we embed S1 via OS1

(hS1
) := σ∗

1OP2(6) ⊗

OS1
(−2

∑4
i=1 ei). The points P1, . . . , P4 are in general linear position in P

2, i.e. any three
of them are not collinear: otherwise, there would exist an effective divisor D on S1 (the
proper transform of the line through the three collinear points) such that hS1

D = 0,
contradicting the ampleness of OS(hS1

). With this in mind it is immediate to check that
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OS1
(hS1

) is non–special. Thus S1 supports a special Ulrich bundle of rank 2 with respect
to OS1

(hS1
) also in this case.

In the second step we blow up S1 at some points P5, . . . , P16: if σ2 : S → S1 is the
blow up morphism, then we embed S via OS(hS) := σ∗

2OS1
(hS1

)⊗OS(−
∑16

j=5 ej). Thus

Theorem 0.1 of [33] implies that S supports a special Ulrich bundle of rank 2 also in this
case.

Consider the case (XLIV). On the one hand h0
(

S,OS(hS)
)

= 5. On the other hand

the Riemann–Roch theorem yields χ(OS(hS)) = 4, hence h1
(

S,OS(hS)
)

= 1. Thus the
surface is specially polarized in this case too.

Let a be an arbitrary divisor on C of degree 4+e. Then OX(hX) := OX(2ξ+af) is very
ample on X, thanks to [28, Theorem 3.3] when e = 1 and [29, Theorem 3.4] when e = −1.
Moreover, it is also non–special, thanks to [25, Proposition 3.1]. Thus X supports a
special Ulrich bundle of rank 2 with respect to OX(hX), thanks to Corollary 3.5 of [14]
(the case e = 1 being also covered by [2]). The existence on S of a special Ulrich bundle
of rank 2 follows again from Theorem 0.1 of [33].

We now construct an Ulrich bundle on a surface S in class (XLVIII) (see [39] for details).
Let Z ⊆ S be a set of 9 general points. Since OS(hS + 4e1) ∼= σ∗OX(hX) ⊗ OS(2e1), it
follows that each divisor in |OS(hS +4e1)| is the sum of a divisor in |σ∗hX | plus 2e1, hence

h0
(

S,OS(hS + 4e1)
)

= h0
(

S, σ∗OX(hX)
)

.

Moreover, Riσ∗σ
∗OX(hX) ∼= OX(hX)⊗Riσ∗OS

∼= 0 if i ≥ 1 (see [26], Proposition V.3.4),
hence

h0
(

S, σ∗OX(hX)
)

= h0
(

X,OX (hX)
)

= 8. (5.1)

We deduce from Theorem 5.1.1 in [30] that Z has the Cayley–Bacharach property with
respect to OS(hS + 4e1), hence there is an exact sequence of the form

0 −→ OS −→ F −→ IZ|S(hS −KS + 4e1) −→ 0

where F is a vector bundle of rank 2 with c1(F) = hS −KS + 4e1 and c2(F) = 9.
The bundle E := F(hS +KS − 2e1) fits into the exact sequence

0 −→ OS(hS +KS − 2e1) −→ E −→ IZ|S(2hS + 2e1) −→ 0 : (5.2)

we have c1(E) = 3hS+KS , whence h
0
(

S, E(−hS)
)

= h0
(

S, E∨(2hS+KS)
)

and c2(E) = 27.
Moreover, computing the cohomology of Sequence (5.2) tensored by OS(−hS), taking into
account the isomorphisms OS(KS) = OS(e1), σ

∗OX(hX) ∼= OS(hS + 2e1) and Equality
(5.1), we finally obtain

h0
(

S, E(−hS)
)

≤ h0
(

S,OS(−e1)
)

+ h0
(

S,IZ|S ⊗OX(hX )
)

= 0,

because deg(Z) = 9 and h0
(

S, σ∗OX(hX)
)

= 8. Proposition 2.3 yields that E is a special
Ulrich bundle of rank 2 on S. �

Remark 5.1. If S is in classes (XXIX) and (L), then its canonical map is an elliptic
fibration ǫ : S → P

1, fibres being elliptic normal curves of degrees 3 and 4.
In [34, Theorem III.4.2 and Observation III.3.5], the author proves that Pic(S) is gen-

erated by hS and KS for the very general surface S as above. The map ǫ has no sections,
otherwise there would exist integers x, y such that (xKS + yhS)KS = 1, contradicting the
conditions K2

S = 0 and 3 ≤ hSKS ≤ 4. Thus, we cannot use results from [37] for proving
the existence of Ulrich bundles on such surfaces.

We are now ready to prove Theorem 1.5 as an easy corollary of Theorem 1.2.
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Proof of Theorem 1.5. Surfaces S in classes (III), (V), (IX), (X), (XI), (XIV), (XV),
(XVI), (XX), (XXI), (XXII), (XXIII), (XXIV), (XXV), (XXVI), (XXXII), (XXXIII),
(XXXIV), (XXXV), (XXXVI), (XXXVII), (XXXVIII), (XXXIX), (XL), (XLI), (XLII)
are non–special and have pg(S) = q(S) = 0. Thus their Ulrich–wildness follows from
Theorem 1.3 of [13]. By the same theorem, if d ≤ 4 and π(S) vanishes, then S is not
Ulrich–wild: these cases are (I), (II), (IV), (VI), (VII).

Similarly surfaces S in classes (XII), (XVII), (XXVII), (XLIII), (XLV) are Ulrich–wild,
thanks to [14, Theorem 1.3] and [25, Proposition 3.1].

In cases (VIII), (XIII), (XVIII), (XIX), (XXVIII), (XXX), (XXXI), (XLIV), (XLVIII),
(IL), (LI), (LII) the statement follows easily from Theorem 1.2, thanks to the invariants
listed in the table.

In cases (XLV), (XLVI) the surface S is geometrically ruled on a curve C and it is
embedded in P

N as a scroll. Following the notation in Remark 1.6, we know that the
invariant e is −2 and 0 in cases (XLV) and (XLVI) respectively. Thus, we have OS(hS) ∼=
OS(ξ + p∗b), hence 2 deg(b)− e = deg(S) = 8.

Assertion 2) of Proposition 5 in [8] implies that for each general u ∈ Picg−1(C) then
L := OS(hS + p∗u) ∼= OS(ξ + p∗b + p∗u) is Ulrich. It follows from Proposition 2.3 that
M := OS(2hS +KS − p∗u) ∼= p∗OE(2b + h+ k− u) is Ulrich too.

Such bundles are trivially simple and h0
(

S,L ⊗ M∨
)

= h0
(

S,M ⊗ L∨
)

= 0 because
L 6∼= M. Since L⊗M∨ ∼= OS(ξ− p∗b− p∗h− p∗k+2u), it follows from Equality (2.2) that

h1
(

S,L ⊗M∨
)

≥ −χ(L ⊗M∨) = 2deg(b)− e = 8.

The statement thus follows from Theorem 2.2. �

Remark 5.2. The proofs of Theorems 1.3 of [13] and [14] used above contain a gap
which can be overcome by assuming that k is uncountable (see the erratum). Thus, such
theorems certainly hold when k = C as we assume in Theorem 1.5.
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