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Abstract. Deep Neural Networks (DNN) have reached an outstanding
accuracy in the past years, often going beyond human abilities. Nowa-
days, DNNs are widely used in many Artificial Intelligence (AI) appli-
cations such as computer vision, natural language processing and au-
tonomous driving. However, these incredible performance come at a high
computational cost, requiring complex hardware platforms. Therefore,
the need for dedicated hardware accelerators able to drastically speed
up the execution by preserving a low-power attitude arise. This paper
presents innovative techniques able to tackle matrix sparsity in convo-
lutional DNNs due to non-linear activation functions. Developed archi-
tectures allow to skip unnecessary operations, like zero multiplications,
without sacrificing accuracy or throughput and improving the energy
efficiency. Such improvement could enhance the performance of embed-
ded limited-budget battery applications, where cost-effective hardware,
accuracy and duration are critical to expanding the deployment of AI.

Keywords: Deep Learning, Deep Neural Network, Machine Learning,
Energy-efficient Hardware Accelerator, Low-power, ASIC, VLSI

1 Introduction

Artificial Intelligence (AI) has definitely become an undeniable part of human
life. The increasing interest the research world is addressing towards this topic
is the result of the astonishing performance of the AI approach. Scientists look
at the AI as a playground, where they get to reproduce human brain behaviors
such as reasoning, learning and problem-solving. AI will soon permeate every
aspect of our lives, changing the way we perceive the world, offering new tools
able to assist people both during work time and in their everyday life. In fact,
many are the rising applications aimed at improving the quality of the work such
as the medical environment [1], where, for example, aiding software have been
designed to refine specialist x-rays scans interpretation.
Even though the state of the art is far from producing devices with intrinsic
manlike properties of reasoning and creativity, recent developments in brain-
inspired algorithms have enormously enhanced computers ability in classification
tasks [2–6], going beyond human accuracy, leading the emergence of the Machine
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Learning (ML) and its narrower area, named Deep Learning (DL) [7].
In recent years, DL gained visibility due to its potential in speech recognition,
computer vision and robotics. Such models rely on Neural Network (NN), or
more specifically on Deep Neural Network (DNN) [8], brain-inspired structures
composed of several layers of artificial neurons, that represent the fundamental
building blocks. These blocks are a mathematical representation of the physic
principle of how a neuron is supposed to work. Basically, a multiply and accu-
mulate (MAC) operation, followed by a non-linear activation function.
Thanks to subsequent layers of neurons, DNNs are able to extract high-level
features from raw data, making them accuracy superior to any other known
approach. The most effective DNNs used today, especially in computer vision,
are the convolutional ones, where the basic task performed by each layer is the
convolution between a feature map and a filter, also called kernel. Even though
such operations are not complex, they come in a huge amount, making the above
structures very computation-hungry and, subsequently, power-hungry.
DNNs can work in two separated phases, namely training and inference. During
the former, the network tries to learn and generalize a given labeled dataset by
tuning its weights (kernels), while in the latter it exploits the trained weights to
predict and classify the input.
In the above-mentioned scenario, where DL energy greedy applications are be-
coming more and more pervasive, the need for tailored low-power hardware plat-
forms arises [8]. Whilst during the training stage, parallel computation and high
precision (floating point architecture) are required, making the GPU (Graphics
Processing Unit) the only possible choice in order to speed up the process, such
constraints are not imperative for inference, allowing for a different approach.
CPU represents a reasonable choice, but its general purpose design appears not
optimized enough to reach high-efficiency levels. Therefore, two hardware so-
lutions exist able to lead DNNs towards a low-power implementation such as
FPGAs and ASICs. Although FPGAs allow for greater flexibility by means of
their built-in re-programmable property, their power consumption is still too
high compared to what ad-hoc integrated solutions are able to achieve. This is
the reason why many hardware accelerators for DNNs have been designed as
ASIC to be integrated into more complex architectures [8].
From the hardware point of view, two are the main sources of power consump-
tion, namely memory access and multiplication operations. The former is the
most energy-expensive, generally tackled at algorithm level by exploiting reuti-
lization policies (introduced in section 2) in order to ward off memory readings.
The latter, instead, can be handled by approximate computing, or more effec-
tively, by preventing useless operations like multiplications by zero. This current
work is based on the design of a hardware accelerator for convolutional DNN
that adopts a rescheduled data flow in order to fulfill the maximum weights
reuse. Moreover, algorithmic low-power techniques are applied in order to avoid
unnecessary or negligible multiplication between activations and weights.
The paper is organized as follows. Section 2 describes the basic architecture of
the hardware accelerator for the convolutional task, including reutilization poli-
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cies and rescheduled data flow. Section 3 introduces the low-power techniques
developed in this work, with emphasis on the architectural implementations and
driving motivations. Section 4 illustrates the results obtained, focusing not only
on the outcome of hardware synthesis and validation, but also on comparisons
with other known architectures. Section 5 draws the conclusions and possible
future works.

2 Basic hardware accelerator

The core structure of a typical convolution accelerator is the MAC (Multiply and
Accumulate) unit, as the convolution operation is usually performed as the sum
of the products between the convolution kernel coefficients and the corresponding
input samples. Eq. 1 refers to a typical discrete convolution adopted in deep
learning, with dimensionality equal to 2.

output(x, y) =
∑
row

column

kernel[r, c] · input[x + r, y + c] (1)

where r and c represent the dimension of the kernel, while x and y are the dimen-
sions of output feature map. There are various possible implementations of this
equation in hardware, by interchanging the order of summations and by deciding
the flow of data. In particular, there are three possible architectural implemen-
tations for fetching and transferring input and weight data from memories to
the processing elements (PEs) [9]:

– Broadcast, where data are fetched one by one and they are sent to multiple
PEs every clock cycle. Therefore, in the same clock cycle each PE receives
the same data. Despite one input memory is required, some registers can be
used to separate the data flow between memory and PEs;

– Forwarding, where data are fetched one by one from the input memory
but each PE receives them in different clock cycles, i.e. each PE contains the
logic to process the data and some registers to store them. Thus, the data
flowing from one PE to the next one are delayed by one clock cycle;

– Stay, where data, once loaded inside a PE, are kept fixed for the entire
convolution. This is a good way to reduce the number of memory accesses
as data are reused by the same PE.

There are also three architectural possibilities to classify the process of partial-
sum accumulation:

– Aggregation, where all partial-sums are added at the same time by means
of a tree adder. Nowadays this solution is the least used one due to the
relevant complexity which would be required a parallel structure;

– Migration, where the partial sum is transferred to a neighboring PE or to
the same PE that generated it;

– Sedimentation, where each partial sum is stored into an on-chip memory
for each PE.
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In this work, a FSM (Forwarding-Stay-Migration) approach is used because it
is well suited to support low power techniques, as described in section 3. The
Forwarding approach, applied to inputs loading, allows a delayed parallelization
of all the computations. This ensures that input is fetched only once from the
input memory. Since the kernel does not change during a convolutional operation,
the Stay approach is an optimum choice, as kernel weights are loaded just once
and remain inside architecture during the entire operation. Eventually, Migration
has been chosen for the output process, since it allows to use internal registers
to transfer the partial sum between two PEs, thus reducing memory operations.
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Fig. 1: Basic architecture for FSM approach

The data input memory (herein
called ”activation memory”),
the weight memory, the out-
put memory and the mem-
ory controller are assumed to
be off-chip (as in [10] and
[11]) to focus on the the hard-
ware accelerator itself, com-
posed by a 3-channels dat-
apath and its control unit.
Differently from Eyeriss[10],
where each PE receives in-
puts from the same row, and
from Zena[11], where a zig-
zag access pattern is required,
in this work a column-by-
column access is required for
the Forwarding input process-
ing. Input data is represented
on 9 bits per color, hence 27
bits per pixel, with a resolu-
tion of 128x128 pixels, lead-
ing to an activation memory
of 16384 rows and 27 columns.
Due to the Stay approach, all
the kernel is needed at the
same clock cycle. Weights are
quantized on 6 bits per color,
leading to 162 bits of memory
for a 3x3x3 convolution ker-
nel. The output memory is composed by 126x126 rows of 3x16 bits each.

The Processing Elements, the internal registers and the On-chip memories are
embedded in the structure, as shown in figure 1. Using the rescheduled dataflow
from [9], a series of registers is inserted between the inputs of the Datapath and
the various PEs accordingly to the kernel size, in this case 2 registers to cope
with a 3x3 kernel.
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3 Power consumption reduction

Rescheduled dataflow is an effective technique to reduce power consumption due
to on-chip memory access. Besides, the multiplication is known to be another
important source of power consumption. As a consequence, techniques aimed at
reducing the power consumption of multipliers are worth studying. For instance,
activations and weights can be analyzed to understand which operations can be
skipped to create low power architectures. For this reason, in the next sections,
four different approaches applied to the starting architecture are presented: Zero
Skipping (ZS) Architecture, Equal Weights Skipping (EWS) Architecture, Ap-
proximation Skipping (AS) Architecture and Hybrid EWS and AS Architecture.

AM
W2

W1

W0

0

R
1

R
19

R
20

R
21

R3

R2

R4

R5

R6

PE 0

PE 1

PE 2 OM 0

W2

W1

W0

TH

TH

TH

ZIR 0

ZIR 1

ZIR 2

Z0
Z1

Z2

(a) ZS

AM
W2

W1

W0

0

R
1

R
19

R
20

R
21

R3

R2

R4

R5

R6

PE 0

PE 1

PE 2 OM 0

EWR 0

W1 W2

EWR 1

W0 W1

(b) EWS

AM
W2

W1

W0

0

R
1

R
19

R
20

R
21

R3

R2

R4

R5

R6

PE 0

PE 1

PE 2 OM 0

W2

W1

W0

TH

TH

TH

LZR 0

LZR 1

LZR 2

(c) AS

AM
W2

W1

W0

0

R
1

R
19

R
20

R
21

R3

R2

R4

R5

R6

PE 0

PE 1

PE 2 OM 0

EWR 0

W1 W2

W0 W1

EWR 1

W2

TH
LZR 0

R
28

R
29

W1

TH
LZR 1

W1

TH
LZR 1

(d) Hybrid

Fig. 2: Low power optimizations (partial view)

3.1 Zero Skipping

This method allows to skip zero-output operations caused by zero weights or zero
activations to reduce energy consumption. In particular this technique is very
effective in networks employing the ReLU activation function, which outputs a
large number of zeros. The new architecture needs a block named Zero Input
Recognizer (ZIR) able to detect if at least one operand is zero-valued, skipping
the multiplier, as shown in Figure 2a. If a zero is detected by the ZIR, a zero-flag
is sent to a modified version of PE capable of skipping the operation.
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3.2 Equal Weight Skipping

If two consecutive weights are equal, a multiplication can be traded for an ad-
dition as

PartialResult = A2W2 + A1W1 + A0W0 (2)

with W2 = W1 can be rewritten as

PartialResult = (A2 + A1)W1 + A0W0 (3)

which requires one less multiplication. This optimization requires a new block
called Equal Weights Recognizer (EWR) which looks for equal weights, as shown
in Figure 2b. This results to be a low-power optimization thanks to the Stay
approach.

3.3 Approximation Skipping

The third proposed low power technique consists of an approximation of the
convolution operation. It is possible to skip multiplications which results are
known to be negligible by counting the number of operands leading zeros. The
multiplication returns a number having as much leading zeros as the sum of the
ones in the input. A threshold can be set to avoid multiplications having too
small results. This is accomplished as in Figure 2c, resorting to a Leading Zeros
Recognizer (LZR) based on a carry-lookahead Leading Zero Counting structure
proposed in [12].

3.4 Hybrid Equal Weights and Approximation Skipping

The last proposed architecture is a combination of the Equal Weights Skipping
and the Approximation Skipping techniques and it is depicted in Figure 2d.
Thanks to this configuration, even more multiplications can be skipped.

4 Experimental results

The following section presents the results of simulation, validation and synthe-
sis. Indeed, the architecture has been simulated in order to verify the correct
behavior, then validated on the well known AlexNet NN [3]. Finally, the archi-
tecture has been synthesized and simulated, thus the occupied area and power
consumption, which will be discussed later.

4.1 Validation

The proposed architecture has been validated on AlexNet [3], with the aim of
testing the performance of the developed techniques on an existing test case.
Such NN is composed of a total of 8 layers, but only the first five are convo-
lutional, thus they represent where the proposed techniques are applied. The
mentioned NN, already trained on ImageNet [13], has been described both in
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Matlab and VHDL. In such way, every time a new technique is applied to the
VHDL code, the performance is evaluated by comparing the results with the
exact model in Matlab.
The first analysis is performed on the Zero Skipping Architecture. As it is pos-
sible to notice from Figure 3a, multiplications are significantly reduced. Since
in the first layer no zero-padding is applied, no reduction is noticed, but in the
successive layers, both for zero-padding and ReLU, the amount of skipped op-
erations increases until the 85%.
The next approach to be analyzed is the Equal Weights Skipping. Such tech-
nique is not as efficient as the previous one (see Figure 3b), in fact, this method
is strictly coupled with kernels and so with the NN model. In this case, layers 2,
4 and 5 allow for about 50% reduction of multiplications.
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Fig. 3: Multiplications reduction across AlexNet layers.

For what concerns the approximated architectures, a study on the range of ap-
proximation has been conducted with several thresholds going from [-2−5:2−5]
to [−2 : 2]. The idea is to measure the impact of the approximation on the ac-
curacy of the network and to evaluate the complexity reduction, i.e. the number
of multiplications, not only with various threshold values but also with uniform
and non-uniform thresholds for different layers.
Considering uniform boundaries, simulations showed that the NN is able to pro-
duce acceptable results with an accuracy around the 90% until [-20:20]. Since the
sparsity of the features maps increases going deeper into the NN, the amount of
saved multiplications increases as well in the last layers. In Figure 4a it is pos-
sible to notice the behavior of the Approximation Skipping architecture respect
to the thresholds in all the five different layers. Obviously, the error (figure 4b)
intensifies moving the threshold towards the integer part of the binary repre-
sentation. Such an error is calculated as the normalized average of the absolute
difference between the pixel values of the ideal and the approximate feature map.
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Fig. 4: Left: multiplication reduction across AlexNet layers due to Approximation
Skipping Architecture. Right: normalized average error

The Hybrid solution (Equal Weights and Approximation Skipping Archi-
tecture) applied to AlexNet [3], does not provide any clear improvements with
respect to the previous architectures.
Regarding the non-uniform thresholds, no significant improvements have been
noticed. This is mainly due to the simplicity of the NN and the fact that the lay-
ers are not independent as previous approximations affect next layers. So, in the
first layers small-magnitude thresholds are needed, as such layers are trying to
extract as many features as possible. So the last layers could have higher thresh-
olds, but this approach is not very useful because in such layers the sparsity is
very high and a Zero Skipping architecture is already enough.

4.2 Synthesis

The synthesis of the architecture has been performed by using Synopsys Design
Compiler with the UMC 65nm technology. After the logic synthesis, a simulation
was run on the obtained netlist in order to verify the correct behavior.

As it is possible to notice from Table 1, the low-power approaches present a lower
maximum frequency compared to the starting architecture and an increased area.
The size of the area increases going towards more complex solutions such as the
hybrid one.
Here, a simulation is run again exploiting Moldelsim, recording the switching
activity, which is fundamental to obtain an accurate estimation of the power
consumption. In the following Table 2, a comparison between developed archi-
tectures and other works is presented:
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Architecture Tclock[ns] Fmax[MHz] Area[µm2]

Starting 1.45 689.65 40948.20

Zero Skipping 1.53 653.59 41575.76

Equal Weights Skipping 1.53 653.59 42182.64

Approximation Skipping 1.53 653.59 47296.08

Hybrid EW and APP Skipping 1.53 653.59 51039.68

Table 1: Frequency and area of the proposed achitectures.

Accelerators Technology node [nm] Bid Width CLK Frequency [MHz] Power [mW ]

Starting ([14]) 65 16 500 59

Starting (This work) 65 16 689.65 21

Zero Skipping ([14]) 65 16 500 38

Zero Skipping (This work) 65 16 653.39 20

Approximation Skipping ([14]) 65 16 500 31

Approximation Skipping (This work) 65 16 653.59 19

CPU Core-i7 5930k [15] 22 not given 3500 73000

GPU GeFore Titan X [15] 28 not given 1075 159000

mGPU Tegra K1 [15] 28 not given 852 5100

Table 2: Comparison with existing platforms

From table 2 is clear how the ASIC solutions lead to a reduced power con-
sumption with respect to CPUs and GPUs, even though the frequency is about
the half. Presented architectures perform slightly better than those in [14], even
though the number of multipliers is 9 and 256, respectively.

5 Conclusion

This work proposes several hardware architectures for convolutional neural net-
works able to address the problem of the matrix sparsity caused by non-linear
activation function like ReLU. Such architectures are capable of avoiding un-
necessary operations like zero multiplications. Moreover, this paper presents an
approximate technique based on leading-zeros able to skip operations involving
parameters lower than a certain preset threshold.
After a detailed introduction of the different approaches, a validation, conducted
on a well know network like AlexNet, is examined. Performance are compared
doing a deep analysis of the NN layers, ranging through several thresholds. Syn-
thesis results present similar performance with respect to other existing archi-
tecture, reaching even better low-power levels.
The percentage of skipped multiplications is encouraging in all the simulations,
reaching up to the 85%. Such results demonstrate that the matrix sparsity in
NNs could be exploited to further reduce the power consumption thus enabling
new low-power frontiers.
However, the proposed architectures could be still improved by applying such
techniques to a scheduler able to skip multiplication completely, reducing the la-
tency besides the power. Anytime an operation must be skipped, a different one
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is scheduled at its place increasing the execution speed. Such scheduler would
require major modification of the initial structure.
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