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Summary

The analytical formulation of a simplified method that allows the static, dy-
namic, and stability analysis of a high-rise building is proposed in the present
work.

This thesis is the natural extension, development and improvement of a project
started a few years ago by Prof. Alberto Carpinteri, author of a formulation that
allows the preliminary analysis of a tall building. Originally this formulation was
rather limited and only allowed the analysis of a few types of structures. Over the
years, also thanks to the contribution of Prof. Giuseppe Lacidogna and Dr. Sandro
Cammarano, new models have been introduced and a more advanced calculation
code has been created.

In 2016, after completing a Master Thesis and joining the Doctoral Program in
Civil and Environmental Engineering (32nd cycle) at the Politecnico di Torino, I
became involved in this project.

As a matter of fact, I created the graphical interface of the calculation code,
greatly simplifying its use and improving the interpretation of the results. Sub-
sequently, to make a further improvement to the formulations relating to static
and dynamic analysis, with a focus on structures that present irregularities in plan
and height, I implemented the analysis of framed tube structures, and diagrid (in
collaboration with Eng. Domenico Scaramozzino). Eventually, I dealt with the
stability analysis, a topic which is important but virtually absent in the literature.

The objectives of this thesis are to illustrate the analytical formulations and
the operational methodology underlying the calculation code developed. In this
context, simplified analytical formulations have been developed which describe the
behavior of tall buildings in a simple, intuitive way and with the use of simple
resources and techniques. This computer tool combines the advantages of analyt-
ical formulations, including simple and intuitive input, absence of mesh and few
unknowns, with the advantages of computer software, such as its great potential
for calculation and the ability to view the results on screen with graphs and three-
dimensional models.

However, the greatest strength of this analytical code is the reduced processing
time, which makes it suitable for use in preliminary analysis and structural opti-
mization. In these phases, in order to find the best compromise between material
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strength, deformation and construction cost, it is necessary to vary one parameter
at a time (thickness of each shear wall, size of cross sections of beams and columns,
etc.) making it necessary to create thousands of different models. In this context,
as can be easily understood, the speed of calculation is a determining factor that
has a significant impact on the cost and on the planning times.

The thesis is divided into six chapters, each of which is dedicated to a particular
aspect of the study of high-rise buildings. It was important to give ample space to
bibliographical references, as, in addition to providing a description of the problem
from multiple points of view, it can be an important starting point if the reader
wants to delve deeper into the topics covered.

Chapter 1 provides an overview of the evolution of tall buildings. It also re-
views the main construction typologies, as well as providing a basic description of
structural behavior.

Chapter 2 illustrates the simplified analytical formulations that lead to the
determination of the stiffness matrices of the vertical bracings that are mainly used
to contrast the transversal displacements caused by the horizontal loads acting on
a building.

Chapter 3 describes the analytical procedure that allows the static analysis of a
tall building, by means of which it is possible to determine the floor displacements
and the stresses in each structural element.

Chapter 4 shows a simplified procedure that permits the mode shapes, natural
frequencies, and periods of vibration of a high-rise building to be determined. To
demonstrate the effectiveness of the algorithm, the results of the analysis of a tall
building recently built in Turin are presented: the Piedmont Region Headquarters
Tower. The comparison between the results obtained using the analytical algorithm
and those obtained using a commercial Finite Element software allows the accuracy
of the proposed formulation to be verified.

In Chapter 5, an analytical formulation is presented which allows the stability
analysis of a thin-walled open-section beam and, by extension of the method, of
a high-rise building. With this method, a generalization of Euler’s Theory (axial
buckling) and of Prandtl’s Theory (lateral-torsional buckling) is introduced. Fur-
thermore, an energy-based method is defined that allows the non-uniform torsion
equation obtained by Vlasov to be determined through a procedure described in
Chapter 2.

Finally, Chapter 6 is dedicated to the conclusions drawn and to a concise descrip-
tion of the results achieved, also making reference to future possible developments.
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Chapter 1

Historical notes and structural
models of tall buildings

1.1 Short historical review
Since ancient times, Man has shown interest in the construction of high struc-

tures, and those who lived there were seen as privileged because they could defend
themselves from attacks by predatory animals and from frequent flooding of rivers.

Throughout history, elevated structures have also assumed a religious signifi-
cance, as they were a way for man to approach the sky where the Divine Power
was thought to live. In this regard, many examples come to mind, such as an-
cient Mesopotamia, or the pyramids built by the Egyptians and the peoples of
pre-Columbian America, up to Gothic cathedrals or the minarets erected by Mus-
lim peoples. The tower also assumes a symbolic role in some religious texts, as in
the case of the Tower of Babel mentioned in the Bible. Over the centuries, the
tower also assumed other roles, mainly related to height.

Around 280 BCE the Faro (Lighthouse) of Alexandria was erected, a particular
construction which, reaching a notable height of around 130 meters for the time,
was classified among the Seven Wonders of the Ancient World. Due to a violent
earthquake, the building was destroyed in the 14th Century.

In Roman times, the tower took on the role of defense, control and surveillance
of the city perimeter. For this reason it was often located near the city walls or at
the access gates to the city.

In Medieval times, the tower was incorporated into the castles, again with the
function of defense. However, in this historical period the tower also began to as-
sume a prestigious role, as the height and size of the castle tower indicated the power
and wealth of the noble family who lived there, and consequently the importance
and the size of the fiefdom.

In the Renaissance, the tower began to lose the military function that had
characterized it for centuries, and increasingly assumed a symbolic role of power

1



Historical notes and structural models of tall buildings

and prestige. In fact, it was incorporated into the palaces of aristocratic families.
Often it did not even have a residential function, but was adorned with the

family crests and its height was proportional to the importance of the family in
society. In this regard, it is curious to remember that in the event that two rival
families faced each other in battle, the family that was defeated was forced to
knock down the top of its tower as a sign of scarring and shame. The towers were
historically made of masonry, with a circular or square floor plan. The thickness
of the walls was proportional to the height; consequently, at the base it could even
reach a few meters. The openings were reduced to the essentials; often only small
slits were present as these structures were not intended for residential use.

1.1.1 The Chicago School
The Chicago School [43], [181] is an architectural movement that developed

in Chicago in the late 19th Century. A dramatic episode that gave birth to this
movement was the disastrous fire which in 1871 destroyed much of the city [73].

Following this event, it was necessary to quickly rebuild the buildings with ma-
terials that made them safer, such as steel, to replace wood and masonry. The rising
prices of building areas led designers to build large buildings, mainly intended for
commercial activities and offices, on sites of limited surface area. This need led
to the conception of a new building typology: the skyscraper. The solution of in-
creasing the number of building floors was made possible by recent technological
inventions. In 1870 Cyrus W. Baldwin invented and built the first hydraulic lift in
Chicago, while in 1887 the electric lift began to become widely used. Lifts, water
pumps, telephones, and pneumatic mail allowed the easy use of homes, offices and
warehouses at any height. Among the first architects that had the role to build new
high-rise buildings are prestigious names [91], including William Le Baron Jenney
(1832-1907), an engineer who graduated from the École Polytechnique in Paris,
active in the military engineer corps during the War of Secession and operating in
Chicago since 1867. The steel skeleton structure consisting of beams and columns
bolted together, designed by Le Baron Jenney as an alternative to a massive ma-
sonry structure, allowed the height of the building to be increased without having
to worry about encumbrance on the lower floors.

Furthermore, with this construction method, it is possible to create large glazed
openings in the facades that allow well-lit indoor environments to be created. Fi-
nally, to support the concentrated loads of the columns, new stone foundation sys-
tems were proposed in 1873 by Frederick Baumann, which would lead to the use of
caisson substructures, adopted for the first time in 1894. William Le Baron Jenney
can be considered the founder of the First Chicago School, which combined purely
structural needs with aesthetic standards, found above all in the recurring design
of the motifs of the facades, influenced by the corresponding development of the
architectural avant-garde in Europe. The first and most important architects who
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shared the ideas of the School we can remember Daniel Burnham (1846-1912) who
works with John Root (1850-1891), Martin Roche (1853-1927), and Louis Sullivan
(1856-1924), who associates with Dankmar Adler (1844-1900) [105].

The most notable buildings designed by these architects are: Wainwright Build-
ing (St. Louis, 1891, Adler and Sullivan), Guaranty Building (Buffalo, 1896, Adler
and Sullivan), Monadnock Building (Chicago, 1891, Root and Burnham), Reliance
Building (Chicago, 1895, Root and Burnham), and Marquette Building (Chicago,
1895, Roche).

Figure 1.1: John Hancock Center (web source)

Even a very young Frank Lloyd Wright (1867-1959) started his working experi-
ence in the studio of Adler and Sullivan but soon distanced himself from the stylistic
canons of the School. Brilliant architect, but with ideas that were too daring for
the time, in 1956, Frank Lloyd Wright, then nearly 90 years old, presented the
project for a 528-storey skyscraper that would have to soar an entire mile (1609
meters) above Chicago. Similar in shape to a gigantic dagger, the steel and alu-
minum building would have contained offices for 100,000 employees, a parking lot
for 15,000 cars and landing areas for helicopters.

Many years later, another great name of modern architecture, Ludwig Mies van
der Rohe (1886-1969), after the fundamental German experience of the Bauhaus,
arrived in Chicago in 1938 and took over the direction of the prestigious Illinois
Institute of Technology [33]. Defined by some architectural critics as the legitimate

3



Historical notes and structural models of tall buildings

inheritor of the great tradition of skyscraper architects, his most important works
include the Lake Shore Drive Buildings in Chicago and the Seagram Building in
New York.

Another great design studio that shared the stylistic canons of the Second
Chicago School was the office founded by Skidmore, Owings & Merrill (SOM).

Many famous engineers and architects linked their name to the SOM studio,
such as Myron Goldsmith, Walter Netsch, Bruce Graham, and Fazlur Khan [25].

The latter is considered the father of the framed tube, an innovative structural
system that has allowed skyscrapers to reach remarkable heights, and one of the
pioneers of Computer Aided Design (CAD). Among the major works by Khan
made in Chicago, we can mention the John Hancock Center (Figure 1.1), a tapered
building of 100 floors and 344 meters high, characterized by the presence on the
façade of long diagonal braces about ten floors high, and the Sears Tower (now
Willis Tower), which with its 443 meters held the record of height from 1973 to
1998.

1.1.2 The long race to the record
Conventionally, the birth of the skyscraper coincides with the construction in

Chicago of the Home Insurance Building (Figure 1.2), inaugurated in 1885 and
demolished in 1931.

Figure 1.2: Home Insurance Building (web source)
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This building, designed by William Le Baron Jenney, had only twelve floors for
42 meters height.

This was only the first of long series, higher and more innovative buildings were
designed and built, which allow both the decrease in the incidence of land prices
and the possibility of housing a multitude of people, who at that time began to
flow into the big cities. In 1890 the construction of a twenty-story building, the
New York World Building (Figure 1.3a), was completed in New York. Since then,
and for many years to follow, financial groups and banking companies in New York
challenge each other in the construction of towers of glass, concrete and steel always
of greater heights, such as the Manhattan Life Insurance Building completed in 1894
and which reaches the height of 106 meters.

(a) (b) (c)

Figure 1.3: (a) New York World Building; (b) Metropolitan Life Tower; (c) Wool-
worth Building (web source)

The 20th Century sees the beginning of a real competition that sees on the one
hand the investors, who want to own the tallest skyscraper in the world to declare
the economic prestige of their companies, on the other the architects who with
their daring and futuristic projects want to demonstrate their skills. The race for
the world’s tallest building record had begun. The cities where tall buildings were
mostly built are Chicago and New York, where the Singer Building, the Metropoli-
tan Life Tower (Figure 1.3b), and the Woolworth Building (Figure 1.3c) are built
in a few years, reaching a height of over 241 meters.
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(a) (b) (c)

Figure 1.4: (a) Chrysler Building; (b) Empire State Building; (c) World Trade
Center (web source)

(a) (b) (c)

Figure 1.5: (a) Sears Tower; (b) Petronas Towers; (c) Taipei 101 (web source)
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Figure 1.6: Burj Khalifa (web source)

With the outbreak of the First World War and with the following American
crisis, there is a setback. But as early as 1930 the Chrysler Building (Figure 1.4a)
was inaugurated with its 319 meters dominating the panorama of New York. But
only a year later, the world’s tallest building record passes to the Empire State
Building (Figure 1.4b) which, with a height of 381 meters, is perhaps the most
famous and iconic skyscraper in the world. This building held the height record
until the inauguration in 1971 of the sadly famous World Trade Center in New
York (Figure 1.4c), which reached a height of 417 meters. But this record lasted
only two years because it had to give up the scepter in Chicago where the Sears
Tower was built (Figure 1.5a), which with the height of 443 meters held the highest
building record in the world from 1973 to 1998.

1998 is a crossroads year in the history of tall buildings because the height record
leaves the United States and moves to Asia where just that year were inaugurated
in Kuala Lumpur, Malaysia, the Petronas Towers (Figure 1.5b). There was much
controversy about this record as these towers are surmounted by a very high not
habitable cusp, whose function was purely aesthetic. The Council on Tall Buildings
and Urban Habitat (CTBUH), the international committee that is responsible for
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(a) (b)

Figure 1.7: Kingdom Tower. (a) Picture taken on August 2019; (b) Artist concep-
tion (web source)

high-rise building statistics, awarded the record for the world’s tallest building to
the Petronas Tower (452 meters) establishing that their cusps, even if they had a
purely aesthetic function, were an integral and non-removable part of the building,
as opposed to telecommunications antennas that are not taken into account. The
Sears Tower was instead given the recognition of building with the highest habitable
room in the world.

However, all controversies were quelled in 2004 when the record passed to Taipei
101 (Figure 1.5c), 509 meters high, built in Taipei, Republic of China (Taiwan).

In 2010 the construction of a real giant was completed, the Burj Khalifa (Figure
1.6) built in Dubai, United Arab Emirates. With its 163 floors and 828 meters high,
it is today (2020) the tallest building in the world, although perhaps its record will
soon be broken. In fact, the Kingdom Tower (Figure 1.7), also known as Jeddah
Tower, a skyscraper that will be 1008 meters high, is under construction in Jeddah,
Saudi Arabia. When its construction will be completed (expected in 2024) it will
become the tallest building in the world.
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1.1.3 Statistics
This section shows the data and the geographical distribution of the major tall

buildings built in the world. All data are updated to September 2020 and refer to
studies published by the Council on Tall Buildings and Urban Habitat (CTBUH).

Table 1.1 and Figure (1.8) show the timeline of the skyscraper height record.

Table 1.1: Timeline of record tallest buildings

Name Height City Years of record
Home Insurance Building 42 m Chicago 1885 - 1889

Auditorium Building 73 m Chicago 1889 - 1890
New York World Building 94 m New York City 1890 - 1894

Manhattan Life Insurance Build. 106 m New York City 1894 - 1895
Milwaukee City Hall 108 m Milwaukee 1895 - 1899
Park Row Building 119 m New York City 1899 - 1901

Philadelphia City Hall 167 m Philadelphia 1901 - 1908
Singer Building 187 m New York City 1908 - 1909

Metropolitan Life Tower 213 m New York City 1909 - 1913
Woolworth Building 241 m New York City 1913 - 1929

40 Wall Street 283 m New York City 1929 - 1930
Chrysler Building 319 m New York City 1930 - 1931

Empire State Building 381 m New York City 1931 - 1971
World Trade Center 417 m New York City 1971 - 1973

Sears Tower 443 m Chicago 1973 - 1998
Petronas Towers 452 m Kuala Lumpur 1998 - 2004

Taipei 101 509 m Taipei 2004 - 2010
Burj Khalifa 828 m Dubai 2010 - present

Table 1.2 shows the 35 tallest buildings in the world. As can be seen, 23 of them
are in the Eastern Asia (China, Taiwan, Malaysia, South Korea, and Vietnam); 6
are in the Middle East (United Arab Emirates, Saudi Arabia, and Kuwait); 5 in the
United States of America (historically considered the home of the skyscraper) and
only one in Europe, in Saint Petersburg. Noteworthy buildings are the Shanghai
Tower (the tallest twisted building and the highest observation deck at 562 m),
the Royal Clock Tower in Mecca (also known as Abraj Al-Bait Clock Tower), the
tallest building with a clock face, and the Central Park Tower, currently under
construction, once completed (estimated 2021), will become the tallest residential
building in the world.

In Table 1.3, the 35 tallest buildings in Central and North America are shown.
The first 9 places in the ranking are occupied by skyscrapers built in Chicago
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Figure 1.8: Timeline of record tallest buildings

and New York, while the tallest building outside the USA rises in Canada and is
in the 26th place.

In Table 1.4, the 35 tallest buildings in South America are shown. The tallest
building is the Gran Torre Santiago, 300 meters high, built in 2014 in Chile, while
the oldest among these is the Altino Arantes Building, built in 1947 in São Paulo,
Brazil.

In Table 1.5, the 35 tallest buildings in Asia are shown. Most of these buildings
are located in China, and are of a very low age as the oldest building is Shun Hing
Square, built in 1996 in Shenzhen, China.

In Table 1.6 the 35 tallest buildings in Africa are shown. The heights are modest
in this continent, the record for height belongs to The Leonardo, 234 meters high,
built in 2019 in Johannesburg, South Africa. The major part of the skyscrapers
rise in the rich States of the continent, as South Africa and Egypt.

In Table 1.7, the 35 tallest buildings in Europe are shown. To date, the State
with the tallest buildings is Russia, where 16 of the first 35 tallest buildings in
Europe are located. These buildings have a very low average age with the exception
of the tower of the Moscow State University, built in 1959 and one of the symbols
of Soviet Power. Italy ranks 33rd with the Unicredit Tower in Milan.

In Table 1.8, the 35 tallest buildings in Oceania are shown. As it was easy to
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foresee, all these buildings rise in the major coastal cities of Australia.
Finally in Table 1.9, the 35 tallest buildings in Italy are shown. In the Italian

historical context [188], worthy of note are the Piacentini Tower (1940 – 108 m) in
Genoa, which was the highest Italian and European reinforced concrete construction
until 1952, the Pirelli Tower (1960 – 127 m) designed by Giò Ponti and Pier Luigi
Nervi in Milan, which was the tallest tower in Italy until 1995, and the Telecom
Tower in Naples (1995 – 129 m).

In recent years, only the cities of Milan and Turin have considered building
skyscrapers in Italy (Figure 1.9). In particular, an urban plan involving the con-
struction of skyscrapers in the City of Milan was prepared in order to redevelop and
reuse the large building zones deriving from exhibition areas (CityLife Area) and
brownfield sites (Portobello Area). As a result of this urban plan, the Unicredit
Tower (231 m at its tip, and 218 m on the roof level) was completed in 2011. This
tower is now the tallest building in Italy.

On the other hand, the City of Turin underwent rapid development due to urban
restyling related to the XX Olympic Winter Games in 2006. In this period, the
Intesa-Sanpaolo Tower, 167 meters high, was designed and subsequently completed
in 2012. It was the newest tall building built in Turin since 1934 (Reale Mutua
Tower, 109 m). Moreover, on November 30, 2011, the construction of the Piedmont
Region Headquarters Tower, 209 meters high, began. It is now the tallest building
in Turin and the third tallest building in Italy.

(a) (b) (c)

Figure 1.9: (a) Unicredit Tower; (b) CityLife Area (PWC Tower, Generali Tower,
Allianz Tower); (c) Intesa-Sanpaolo Tower
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Table 1.2: The 35 tallest buildings in the World

Name City Country Height Year
Burj Khalifa Dubai UAE 828 m 2010

Shanghai Tower Shanghai China 632 m 2016
Royal Clock Tower Mecca SA 601 m 2012
Goldin Finance 117 Tianjin China 597 m 2018

Ping An Finance Center Shenzhen China 592 m 2017
Lotte World Tower Seoul S. Korea 555 m 2016

One World Trade Center New York City USA 541 m 2014
Guangzhou Finance Centre Guangzhou China 530 m 2016

Tianjin Finance Centre Tianjin China 530 m 2019
China Zun Beijing China 528 m 2018
Taipei 101 Taipei Taiwan 509 m 2004

World Financial Center Shanghai China 492 m 2008
Int. Commerce Centre Hong Kong China 484 m 2010

Lakhta Center S. Petersburg Russia 462 m 2019
Landmark 81 Ho Chi Minh Vietnam 461 m 2018

Petronas Tower 1 Kuala Lumpur Malaysia 452 m 1998
Petronas Tower 2 Kuala Lumpur Malaysia 452 m 1998

Changsha IFS Tower Changsha China 452 m 2017
Zifeng Tower Nanjing China 450 m 2010

The Exchange 106 Kuala Lumpur Malaysia 445 m 2019
Sears Tower Chicago USA 443 m 1973
Kingkey 100 Shenzhen China 442 m 2011

Int. Finance Center Guangzhou China 440 m 2010
Wuhan Center Wuhan China 438 m 2017

432 Park Avenue New York City USA 426 m 2015
Marina 101 Dubai UAE 425 m 2017

Trump International Hotel Chicago USA 423 m 2009
Jin Mao Tower Shanghai China 421 m 1999

Int. Finance Center Hong Kong China 415 m 2003
Princess Tower Dubai UAE 414 m 2012

Al Hamra Firdous Tower Kuwait City Kuwait 413 m 2011
23 Marina Dubai UAE 395 m 2012

China Resources Head. Shenzhen China 392 m 2018
CITIC Plaza Guangzhou China 391 m 1997

30 Hudson Yards New York City USA 387 m 2019
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Table 1.3: The 35 tallest buildings in Central and North America

Name City Country Height Year
One World Trade Center New York City USA 541 m 2014

Sears Tower Chicago USA 443 m 1973
432 Park Avenue New York City USA 426 m 2015

Trump International Hotel Chicago USA 423 m 2009
30 Hudson Yards New York City USA 387 m 2019

Empire State Building New York City USA 381 m 1931
Bank of America Tower New York City USA 366 m 2009

Aon Center Chicago USA 346 m 1973
John Hancock Center Chicago USA 344 m 1969

Comcast Technology Center Philadelphia USA 342 m 2018
Wilshire Grand Center Los Angeles USA 335 m 2017
3 World Trade Center New York City USA 329 m 2018

Salesforce Tower San Francisco USA 326 m 2018
53W53 New York City USA 320 m 2018

Chrysler Building New York City USA 319 m 1930
The New York Times Building New York City USA 319 m 2007

Bank of America Plaza Atlanta USA 311 m 1992
U.S. Bank Tower Los Angeles USA 310 m 1989
35 Hudson Yards New York City USA 308 m 2019
Franklin Center Chicago USA 307 m 1989

One57 New York City USA 306 m 2014
JPMorgan Chase Tower Houston USA 305 m 1982
Two Prudential Plaza Chicago USA 303 m 1990
One Manhattan West New York City USA 303 m 2019

Wells Fargo Plaza Houston USA 302 m 1983
First Canadian Place Toronto Canada 298 m 1975
4 World Trade Center New York City USA 298 m 2013

Comcast Center Philadelphia USA 297 m 2007
JW Marriott Panama Panama City Panama 293 m 2011

311 South Wacker Drive Chicago USA 293 m 1990
70 Pine Street New York City USA 290 m 1932

220 Central Park South New York City USA 290 m 2017
Key Tower Cleveland USA 289 m 1991

One Liberty Place Philadelphia USA 288 m 1987
Columbia Center Seattle USA 284 m 1985
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Table 1.4: The 35 tallest buildings in South America

Name City Country Height Year
Gran Torre Santiago Santiago Chile 300 m 2014

Yachthouse Residence Balneário Camboriú Brazil 281 m 2020
Alvear Tower Buenos Aires Argentina 241 m 2018
Infinity Coast Balneário Camboriú Brazil 235 m 2019

Parque Central Complex Caracas Venezuela 225 m 1983
BD Bacatá Bogotá Colombia 216 m 2015
Epic Tower Balneário Camboriú Brazil 209 m 2020

Estelar Hotel Cartagena de Indias Colombia 202 m 2017
Torre Colpatria Bogotá Colombia 196 m 1978

Titanium La Portada Santiago Chile 194 m 2010
Centro de Comercio Int. Bogotá Colombia 192 m 1977

Orion Complex Goiânia Brazil 191 m 2018
Centro Financiero Conf. Caracas Venezuela 190 m 1994
Museo Parque Central Bogotá Colombia 185 m 2017

Krystal Tower Bogotá Colombia 184 m 2017
Cali Tower Cali Colombia 183 m 1984

Tour Geneve João Pessoa Brasil 183 m 2018
Mercantil Tower Caracas Venezuela 179 m 1984

Millennium Palace Balneário Camboriú Brazil 177 m 2014
Coltejer Building Medellín Colombia 175 m 1972

Torre Cavia Buenos Aires Argentina 172 m 2009
E Tower North Point Bogotá Colombia 172 m 2018
Ciudadela San Martín Bogotá Colombia 171 m 1983

Mirante do Vale São Paulo Brazil 170 m 1960
Grand Bay Club Cartagena de Indias Colombia 170 m 2009

Mirage 57 Barranquilla Colombia 162 m 2016
Edifício Itália São Paulo Brazil 165 m 1965
Rio Sul Center Rio de Janeiro Brazil 164 m 1982

Majestic Building Bucaramanga Colombia 163 m 2015
Altino Arantes Building São Paulo Brazil 161 m 1947

Avianca Building Bogotá Colombia 161 m 1969
Mulieris towers Buenos Aires Argentina 161 m 2008
Torre del Café Medellín Colombia 160 m 1975
El Faro Towers Buenos Aires Argentina 160 m 2005

Palmetto Cartagena de Indias Colombia 160 m 2009
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Table 1.5: The 35 tallest buildings in Asia

Name City Country Height Year
Burj Khalifa Dubai UAE 828 m 2010

Shanghai Tower Shanghai China 632 m 2016
Royal Clock Tower Mecca SA 601 m 2012
Goldin Finance 117 Tianjin China 597 m 2018

Ping An Finance Center Shenzhen China 592 m 2017
Lotte World Tower Seoul S. Korea 555 m 2016

Guangzhou Finance Centre Guangzhou China 530 m 2016
Tianjin Finance Centre Tianjin China 530 m 2019

China Zun Beijing China 528 m 2018
Taipei 101 Taipei Taiwan 509 m 2004

World Financial Center Shanghai China 492 m 2008
Int. Commerce Centre Hong Kong China 484 m 2010

Landmark 81 Ho Chi Minh Vietnam 461 m 2018
Petronas Tower 1 Kuala Lumpur Malaysia 452 m 1998
Petronas Tower 2 Kuala Lumpur Malaysia 452 m 1998

Changsha IFS Tower Changsha China 452 m 2017
Zifeng Tower Nanjing China 450 m 2010

The Exchange 106 Kuala Lumpur Malaysia 445 m 2019
Kingkey 100 Shenzhen China 442 m 2011

Int. Finance Center Guangzhou China 440 m 2010
Wuhan Center Wuhan China 438 m 2017

Marina 101 Dubai UAE 425 m 2017
Jin Mao Tower Shanghai China 421 m 1999

Int. Finance Center Hong Kong China 415 m 2003
Princess Tower Dubai UAE 414 m 2012

Al Hamra Firdous Tower Kuwait City Kuwait 413 m 2011
23 Marina Dubai UAE 395 m 2012

China Resources Head. Shenzhen China 392 m 2018
CITIC Plaza Guangzhou China 391 m 1997

Capital Market Auth. Riyadh SA 385 m 2014
Shun Hing Square Shenzhen China 384 m 1996

Dalian Eton Center Dalian China 384 m 2015
Forum 66 Tower 1 Shenyang China 384 m 2015

Elite Residence Dubai UAE 381 m 2012
Burj Bin Rashid Abu Dhabi UAE 381 m 2014
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Table 1.6: The 35 tallest buildings in Africa

Name City Country Height Year
The Leonardo Johannesburg South Africa 234 m 2019
Carlton Centre Johannesburg South Africa 223 m 1973
Britam Tower Nairobi Kenya 200 m 2017
Cairo Tower Cairo Egypt 187 m 1961

Ponte City Apart. Johannesburg South Africa 173 m 1975
UAP Tower Nairobi Kenya 163 m 2016

NECOM House Lagos Nigeria 160 m 1979
Tanzania Ports Auth. Dar Es Salaam Tanzania 157 m 2016

PSPF Towers Dar Es Salaam Tanzania 153 m 2014
Marble Towers Johannesburg South Africa 152 m 1973

Pearl Dawn Durban South Africa 152 m 2010
South African Bank Pretoria South Africa 150 m 1988

88 on Field Durban South Africa 147 m 1985
IMOB Tower Luanda Angola 145 m 2018

MNF Square I Dar Es Salaam Tanzania 145 m 2019
Burj Bulaya Office Tripoli Libya 144 m 2007

Min. of Foreign Aff. Cairo Egypt 143 m 1994
El Gezira Tower Cairo Egypt 142 m 1996

Grand Hyatt Cairo Egypt 142 m 2002
Nile City Tower Cairo Egypt 142 m 2003

KwaDukuza eGoli Johannesburg South Africa 140 m 1970
Trust Bank Build. Johannesburg South Africa 140 m 1970

ABSA Building Johannesburg South Africa 140 m 1970
El Maadi Tower Cairo Egypt 140 m 1987

Times Tower Nairobi Kenya 140 m 2000
Michelangelo Towers Johannesburg South Africa 140 m 2005

Standard Bank Build. Johannesburg South Africa 139 m 1968
Southern Life Centre Johannesburg South Africa 138 m 1973
Old Mutual Centre Durban South Africa 137 m 1995

Portside Tower Cape Town South Africa 136 m 2014
National Bank of Egypt Cairo Egypt 135 m 1986

Cairo Plaza Building Cairo Egypt 135 m 1986
S. Stefano Grand Plaza Alexandria Egypt 135 m 2006

Tour Mpila 1 Brazzaville Rep. Congo 135 m 2019
Mzizima Tower Dar Es Salaam Tanzania 134 m 2018
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Table 1.7: The 35 tallest buildings in Europe

Name City Country Height Year
Lakhta Center S. Petersburg Russia 462 m 2019

Feder. East Tower Moscow Russia 374 m 2016
OKO: South Tower Moscow Russia 354 m 2015

Neva Tower 2 Moscow Russia 345 m 2019
Mercury Tower Moscow Russia 339 m 2013

The Shard London UK 310 m 2012
Eurasia Moscow Russia 309 m 2014

CoC: Moscow Moscow Russia 302 m 2010
Neva Tower 1 Moscow Russia 302 m 2019

Skyland Istanbul Turkey 293 m 2017
Metropol Istanbul Turkey 280 m 2017

22 Bishopsgate London UK 278 m 2019
Baku Tower Baku Azerbaijan 276 m 2020

Naberezhnaya Tower C Moscow Russia 268 m 2007
Triumph Palace Moscow Russia 264 m 2005

Commerzbank Tower Frankfurt Germany 259 m 1997
CoC: S. Petersburg Tower Moscow Russia 257 m 2010

Messeturm Frankfurt Germany 256 m 1990
Nurol Life Istanbul Turkey 252 m 2017

Torre de Cristal Madrid Spain 249 m 2008
Torre Cepsa Madrid Spain 248 m 2008

Evolution Tower Moscow Russia 246 m 2014
OKO: North Tower Moscow Russia 245 m 2014

Federation: West Tower Moscow Russia 243 m 2007
Moscow State Univ. Moscow Russia 240 m 1953

Imperia Tower Moscow Russia 239 m 2011
Palace of Science Warsaw Poland 237 m 1955

Torre PwC Madrid Spain 236 m 2008
1 Canada Square London UK 235 m 1991
Istanbul Sapphire Istanbul Turkey 235 m 2010

Landmark Pinnacle London UK 233 m 2019
Tour First Paris France 231 m 2011

Unicredit Tower Milan Italy 231 m 2011
Heron Tower London UK 230 m 2011
Torre Espacio Madrid Spain 228 m 2008
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Table 1.8: The 35 tallest buildings in Oceania

Name City Country Height Year
Q1 Tower Surfers Paradise Australia 323 m 2005

Australia 108 Melbourne Australia 316 m 2020
Eureka Tower Melbourne Australia 297 m 2006
Aurora Central Melbourne Australia 271 m 2019

Brisbane Skytower Brisbane Australia 270 m 2019
120 Collins Street Melbourne Australia 265 m 1991
101 Collins Street Melbourne Australia 260 m 1991
1 William Street Brisbane Australia 260 m 2016

Prima Pearl Melbourne Australia 254 m 2014
Rialto Towers Melbourne Australia 251 m 1986
Central Park Perth Australia 249 m 1992
Infinity Tower Brisbane Australia 249 m 2013
Chifley Tower Sydney Australia 244 m 1992
City Square Perth Australia 244 m 2011

Citigroup Centre Sydney Australia 243 m 2000
Soleil Brisbane Australia 243 m 2011
Soul Gold Coast Australia 243 m 2012

Victoria One Melbourne Australia 241 m 2018
Deutsche Bank Sydney Australia 239 m 2005

Swanston Central Melbourne Australia 236 m 2019
World Tower Sydney Australia 230 m 2004

Vision Apartments Melbourne Australia 229 m 2016
MLC Centre Sydney Australia 228 m 1977

Governor Phillip Sydney Australia 227 m 1993
Bourke Place Melbourne Australia 224 m 1991

Ernst & Young Tower Sydney Australia 222 m 2004
Circle on Cavill Gold Coast Australia 220 m 2007
Aurora Place Sydney Australia 219 m 2001

Telstra Corporate Melbourne Australia 218 m 1992
International Tower Sydney Australia 217 m 2016

108 St Georges Terrace Perth Australia 214 m 1988
Melbourne Central Melbourne Australia 211 m 1991

Aurora Tower Brisbane Australia 207 m 2006
Freshwater Place Melbourne Australia 205 m 2005
Riparian Plaza Brisbane Australia 200 m 2005
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Table 1.9: The 35 tallest buildings in Italy

Name City Region Height Year
Unicredit Tower Milan Lombardia 231 m 2011
Allianz Tower Milan Lombardia 209 m 2015

Piedmont Region Head. Turin Piemonte 209 m 2015
Generali Tower Milan Lombardia 191 m 2016

Intesa Sanpaolo Tower Turin Piemonte 167 m 2012
Lombardia Building Milan Lombardia 161 m 2010

Solaria Tower Milan Lombardia 143 m 2013
Diamante Tower Milan Lombardia 140 m 2012

Telecom Italia Tower Naples Campania 129 m 1995
Pontina Tower Latina Lazio 128 m 2010
Pirelli Tower Milan Lombardia 127 m 1960
Unipol Tower Bologna Emilia Romagna 127 m 2012
Enel Tower Naples Campania 122 m 1990

Eurosky Tower Rome Lazio 120 m 2012
Europarco Tower Rome Lazio 120 m 2012
Marinella Tower Cesenatico Emilia Romagna 118 m 1958
Saverio Tower Naples Campania 118 m 1990

Francesco Tower Naples Campania 118 m 1990
Breda Tower Milan Lombardia 116 m 1954

Regional Council Tower Naples Campania 115 m 1992
Bosco Verticale Milan Lombardia 111 m 2014
Crystal Palace Brescia Lombardia 110 m 1990

Court of Justice Naples Campania 110 m 1991
Reale Mutua Tower Turin Piemonte 109 m 1934

Il Matitone Genoa Liguria 109 m 1992
Piacentini Tower Genoa Liguria 108 m 1940

Velasca Tower Milan Lombardia 106 m 1958
San Vincenzo Tower Genoa Liguria 105 m 1968

Galfa Tower Milan Lombardia 103 m 1959
World Trade Center Genoa Liguria 102 m 1992
Ambassador’s Hotel Naples Campania 100 m 1957
Rimini Skyscraper Rimini Emilia Romagna 100 m 1960
Garibaldi Tower A Milan Lombardia 100 m 1994
Unicredit Tower B Milan Lombardia 100 m 2011

Compartimento 2 Tower Genoa Liguria 100 m 2014
Aria Tower Milan Lombardia 100 m 2014
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1.2 Lateral load resisting systems for high-rise
buildings

The design of tall buildings represents a challenging problem from an architec-
tural point of view, especially considering structural analysis. The main difficulties
are represented by the limitation of transversal displacements due to wind or seis-
mic lateral load [17], [44], [119], [134]. The demanding design formulation is due
to the choice of a static scheme because of the great height. In response to this
problem, some authors [228], [242], and [243], suggested identifying the appropriate
structural system according to the number of storeys.

1.2.1 Rigid nodes frame buildings

(a) (b)

Figure 1.10: Daley Center. (a) Exterior view; (b) Typical floor plan (web source)

The structures of this type are built from beams and columns connected by rigid
nodes, following the deformation induced by external forces, they keep the angles
between the elements they connect unchanged. The dimensions of the columns
are mainly determined according to the vertical forces while the dimensions of the
beams are fixed so that the frame has a limited deformability with respect to the
horizontal displacements. In particular, the horizontal stiffness is proportional to
the dimensions of the cross sections of the columns and beams, and is inversely pro-
portional to the distance between the columns. To obtain a rigid frame, therefore,
low distance between columns and high beams are used. An example of a rigid
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frame structure is the Daley Center in Chicago (Figure 1.10). The main advantage
of this structural scheme lies in the fact that the structure leaves large rectangu-
lar meshes free in the façade (Figure 1.10a) within which the necessary openings
(doors and windows) can be placed, also allowing great flexibility in floor plan (Fig-
ure 1.10b). If the rigid frame is the only structural element to which the absorption
of horizontal forces is given, its use is efficient for buildings up to 25-30 floors. For
a greater number of storeys, the height of the beams necessary to ensure sufficient
rigidity becomes uneconomical. In general, this structural scheme is suitable for
reinforced concrete structures due to the intrinsic stiffness of the nodes.

The disadvantages are due to the size of the beams and columns, especially in
the lower floors of the construction.

1.2.2 Braced frame buildings

(a) (b)

Figure 1.11: Empire State Building. (a) Vertical section; (b) Floor plans
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The structural scheme of braced frame is mainly used in steel structures as the
goal is to improve the efficiency of rigid node frames. In general, the buildings de-
signed following this model are made of steel. The main advantage of this structural
solution lies in the truss scheme which makes the structure very efficient.

Another advantage consists in the fact that the horizontal beams participate
to a minimal extent in the absorption of the horizontal forces and are therefore
dimensioned on the basis of the vertical forces transmitted by the floors only, and
consequently they will have the same dimensions for all floors of the building,
which results into a reduction in construction costs. A disadvantage of this type
of structures consists in the fact that the presence of diagonal currents constitutes
a strong constraint for the location of the openings. For this reason, the braces
are often placed inside the building in correspondence with the stairwells and the
lift. An example of tall buildings built with this technique is the Empire State
Building (Figure 1.11), where the construction scheme adopted was not particularly
innovative, but proved extremely functional: the construction times were so short
as to become one of the most difficult records to pass [270].

1.2.3 Shear walls buildings

(a) (b)

Figure 1.12: Pirelli Tower. (a) South-east view; (b) Typical floor plan
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In these structures, resistance to horizontal actions is entirely given to shear
walls in concrete, which work mainly as cantilever beams. For buildings with up
to 35 floors they are efficient both in terms of resistance to horizontal and vertical
actions and in general their placement in the plant is carried out in such a way
that they can carry a proportion of the vertical loads such as to cancel the traction
stresses induced on them from the bending moment. This reduces the amount of
steel rebars. An example of a structure with shear walls is the Pirelli Tower in
Milan (Figure 1.12).

1.2.4 Shear wall-frame interacting systems

(a) (b)

Figure 1.13: Relative position between the shear walls and the frames. (a) Placed
in series; (b) Orthogonal to each other

Rigid frames become inefficient above 30 floors as they require excessive dimen-
sions of the structural elements. Buildings with only shear walls made of reinforced
concrete or by means of truss elements, are efficient for buildings between 10 and
35 floors high. However, by combining and connecting the shear walls with the
rigid frames with each other, a resistant mechanism is developed that allows reach-
ing heights between 40 and 70 floors in an efficient way. In fact, the two types
of structural elements have a different behavior towards horizontal actions and in
particular, while the shear walls behave like cantilevers, that is, with minimal dis-
placements in the lower floors and elevated at the top, the frames are deformed
presenting high displacements at the base and modest at the top. If the two types
of structure are rigidly connected, and therefore constrained to undergo the same
displacements, the result is a less deformable structure along the entire height of
the building.
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Depending on the relative position between the shear walls and the frames, two
limit cases can be distinguished whose structural behavior is clearly different that
is:

• frames and shear walls placed in series (Figure 1.13a): in this case the ex-
changed actions are axial forces which have repercussions in the non-linearity
of the shear forces;

• frames and shear walls orthogonal to each other (Figure 1.13b): in this case
the exchanged actions are shear forces that affect the non-linearity of the axial
forces in the columns of the frame.

1.2.5 Framed tube buildings
The philosophy behind this type of building is to bring most of the structural

elements to which the resistance to horizontal actions is given towards the perimeter
of the structure. This solution increases the inertia of the building’s cross section
and therefore its stiffness. In these buildings the structure is built from rigid frames
that in the plant form a closed polygonal. In this way, the cross section of the
building functions as a hollow profile to which resistance to horizontal actions is
given. To ensure that each frame in its plane can be assimilated to a rigid panel,
beams are made with high rigidity obtained by placing the columns at close range.

Figure 1.14: New York World Trade Center in 1965 (web source)
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Furthermore, the uniformity of this system allows the use of prefabrication
techniques which considerably reduce construction times and costs. An increase
in stiffness in the buildings with a tubular casing can be obtained by coupling an
internal core to the external tube, generally used to accommodate the lifts and
systems, which collaborates in absorbing horizontal actions. This type of structure
is called tube-in-tube building. This technique was adopted in the design of the two
main towers of the World Trade Center (Figure 1.14) in which along the perimeter,
it was composed of rigid frames formed by 59 steel columns with a square section
of about 0.36 meters on each side placed at a center distance of about 1 meter. To
obtain frames of high stiffness, the connection beams between the columns had a
height of about 1.3 meters.

For very tall buildings the single-tube structure becomes inefficient due to ex-
cessive normal stress on the columns. These stresses can be significantly reduced
by using internal frames which constitute additional cores which stiffen the tubular
casing. This technique allows the building to be tapered in height by imposing
different heights for the individual pipes that make it up. The torsion resulting
from the consequent section asymmetry is easily absorbed thanks to the tubular
shape of the section. A significant example of this structural scheme is the Sears
Tower (Figure 1.15) designed by Khan.

(a) (b)

Figure 1.15: Sears Tower. (a) 3D-model; (b) Floor plans
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1.2.6 Diagrid buildings
The structural conception of these structures derives from the framed tube

systems but, differently from these, do not have the presence of orthogonal elements.
The vertical actions, as well as the horizontal ones, are absorbed by a grid of

diagonal elements (diagonal grid, hence the name) placed along the perimeter of
the building. Compared to tubular systems, the advantage of diagrid structures
consists in the fact that the presence of the diagonal elements also increases the
shear stiffness in addition to the purely flexural one. One of the first examples of
this type of structure is the United Steelworkers Building built in Pittsburgh in
1963 with a height of only 13 floors. Only recently has the diagrid structure been
used for tall buildings such as in the 30 St. Mary Axe Building (Figure 1.16a) in
London, also know as Swiss Re Building, in the Hearst Headquarters designed in
New York by Norman Foster or in the Capital Gate (Figure 1.16b) in Abu Dhabi.

In most of these structures the diagrid scheme was made using steel structural
elements, but it is also possible to use reinforced concrete as was done in the COR
building in Miami designed by Oppenheim Architecture or in the O-14 Building
(Figure 1.16c) in Dubai, designed by RUR Architecture. The openings, apparently
placed randomly, actually follow a precise pattern that traces the diagonal trend
of the reinforced concrete elements to which the absorption of both horizontal and
vertical forces is given.

(a) (b) (c)

Figure 1.16: (a) 30 St. Mary Axe Building; (b) Capital Gate; (c) O-14 Building
(web source)
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Chapter 2

Stiffness matrix for the most
common types of vertical bracings

In this chapter the calculation methodology will be shown to roughly determine
the stiffness matrix of the types of vertical resistant elements that are commonly
used in tall buildings. The importance of defining the stiffness matrix consists
in the possibility of releasing the calculation from the type of load acting on the
structure, or rather, it is possible to solve the problem also with distributed forces
that vary linearly, or that contain exponential or logarithmic functions within them
(as in the case of actions due to wind or earthquake).

Furthermore, it is possible to evaluate the effects deriving from the simultaneous
presence of several types of load such as, for example, the concomitant presence of
distributed and concentrated actions or of the same entity but applied at different
points of the building. Another great advantage of having defined the stiffness ma-
trix of the structure consists in the possibility of coupling several resistant systems,
such as, for example, the insertion of closed- or open-section shear walls, all simply
by manipulating and condensing the stiffness matrices of the individual elements
as will be shown in Chapter 3.

2.1 Shear walls
In the scientific literature there are many calculation procedures developed to

analyze the shear walls with the help of stiffness matrices, some of these intro-
duced mainly for the study of aeronautical constructions [154]. These methods are
described in numerous scientific texts, among the works written in Italian we can
mention, among others, the works of Belluzzi [23], Giangreco [112], Franciosi [103],
Baldacci [19], and Pozzati [204], while in the international context this topic has
been widely studied by Timoshenko [251], Gallangher [106], and Stafford Smith
[228]. In this section, a simple analytical procedure [204] is briefly recalled, which
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has been extended in order to be able to determine the three-dimensional stiffness
matrix of a shear wall.

(a) (b)

Figure 2.1: (a) 3D-model of a plane shear wall; (b) Projection of the shear wall on
the plane xz

Consider the shear wall composed by N floors, each of hj height, consisting of a
continuous, isotropic, linear, and elastic material, characterized by Young’s modulus
E and shear elastic modulus G (Figure 2.1a). The section, which is maintained
unchanged for the entire height of the bracing, is defined through the moments of
inertia Jx and Jy referred to the axes of the right-handed local coordinate system
with origin in the shear center of the element.

In the local reference coordinate system, the 3N -vector {F ∗}

{F ∗} =

⎧⎪⎨⎪⎩
{px}
{py}
{mz}

⎫⎪⎬⎪⎭ (2.1)

in which 2N shearing forces {px}, {py}, and N torsional moments {mz} are in-
cluded, is connected to the 3N displacement vector {δ∗}

{δ∗} =

⎧⎪⎨⎪⎩
{ξ}
{η}
{ϑ}

⎫⎪⎬⎪⎭ (2.2)

constituted by 2N translations {ξ}, {η}, and N rigid rotations about the z axis
{ϑ}, by the 3N × 3N stiffness matrix of the entire shear wall [K∗]
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2.1 – Shear walls

[K∗] =

⎡⎢⎣ [Kx] 0 0
0 [Ky] 0
0 0 [Kϑ]

⎤⎥⎦ (2.3)

where each term is a N ×N sub-matrix.
Under these hypotheses, the three-dimensional problem⎧⎪⎨⎪⎩

{px}
{py}
{mz}

⎫⎪⎬⎪⎭ =

⎡⎢⎣ [Kx] 0 0
0 [Ky] 0
0 0 [Kϑ]

⎤⎥⎦
⎧⎪⎨⎪⎩

{ξ}
{η}
{ϑ}

⎫⎪⎬⎪⎭ (2.4)

or in compact form,

{F ∗} = [K∗] {δ∗} (2.5)
can be analyzed considering independent stiffness terms [Kx] and [Ky], for x and y
axes, respectively, and the torsional term [Kϑ].

Numbering the floors from 1 to N , as shown in Figure (2.1b), the term [Kx] can
be determined by considering the projection of the shear wall on the xz plane.

(a) (b) (c) (d) (e)

Figure 2.2: Static beam diagrams. (a) Nodal forces; (b) Imposed deformation ξj;
(c) Imposed deformation ξj−1; (d) Imposed rotation φj; (e) Imposed rotation φj−1

In this model, extrapolates the generic portion of the shear wall between floors
j and j − 1 (length hj), imposing the nodal displacements ξ and bending rotations
φy with respect to y axis, referring to the static beam diagrams in Figure (2.2), for
each floor it is possible to write the following relationship:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
px,j

px,j−1
my,j

my,j−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = EJy

⎡⎢⎢⎢⎣
12/h3

j −12/h3
j −6/h2

j −6/h2
j

−12/h3
j 12/h3

j 6/h2
j 6/h2

j

−6/h2
j 6/h2

j 4/hj 2/hj

−6/h2
j 6/h2

j 2/hj 4/hj

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξj

ξj−1
φj

φj−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.6)

where its 4 × 4 stiffness matrix [kxx,j] can be written as:

[kxx,j] = EJy

⎡⎢⎢⎢⎣
12/h3

j −12/h3
j −6/h2

j −6/h2
j

−12/h3
j 12/h3

j 6/h2
j 6/h2

j

−6/h2
j 6/h2

j 4/hj 2/hj

−6/h2
j 6/h2

j 2/hj 4/hj

⎤⎥⎥⎥⎦ (2.7)

Considering all floors, the stiffness matrix of the entire shearwall can be obtained
by assembling the stiffness matrices related to j-th floors (Equation 2.7) to obtain
a 2N × 2N stiffness matrix:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

px,1
px,2

...
px, N
my,1
my,2

...
my, N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
⎡⎣ [kxx]

[︂
kxφy

]︂[︂
kφyx

]︂ [︂
kφyφy

]︂ ⎤⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1
ξ2
...
ξN

φy,1
φy,2

...
φy,N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

As shown in Figure (2.1b), by considering the projection of the shear wall on
the xz plane, the degrees of freedom are two for each floor, that is the translation
in x-direction (ξ) and rotation around y axis (φy), while the forces acting on the
system are only the horizontal ones {px}, whereas the bending moment {my} are
null. Therefore, the force-displacement relationship can be written as:

{︄
{px}
{0}

}︄
=
⎡⎣ [kxx]

[︂
kxφy

]︂[︂
kφyx

]︂ [︂
kφyφy

]︂ ⎤⎦{︄ {ξ}
{φy}

}︄
(2.9)

where, considering that the j-th portions of bracing between two consecutive floors
are connected in series, each sub-matrices of size N ×N take a recursive form and
can generally be written as:

[kxx] = 12EJy

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/h3
1 −1/h3

1 0 · · · 0
−1/h3

1 1/h3
1 + 1/h3

j −1/h3
j · · · 0

0 −1/h3
j 1/h3

j + 1/h3
j+1 · · · 0

... ... ... . . . ...
0 0 0 · · · 1/h3

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.10a)
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[︂
kxφy

]︂
= 6EJy

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1/h2
1 −1/h2

1 0 · · · 0
1/h2

1 1/h2
1 − 1/h2

j −1/h2
j · · · 0

0 1/h2
j 1/h2

j − 1/h2
j+1 · · · 0

... ... ... . . . ...
0 0 0 · · · 1/h2

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.10b)

[︂
kφyx

]︂
= 6EJy

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1/h2
1 1/h2

1 0 · · · 0
−1/h2

1 1/h2
1 − 1/h2

j 1/h2
j · · · 0

0 −1/h2
j 1/h2

j − 1/h2
j+1 · · · 0

... ... ... . . . ...
0 0 0 · · · 1/h2

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.10c)

[︂
kφyφy

]︂
= EJy

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4/h1 2/h1 0 · · · 0
2/h1 4/h1 + 4/hj 2/hj · · · 0

0 2/hj 4/hj + 4/hj+1 · · · 0
... ... ... . . . ...
0 0 0 · · · 4/hN

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.10d)

Equation (2.9) can be rewritten as follows:

[kxx] {ξ} +
[︂
kxφy

]︂
{φy} = {px} (2.11a)[︂

kφyx

]︂
{ξ} +

[︂
kφyφy

]︂
{φy} = {0} (2.11b)

From Equation (2.11b) it is easy to determine the displacements {φy}, so Equa-
tion (2.11a) can be written as follows:⎡⎣[kxx] −

[︂
kxφy

]︂ (︃[︂
kφyφy

]︂−1 [︂
kφyx

]︂)︃⎤⎦{ξ} = {px} (2.12)

The N ×N condensed stiffness matrix in the x-direction was determined:

[Kx] =
⎡⎣[kxx] −

[︂
kxφy

]︂ (︃[︂
kφyφy

]︂−1 [︂
kφyx

]︂)︃⎤⎦ (2.13)

Similar considerations can be made making an allowance for the projection of
the wind on the yz plane obtaining the following local stiffness matrix:

[Ky] =
⎡⎣[kyy] − [kyφx ]

(︂
[kφxφx ]−1 [kφxy]

)︂⎤⎦ (2.14)
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where the sub-matrices are defined as follows:

[kyy] = 12EJx

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/h3
1 −1/h3

1 0 · · · 0
−1/h3

1 1/h3
1 + 1/h3

j −1/h3
j · · · 0

0 −1/h3
j 1/h3

j + 1/h3
j+1 · · · 0

... ... ... . . . ...
0 0 0 · · · 1/h3

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.15a)

[kyφx ] = 6EJx

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1/h2
1 −1/h2

1 0 · · · 0
1/h2

1 1/h2
1 − 1/h2

j −1/h2
j · · · 0

0 1/h2
j 1/h2

j − 1/h2
j+1 · · · 0

... ... ... . . . ...
0 0 0 · · · 1/h2

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.15b)

[kφxy] = 6EJx

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1/h2
1 1/h2

1 0 · · · 0
−1/h2

1 1/h2
1 − 1/h2

j 1/h2
j · · · 0

0 −1/h2
j 1/h2

j − 1/h2
j+1 · · · 0

... ... ... . . . ...
0 0 0 · · · 1/h2

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.15c)

[kφxφx ] = EJx

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4/h1 2/h1 0 · · · 0
2/h1 4/h1 + 4/hj 2/hj · · · 0

0 2/hj 4/hj + 4/hj+1 · · · 0
... ... ... . . . ...
0 0 0 · · · 4/hN

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.15d)

As regards to the torsional stiffness matrix [Kϑ], which connects the torque
moments to the floor rotations, it can be easily obtained by assembling the terms
related to the j-th portions of shear wall:

[Kϑ] = GJt

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/h1 −1/h1 0 · · · 0
−1/h1 1/h1 + 1/hj −1/hj · · · 0

0 −1/hj 1/hj + 1/hj+1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1/hN

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.16)

where the term Jt indicates the torsional shear factor of the shear wall cross section.

32



2.1 – Shear walls

2.1.1 Pierced shear walls
In the constructive planning, many times it is necessary to create small openings

inside the shear walls, for example to allow access to stairs or elevator doors, as
shown in Figure (2.3).

The presence of these openings obviously causes a stiffness reduction, and con-
sequently, an increase of the displacements. The first analytical studies of this type
of structure were made by Rosman [221], [222] in the 1960s which proposed a pro-
cedure, called Continuum Medium Technique. This procedure consists in modeling
the portion of structure affected by the openings as a distribution of shearing forces
applied to the remaining parts of the shear wall. This technique, relatively simple,
was later deepened and improved by other authors, among whom we remember
Schwaighofer [225], [226], Coull et al. [78], [80], [82], [85], [86], and Capuani et al.
who addressed the problem both statically [49], [51], and dynamically [50].

Figure 2.3: Pierced shear walls

A three-dimensional analytical approach described by simple differential equa-
tions which also define the torsional effects, was obtained in 1969 by Michael [179].

Extensions of this method, able to analyze also asymmetric structures, were
presented by Glück [113] and Heidebrecht [124]. The latter fomulation is based
on the stiffness matrix approach. In the procedures mentioned above there are no
possibility of considering axial deformations, which is instead done by Tso [256],
[257].

In 1975, Liauw and Leung [163] propose the transfer matrix method that al-
lows analyzing structures that have different heights and non-constant shear walls
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thicknesses, while Rutenberg and Heidebrecht [223] proposed a procedure for ap-
proximate analysis of asymmetric wall-frame structures.

Only many years later Wdowicki and Wdowicka [267], [268] proposed a fur-
ther refinement of this formulation for evaluation of the stress state in non-planar
asymmetric shear wall structures having stepwise changes in cross section.

For an analytical description of the main calculation methods, reference can be
made to Stafford Smith’s [228] and Taranath’s [242], [243] books, in addition to Dr.
Cammarano’s Ph.D Thesis [47].

2.1.2 Twisted and tapered shear walls

Figure 2.4: HSB Turning Torso (web source)

Since the beginning, the design of high-rise buildings has been guided by the
engineering issues [230] and the minimum performance requirements necessary by
technical regulations [132], [232], [233] For this reason, tall buildings often have the
shape of huge parallelepipeds embedded in the ground, however, most show graded
tapering as in the case of the Empire State Building in New York or the Sears Tower
in Chicago. In recent decades, this trend has been questioned in how much buildings
have been designed by unusual architectural forms. Many times the tapered shape is
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due only to the external covering while the core is of traditional type, as in the case
of Shanghai Tower; in other cases it is a consequence of structural optimisation
[274], while in other cases it is the supporting structure itself to be part of the
architectural form, as illustrated by Sarkisian in his book [224]. They are part of
this last category the diagrid structures that have represented the turning point
regarding the architectural design of the high buildings, such as the Capital Gate
in Abu Dhabi or the Tornado Tower in Doha. Another interesting typology are
twisted, tapered, and tilted high-rise buildings. In many of these buildings, the
core changes its plant continuously starting from the base to the top, as in the case
of HSB Turning Torso of Malmo in Sweden (Figure 2.4), a twisted high-rise building
of 54 floors and 190 meters high. In many cases, the particular architectural form
of this type of building involves the creation of specific mathematical models to
correctly describe the action of wind [142], [240], while in other cases, to estimate
the pressure coefficients shall be carried out experimentally [143], [175].

The analytical method presented in the previous section can also be applied to
the case of tapered and twisted shear walls. In these cases the geometric charac-
teristics of the shear wall are discredited considering them constant between one
floor and the other. For details of this analytical procedure, you can see the works
of Carpinteri [60], Lacidogna [151], and Cammarano [47], while other formulations
to analyze the same problem were proposed, among others, by Rajasekaran [211],
Eisenberger [98], and Zupan [286].

2.2 Thin-walled open-section shear walls
Most of the resistant solutions employed in tall buildings are represented by

vertical elements arranged as parallel cantilevers clamped at the base and designed
to absorb the total horizontal force coming from earthquakes and winds. These
members, commonly known as shear walls, can be freely located in the floor plan of
the building and used with or without other vertical bracings to obtain an adequate
stability. In the case of not excessive heights, they can be constituted by a simple
plane element whose resistance is proportional to the maximum size of the section.

For greater heights, they are designed to behave as three-dimensional elements,
having an appropriate bending resistance in the two principal directions, as well as
a good torsional stiffness, giving rise to thin-walled hollow or open-section walls.

Beyond the mechanical function, these members allow to house stairwells and/or
lift shafts, which are indispensable in a tall building.

Unlike hollow sections, in presence of torsional actions, thin-walled open-section
elements reveal a particular behaviour, which is far from Saint Venant’s results.

Once the torsional deformation takes place, the section twists around its shear
centre but, at the same time, does not remain plane, since it undergoes different
longitudinal extensions causing an out-of-plane distortion, the so-called warping of
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the section [48], [59], [93], [178], [215]. As a consequence, a further longitudinal
stress, absent in the theory of primary torsion, develops in the thickness of the
section.

The analytic study of the behavior of this type of sections began more than a
century ago, when in 1909 Bach [18] conducting experiments on metal channel sec-
tion beams, observed that a transversal load applied in its center of gravity causes,
besides bending, also torsional deformations. Moreover, Bach observes that the
four fibers placed in correspondence of the edges of the beam do not show dilations
compatible with the hypothesis of the plane sections introduced by Navier. In his
work, Bach attributed this anomaly to the asymmetry of the section. In the same
years S.P. Timoshenko, studying the stability of thin-walled section beams [247],
determined experimentally the torsional stiffness value of I-section beams subject to
torsional moment. In this work, it is defined that the torque, in addition to shearing
stresses, also generates axial stresses, which are not determined analytically.

In 1921, Maillart published a work dedicated to the problem of torsion in thin-
section metal beams [169], in which he analyzed Bach’s experiments, commenting
that the sections do not keep flat even in the beams having symmetrical cross
section. In 1926 Weber [269] presents a generalization of the results obtained by
Timoshenko, which allows correlating the shear center and the torsion center that
is the point of the cross section that remains fixed in following a torsional stress,
and he demonstrated that, in case of torsional stress, these two points coincide.

In the second half of the 1930s, Vlasov published some works [258], [259], [260],
in which highlights a new method for determining strains and stresses in thin-
walled open-section beams. This procedure, which takes the name of Sectorial
Area Theory, is an extension of the Navier’s Theory. A few years later, the same
author formalizes further this theory [262] introducing a new flexo-torsional stress:
the bimoment. The scientific and methodological meaning theory of the thin-walled
beams also resides in the fact that, basing itself on hypotheses more general than
those of Saint Venant’s classical Theory (which essentially reaffirms it in terms of
shear forces and bending moments), this theory allows you to create a mathematical
model of the beam that better describes the real behavior of the beam and thus
allows better use of the materials.

In 1945 Timoshenko publishes an extensive paper on the thin-walled open-
section beam theory [249] in which he analyses the open-section thin beam subject
to torsional moment. The analytical formulation, although having a different no-
tation, has extensive references to the work of Vlasov [262]. This work has a
remarkable international success, probably because it was published in English
(unlike the works by Vlasov, which were published in Russian) and thus accessi-
ble to more researchers. From this moment on, interest in the study of open thin
sections increased significantly to such an extent that The Israel Program for Sci-
entific Translations, a government company focused on translation and publication

36



2.2 – Thin-walled open-section shear walls

of scientific and technical manuscripts from Russian to English, recognized the im-
portance of the work of Vlasov (who died on August 7, 1958), publishing in 1961
the English translation [261] of his 1940 volume. This book, Thin-walled Elastic
Beams, remains a milestone in the scientific literature.

In 1964 Capurso [53], [54] further extended Vlasov’s Theory removing the hy-
pothesis of the indeformability of section, going in this way to further generalize
the problem of Saint Venant for thin-walled open-section beams. This theme was
also taken up by other authors, including Aggarwal [2], Taranath [245], Takabatake
[238], [239], Prokic [206], and Boswell [36].

In the 1980s, Capurso introduced a method [52] to analyze an n thin-walled
open-section beam system connected in series by elements infinitely rigid in its own
plane and infinitely deformable out of the plane. The originality of this work con-
sists in having introduced a formulation like the well-known equations of Huygens,
by which it is possible to transpose the moment of sectorial inertia from one refer-
ence system to another. This formulation has allowed defining a matrix containing
all the geometric and sectorial stiffness terms useful for defining the global stiffness
matrix of the entire n thin-walled open sections connected in series.

2.2.1 Vlasov’s Theory
Let us consider the case of a cantilever channel-beam subjected to a flexural,

axial, and torsional actions.
Based on the Superposition Principle, this load can be reduced to the sum

of four different loading cases: one is purely axial (Figure 2.5a), two are purely
flexural (Figures 2.5b and 2.5c); whilst the other is defined as flexural torsion
(Figure 2.5d). In the latter case, the section does not remain plane (warping effect)
and additional normal stresses appear. These additional normal stresses give rise to
a generalised action, called bimoment, which is directly connected to the warping of
the section. The intensity of this stress state cannot be neglected for these profiles
and the application of Saint Venant’s Theory could lead to gross errors. Two main
geometrical hypotheses are at the basis of Vlasov’s Theory:

• the section is considered rigid and, therefore, its shape is undeformable;

• the shearing strains on the midline of the section are assumed to vanish.

The formulation of Vlasov’s Theory, has already been widely published in vari-
ous works [55], [63], [189], and it is summarized in the following.

Let us consider a free shaped thin-walled open-section beam, located in a generic
coordinate system, in which the Z axis is parallel to the longitudinal axis of the
beam. Defined a specific cross section at z = constant, X and Y axes complete the
right-handed coordinate system XY Z. Each point of the midline can be identified
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(a) (b)

(c) (d)

Figure 2.5: Cantilever channel-beam with four different loading cases. (a) Axial
deformation; (b) Bending with respect to x axis; (c) Bending with respect to y axis;
(d) Warping

by using the coordinates (x, y) or, along the midline, the curvilinear coordinate s
(Figure 2.6).

With the aim of defining the equations which govern the structural behaviour of
thin-walled open profiles, it is assumed that the beam is subjected to some torsional
deformations. As a result of these, each point of the section is characterised by a new
position in the general coordinate system XY Z. Therefore, it behaves as a perfectly
rigid body, whose position can be evaluated by means of three independent variables
corresponding to the three generalized displacements of an arbitrarily chosen point:
two translations ξ and η in the X and Y directions, respectively, and the rotation
ϑ.
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Introducing the unit vector {ut} tangent to the midline of the section

{ut} =
{︄

dx
ds

dy
ds

}︄
(2.17)

and the displacements vector {δ} of any point belonging to the cross section,

{δ} =
{︂
u v

}︂
(2.18)

identified by the translations u and v in the X and Y directions, respectively, which
can be determined through the well-known expressions:

u = ξ(z) − ϑ(z)y (2.19a)
v = η(z) + ϑ(z)x (2.19b)

the tangential displacement δt, related to the generic point of the section, can be
computed by

δt = {δ} {ut}T = u
dx
ds + v

dy
ds (2.20)

and then:

δt = ξ
dx
ds + η

dy
ds + ϑh(s) (2.21)

in which the term h(s) represents the distance between origin of the reference
system and tangent line to the section midline (Figure 2.6)

h(s) = {r}T {un} = x
dy
ds − y

dx
ds (2.22)

where r indicates the position vector {x y} of the generic midline section point in
the reference system, while {un} is the unit vector normal to the section midline.

The longitudinal displacement component w can be obtained by the second
Vlasov’s hypothesis, according to which the shearing strains on the midline are
considered negligible:

γzs = ∂w

∂s
+ ∂δt

∂z
= 0 (2.23)

Taking into account the following relationship:

ω(s) =
∫︂ s

0
h(s)ds (2.24)

the analytical expression of w is derived by integration,

w = ζ(z) −
∫︂ s

0

∂δt

∂z
ds = ζ(z) − ξ′x− η′y − ϑ′ω (2.25)
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Figure 2.6: Computation of the sectorial coordinate ω [63]

The term ζ(z) is an arbitrary function, depending only on z, which describes a
longitudinal translation of the entire section (Figure 2.5a); ω(s) is the sectorial area,
i.e. the double of the area swept by the radius vector {r} from s = 0 to the current
point s of the section’s midline. The points O and s = 0 are the sectorial pole
and the sectorial origin, respectively (Figure 2.6). The longitudinal component w
is composed by four terms: the first three are well-known and arise from extension
and bending in the XZ and Y Z planes (Figures 2.5b and 2.5c). The component
which describes the warping of the section (Figure 2.5d) is expressed by the fourth
term and, in particular, ϑ′ can be considered as an amplification factor, whereas
ω as the shape of the warped section. By differentiating w with respect to z, it is
possible to obtain the expression of the longitudinal deformation εz:

εz = ∂w

∂z
= ζ ′ − ξ′′x− η′′y − ϑ′′ω (2.26)

The fourth term of Equation (2.26) demonstrates that the hypothesis of pri-
mary torsion, according to which the unit angle of torsion should be constant, in
general can be removed. The general expression of the normal stress σz is obtained
multiplying Equation (2.26) by the elastic modulus E:

σz = E (ζ ′ − ξ′′x− η′′y − ϑ′′ω) (2.27)
In each section of the beam, the normal stress σz is the sum of two contributions:

σz = σSV
z + σV L

z (2.28)
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where:

σV L
z = −Eϑ′′ω (2.29)

This expressions demonstrate that normal stresses can appear not only in pres-
ence of uniform extension and bending of the beam, but also as a result of the
non-uniform torsion of the cross section. On the other hand, this specific contribu-
tion is usually assumed to vanish in the theory of primary torsion.

Figure 2.7: Thin-walled open-section beam subjected to transversal actions [63]

The computation of the sectorial terms is carried out considering the origin of
the generic right-handed system XY Z as sectorial pole and a generic sectorial origin
on the midline (Figure 2.7), the expression (2.27) allows to define, by integration,
the normal stress acting along cantilever beam:

N =
∫︂

A
σzdA = E

∫︂
A

[︄
(ζ ′ − ξ′′x− η′′y − ϑ′′ω)

]︄
dA (2.30)

Noting that: ∫︂
A
ζ ′dA = ζ ′

∫︂
A

dA = ζ ′A (2.31a)∫︂
A
ξ′′xdA = ξ′′

∫︂
A
xdA = ξ′′Sy (2.31b)
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∫︂
A
η′′ydA = η′′

∫︂
A
ydA = η′′Sx (2.31c)∫︂

A
ϑ′′ωdA = ϑ′′

∫︂
A
ωdA = ϑ′′Sω (2.31d)

where the terms Sx and Sy are the static moments of the section with respect to
the y and x axis, while Sω is the sectorial static moment of the section, Equation
(2.30) can be rewritted as:

N =
∫︂

A
σzdA = E (Aζ ′ − Syξ

′′ − Sxη
′′ − Sωϑ

′′) (2.32)

Supposing null the axial force in the vertical bracing, the term ζ ′ can be elimi-
nated in Equation (2.32):

ζ ′ = Sy

A
ξ′′ + Sx

A
η′′ + Sω

A
ϑ′′ = xGξ

′′ + yGη
′′ + ω0ϑ

′′ (2.33)

The substitution of Equation (2.33) into Equation (2.27) permits to define the
internal actions related to the flexural behaviour of the beam:

My =
∫︂

A
σzxdA = −E (Jyyξ

′′ + Jyxη
′′ + Jyωϑ

′′) (2.34a)

Mx =
∫︂

A
σzydA = −E (Jxyξ

′′ + Jxxη
′′ + Jxωϑ

′′) (2.34b)

B =
∫︂

A
σzωdA = −E (Jωyξ

′′ + Jωxη
′′ + Jωωϑ

′′) (2.34c)

Equation (2.34c) defines the bimoment action, which represents a generalized
self-balanced force system equivalent to two bending moments, having the same
magnitude but opposite signs.

The moments and product of inertia, with respect to the centroid of the section,
can be obtained via the inverse application of Huygens-Steiner theorem:

Jyy = Iyy − Ax2
G (2.35a)

Jxx = Ixx − Ay2
G (2.35b)

Jxy = Ixy − AyGxG (2.35c)

By using the similar formulations proposed by Capurso [52], which transfers the
sectorial moments of inertia from the generic origin to the sectorial centroid of the
section ω0, can be obtained:

Jωω = Iωω − Aω2
0 (2.36a)

Jωy = Iωy − AxGω0 (2.36b)
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Jωx = Iωx − AyGω0 (2.36c)

Introducing the matrix of inertia [J ], it is possible to write these terms in a
compact form:

[J ] =

⎡⎢⎣ Jyy Jyx Jyω

Jxy Jxx Jxω

Jωy Jωx Jωω

⎤⎥⎦ (2.37)

The shearing stresses τzs, supposed to be defined by a constant distribution on
the thickness of the section, can be obtained considering the longitudinal equilib-
rium of an elementary portion of beam, whose dimensions are the length dz, the
width ds, and the thickness b (Figure 2.8):

Figure 2.8: Longitudinal equilibrium of an infinitesimal strip of beam [63]

∂ (τzsb)
∂s

+ ∂ (σzb)
∂z

= 0 (2.38)

On the basis of Equation (2.38), three additional transverse internal actions,
the shearing forces and the secondary torsional moment, can be defined:

Tx =
∫︂

A
τzs

dx
dsdA (2.39a)

Ty =
∫︂

A
τzs

dy
dsdA (2.39b)

MV L
z =

∫︂
A
τzshdA (2.39c)
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Integrating by parts and applying Equation (2.38), the following relations are
obtained:

Tx = −
∫︂

C

∂ (τzsb)
∂s

xds =
∫︂

C

∂ (σzb)
∂z

xds = d
dz

∫︂
A
σzxdA (2.40a)

Ty = −
∫︂

C

∂ (τzsb)
∂s

yds =
∫︂

C

∂ (σzb)
∂z

yds = d
dz

∫︂
A
σzydA (2.40b)

MV L
z = −

∫︂
C

∂ (τzsb)
∂s

ωds =
∫︂

C

∂ (σzb)
∂z

ωds = d
dz

∫︂
A
σzωdA (2.40c)

Equations (2.35 and 2.36) also affect the system (2.40), which becomes:

Tx = dMy

dz = −E (Jyyξ
′′′ + Jyxη

′′′ + Jyωϑ
′′′) (2.41a)

Ty = dMx

dz = −E (Jxyξ
′′′ + Jxxη

′′′ + Jxωϑ
′′′) (2.41b)

MV L
z = dB

dz = −E (Jωyξ
′′′ + Jωxη

′′′ + Jωωϑ
′′′) (2.41c)

The last equation highlights that, due to the warping of the section, an un-
expected torsional moment MV L

z is generated, being it the first derivative of the
bimoment action. The secondary torsional moment MV L

z is generated by the τzs

stresses due to the shearing actions Tx and Ty. A further step of differentiation
leads to the equilibrium equations which take into account the distributed external
loads px, py, and mz (known terms):

px = −dTx

dz = E
(︂
Jyyξ

IV + Jyxη
IV + Jyωϑ

IV
)︂

(2.42a)

py = −dTy

dz = E
(︂
Jxyξ

IV + Jxxη
IV + Jxωϑ

IV
)︂

(2.42b)

mV L
z = −dMV L

z

dz = E
(︂
Jωyξ

IV + Jωxη
IV + Jωωϑ

IV
)︂

(2.42c)

Actually, the thin-walled open section is subjected to two different torsional
moments: the first, due to a constant distribution of shearing stresses through the
thickness, is related to the equilibrium with the normal stresses coming from the
warping of the section; the second, according to Saint Venant’s Theory, is due to a
linear variation of shearing stresses through the thickness and is equal to zero on
the midline. In each section of the beam, the torsional moment Mz is the sum of
the two contributions:
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Mz = MSV
z +MV L

z = GItϑ
′ − E (Jωyξ

′′′ + Jωxη
′′′ + Jωωϑ

′′′) (2.43)
where G is the shear elastic modulus, and It is the torsional stiffness factor of the
section. Therefore, the global equilibrium Equation (2.42c) becomes:

mz = −dMz

dz = −GItϑ
′′ + E

(︂
Jωyξ

IV + Jωxη
IV + Jωωϑ

IV
)︂

(2.44)

If the vectors {δ}, {M}, {T}, and {F} are introduced,

{δ} =

⎧⎪⎨⎪⎩
ξ
η
ϑ

⎫⎪⎬⎪⎭ (2.45a)

{M} =

⎧⎪⎨⎪⎩
My

Mx

B

⎫⎪⎬⎪⎭ (2.45b)

{T} =

⎧⎪⎨⎪⎩
Tx

Ty

MV L
z

⎫⎪⎬⎪⎭ (2.45c)

{F} =

⎧⎪⎨⎪⎩
px

py

mV L
z

⎫⎪⎬⎪⎭ (2.45d)

it is possible to write systems (2.34), (2.41), and (2.42) in a compact form:

{M} = −E [J ] {δ′′} (2.46a)
{T} = −E [J ] {δ′′′} (2.46b)

{F} = E [J ]
{︂
δIV

}︂
(2.46c)

The system of Equations (2.46) can be strongly simplified operating some choices.
In fact, if a centroidal coordinate system is considered, the following conditions are
all immediately satisfied:

Sy =
∫︂

A
xdA = 0 (2.47a)

Sx =
∫︂

A
ydA = 0 (2.47b)

Since the reference system is also principal, the product of inertia are null

Jxy = Jyx =
∫︂

A
xydA = 0 (2.48)
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On the other hand, if the sectorial pole coincides with the shear centre of the
section, it can be shown that:

Jωy = Jyω =
∫︂

A
ωydA = 0 (2.49a)

Jωx = Jxω =
∫︂

A
ωxdA = 0 (2.49b)

In addition, if the sectorial origin is in the sectorial centroid, by definition it
follows that also the sectorial static moment is null

Sω =
∫︂

A
ωdA = 0 (2.50)

When centroid and shear centre do not coincide, the diagonalization of Vlasov’s
Equations, namely, of the relationship between the diagonal terms of matrix [J ]
and the second derivatives of the generalized displacements, is possible only in the
case N = 0. If each of this hypothesis is satisfied, it is possible diagonalized the
matrix [J ]:

[J ] =

⎡⎢⎣ Jyy 0 0
0 Jxx 0
0 0 Jωω

⎤⎥⎦ (2.51)

Taking into account this diagonal matrix, Equations (2.46) can be written in
simplified form and the internal actions can be defined as:

My = −EJyyξ
′′ (2.52a)

Mx = −EJxxη
′′ (2.52b)

B = −EJωωϑ
′′ (2.52c)

The internal actions producing the shearing stresses are also diagonalized:

Tx = −EJyyξ
′′′ (2.53a)

Ty = −EJxxη
′′′ (2.53b)

MV L
z = −EJωωϑ

′′′ (2.53c)

This means that the system of Equations (2.42) is reduced to the following
decoupled equilibrium equations:

px = EJyyξ
IV (2.54a)

py = EJxxη
IV (2.54b)
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mV L
z = EJωωϑ

IV (2.54c)

Therefore, the global equilibrium Equation (2.44) becomes:

mz = −GItϑ
′′ + EJωωϑ

IV (2.55)
Imposing the boundary conditions, the system can be solved and functions ξ,

η, and, ϑ can be determined together with the normal and shearing stresses.
It is interesting to observe that Equation (2.55) is formally the same as the

equation of the elastic line with effects of the second order due to a tensile axial
load N and distributed load q(z):

q(z) = EJxxυ
IV −Nυ′′ (2.56)

It is worthwhile to emphasize the formal analogy between the well-known equa-
tions of the elastic line describing the flexural behaviour of a beam and the di-
agonalized differential equations describing the torsional behaviour of thin-walled
open-section beams. As in the case of flexural curvature, in the torsional behaviour
the term ϑ′′ vanishes where the bimoment is null, or, in other words, the bimoment
is zero where the line describing the rotations of the beam shows an inflection point.

If the contribution related to the primary torsion GItϑ
′′ is negligible, Equation

can be more easily integrated. Since the matrix of inertia is symmetrical and
positive definite until the geometry of the section is such that the determinant of
[J ] is different from zero, it can be inverted in order to obtain a relationship between
the fourth derivatives of the displacements and the external distributed actions:

{δIV } = 1
E

[J ]−1{F} (2.57)

The transverse displacements of the section are obtained integrating Equation
(2.57) and applying the boundary conditions at the base and at the top of the
cantilever. At the constrained end:

{δ} = {0} (2.58a)
{δ′} = {0} (2.58b)

whereas, at the top:

{δ′′} = {0} (2.59a)
{δ′′′} = {0} (2.59b)
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Figure 2.9: Shear walls constituted by thin plates converging in a single point [63]

Once ξ, η, and, ϑ are known, the application of Equation (2.33) yields the
uniform axial displacement ζ with the corresponding boundary condition:

ζ(z = 0) = 0 (2.60)

Eventually, the displacement components δt and w can be easily derived from
Equations (2.21) and (2.25). This analytical formulation cannot be applied in
presence of specific sections for which the matrix [J ] is singular. These are the
cases of shear walls constituted by a single thin rectangular plate or different thin
plates converging into a single point, as shown in Figure (2.9). In these cases the
warping function vanishes.

2.2.2 Stiffness matrix evaluation
Considering an N floors thin-walled open-section shear wall, in the local refer-

ence system with origin in the shear center of the section, the force-displacement
relation can be defined as follows:⎧⎪⎨⎪⎩

{px}
{py}
{mz}

⎫⎪⎬⎪⎭ =

⎡⎢⎣[Kx] 0 0
0 [Ky] 0
0 0 [Kϑ]

⎤⎥⎦
⎧⎪⎨⎪⎩

{ξ}
{η}
{ϑ}

⎫⎪⎬⎪⎭ (2.61)

or in compact form:

{F ∗} = [K∗] {δ∗} (2.62)
where the terms {px}, {py}, and {mz} represent the N × 1 vectors containing the
generalized floor forces; [Kx], [Ky], and [Kϑ] represent the N ×N stiffness matrices
in the direction of referred to; while {ξ}, {η}, and {ϑ} represent the N × 1 vectors
containing the generalized floor displacements.

Numbering the N floors from top to bottom, assuming that the normal elastic
modulus E is the same for the entire height of the shear wall, and considering valid
Equation (2.57) for each floor, it is possible to write the following relation:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{δIV
1 }

{δIV
2 }

{δIV
j }
...

{δIV
N }

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
= 1
E

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[J1]−1 [0] [0] · · · [0]
[0] [J2]−1 [0] · · · [0]
[0] [0] [Jj]−1 · · · [0]
... ... ... . . . ...

[0] [0] [0] · · · [JN ]−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{F1}
{F2}
{Fj}

...
{FN}

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.63)

or in compact form: {︃ˆ︂δ∗IV
}︃

= 1
E

[︂ˆ︂J∗
]︂−1 {︂ˆ︂F ∗

}︂
(2.64)

where the 3 × 1 vectors {δj} and {Fj}, refferred to j-th floor, are:

{δj} =

⎧⎪⎨⎪⎩
ξj

ηj

ϑj

⎫⎪⎬⎪⎭ (2.65a)

{Fj} =

⎧⎪⎨⎪⎩
px,j

py,j

mz,j

⎫⎪⎬⎪⎭ (2.65b)

[0] is the 3 × 3 null matrix, while the 3 × 3 matrix [Jj] is given by Equation (2.51)
evaluated for the j-th floor.

As you can see, the vectors {ˆ︂δ∗} and {δ∗} differ only in the order of the their
components, but it is possibile to write the following relationship:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1
ξ2
...
ξN

η1
η2
...
ηN

ϑ1
ϑ2
...
ϑN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 · · · 0 0 0
0 0 0 1 0 0 · · · 0 0 0
... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 · · · 1 0 0
0 1 0 0 0 0 · · · 0 0 0
0 0 0 0 1 0 · · · 0 0 0
... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 · · · 0 1 0
0 0 1 0 0 0 · · · 0 0 0
0 0 0 0 0 1 · · · 0 0 0
... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1
η1
ϑ1
ξ2
η2
ϑ2
...

ηN−1
ϑN−1
ξN

ηN

ϑN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.66)

or in compact form:

{δ∗} = [Υ]
{︂ˆ︂δ∗

}︂
(2.67)

49



Stiffness matrix for the most common types of vertical bracings

An analogous relation can be written for the vector of static actions:

{F ∗} = [Υ]
{︂ˆ︂F ∗

}︂
(2.68)

Substituting Equations (2.67 and 2.68) into Equation (2.64), and pre-multiplying
the preceding expression by the transformation matrix [Υ] we get:

{︂
δ∗IV

}︂
= 1
E

(︃
[Υ]

[︂ˆ︂J∗
]︂−1

[Υ]−1
)︃

{F ∗} = 1
E

[J∗]−1 {F ∗} (2.69)

Integrating Equation (2.69) with the boundary conditions already detailed in
Equations (2.58 and 2.59), we obtain the loads-displacements relation, that is the
compliance matrix [C∗] of the shear wall:

{δ∗} =
(︄
L3

E
[J∗]−1 [Q∗]

)︄
{F ∗} = [C∗] {F ∗} (2.70)

where L is the storey height, while the 3N × 3N matrix [Q∗] contains the non-
dimensional influence coefficients determined through the integration. Its structure
is block-diagonal, with three equal N × N submatrices [Q] and six null N × N
submatrices [0]:

[Q∗] =

⎡⎢⎣ [Q] [0] [0]
[0] [Q] [0]
[0] [0] [Q]

⎤⎥⎦ (2.71)

The computation of the terms of the submatrix [Q] provides the generic recursive
form [64]:

qa,b = 1
6 (N − b+ 1)2 (2N + b− 3a+ 2) (2.72)

where N is the number of the floors, while a and b are the position index of the
term qa,b.

By inverting the compliance matrix [C∗] we finally get the expression of the
stiffness matrix [K∗] of the thin-walled open-section shear walls:

[K∗] = E

L3 [Q∗]−1 [J∗] (2.73)
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2.2 – Thin-walled open-section shear walls

2.2.3 Capurso’s Method
The previous formulation was extended by Capurso [52] to consider the case of

M vertical cantilevers which represent the resistant skeleton of a tall building loaded
by transverse actions applied to the floors with reference to the global coordinate
system XY Z. The vertical bracings are connected to each other by means of in-
plane rigid slabs, whose out-of-plane rigidity can be considered negligible. The
unknown variables of the problem are the floor displacements, identified by the
translations ξ and η in the X and Y directions, respectively, and the torsional
rotation ϑ. Since {Fi} indicates the vector of the transverse actions transmitted to
the i-th cantilever, by virtue of Equation (2.46c) we have:

{Fi} = E [Ji]
{︂
δIV

}︂
(2.74)

where matrix [Ji] contains the moments of inertia referred to the centroid of the
section and to the sectorial centroid, whereas the vector

{︂
δIV

}︂
gathers the deriva-

tives of the fourth order of the floor displacements ξ, η, and ϑ. If {F} is the vector
of the external loads, the equilibrium condition imposes:

{F} =
M∑︂

i=1
{Fi} = E

(︄
M∑︂

i=1
[Ji]

)︄{︂
δIV

}︂
= E [J ]

{︂
δIV

}︂
(2.75)

Therefore, the combination of M cantilevers behaves as a single cantilever whose
matrix of inertia is given by the sum of the M matrices related to the single can-
tilevers:

[J ] =
M∑︂

i=1
[Ji] (2.76)

Equation (2.75) can be solved following the procedure previously described in
the case of a single vertical bracing. Once the floor displacements are known, the
displacements of each cantilever can be deduced and information regarding the
stress state can also be obtained. Finally, it is interesting to observe, from the
relation between the vector {Fi} of the i-th cantilever and the global vector {F},
that each bracing is subjected to an external load vector provided by the product of
its own inertia matrix by the inverse of the global one, analogously to what emerges
in the General Algorithm described in Chapter 3:

{Fi} = [Ji] [J ]−1 {F} (2.77)
In the case of a discrete distribution of transverse forces corresponding to the

different floors, the 3 × 3 matrix [J ], which is a function of the longitudinal co-
ordinate z, can be expanded to a 3N × 3N stiffness matrix to be inserted in the
General Algorithm.
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Finally it is possible know the normal stress based on the corresponding internal
actions substituting Equations (2.52) into Equation (2.27):

σz = Mx

Jxx

y − My

Jyy

x+ B

Jωω

ω (2.78)

The first two contributions derive from the well-known Saint Venant’s Theory
and are based on the hypothesis of plane sections; the third describes the normal
stresses due to the out-of-plane warping of the profile. An expression of the shearing
stresses τzs can be obtained substituting Equation (2.27) into Equation (2.38)

∂(τzsb)
∂s

+ Eb(ζ ′′ − ξ′′′x− η′′′y − ϑ′′′ω) = 0 (2.79)

and integrating with respect to s:

τzs = −E

b

[︄
ζ ′′A(s) − ξ′′′Sy(s) − η′′′Sx(s) − ϑ′′′Sω(s)

]︄
(2.80)

where the following geometrical expressions are used:

A(s) = b
∫︂ s

0
ds (2.81a)

Sy(s) = b
∫︂ s

0
xds (2.81b)

Sx(s) = b
∫︂ s

0
yds (2.81c)

Sω(s) = b
∫︂ s

0
ωds (2.81d)

The substitution of Equations (2.53) into Equation (2.80) gives an expression
for the shearing stresses

τzs = 1
b

[︄
Tx

Jyy

Sy(s) + Ty

Jxx

Sx(s) + MV L
z

Jωω

Sω(s)
]︄

(2.82)

The first two terms derive from Jourawski’s Theory, whereas the last from
Vlasov’s Theory.
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2.3 Plane frames
From a static point of view, a multi-storey plane frame is a many times hy-

perstatic structure, and as a result, using the traditional equilibrium techniques,
its resolution can be laborious and very long computational time. Also, wanting
to automate the calculation for implementation of the formulation in numerical
codes, it becomes fundamental to define a matrix method, limiting the subjective
intervention of the people. An iterative process was introduced by Cross in 1930
[88], [89] which can be used for resolution of frames in which the nodes rotate but
do not translate. This procedure had an internationally noteworthy response, al-
though Čališev [45], [46] announced that he had already proposed several years ago,
a very similar procedure, but as this work was written in the Croatian language, it
remained unknown to most of the international scientific community.

After the publication of the Cross Method, the focus was on the possibility of
solving frames whose nodes, in addition to rotating, are also able to translate.

L.E. Grinter first indicated the iterative solution [115]. In the following years
these procedures were further refined, including by introducing simplified assump-
tions [72], [104]. These calculation procedures, although providing accurate results,
are iterative, laborious and difficult to implement in a automatic calculation code.

In addition, for the purposes of proper structural analysis, the correct estimation
of the rigidity of the internal connections of the frame is of great importance [100],
[128].

With a view to determining the approximate expression of the stiffness matrix
of a plane frame, which will be implemented in an analytical calculation code that
allows preliminary analysis of the static and dynamic behavior of a high building,
it is necessary to consider a simplified model whose behavior provides comparable
results with those obtained by using rigorous formulations. In order to do this, the
following hypotheses are introduced:

• the frame has no flexural stiffness outside the plane containing it;

• the frame has no torsional stiffness;

• all nodes belonging to the j-th plane rotate of the same angle φj.

Consider the multi-storey plane frame, shown in Figure (2.10a), composed by
nc columns, of constant distance l clamped to the base, and N floors, each of hj

height, not necessarily constant for all storeys. A simplified literature method [204]
is explained, by means of which the frame is assimilated to a continuous equivalent
cantilever beam having flexural rigidity only in the plane that contains it, and
torsional elastic constraints at each floor, as shown in Figure (2.10b).

Considering only horizontal forces px at the floor level, the frame of Figure
(2.10a) assumes the deformed shape shown in Figure (2.11).
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(a) (b)

Figure 2.10: (a) Plane frame; (b) Continuous equivalent cantilever beam

Since each column of the frame has bending stiffness equal to:

kc = 12EcJc

h3
j

(2.83)

where Ec and Jc are the Young’s modulus and second moment of inertia of the
column, respectively, it is easy to determine that the stiffness of each portion of the
continuous equivalent beam has flexural stiffness equal to the sum of the stiffness
of the columns:

kc,eq =
nc∑︂
1
kc = nckc = nc

12EcJc

h3
j

(2.84)

Introducing the moment of inertia of the equivalent cantilever beam Jeq defined
as:

Jeq =
nc∑︂
1
Jc = ncJc (2.85)

and neglecting the stiffening effect of the beams, the 4×4 stiffness matrix of the j-th
portion between two consecutive floors of the equivalent cantilever can be written
in the form:
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2.3 – Plane frames

Figure 2.11: Deformed shape of the frame

Figure 2.12: Beam static diagram with imposed rotations φ

[kx,j] = EJeq

⎡⎢⎢⎢⎣
12/h3

j −12/h3
j −6/h2

j −6/h2
j

−12/h3
j 12/h3

j 6/h2
j 6/h2

j

−6/h2
j 6/h2

j 4/hj 2/hj

−6/hij
2 6/h2

j 2/hj 4/hj

⎤⎥⎥⎥⎦ (2.86)

This equation has a structure similar to Equation (2.7) obtained for shear walls.
Also in this case, considerations similar to the preceding ones apply, which make

it possible to identify the stiffness matrix of the entire frame can be achieved by
appropriately assembling the stiffness matrices relating to j-th floor, the following
relationship is obtained:

{︄
{px}
{0}

}︄
=
⎡⎣ [kxx]

[︂
kxφy

]︂[︂
kφyx

]︂ [︂
kφyφy

]︂ ⎤⎦{︄ {ξ}
{φy}

}︄
(2.87)
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By analogy with the calculation procedure shown for shear walls (Equations
2.10), the N ×N sub-matrices take a recursive form and can generally be written
as:

[kxx] = EJeq

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/h3
1 −1/h3

1 0 · · · 0
−1/h3

1 1/h3
1 + 1/h3

j −1/h3
j · · · 0

0 −1/h3
j 1/h3

j + 1/h3
j+1 · · · 0

... ... ... . . . ...
0 0 0 · · · 1/h3

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.88a)

[︂
kxφy

]︂
= EJeq

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1/h2
1 −1/h2

1 0 · · · 0
1/h2

1 1/h2
1 − 1/h2

j −1/h2
j · · · 0

0 1/h2
j 1/h2

j − 1/h2
j+1 · · · 0

... ... ... . . . ...
0 0 0 · · · 1/h2

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.88b)

[︂
kφyx

]︂
= EJeq

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1/h2
1 1/h2

1 0 · · · 0
−1/h2

1 1/h2
1 − 1/h2

j 1/h2
j · · · 0

0 −1/h2
j 1/h2

j − 1/h2
j+1 · · · 0

... ... ... . . . ...
0 0 0 · · · 1/h2

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.88c)

Considering that each beam has a bending stiffness equal to (Figure 2.12):

kb = 6EbJb

l3
(2.89)

where Eb and Jb are the Young’s modulus and second moment of inertia of the
beam, and that on each floor there are nc − 1 beams, and each beam has two ends
connected to the columns, the stiffness of each torsional constraint applied at each
floor is equal to:

kt,eq = 2
nc−1∑︂

1
kb = 2(nc − 1)6EbJb

l3
= (nc − 1)12EbJb

l3
(2.90)

This value shall be added to the terms present on the diagonal of the matrix[︂
kφyφy

]︂
(Equation 2.10d) which takes the form:

[︂
kφyφy

]︂
= EJeq

⎡⎢⎢⎢⎢⎣
4/h1 + kt,eq 2/h1 · · · 0

2/h1 4/h1 + 4/hj + kt,eq · · · 0
... ... . . . ...
0 0 · · · 4/hN + kt,eq

⎤⎥⎥⎥⎥⎦ (2.91)
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Replacing Equations (2.88a, 2.88b, 2.88c, and 2.91) in Equation (2.87), by anal-
ogy to the procedure shown for the shear walls (Equations 2.11 and 2.12), the
condensed shape of the N ×N stiffness matrix in x-direction is obtained:

[Kx] =
⎡⎣[kxx] −

[︂
kxφy

]︂ (︃[︂
kφyφy

]︂−1 [︂
kφyx

]︂)︃⎤⎦ (2.92)

Eventually, considering that the frame has no stiffness outside the plane that
contains it and that it has no torsional stiffness, means the whole element stiffness
matrix (3N × 3N) expressed in the local reference system, shall take the following
form:

[K∗] =

⎡⎢⎣ [Kx] 0 0
0 0 0
0 0 0

⎤⎥⎦ (2.93)

2.3.1 Braced frames
Since there are diagonal braces in the frame (Figure 2.13a), the method illus-

trated in the previous section can still be used with the foresight to add, at level of
each floor, additional effective elastic constraints in the equivalent cantilever beam
[47], as shown in Figure (2.13b).

By analyzing a single braced module of the frame in which the diagonal bar is
present (Figure 2.14), neglecting the effect of the compressed rod, it is possible to
determine the normal force Nd in it:

Nd = kdδd = EdAd√
l2 + h2

δd =
(︄

EdAd√
l2 + h2

)︄
δxcosα (2.94)

where kd, Ed, and Ad are the axial stiffness, Young’s modulus, and cross section
area of the rod, respectively.

By projecting this force on the horizontal plane, we obtain:

px,d = Ndcosα =
(︄

EdAd√
l2 + h2

)︄
δxcos2α = kx,dδx (2.95)

where kx,d indicates a fictitious stiffness in x-direction due to the presence of the
diagonal brace. This term, evaluated for each braced module of the frame in which
the diagonal rod is present, shall be added to the terms present on the diagonal of
the sub-matrix [kxx] described in Equation (2.88a):
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(a) (b)

Figure 2.13: (a) Braced frame; (b) Continuous equivalent cantilever beam

(a) (b)

Figure 2.14: (a) Geometry of the single braced module of the frame; (b) Deformed
shape

[kxx] = EJeq

⎡⎢⎢⎢⎢⎣
1/h3

1 + nbkx,d −1/h3
1 · · · 0

−1/h3
1 1/h3

1 + 1/h3
j + nbkx,d · · · 0

... ... . . . ...
0 0 · · · 1/h3

N + nbkx,d

⎤⎥⎥⎥⎥⎦ (2.96)
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where nb indicates the number of the braced module per each floor.
Then, by proceeding as described in the previous section, the condensed form

of N ×N stiffness matrix in x-direction is obtained.

[Kx] =
⎡⎣[kxx] −

[︂
kxφy

]︂ (︃[︂
kφyφy

]︂−1 [︂
kφyx

]︂)︃⎤⎦ (2.97)

where the matrix
[︂
kxφy

]︂
,
[︂
kφyx

]︂
, and

[︂
kφyφy

]︂
can be evaluated with Equations

(2.88b, 2.88c, and 2.91).
Eventually, considering that also in this case the frame has no stiffness outside

the plane that contains it and that it has no torsional stiffness, means the whole
element stiffness matrix (3N × 3N) expressed in the local reference system, shall
take the following form:

[K∗] =

⎡⎢⎣ [Kx] 0 0
0 0 0
0 0 0

⎤⎥⎦ (2.98)

2.4 Framed tube
The structural behavior of a high-rise building towards the horizontal actions

in the first approximation is like that of a cantilever beam clamped at the base.
The bending moment induces tensile forces in the windward frames and com-

pressive forces in the downwind frames with respect to the direction of the horizon-
tal actions. Analyzing the theoretical distribution of axial stress in the columns of
the frame, we observe a non-linear stress distribution with a significant increase in
correspondence of the columns placed in the corners and a reduction in correspon-
dence of the central zones of the respective sides, as shown in Figure (2.15). This
singularity is called shear lag effect.

In the first half of the 1940s, the importance of this problem is understood,
especially with regard to the components of airplane structures [148], [149], [213],
[214], which were getting bigger and heavier in those years. The first applications
in the field of civil engineering took place in the 1960s, for the design of box girder
bridges [1], [246]. In particular, the work of Malcolm [170], convergent series ex-
pressions are used to represent the longitudinal and shear stresses in the flange. In
the 1960s, the concept of an equivalent continuous elastic model was introduced by
Rosman to study the shear walls provided with openings [219], [220], [222].

In 1973, Bažant and Christensen [21] modelled the rigid nodes frames of a high-
rise building with an equivalent continuous system. This technique involved a series
of different equations that were solved with the Finite Difference Method, obtaining
with a good approximation.
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Figure 2.15: Distribution of axial stresses in the column of the framed tube building
[187]

In 1974 Chan et al. [66] proposed a method to evaluate the stress intensification
due to the shear lag effects in buildings composed of frames and shear walls rigidly
connected to each other.

In those same years Coull et al. [75], [76], [77], [87], developed a formulation
for analyzing framed tube that consists of modelling the frames using equivalent
orthotropic membranes with equivalent mechanical characteristics. In this way they
determined that the course of axial forces in the columns was approximate with
cubic and parabolic functions. The concept of equivalent orthotropic membranes
for modelling frames was also used by other authors, including which we cite the
works of Khan [137], [138] and Ha [117]. The latter further developed this concept
by introducing an orthotropic membrane having equivalent elastic properties by
which it was possible to describe the deformations of the frame elements and the
deformations of the beam-column joints. This approach is more refined than the
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others, although the calculation burden becomes significant.
In the 1980s Foutch and Chang [102], and Chang and Zheng [67] observed that

the distribution of normal forces on the upper floors of tubular structures shows an
increase in the central pillars of the frames. They called this singularity negative
shear lag.

In the following years many authors proposed more or less simple models to
analyze the framed tubes, some based on the concept of equivalent membrane
proposing different procedures to calculate the equivalent characteristics, such as
the technique proposed by Kwan [150], which can be seen as the simplification of
the method by Ha. Like these procedures is the formulation proposed by Connor
and Poungare [74] in which the structure is modeled as a series of stringers and
shear panels. Other authors proposed analytical methods based, for example, on
Airy Stress Functions [118], or semi-analytically using shape functions to describe
the shear lag [167].

Developments in these analytical models have been used to study framed tube
structures and outrigger [158], [209], [210], or tube-in-tube structures [159].

The analytical formulation presented in this work was developed by Nitti [187]
and is based on the Taylor series expansion method of shear stress [204]. The
originality of the formulation is to model the frames as equivalent cantilever beams,
whose geometrical and mechanical characteristics are obtained using appropriate
simplified assumptions. By using this procedure it is possible to analyze buildings
with frames orthogonal to each other or with a polygonal floor plan, thus making
the spectrum of use of this analytical calculation methodology very broad.

2.4.1 Definition of the cantilever beam equivalent to the
frame

A plane frame subject to a system of lateral forces contained in its own plane,
in first approximation, is a perforated wall. Experimentally it can be noted that if
distance between the columns of the frame is sufficiently small if compared to floor
height, the deformation of the structure will tend to that of a cantilever beam. If
we consider a frame having these characteristics, which is common in a high-rise
framed tube buildings, we can isolate a basic module whose width is equal to the
distance between the columns, while the height is equal to the interstorey, as shown
in Figure (2.16).

Extrapolating the basic module from the frame, it is necessary to introduce
appropriate constraints and, wishing to study relative displacements with respect
to a local system; hinges are inserted at the ends because the presence of inflection
points of the elastic line of the entire frame is assumed, as shown in Figure (2.17).

The concentrated load Q equivalent to the external distribuited load acting on
the portion of the frame under examination, is applied to the system thus defined.
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Figure 2.16: Geometry of the basic module [187]

Lateral displacement ∆ is considered as the sum of the contribution due to the
bending ∆b, and shear forces ∆v in the rods, respectively, and the contribution due
to shear deformability of the beam-column joint, indicated by ∆vj.

With reference to the static scheme shown in Figure (2.17), the displacements
∆b, ∆v, and ∆vj can be evaluated by applying the Principle of Virtual Work,
considering flexural and shearing deformability.

Applying the Superposition Principle,

∆ = ∆b + ∆v + ∆vj (2.99)
where the horizontal displacement due to the bending moment is equal to:

∆b = Q

[︄
(h− db)3

12EIc

+ h2

s2
(s− dc)3

12EIb

]︄
(2.100)

the frame displacement due to the shear force is equal to:

∆v = Q

[︄
(h− db)
GAsc

+ h2

s2
(s− dc)
GAsb

]︄
(2.101)

while the horizontal displacement contribution due to the deformability of the
beam-column joint may be written as follows:
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(a) (b)

Figure 2.17: (a) Geometry of basic module under lateral force Q; (b) Elastic line
of the basic module [187]

∆vj = Qh2

GAsjdb

(︄
db

h
+ dc

s
− 1

)︄2

(2.102)

where Asc and Asb are the shear area of beams and columns, respectively, while
Asj indicates the area of the joint defined as the product dc by db. For the details,
reference is made to [187].

Introducing an elastic membrane having dimensions equal to the height and
width of the basic module, if subject to the same load, it is required to have the
same ∆ horizontal displacement (Figure 2.18).

Assuming, as permissible, that this membrane presents only shear deformability,
it can be written that:

∆ = Qh

GxyAm

(2.103)

where Gxy is the shear elastic modulus of the membrane and Am is the area of its
cross section defined as:

Am = ts (2.104)
Considering that the elastic modulus E of the membrane is the same as that of

the frames, for congruence of deformations it must be imposed that the area of the
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(a) (b)

Figure 2.18: (a) Elastic line of the basic module Q; (b) Deformed shape of the
equivalent membrane [187]

membrane is equal to the area of the column Ac, consequently it is determined the
thickness of the membrane equivalent to the frame teq:

teq = Ac

s
(2.105)

By replacing the equations and performing some simple mathematical steps, it
is possible to determine the coefficient CG defined as:

CG = (h− db)3

12hIc

+ h

s2
(s− dc)3

12Ib

+

+ E

G

⎡⎣h− db

hAsc

+ h

s2
(s− dc)
Asb

+ h

Asjdb

(︄
db

h
− 1 + dc

s

)︄2
⎤⎦ (2.106)

by means of which it is possible to calculate the shear elastic modulus of the mem-
brane, formally expressed as:

Gxy = E

CGteqs
(2.107)

Finally, considering that as whole tall buildings are being analyzed, it is intrin-
sic in the problem that the height of the frame prevails with respect to the width,
consequently the two-dimensional effect of the membrane can be neglected by mak-
ing it behave like a cantilever beam whose equivalent shear elastic modulus shall
be equal to:
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2.4 – Framed tube

Geq = Gxy = E

CGteqs
(2.108)

It has thus been shown that this type of frame can be modelled like a equivalent
cantilever beam having its same height and width, but with thickness as defined in
Equation (2.105). However, regards the mechanical characteristics, the equivalent
beam has the same Young’s modulus as frame (assumed to be the same for beams
and columns) while shear elastic modulus has been defined in Equation (2.108).

2.4.2 Analytical model of the framed tube
The analytical formulation is based on the fundamental hypotheses:

• the material of the beams and columns is isotropic, linear elastic and homoge-
nous;

• the columns and beams are mutually constrained;

• the frames are externally constrained by fixed-joints;

• the frames are connected along the edges of the structures;

• the storeys have the same height throughout the entire structure;

• the frames have null stiffness outside own plane.

Consider a building of N rectangular floor plan, as shown in Figure (2.19), the
force-displacement relationship can be defined as follows:⎧⎪⎨⎪⎩

{Fx}
{Fy}
{mz}

⎫⎪⎬⎪⎭ =

⎡⎢⎣[Kx] 0 0
0 [Ky] 0
0 0 [Kϑ]

⎤⎥⎦
⎧⎪⎨⎪⎩

{ξ}
{η}
{ϑ}

⎫⎪⎬⎪⎭ (2.109)

where the terms {Fx}, {Fy}, and {mz} represent the N × 1 vectors containing the
generalized floor forces, [Kx], [Ky], and [Kϑ] represent the N ×N stiffness matrices
in the direction of referred to, while {ξ}, {η}, and {ϑ} represent the N × 1 vectors
containing the generalized floor displacements.

To determine the individual terms of the submatrices stiffness [Kx] and [Ky], the
Betti’s Theorem is used, that is, the unitary concentrated forces acting in the two
main directions are applied to the structure, and the transverse floor displacements
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Figure 2.19: Floor plan of the building with distributions of axial displacements in
the columns [187]

are evaluated. Rewriting everything in matrix form, the compliance matrices [Cx]
and [Cy] with respect to x and y directions respectivey, will be obtained:

[Cx] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vxN,N
vxN−1,N

vxN−2,N
· · · vx1,N

vxN,N−1 vxN−1,N−1 vxN−2,N−1 · · · vx1,N−1

vxN,N−2 vxN−1,N−2 vxN−2,N−2 · · · vx1,N−2... ... ... . . . ...
vxN,1 vxN−1,1 vxN−2,1 · · · vx1,1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.110a)

[Cy] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vyN,N
vyN−1,N

vyN−2,N
· · · vy1,N

vyN,N−1 vyN−1,N−1 vyN−2,N−1 · · · vy1,N−1

vyN,N−2 vyN−1,N−2 vyN−2,N−2 · · · vy1,N−2... ... ... . . . ...
vyN,1 vyN−1,1 vyN−2,1 · · · vy1,1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.110b)

where the generic terms vxi,j
and vyi,j

indicate the transverse displacement (in x
and y directions respectively) in correspondence of the j-th floor resulting from the
application of a unitary concentrated force to i-th floor.
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2.4 – Framed tube

By definition, the stiffness sub-matrices [Kx] and [Ky] are evaluated:

[Kx] = [Cx]−1 (2.111a)
[Ky] = [Cy]−1 (2.111b)

Regarding the determination of the stiffness matrix [Kϑ], by definition, can be
written as:

[Kϑ] = 2
(︂
[K∗

x] b2 +
[︂
K∗

y

]︂
a2
)︂

(2.112)

where the terms [K∗
x] and

[︂
K∗

y

]︂
indicate the flexural stiffness of each frame devel-

oped in x and y directions, respectively. These last two terms are relative to the
transverse displacements induced by the torsional moment and shall not be con-
fused with terms relating to transverse displacements induced by horizontal loads
(Equations 2.111). The transverse displacements in the direction of application of
the load, separated in the quota-part due to the bending (vM) and in the quota-part
due to shear deformability (vT ), are evaluated with the following equations:

vM = 2
HM

N∑︂
n=1

{︄
Cn,M cosh

(︃
αna

k

)︃ [︄
−cos (αnz)

αn

]︄
+ Cn,M

αn

cosh
(︃
αna

k

)︃}︄
(2.113a)

vT = 2
HM

N∑︂
n=1

{︄
Cn,T cosh

(︃
αna

k

)︃ [︄
−cos (αnz)

αn

]︄
+ Cn,T

αn

cosh
(︃
αna

k

)︃}︄
(2.113b)

where HM is the length of frame parallel to the load direction, and αn is a parameter
that holds nπ/2H (with n = 1,2,3, ...).

The geometric parameter k is defined as follows:

k =
√︄

12I
hAcs

(2.114)

where s is distance between the columns.
The coefficients Cn,M and Cn,T are defined as follows:

Cn,M = Tn,MHM,eq

2EIM,eq

[︄
α2

n cosh
(︃
αna

k

)︃
+
H2

M,eq12I
2IM,eqhs2

αn

k
sinh

(︃
αna

k

)︃]︄−1

(2.115a)

Cn,T = Tn,THM,eq

2EIM,eq

[︄
α2

n cosh
(︃
αna

k

)︃
+
H2

M,eq12I
2IM,eqhs2

αn

k
sinh

(︃
αna

k

)︃]︄−1

(2.115b)

where HM,eq is the lenght of the frames parallel to the load direction, while IM,eq is
the moment of inertia of the cross section of the cantilever beam equivalent to the
frame parallel to the load, defined as:
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IM,eq = 1
12H

3
M,eqteq (2.116)

The terms Tn,M and Tn,T derive from the Fourier series expansion of the shear
stress, which evaluated for a concentrated load applied to the Hmax level with
respect to the base of the building. They can be rewritten in the following form:

Tn,M = P
[︃ 4
nπ

(︃
1 − cos

(︃
nπ

2HHmax

)︃)︃]︃
(2.117a)

Tn,T = P ∗
[︃ 4
nπ

(︃
1 − cos

(︃
nπ

2HHmax

)︃)︃]︃
(2.117b)

where P indicates the intensity of the real concentrated horizontal load applied to
each floor level of the structure, while P ∗ is the concentrated horizontal load that
provides the contribution of flexural displacement equal to the contribution of shear
deformability due to P , and is defined as:

P ∗
(z) = P

EIeq

GeqAs,eq

[︃(︃
H

2 − z

6

)︃
z
]︃−1

(2.118)

Given the N coefficients Cn,x = Cn,M +Cn,T , evaluated for the frame orthogonal
to the load direction (Equations 2.115a and 2.115b), it is possible to evaluate the
axial displacements at the generic height z, depending on the floor plan position of
the column under consideration:

w(x,z) =
N∑︂

n=1
Cn,x cosh

(︃
αnx

k

)︃
sin (αnz) (2.119)

while the axial displacements of the frame parallel to the load direction are described
by the following antisymmetric function:

w(y,z) =
∞∑︂

n=1
Cn,y sinh

(︃
αny

k

)︃
sin (αnz) (2.120)

Imposing the congruence of the axial displacements along the edge of the struc-
ture, that is:

w(x=a) = w(y=b) (2.121)
the coefficients Cn,y are equal to:

Cn,y =
Cn,x cosh

(︂
αna
kx

)︂
sinh

(︂
αnb
ky

)︂ (2.122)

where the terms kx and ky are the constants calculated by Equation (2.114) evalu-
ated for the frame in x-direction and for the frame in y-direction, respectively.
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2.4 – Framed tube

Finally, it is possible to evaluate the normal stresses in the continuous equivalent
membrane by means of the following relation:

n = s1E
N∑︂

n=1
Cn,y sinh

(︃
αny

k

)︃
αn cos (αnz) (2.123)

Figure 2.20: Distributions of axial forces in the columns [187]

Given the axial stress distributions, it is possible to determine the axial stresses
acting on the internal columns of the frames, evaluates as:

Nx(z) = n(x=xp,z)∆ax (2.124a)
Ny(z) = n(y=yp,z)∆ay (2.124b)

while for the columns located in the corners of the structure, the axial stress is
assessed as:

Nc(z) = n(x=a,z)
∆ax

2 + n(y=b,z)
∆ay

2 (2.125)

Until now, a structure subject only to horizontal loads has been analyzed, but
in the field of construction, a building can also be subject to torque moments
(Figure 2.21a), for example, in the case where the center of the stiffness does not
coincide with the center of the floor masses (where seismic forces are applied),
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making it necessary to determine a further unknown factor of the problem, that
is, the rigid plane rotations must be calculated. To do this it is necessary to
introduce an additional calculation model in which the torsional moment mz is
subdivide into four equal equivalent forces, later indicated with Fmz ,x and Fmz ,y,
acting simultaneously on the construction, as shown in Figure (2.21b). In doing so,
a geometrically symmetrical structure is obtained, but loaded in an antisymmetric
manner.

(a) (b)

Figure 2.21: (a) Actual torsional moment; (b) Four equal equivalent forces [187]

To evaluate the floor displacements, the same calculation philosophy already
illustrated is used, but in this case all the frames with the same antisymmetric load
condition, consequently the axial displacements are defined as:

w(xL,z) =
∞∑︂

n=1
Fn (xL) sin (αnz) (2.126)

where with xL the axis of the local reference system direct along the development
of each frame, is indicated, while the function Fn is formally defined as:

Fn(xL) = C1ne
αnxL

k + C2ne
− αnxL

k (2.127)
Since the frame is loaded in an antisymmetric way, the structural response in

terms of displacement must also be antisymmetric, therefore it is evident that the
function Fn(xL) must be antisymmetric:

Fn (xL) = Cn sinh
(︃
αnxL

k

)︃
(2.128)

Replacing Equation (2.128) in Equation (2.126), gives:
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w(xL,z) =
∞∑︂

n=1
Cn sinh

(︃
αnxL

k

)︃
sin (αnz) (2.129)

Eventually, after calculating the Cn coefficients relative to each frame (defined
with Cn,x and Cn,y), the transverse displacements of the floor are evaluated:

vx=a = 2
2b

∞∑︂
n=1

{︃
Cn,x sinh

(︃
αna

kx

)︃ [︃
− 1
αn

cos (αnz)
]︃

+ Cn,x sinh
(︃
αna

kx

)︃ 1
αn

}︃
(2.130)

In constructive reality, design buildings consisting only from four sides is an
understatement as well as being highly influential from an architectural point of
view, which is why over the years many buildings have been designed with a more
or less regular polygonal floor plan. The calculation method presented in this
section can also be extended to buildings with a non-rectangular floor plan, with
the foresight to analyze the forces acting on each frame after appropriately breaking
down the loads. Finally, by the Superposition Principle, the displacements and
stresses are determined at each point of the structure.

2.5 Diagrid structures
Diagrid systems have been widely exploited in the last few decades because

of their efficacy in resisting lateral forces, minimizing lateral displacements, and
their suitability to realize complex-shaped structures allowing to achieve remarkable
architectural effects [15]. The resisting mechanism is based on the axial forces
in diagonal members, which are able to carry both lateral actions and vertical
loads, thus leading to the uselessness of conventional vertical columns. Plenty of
research has been conducted in the last ten years investigating diagrid behavior
and characteristics. For example, Moon et al. [184], [185] proposed a simplified
analytical methodology for the preliminary design of diagrid tube structures. Zhang
et al. [281] generalized Moon’s approach for the case of diagrid tubes composed of
straight diagonals with gradually varying angles, whereas Mele et al. [174] proposed
an hand-calculation methodology to investigate real case studies. More recently,
Liu and Ma [164] made use of a modular procedure to evaluate the shear and
bending stiffness for arbitrary polygonal diagrid tube structures, while Lacidogna
et al. [153] developed a matrix-based method to perform the structural analysis
of generic diagrid structures, providing information not only regarding the shear
and bending behavior but also the torsional flexibility. In the literature it was also
shown that diagrid structures are suitable for optimization procedures if changing
geometrical parameters, such as the inclination of external diagonals [15], [185]. For
example, Montuori et al. [183] performed Finite Element (FE) analyses in order
to investigate the effect of different geometrical patterns (regular, variable angle
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and variable density pattern) on the structural performance. FE calculations with
similar aims were also carried out by Angelucci and Mollaioli [10], [11], [12], and
Tomei et al. [253].

Finally, the structural analysis of an external diagrid system coupled with in-
ternal shear walls is carried by Lacidogna et al. [152]. In this work the structural
behavior is investigated under both lateral forces and torque moments distributed
along the height of the building. Different inclinations of the external diagonals
are also considered, in order to explore the effect of this geometrical parameter
on the lateral and torsional flexibility. Furthermore, the effect of the shear wall
type, i.e. closed- or open-section, is investigated on the structural response, and a
description of a multi-parameter approach, is presented, which allows to take into
account variable inclinations of the external diagonals and considers a large set of
possible geometrical patterns.

The method proposed by Lacidogna et al. [153] will be briefly explained in this
work as it has allowed the direct calculation of the diagrid stiffness matrix.

Figure 2.22: Plane diagrid structure

Consider a plane diagrid structure composed by N storeys, as shown in Figure
(2.22). Since the system presents only 1 degree of freedom, that is the horizontal
displacement of each floor in x-direction (ξ), the force-displacement relationship
can be written as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

px,1
px,2
px,j

...
px,N

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

kx1,1 kx2,1 kxj,1 · · · kxN,1

kx1,2 kx2,2 kxj,2 · · · kxN,2

kx1,j
kx2,j

kxj,j
· · · kxN,j... ... ... . . . ...

kx1,N
kx2,N

kxj,N
· · · kxN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ξ1
ξ2
ξj
...
ξN

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.131)

or in compact form:

{px} = [Kx]{ξ} (2.132)
The corresponding coefficient ki,j of the N ×N stiffness matrix [Kx] is obtained

by imposing a horizontal unitary displacement to the j-th floor, keeping fixed all
other floors, and calculating the total force that is generated in all the other i-th
storeys of the structure. Obviously, as the diagrid can be assimilated to a truss
structure, this force is affected by the axial deformation of the diagonal rods δd.

Figure 2.23: Imposed deformation δx of the j-th floor

Considering the generic m-th diagonal rod whose upper end is connected to the
j-th floor to which the horizontal displacement ξj equal for all the rods because the
floors are considered infinitely rigid, as shown in Figure (2.23), its axial elongation
is equal to:

δd,m = ξj
Lm

Ld,m

(2.133)

where Lm = lm/2 and Ld,m is the actual length of the m-th diagonal rod. Since,
by definition, a unitary horizontal displacement is imposed, the axial force in the
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m-th rod is:

Fd,m = Ed,mAd,m

Ld,m

δd,m = Ed,mAd,m

Ld,m
2 Lmξj (2.134)

where Ed,m and Ad,m indicate the normal elastic modulus and the area of the m-th
diagonal rod, respectively. Projecting the axial stress Fd,m along the horizontal
direction, the stiffness of the m-th diagonal rod in the x-direction is obtained:

Fx,m = Fd,m
Lm

Ld,m

= Ed,mAd,m

Ld,m
3 Lm

2ξj = kx,mξj (2.135)

Considering all M diagonal rods that converge in the j-th floor, the generic
term ki,j of the stiffness matrix of the diagrid is obtained.

ki,j =
M∑︂

m=1
kx,m =

M∑︂
m=1

Ed,mAd,m

Ld,m
3 Lm

2 (2.136)

Proceeding in this way assembles the stiffness matrix of the entire structure
[Kx].

Noted this stiffness matrix, and known the vector of horizontal loads applied to
each floor {Fx}, the vector of transversal displacement {ξ} of each floor is obtained:

{ξ} = [Kx]−1{px} (2.137)
Given the displacements of the j-th floor due to external load, the normal forces

in each diagonal rod, which is a function of the drift ξj − ξj−1, are obtained:

Nd,m = Ed,mAd,m

Ld,m
3 L2(ξj − ξj−1) (2.138)

Following the same procedure, the contribution of rigid-rotation outside the
floors can also be considered. In this case the structure has 2 degrees of freedom,
and, to calculate the stiffness coefficients, it will be necessary to apply unitary
rotations to the j-th floor and evaluate the reactive moments in i-th floors. This
method provides more accurate results than the 1-DOF system, because it is also
considered the component of vertical deformation of the diagonal rod, as shown in
Figure (2.24).

The same procedure can also be applied to 3D diagrid systems, considering both
a model a 3-DOF per floor (two translations in x and y directions, respectively, and
rotation around the z axis), than at 6-DOF per floor. The latter model is the most
complete (but also the most complex) and considers three displacements (ξ, η, and
ζ) and three rotations with respect to x, y, and z axes (φx, φy, and ϑ).

Under these assumptions, the force-displacement relationship can be written as:
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Figure 2.24: Imposed floor rotation φ of the j-th floor

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{px}
{py}
{pz}
{mx}
{my}
{mz}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Kxx] [Kyx] [Kzx] [Kφxx]
[︂
Kφyx

]︂
[Kϑx]

[Kxy] [Kyy] [Kzy] [Kφxy]
[︂
Kφyy

]︂
[Kϑy]

[Kxz] [Kyz] [Kzz] [Kφxz]
[︂
Kφyz

]︂
[Kϑz]

[Kxφx ] [Kyφx ] [Kzφx ] [Kφxφx ]
[︂
Kφyφx

]︂
[Kϑφx ][︂

Kxφy

]︂ [︂
Kyφy

]︂ [︂
Kzφy

]︂ [︂
Kφxφy

]︂ [︂
Kφyφy

]︂ [︂
Kϑφy

]︂
[Kxϑ] [Kyϑ] [Kzϑ] [Kφxϑ]

[︂
Kφyϑ

]︂
[Kϑϑ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ξ}
{η}
{ζ}

{φx}
{φy}
{ϑ}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.139)

or in compact form:

{F} = [K]{δ} (2.140)
where {px}, {py}, and {pz} are the N -vectors containing respectively the floor

forces in x, y, and z directions; {mx} and {my} represents the N -vectors containing
the bending moments with respect to the x and y axes; while {mz} is the N -vector
containing the floor torsional moment with respect z axis. As for the floors dis-
placements, {ξ}, {η}, and {ζ} are the N -vectors containing the displacements along
x, y, and z axes respectively; {φx} and {φy} represent the N -vector containing the
out-of-plane floor rotations with respect to x and y axes respectively, while {ϑ} is
the floor rotations with respect to the vertical axis z.
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2.6 Numerical examples
In order to confirm the validity of the analytical formulations previously illus-

trated, in this section some simple numerical examples are shown. In each example,
only one type of vertical resistant element is taken into account, whose geometrical
and mechanical characteristics are listed in figures and tables. Fixed the magnitude
of the horizontal external load {F ∗} acting in the origin of the local reference sys-
tem, and considering the stiffness matrix [K∗] is assembled as shown in the previous
sections, the vector {δ∗} containing the displacements of the local reference system
origin of the bracing is evaluated using the following relationship:

{δ∗} = [K∗]−1{F ∗} (2.141)
Finally, the numerical results obtained using the analytical approach are com-

pared with those obtained using commercial FEM software.

2.6.1 Shear wall
In this example the 60 meter-high shear wall shown in Figure (2.25) is con-

sidered, whose geometrical and mechanical characteristics are synthesized in Table
2.1. Since the element has a double symmetry floor plan and the load is applied
in its centre of gravity, only x-direction transversal displacements are obtained, as
shown in Figure (2.26).

Figure 2.25: Rectangular shear wall floor plan

Table 2.1: Geometrical and mechanical characteristics of the shear wall

Number of storeys 15 -
Floor height 4 m

Normal elastic modulus 3 × 107 kN/m2

Load px 100 kN/floor

As can be seen from Figure (2.26), the maximum difference between the ana-
lytical model and the FEM model is 2.6%.
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Figure 2.26: Rectangular shear wall transversal displacements

2.6.2 Thin-walled open-section shear wall
In this example the 60 meter-high thin-walled open-section shear wall shown in

Figure (2.27) is considered, whose geometrical and mechanical characteristics are
synthesized in Table 2.2.

Table 2.2: Geometrical and mechanical characteristics of the thin-walled open-
section shear wall

Number of storeys 15 -
Floor height 4 m

Centre of gravity position (0.00 , 0.00) m
Shear centre position (0.00 , 3.81) m

Normal elastic modulus 3 × 107 kN/m2

Load px 100 kN/floor

As it is well known, since the load {F ∗} is not applied in the shear centre of the
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Figure 2.27: Thin-walled open-section shear wall floor plan

(a) (b)

Figure 2.28: Thin-walled open-section shear wall. (a) Transversal displacements;
(b) Floor rotations

element, in addition to the x-direction transverse displacements, floor rotations ϑ
are also generated as shown in Figures (2.28).

As it can be seen from Figure (2.28), the maximum differences between the
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analytical model and the FEM model are -0.43% and -1.44% for transverse dis-
placements and floor rotations respectively.

2.6.3 Plane frame
In this example the 60 meter-high plane frame shown in Figure (2.29) is con-

sidered, whose geometrical and mechanical characteristics are synthesized in Table
2.3.

Table 2.3: Geometrical and mechanical characteristics of the plane frame

Number of storeys 15 -
Floor height 4 m

Distance between the columns 4 m
Columns sizes 0.5 × 0.5 m
Beams sizes 0.5 × 0.8 m

Normal elastic modulus 3 × 107 kN/m2

Load px 100 kN/floor

Figure 2.29: Plane frame front view

As shown in Figure (2.30) the maximum difference between the displacements
obtained using the analytical formulation and those obtained using commercial
FEM software is 4.7%.
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Figure 2.30: Plane frame transversal displacements

2.6.4 Braced frame
Let’s consider now the same frame described in the previous section, with the

addition of two diagonal rods for each storey as depicted in Figure (2.31). Each
diagonal bar has the normal elastic modulus and cross section equal to 2.1 × 108

kN/m2 and 7.85 × 10−2 m2 respectively.
As shown in Figure (2.32), the maximum difference between the transversal

displacements obtained using the analytical model and those obtained using the
FEM software is 2.9%. These results do not change with respect to the position
of the diagonal bars in the floor. In addition, comparing these values with those
obtained by the model without the diagonal rods (Figure 2.30), it can be seen that
by bracing the frame, the maximum transverse displacements are halved.
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Figure 2.31: Braced frame front view

Figure 2.32: Braced frame transversal displacements
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2.6.5 Framed tube
In this example a 120 meter-high framed tube structure shown in Figure (2.33)

is considered, whose geometrical and mechanical characteristics are synthesized
in Table 2.4. As depicted in Figure (2.34) the maximum difference between the
displacements obtained using the analytical formulation and those obtained using
commercial FEM software is 7.7%, but unlike previous cases, this value occurs
about at the mid-height of the building and not at the top.

Table 2.4: Geometrical and mechanical characteristics of the framed tube structure

Number of storeys 40 -
Floor height 3 m

Distance between the columns 2 m
Columns sizes 0.5 × 0.5 m
Beams sizes 0.5 × 0.5 m

Normal elastic modulus 2 × 107 kN/m2

Load px 100 kN/floor

(a) (b)

Figure 2.33: Framed tube structure. (a) Front view; (b) Floor plan
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Figure 2.34: Framed tube transversal displacements

As illustrated in Section 2.4, since the main property of this type of structures is
the shear lag effect, Figure (2.35) shows the intensity of the axial forces evaluated at
the frame columns base section, where the non-linear trend of the normal stress can
be appreciated. As can be seen, the columns belonging to frame 1 are all strained
(Figure 2.35a) while, the columns belonging to frame 2 are all compressed (Figure
2.35b). In addition, it can be noted that the normal stress in the corner columns
is more than three times higher with respect to the central frame columns. Figure
(2.35c) is showing instead the trend of the normal stress in the columns belonging
to frames 3 and 4. Also in this case the non-linear trend of the normal stress in the
column is quite clear, and it can be seen that the central column is unloaded.

The maximum difference between the axial forces obtained using the analytical
formulation and those obtained using commercial FEM software is 6.9%.
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(a)

(b)

(c)

Figure 2.35: Normal stress at the base section of the columns. (a) Frame 1; (b)
Frame 2; (c) Frames 3 and 4
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The normal stress trend evaluated, as a function of the building height, in the
corner column of frame 1 is shown in Figure (2.36). Also in this case the non-linear
trend is clearly shown. Finally, it should be noted that from the bottom section and
up to 2/3 of the entire height, the normal stress in the column is positive (tensile
strength), while for the remaining part the column it is compressed.

This is attributable to the shear forces transmitted by the frames along the edge
of the building. This effect contributes significantly to reducing the transversal
displacements of the structure.

Figure 2.36: Normal stress in the corner column

85



Stiffness matrix for the most common types of vertical bracings

2.6.6 Diagrid structure
In this example a 160 meter-high 3D diagrid structure shown in Figure (2.37)

is considered, whose geometrical and mechanical characteristics are illustrated in
Table 2.5.

Table 2.5: Geometrical and mechanical characteristics of the diagrid structure

Number of storeys 40 -
Floor height 4 m

diagonal rod cross section 0.1 m2

Normal elastic modulus 2.1 × 108 kN/m2

Load px 100 kN/floor

(a)
(b)

Figure 2.37: Diagrid structure. (a) Front view; (b) Floor plan

As shown in Figure (2.38), the transverse displacements obtained using the
analytical model with 3-DOF per floor and those obtained using the FEM software
are almost overlapping.
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Figure 2.38: Diagrid structure transversal displacements

This result is obtained because, using both the analytical formulation and the
finite element method, the structure is analyzed as a three-dimensional truss beam,
namely in both models only the axial stiffness of the diagonal bars is considered.

Moreover, in both models the rods are hinged to each other.
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Chapter 3

Static analysis

3.1 Analytical methods
The design of a high-rise building is a long and complex process that aims to

define a structural system compatible with architectural restraints which is also, at
the same time, capable of safely bearing gravitational and lateral loads [279].

Furthermore, the designer must respect strict regulations regarding lateral dis-
placements and vibration control in order to ensure comfort to the occupants. To
achieve these goals the design includes several stages: the conceptual stage, the pre-
liminary design and finally the optimization and drafting of the executive project.

In the first phase the designer chooses the structural shape and the type of re-
sistant elements to be used to ascertain horizontal actions. This phase is followed
by the analysis of the actions that act on the building and the general dimensioning
of the structures following the current technical regulations. Finally, in the opti-
mization phase, we try to find the best compromise between the strength of the
materials and the cost of building construction.

The development of easy-to-use commercial software codes with intuitive graphic
interfaces made it possible to use the Finite Element Method (FEM) as a project
tool. Currently, designers often use FEM software programs as a tool at all stages
of the design process. However, along with this ease of use and to this power of
calculation, there is also a certain danger in its use. Excessive confidence in the
tool by the analyst can lead to errors. The reliability of a Finite Element (FE)
calculation depends, more than on the tool, on how the simulation is set by the
user and on the correct interpretation of inputs and outputs. This is due to the
complexity and enormous amount of results provided, which lead to a certain diffi-
culty in the identification of structural parameters that control the response of the
structure and the interaction between its elements.

In addition, the FE software programs have a high computational cost due the
high number of degrees of freedom of the structure. As pointed out by Howson [129],
the use of FEM models is fundamental only for detailed and final stage design, and
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not in the conceptual phase.
For this reason, several analytical methods have been developed over the years,

often based on simplified calculation procedures and on approximations of struc-
tural behavior. In most cases models foresee the use of a linear elastic constitutive
law, and no imperfections or deferred behaviors are expected over time (structural
failure, shrinkage, creep, cracks, etc.); moreover the degrees of freedom are often
reduced. These simplifications mean that the global model can offer a number of
potential advantages as input data and analysis is certainly faster, and modeling
is simpler and therefore less likely to be a potential source of errors. Finally, the
clarification provided is satisfactory for the preliminary phase of the project. For
this reason, analytical models have been developed to evaluate the stresses acting
on the structural elements, estimate the displacements and evaluate the vibration
shapes of the building. In addition, the use of this type of procedure provides a clear
picture of the structural behavior, which allows the designers to obtain information
on the key structural parameters that describe the behavior of the building.

As is known, high-rise buildings are particularly affected by horizontal actions
such as wind and earthquake [3], [190]. These forces are absorbed by bracing of
different shapes and sizes, which are consequently also subjected to shear forces,
bending and torsional moments. The behavior of the bracing varies according to
the shape it assumes: in the case of a rectangular, thin-walled closed-section or
composed by shear walls converging in a single point, Saint Venant’s Theory can
be considered for analysis, while in the case of thin-walled open-sections, Vlasov’s
Theory is applied [261]. Over time these theories have been used to define the
behavior of tall buildings subjected to horizontal forces and software programs have
been developed to automate their study. In 1972 Wynhoven e Adams [273] studied
the reduction of the ultimate bearing capacity of a structure subjected to loads that
produce torsion. The torsional moment induces a rotation of the structure around
its vertical axis, while horizontal forces cause a translation in their direction of
application. This translation is increased by the effect of rotation.

Around the same time, Coull and Irwin [79], [83], [84], [85] presented a sim-
ple procedure for evaluating load distribution on a three-dimensional multi-storey
structure. The method is based on the continuous connection technique and ana-
lyzes the load case consisting of bending and torsional moments. The studies also
show how much of the load is absorbed by the bracings.

In 1973 Heidebrecht and Stafford Smith [122], [123] proposed an approximate
method for analyzing the behavior of thin-walled open-section shear walls in tall
buildings subjected to torsional moment. The procedure is the basis for the analysis
of tall buildings. In the same year, Glück and Krauss [114] analyzed a group of thin-
walled open-section cantilever beams, while Stamato and Mancini [231] created a
method for the three-dimensional analysis of high buildings consisting of shear walls
and frames of constant stiffness along the height. In this case, frames and shear
walls are connect by slabs and a discreet number of storeys is assumed equivalent
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to a continuous consisting of an infinite number of horizontal diaphragms without
transverse stiffness, but infinitely rigid in its own plane. In the same years Biswas
[30] also proposed a method for the three-dimensional analysis of a tall building
subject to transverse loads.

In 1977 MacLeod e Hosny [166] proposed the analysis of the internal cores
constituting the buildings, based on Vlasov’s Theory [261]. The following year,
Haris [121] presented an approximate method for determining the distribution of
the lateral load and the displacement of tall buildings caused by the action of wind.

The frames making up the structure are transformed into equivalent cantilever
beams in which the compliance matrix is obtained by applying a unit load to
each floor and calculating the corresponding displacement. The stiffness matrix is
obtained by inverting the compliance matrix.

The external load is redistributed on the basis of the rigidity of the various
elements (shear walls or frames) to be reached by the calculation of displacements
and rotations of the entire building. This procedure considers the problem to only
one degree of freedom.

In the 1980’s Mortelmans [186] and Taranath [242] re-proposed the analysis of
tall buildings subjected to wind and earthquake based on the study of the stiffness
matrix and the finite elements, a theme that was taken up in 1989 by Ha and
Desbois [116].

In those years, the first attempts to create an automatic calculation code for the
structural analysis of high-rise buildings also began [131]. Other methods, starting
from aerospace engineering, subdivide the structure of building into a number of
simple substructures and operate as the case of Finite Element (FE) approach, in
which the substructures were considered as super-elements. The first to focus on
this methodology were Leung [161], [162], Wong [272], followed, more recently, by
Kim [140] and Steenbergen and Blaauwendraad [234].

3.2 The load distribution matrix between verti-
cal bracings

In most buildings the horizontal resistant system consists of different elements
which can vary from one to another according to their specific stiffness properties.

The use of in-parallel members is a structural solution which immediately ap-
peared as a simple way of increasing the horizontal stiffening of high-rise structures
[47].

From the design point of view, many studies were developed to identify the
distribution of the external forces among the internal bracings.

The papers by Khan and Sbarounis [139], Rosman [221] and Beck [22] represent
the first efforts to study this based on the continuum medium technique. This
simplified technique was also taken up by other authors [81], [208], [225].
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The general formulation of the problem of the external lateral loading distribu-
tion between the bracings of a threedimensional structure was presented in 1985 by
A. Carpinteri [58], but in the last few years, this method of calculation has been fur-
ther developed and improved [63], [64] for the purpose of analyzing a wider range
of typologies of high-rise buildings [60], [65]. The effectiveness of this analytical
code has been verified in some case studies carried out by the Authors in recent
years [62], [188], [189]. The formulation, called the General Algorithm, has already
been widely described in various works [61], [55], [63], and it is summarized in the
following.

3.2.1 General Algorithm
The formulation is based on the following fundamental hypotheses:

• the structural material is homogeneous, isotropic, and obeys Hooke’s law;

• the floor slabs are rigid in their own plane but their out-of-plane rigidity is
negligible;

• in the transversal analysis, the axial deformation of the structural elements
due to gravity loads is neglected.

The approach proves to be general, since it is possible to consider any type of
vertical bracing, from simple frames to free-shaped tubular elements, provided that
their own stiffness matrix is known.

Based on the previously mentioned hypotheses, an N -storey building is consid-
ered having M vertical bracings, each defined by an arbitrary position in the floor
plan. The right-handed system XY Z defines the global coordinate system.

Since the slabs, which interconnect the bracings to each other, are considered
to be infinitely rigid in their own planes, the degrees of freedom are represented by
the transverse displacements of the single floors: two translations ξ and η in the X
and Y directions, and the torsional rotation ϑ, for each storey. In the same way,
the external load applied to the origin of the reference system is expressed by a
3N -vector {F}, in which 2N shearing forces {px}, {py}, and N torsional moments
{mz} are included (Figure 3.1):

{Fi} =

⎧⎪⎨⎪⎩
px,i

py,i

mz,i

⎫⎪⎬⎪⎭ (3.1)

Being the right-handed system X∗
i Y

∗
i Z

∗
i the local coordinate system of the i-th

bracing, the 3N -load vector {F ∗
i } and the 3N -displacement vector {δ∗

i } describe the
amount of external load carried by the i-th element and its transverse displacements,
respectively. The loading vector {F ∗

i } can be reduced to {Fi}, which refers to the
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Figure 3.1: Scheme of a tall building in a right-handed coordinate system [63]

global coordinate system XY Z, by means of the following expressions, valid for
each floor: ⎧⎪⎨⎪⎩

p∗
x,i

p∗
y,i

m∗
z,i

⎫⎪⎬⎪⎭ =
[︄

[Ni] [0]
− {uz} ∧ {ψi} [1]

]︄⎧⎪⎨⎪⎩
px,i

py,i

mz,i

⎫⎪⎬⎪⎭ (3.2)

where [1] is the N ×N identity matrix and [0] is the 2N ×N null matrix. The term
[Ni] represents the orthogonal rotation matrix from system XY to system X∗

i Y
∗

i ;
{ψi} is the coordinate vector of the origin of the local system in the global one;
{uz} is the unit vector associated to the Z-direction.

The orthogonal 2N × 2N matrix [Ni], extended to consider all floors, can be
represented by means of the angle φi between Y and Y ∗

i axes (Figure 3.2):

[︂
Ni

]︂
=
[︄

[cosφi] [sinφi]
− [sinφi] [cosφi]

]︄
(3.3)
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Figure 3.2: Global and local coordinate systems [63]

where each term is a diagonal N ×N sub-matrix:

[cosφi] =

⎡⎢⎢⎢⎢⎣
cosφi 0 · · · 0

0 cosφi · · · 0
... ... . . . ...
0 0 · · · cosφi

⎤⎥⎥⎥⎥⎦ (3.4a)

[sinφi] =

⎡⎢⎢⎢⎢⎣
sinφi 0 · · · 0

0 sinφi · · · 0
... ... . . . ...
0 0 · · · sinφi

⎤⎥⎥⎥⎥⎦ (3.4b)

The vector product {uz} ∧ {ψi} can be written as:

{uz} ∧ {ψi} =

⎡⎢⎣ i⃗ j⃗ k⃗
0 0 1
xi yi 0

⎤⎥⎦ = −yii⃗+ xij⃗ + 0k⃗ = −yii⃗+ xij⃗ (3.5)

where xi and yi are the coordinates of the origin of the local reference system of
the i-th vertical bracing with respect to the global reference system.

For the sake of simplicity, in order to take into account the N floors of the
structure, the N × 2N matrix [Ci]T is introduced:
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[Ci]T =

⎡⎢⎢⎢⎢⎣ −

⎡⎢⎢⎢⎢⎣
yi,N 0 · · · 0
0 yi,N−1 · · · 0
... ... . . . ...
0 0 · · · yi,1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

xi,N 0 · · · 0
0 xi,N−1 · · · 0
... ... . . . ...
0 0 · · · xi,1

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

T

(3.6)

Taking into account all floors, Equation (3.2) can be re-written in the following
form:

{F ∗
i } = [Ai] {Fi} (3.7)

Matrix [Ai] gathers the information regarding the reciprocal rotation between
the local and global coordinate systems and the location of the i-th bracing in the
global reference system XY :

[Ai] =
[︄

[Ni] [0]
−[Ci]T [1]

]︄
(3.8)

The displacement vector {δi}, constituted by 2N translations ξi, ηi, and N
rotations ϑi, referred to the global reference system XY , are then connected to the
displacement vector {δ∗

i } in the local coordinate system X∗
i Y

∗
i by the orthogonal

matrix [Ni]: ⎧⎪⎨⎪⎩
ξ∗

i

η∗
i

ϑ∗
i

⎫⎪⎬⎪⎭ =
[︄

[Ni] [0]
[0] [1]

]︄⎧⎪⎨⎪⎩
ξi

ηi

ϑi

⎫⎪⎬⎪⎭ (3.9)

Taking into account all floors, Equation (3.9) can be re-written in the following
form:

{δ∗
i } = [Bi] {δi} (3.10)

where matrix [Bi] is similar to [Ai], but the term [Ci]T being reduced to a null
matrix:

[Bi] =
[︄

[Ni] [0]
[0] [1]

]︄
(3.11)

A relation between {F ∗
i } and {δ∗

i } is considered known through the condensed
stiffness matrix [K∗

i ], referred to the local coordinate system:

{F ∗
i } = [K∗

i ] {δ∗
i } (3.12)

Substituting Equations (3.7 and 3.10) into Equation (3.12), the load vector
{Fi} turns out to be connected to the displacement vector {δi} through a product
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of matrices, which identifies the stiffness matrix [Ki] of the i-th bracing in the global
coordinate system XY :

{Fi} =
(︂
[Ai]−1 [K∗

i ] [Bi]
)︂

{δi} = [Ki] {δi} (3.13)
Due to the presence of in-plane rigid slabs connecting the vertical cantilevers, the

transverse displacements of each element can be computed considering only three
generalised displacements ξ, η, and ϑ per floor. This step, extended to consider all
floors, is performed through the matrix [Ti], which takes into account the location
of each bracing in the plan by means of the coordinates (xi, yi) and, therefore, the
matrix [Ci]:

{δi} =
[︄

[1] [Ci]
[0] [1]

]︄
{δ} = [Ti] {δ} (3.14)

being {δ} the floor displacement vector, i.e. the displacement vector associated to
the origin of the global reference system. The substitution of Equation (3.14) into
Equation (3.13) allows to identify the stiffness matrix of the i-th bracing, referred
to the global coordinate system XY Z and to the generalised floor displacements ξ,
η, and ϑ:

{Fi} = ([Ki] [Ti]) {δ} =
[︂
Ki

]︂
{δ} (3.15)

For the global equilibrium, the external load {F} applied to the structure is
equal to the sum of the M vectors {Fi}. In this way a relationship between the
external load and the floor displacements is obtained and the global stiffness matrix
of the structure is computed. By means of this matrix, once the external load is
defined, the displacements of the structure are acquired, from which the information
regarding each single bracing can be deduced

{F} =
M∑︂

i=1
{Fi} =

(︄
M∑︂

i=1

[︂
Ki

]︂)︄
{δ} =

[︂
K
]︂

{δ} (3.16)

and, therefore,

{δ} =
[︂
K
]︂−1

{F} (3.17)

Recalling Equation (3.15) and comparing it with Equation (3.17), an equation
connecting the vectors {F} and {Fi} allows to define the amount of the external
load carried by the i-th vertical stiffening element:

{δ} =
[︂
K
]︂−1

{F} =
[︂
Ki

]︂−1
{Fi} (3.18)

from which we obtain

{Fi} =
[︂
Ki

]︂ [︂
K
]︂−1

{F} = [Ri] {F} (3.19)
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The load distribution matrix [Ri], shown in Equation (3.19), demonstrates that
each bracing is subjected to a load {Fi} which is connected with the external load
{F} through its own stiffness matrix and the inverse of the global stiffness matrix.

Once the generalised displacement vector {δ} is known, recalling Equations
(3.12 and 3.14), the displacements and the forces related to the i-th bracing, in its
local coordinate system, can be computed.

Consequently, since the loads applied to each element are clearly identified, a
preliminary assessment can be easily performed.

Equation (3.19) solves the problem of the external load distribution between
the resistant elements employed to stiffen a three-dimensional tall building. Such
formulation proves to be general and can be adopted with any kind of structural
elements, provided that their own condensed stiffness matrix [K∗

i ] is known.
Further benefits can be highlighted: firstly, an easy identification of the struc-

tural parameters, which govern the lateral behaviour of the building, can be per-
formed; secondly, the formulation proves to be extremely clear and concise, limit-
ing in this way the risk of unexpected errors and guaranteeing, in presence of very
complex structures, relatively short times of modelling and analysis, if compared
to Finite Element computations.

3.2.2 The numerical software program
The analytical formulation has been implemented in a numerical code by using

Mathworks Matlab. With this model it is possible to compute the deformations
and stresses acting on the horizontal stiffeners of high-rise buildings.

Such a formulation proves to be general and can be adopted with any kind of
structural elements, provided that its own stiffness matrix is known. The main
advantage of this approach is that it considers only three degrees of freedom for
each storey, therefore it requires a shorter computation time if compared to the
commercial Finite Element Method (FEM) software, which are mesh-dependent
and are characterized by six degrees of freedom for each node.

Moreover, the proposed model produces results which are quite close to those
achieved by the FEM, with differences generally less than 10%. This approximation
is commonly accepted in the preliminary design stage of a high-rise building. The
flow-chart of the numerical code is shown in Figure (3.3).

The entire calculation code, consisting of 37 functions for a total of more than
8,000 command lines, has a user-friendly graphics interface that allows a simple
and intuitive input and output phase as shown in Figure (3.4).

The input phase consists of entering global data of the entire building, i.e. the
total number of storeys, size and mass of the slabs (which may also have geome-
try different from one floor to another); geometrical and mechanical data on each
individual vertical stiffening, which can be of the following typologies:
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• rectangular shear walls;

• shear walls composed by thin plates converging in a single point;

• thin-walled closed- or open-section shear walls;

• plane frames and braced frames;

• 3D framed tube;

• 2D or 3D diagrid system.
For the insertion of the vertical bracings in the floor plan of the building, the

user must first arbitrarily choose a global reference system to which the coordinates
that describe all the braces will be expressed. After entering the data, the user can
verify the correctness of the records by displaying the building plan on the screen
with the position of all the elements indicated. Alternatively, the user can also view
a three-dimensional model of the building, which can be observed from any point
of view thanks to orbit tool that allows you to freely rotate the 3D model.

The last phase of the input consists in inserting the loads. The user must enter
the values of the global horizontal concentrated loads px, py, and mz referred to
the center of the global reference system. These loads can be the same for all floors
of the building, or different, as in the case of logarithmic distributions of the wind
pressure proposed by the technical regulations [132], [232], [233].

Once the input phase is completed, the user can choose whether to perform a
static analysis or a dynamic analysis (see Chapter 4) of the structure. By perform-
ing a static analysis, normally carried out in about 1 minute, the user can decide
whether to view the results in terms of displacements or stresses. When using static
analysis the graphs of the displacements of the global reference system origin, in
the x and y directions, and the rotations around the vertical axis at each floor of
the building, are generated. In addition to the displacement functions, it is also
possible to view the first, second, third and fourth derivative functions.

It is also possible to view the three-dimensional displacements axonometric el-
evation of the building, as shown in the right window of the Figure (3.4).

In addition, for each vertical bracing it is possible to view the graphs of the
bending moment, shear stress, bimoment, primary and secondary torsional moment
(obviously where expected), according to the height of each floor of the structure.

If dynamic analysis is performed, it is instead possible to obtain a table con-
taining the angular frequencies, the frequencies and the periods of all the modes of
vibration of the structure (3×number of floors). Furthermore, it is also possible to
view the eigenvectors of the deformed modal shapes in the form of three-dimensional
axonometric elevations of the entire building.

Finally, all the results can also be generated in tabular form in order to be
easily manipulated, as well as with Matlab, even with the most common commercial
software, such as Microsoft Excel.
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Figure 3.3: Flow-chart of the numerical code
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Figure 3.4: Main window of the numerical code

3.3 Numerical example
This section shows the calculation report of one of the highest buildings cur-

rently (2020) under construction in Italy, The Piedmont Region Headquarters
Tower (Figure 3.5). The descriptions of the building, the calculation methods and
the results have already been published in [188].

The building is situated in the south of the City of Turin in Italy (Figure 3.6).
Previously on this site, classified by the local authorities as an abandoned indus-

trial area before the new constructions, there was the old manufacturing district of
Fiat Avio. Near the new skyscraper, there is the “Oval” Olympic Winter Building,
the Lingotto shopping center and auditorium. It is important to point out that
the site will be well served by public transport by means of the new underground
station on the Nizza street side, and the Lingotto railway station.

3.3.1 Description of the structure
The multi-storey building base is square, measuring 45 m on each side. The

tower comprises 43 floors above the ground, each level is 4.27 m tall (except the
entry-hall, which is 8.66 m tall), therefore its height is about 188 meters up to the
last floor. Beyond this level there is a covered garden, 21-meters high, made of
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Figure 3.5: Picture taken on August 30, 2018 [188]

steel and glass walls. Considering the roof of the garden, the building reaches 209
m in height. On the east side of the tower, there are the so-called Satelliti, i.e.
non-structural slabs 11 m in length, linked to the façade. For this reason, these
decorative elements do not influence the total structural stiffness of the building,
and they are not taken into account in the analytical model. The east side façade
is 180 m tall and it is composed of a self-supporting steel frame linked by means of
a limited number of connections to the reinforced concrete structure. The building
is characterized in its entire height by a regular structural scheme. In particular,
the tower floor plan embeds 4 central cores with open thin sections and made of
high performance concretes (Figure 3.7). Cores 1 and 3 are the same size on the
plans and the same thickness (0.50 meters), like cores 2 and 4. These are arranged
polar-symmetrically on the plan, in relation to the origin of the reference system,
as shown in Figure 3.8).
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Tower's site

Turin

City center

Figure 3.6: Location on the map [188]

From a structural point of view, the stiffness of these elements braces the tower
by limiting transversal displacements in an optimal way.

Along the building perimeter, excepting the east side, there are columns spaced
6 meters from each other, which reach a height of 188 m. Due to architectural re-
quirements, the reinforced concrete columns have constant rectangular cross section
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(a) (b)

Figure 3.7: (a) Typical floor plan; (b) East-West elevation [188]

dimensions of about 1.10 m × 0.60 m, at all levels. The slabs, made of reinforced
concrete, have a constant thickness of about 0.34 meters, while the slabs between
the East and West cores (core pairs 1-2 and 3-4) are made of concrete with a
thickness of about 0.50 meters. The increased thickness is due to the need to link
the slabs to the vertical cores, increasing their resistance and, at the same time,
reducing the transverse displacements of the entire building due to horizontal loads.

The slabs in lightweight concrete are made by means of the Bubble Deck tech-
nique [24], i.e. by using high density polyethylene (HDPE) bubbles with a diameter
of 225 mm embedded in the concrete casting. Adopting this construction technique,
it is possible to reduce the slab weight by about 20-25% compared to its unlightened
weight. This lightening, moreover, allows a better seismic structural behaviour and
a considerable reduction of the axial stresses in the vertical elements to be obtained.

Different strength classes of concretes, depending on the axial loads, were used to
made the other types of vertical structural elements in the structure. In particular,
on the first floors the columns are composed of C70/85 concrete class, while on
the upper floors of C35/45 concrete class. The cores are made in C60/75 - C30/35
concrete class.
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Figure 3.8: Geometry of the cores [188]

3.3.2 Wind load
Wind, which is usually considered to be horizontal in direction, exerts actions

on constructions that vary in time and space, generally causing dynamic effects
that have an extremely important effect on high-rise buildings. In this work, in
particular, only the load combination that maximizes the torsional effects induced
by the action of the wind was considered, not taking into account the vertical loads
induced by the dead load of the structure. To analyze wind actions, sophisticated
techniques that require experimental analysis of the structure in a wind tunnel can
be used. In the preliminary phase, the lack of detailed knowledge of the structure
does not allow the application of these methods, so we used simplified procedures.

In the following analysis, the procedure proposed by Italian Rules - D.M. 14th
January 2008 [132], which reports the same formulation contained in the Euro-
pean Standard EN 1991 (Eurocode 1) [232], [233], was used. The calculation of
wind forces depends on the geometric and dynamic characteristics of the structure,
the geographical position and the characteristics of the site where the structure is
located.

Therefore, it requires the determination of certain parameters, primarily the
reference wind speed, which in this case corresponds to 25 m/s. Given the impor-
tance of the building, a return period of 200 years is considered. Using these data,
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a kinetic reference pressure of 420.10 N/m2 was obtained. The wind pressure acting
on the building is given by the product between the kinetic reference pressure and
other coefficients concerning the exposure, shape and dynamics of the structure,
which can be calculated using a detailed procedure indicated in Eurocode 1. When
the pressures acting on the vertical surfaces of the building are known, it is possible
to calculate the forces to be applied to each floor in relation to the areas impacted
by the wind. The graphs in (Figure 3.9) show the forces applied on each floor of
the model, referring to the origin of the reference system as shown in (Figure 3.7a).

We can see that in correspondence to the last floor, at a height of 188 meters,
there is a drastic increase in forces because the wind pressure acting on the surface
of the veils was also considered. For the same reason, the forces applied on the first
floor are greater, as the inter-floor space is 8.66 meters high. Finally, at a height
of 183.73 meters, the Fy force is reduced as a result of the reduction of the area
exposed to the wind.

Figure 3.9: Wind loads on the structures referred to the centroid of floors [188]

3.3.3 Analytical model
The numerical model, implemented in the Matlab computation code, is based on

Carpinteri’s analytical formulation. The study of the structure was carried out on
a simplified model of the building in which constant core thicknesses and constant
mechanical properties along the height were considered. This choice is justified by
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the fact that, in the preliminary design phase, we do not have complete knowledge
of the behavior of the structure in order to optimize the sizing. Subsequently, once
the main parameters that characterize structural behavior have been identified, the
structure is optimized and, finally, a more accurate model can be analyzed with a
commercial Finite Element software. For this reason, also the mechanical charac-
teristics of the materials were homogenized with reference to the average resistance
of the elements weighed on the number of floors. Following this procedure, an
elastic modulus equal to 39 GPa was used for the frame elements, with 35 GPa for
the cores, while a Poisson coefficient of 0.18 was assumed for all the elements. As
far as the dynamic analysis is concerned, only the structural masses related to the
slabs were considered. These were determined considering a specific weight of 18.75
kN/m3. As already mentioned, core pairs 1-2 and 3-4 are connected by thickening
the floor slabs. In this case, because the cores are less than two meters apart and
the slabs are 0.50 meters thick, the connection can be considered infinitely rigid
out of the plane.

To calculate this structure correctly, the original analytical formulation was
changed, developing a computation method based on the equivalent flexural stiff-
ness. Since the effect of the connection is to join the sections of the two cores, in
addition to the local reference system of each core, it is also possible to define a fur-
ther reference system for each pair of connected cores. The origin of this reference
system lies in the centroid of the section made up of the two cores. Consequently,
the geometric characteristics of each core (and therefore the local stiffness matrices)
refer to this last reference system.

Finally, as previously illustrated, we calculate the global stiffness matrix and,
in order to solve the structure from the distribution matrix, we obtain the forces
acting on each core and, ultimately, the stresses and displacements of the structure.

The three-dimensional model of the building, created with the analytical calcu-
lation code, is shown in Figure (3.10).

Following the same assumptions adopted for the analytical model, in order
to validate the results, a Finite Element Method Model (FEM model) was also
created using a commercial software program. The three frames, four cores and
infinitely rigid slabs in their plane were therefore modelled. Beam elements were
used for the frame and shell elements were used for the cores, while the floors
were modelled using rigid links that connect all the points of the floor plan to a
master node coinciding with the geometric centroid of the slabs. At this point,
the concentrated forces, corresponding to the externally applied loads for the static
analysis and the mass of the floors for the dynamic analysis, were applied. All
the structural elements are mutually interlocked and anchored to the ground. In
this way, a FEM model similar to the analytical model was generated. The FEM
model implemented is characterized by 69,212 nodes, 1,576 beam elements and
66,960 shell elements. The amount of data to be analyzed required a much longer
computational time (about one hour) than the time required for the analytical
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Figure 3.10: Three-dimensional model of the building

algorithm (a few minutes). The results of the structural analysis are summarized
in graphs that show the comparisons between the Analytical Model and the Finite
Element Model considering the horizontal displacements of the centroid of each
floor, and the stresses and strains on the vertical resistant elements. As regards
the stress computation, the effects due to bending and secondary torsion were
considered, leaving out the component due to vertical forces. This choice was made
because, as previously mentioned, the aim of this work is to study mainly the
torsional effects in high-rise buildings, ignoring the effects due to vertical loads.
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3.3.4 Displacements
Figure (3.11) shows the displacements of the structure in the x and y direc-

tions as well as the rotations of the floors. Three models have been created: two
models are analytical and show the displacements obtained by applying the Gen-
eral Algorithm, considering cores 1-2 and 3-4, respectively, as not connected, or
rigidly connected; the third model was obtained using a commercial FEM software
program.

Figure 3.11: Displacements in x-direction (ξ), displacements in y-direction (η), and
torsional rotations (ϑ) [188]

From the graphs, the rigid connection between the cores determines a reduction
of about 70% of the transversal displacement in x-direction, and a reduction of
45% of the plane rotations. A slighter reduction of the displacement in y-direction
is also evidenced. As a result, the analytical results of the model with the rigid
connections show minimal differences compared to the FEM model.

With these graphs it has been demonstrated that the connection between two
or more cores, achieved by thickening the floor, is a simple structural choice that
permits a drastic reduction of the horizontal displacement at a negligible additional
cost compared to other structural solutions (i.e. outrigger) that would allow the
same deformation levels to be achieved.
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3.3.5 Internal reactions
When the rigid rotations of floor ϑ are known, Vlasov’s Theory can be used

to determine bimoment B, the primary torsional moment MSV
z and the secondary

torsional moment MV L
z acting on each bracing through the following equations:

B = −EJωωϑ
′′ (3.20a)

MSV
z = GItϑ

′ (3.20b)
MV L

z = −EJωωϑ
′′′ (3.20c)

where Jωω and It indicate the sectorial moment of inertia and the torsional stiffness
factor of the section of the considered core respectively, while E and G indicate the
normal and shear elastic modulus of the core material, respectively.

Figure 3.12: Bimoment on cores 1-3 [188]

Figure (3.12) shows bimoment on core 1, which is maximum at the base (warping
prevented) and null at the top (free end). Also in this case the effect of the rigid
connection with core 2 leads to a reduction in stress.
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Figure 3.13: Primary, secondary and total torsional moments on cores 1-3 [188]

In the graphs shown in Figure (3.13) we can see that the total torsional moment
can be subdivided into primary (derived from Saint Venant’s Theory) and secondary
(derived from Vlasov’s Theory). It is important to note that, in the section at the
base, the primary torsional moment is null. This result is a direct consequence of the
formulated boundary conditions, i.e. the fixed constraint prevents the warping of
the section (i.e. ϑ′ = 0). In the top section, however, the sum of the total torsional
moment acting on the four cores is equal to the externally applied moment. In the
intermediate sections, the trend is determined by the first and third derivative of
the floor rotations as illustrated in Equations (3.20b and 3.20c).

Observing Figure (3.14), where the shear diagram is shown, we can see that
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Figure 3.14: Shear forces on the cores and frames [188]

the frames, due to their weak stiffness, do not contribute to stiffening the structure
with respect to the horizontal load. The horizontal load is almost entirely absorbed
by the four central cores, while the frames, arranged around the perimeter of the
building, take on considerable importance only in order to absorb the vertical loads.

3.3.6 Stresses
A schematic representation of core 1 is shown in Figure (3.15). Figure (3.16)

shows the comparison between the stresses in the base section of core 1, evaluated
by the analytical model with the independent and rigidly connected cores.

The standard stresses due to the wind load in the section of the base are obtained
by the following equation:

σz = Mx

Jxx

y − My

Jyy

x+ B

Jωω

ω (3.21)
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Figure 3.15: Numbering of the nodes of core 1 [188]

where Mx and My indicate the bending moment with reference to the x and y axes,
B indicates bimoment, Ixx and Jyy indicate the moments of inertia with respect to
x and y, and ω indicates the sectorial area.

Assuming that the bending moments of the two models are almost identical, we
can make two important observations.

First of all, we can see that, by connecting the cores, the stresses due to My

present the same sign in every point of the core because the neutral axis no longer
referred to each core, but to the section made up of the two cores. In this case, the
rigid connection causes tensile stress in all points of core 1 and compressive stress
on all points of core 2.

The second observation concerns the modulus of stresses (3.17) in that, connect-
ing the cores, the stress due to My is drastically reduced because the moment of
inertia of the section made up of the two cores connected together is much greater
than that of the single core. The same effect is seen on the stresses induced by
bimoment, although in this case, the reduction of stress is due to the reduction of
warping, because the sectorial moment of inertia is the same in both models.

However, in this case, the stresses induced by warping do not have much influ-
ence over bending stresses.

The result was predictable because the geometry of the building, in this case,
is quite regular. Moreover, the designers, wishing to limit the torsional effects as
much as possible, arranged the cores in such a way as to generate polar symmetry,
limiting the effects due to the asymmetries present in each core.
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Figure 3.16: Vertical stresses on the core 1 [188]
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Figure 3.17: Comparison between vertical stresses due to the bending moment My

(σMy) and the bimoment (σB) in the core 1 [188]
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In order to verify the reliability of the results of the analytical model for the
core 1, a comparison with FEM model in terms of stresses are reported in Figure
(3.18).

As can be observed, the differences in percentage between the results obtained
using the analytical model and those obtained using the FEM model varies between
+13.7% (point 6) and -4.5% (point 12), but the average difference in absolute terms
is about +10%. This result emphasizes the reliability of the analytical formulation.

Moreover, by using the analytical calculation code it is possible to split the
vertical stress into the contributions given by the two bending moments Mx, My,
and bimoment B, as shown in Figure (3.16). Using commercial FEM software, this
differentiation is generally not possible.

Figure 3.18: Comparison between vertical stresses for analytical and FEM model
(rigidly connected cores)

3.3.7 Considerations on floor stiffness
As described in the previous sections, in the analytical formulation the floor

slabs are rigid in their own plane, but their out-of-plane stiffness is neglected. Con-
sequently, in order to validate the results obtained with the analytical calculation
code, the FEM models shown in the previous sections were performed following
the same hypothesis. In these FEM models, the floor slabs are not physical plate
elements, but their effect was modeled using the rigid-links, namely a particular
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type of constrains which allows only certain degrees-of-freedom of “slave nodes” to
a “master node”. By setting the properties of the rigid-links, the displacements ξ, η,
and ϑ of all the elements nodes included in each plane (slave nodes) are connected
to a node located in the geometric center of the plane (master node), simulating
the infinite in-plane stiffness of the slab. The displacements and rotations outside
the plane, instead, are not transmitted between the nodes simulating in this way
the null out-of-plane stiffness of the floors. This approach is commonly accepted in
the preliminary design stages.

In this section, in order to confirm the validity of these simplified hypothesis, a
more accurate FEM model in which the floors have their real stiffness is introduced.

As previously mentioned, the slabs in lightweight concrete are made by means of
the Bubble Deck Technique, i.e. using high density polyethylene (HDPE) bubbles
with a diameter of 225 mm embedded in a concrete casting. To perform a FEM
model of this type of slab is very arduous, but some studies [26], [120], [135], [207]
determined that it can be modeled using a "solid-plate" elements, with a thickness
equal to that of the real slab, but using an homogeneous isotropic and linear mate-
rial having the normal modulus of elasticity equal to 90% of the concrete of which
it is really made. By considering these assumptions, this section shows the compar-
ison in terms of displacements and stresses between the analytical model (the floor
slabs are rigid in their own plane, but their out-of-plane rigidity is neglected), the
FEM model in which the floors are modelled using rigid-links, and the FEM model
in which the floors are modelled using 4-node plate elements with a thickness of
0.34 m, and normal elastic modulus of 27 GPa. Conversely, as already mentioned,
core pairs 1-2 and 3-4 are connected by 0.50 meter thick concrete slabs.

To model this portion of the floor, 4-node plate elements with an elastic modulus
of 35 GPa are employed. In Figure (3.19) the displacements obtained with the
three models previously illustrated are shown. With regard to the x-direction
displacements (ξ), the FEM model with rigid-link and the analytical model are
more rigid with respect to the FEM model with real floor stiffness.This is due to
the fact that in the first two models the connection between the cores pairs 1-2 was
considered to be along the entire height of the building, while in the last FEM model
the connection is only made at the level of each floor. With regard to displacements
in the y-direction (η), the effect of the stiffness outside the plane means that the
displacements are fewer than those analytical calculated and those obtained with
the rigid links FEM model. With regard to the floor rotations (ϑ) the effect of the
real stiffness outside the plane involves that the spins smaller on the lower floors of
the building, but larger on the upper floors if compared with those obtained with
the other two models. However, as can be seen from Table 3.1, despite considering
the real stiffness of the floors in-plane and out-of-plane, the differences between the
three models are very slight.

In addition to the comparison in terms of displacement, as depicted in Figure
(3.20), a comparison of the normal stresses evaluated at the base of core 1 is also
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made. Also in this case, as shown in Table 3.2, the differences between the three
models are very slight.

In conclusion, in this section it has been shown that making complex calculation
models, in which the real stiffness of the floors is considered, produces minimal
differences compared to simplified models. On the other hand, making complex
models involves a longer creation time and a considerable increase in calculation
time because the number of DOFs, and therefore the unknowns of the numerical
problem, increase dramatically. Consequently, in the preliminary design stages,
it is advisable to use simplified models that are easy to implement and lead to
acceptable and realistic results in a short calculation time.

Figure 3.19: Comparison of building displacements

Table 3.1: Percentage differences of displacements

Models ξ η ϑ
Max Aver. Max Aver. Max Aver.

FEM(rigid) - FEM(real stiff.) 12.89 8.39 11.88 6.63 8.76 6.27
Analytical - FEM(rigid) 6.81 4.48 7.69 3.42 14.55 7.17

Analytical - FEM(real stiff.) 8.25 5.13 6.91 3.55 18.82 13.24
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Figure 3.20: Comparison between vertical stresses in the base section of core 1

Table 3.2: Percentage differences of vertical stresses in the base section of core 1

Models Points of the core
1 2 3 4 5 6

FEM(rigid) - FEM(real stiff.) -4.85 -9.54 2.81 2.28 -1.28 7.58
Analytical - FEM(rigid) 12.23 14.13 -8.99 -11.49 8.63 -13.67

Analytical - FEM(real stiff.) 6.79 3.24 -6.43 -9.47 7.24 -7.13

Models Points of the core
7 8 9 10 11 12

FEM(rigid) - FEM(real stiff.) 2.79 -11.87 -7.33 9.85 5.46 -0.46
Analytical - FEM(rigid) -6.82 5.09 11.13 -10.87 -10.97 4.68

Analytical - FEM(real stiff.) -4.23 -7.38 2.98 -2.10 -6.11 4.20
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Chapter 4

Dynamic analysis

In this chapter, a semi-analytical formulation for the evaluation of the free
vibrations of a three-dimensional tall building is proposed.

The methodology is intended to be used by engineers in the preliminary design
phases as it allows the evaluation of the dynamic response of high-rise buildings con-
sisting of thin-walled closed- or open-section shear walls, frames, framed tubes, and
diagrid systems. If thin-walled open-section shear walls are present, the stiffness
matrix of the element is evaluated considering Vlasov’s Theory using the method-
ology shown in Section 2.2.1.

Using the procedure called General Algorithm, which allows to assembly the
stiffness matrices of the individual vertical bracing elements, it is possible to model
the structure as a single equivalent cantilever beam. Furthermore, assuming that
the floors are infinitely rigid in their own plane, the degrees of freedom (DOF) of
the structural system are reduced to only three per floor: two translations in the
x and y directions and a rigid rotation of the floor around the vertical axis of the
building.

This results in a drastic reduction of calculation times compared with those
necessary to carry out the same analysis using commercial software that implements
Finite Element models. The potential of the proposed method is confirmed by a
numerical example, which demonstrates the benefits of this procedure.

4.1 Introduction
In recent decades there has been a rapid increase in the number of high-rise

buildings [4] and many of these are built in highly seismic areas. As a result, the
study of their dynamic behavior has aroused the interest of engineers around the
world. The main objective of designers is to increase structural safety and reduce
the amplitude of the oscillations in order to guarantee the integrity and comfort of
the occupants [44], [133].
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Considering that seismic forces are proportional to the mass of the structure
itself, and that the response of the structure depends on the rigidity of the structure,
it is deduced, in a somewhat counterintuitive way, the more rigid structures are
subject to greater inertial forces than more flexible ones. For this reason, high-rise
buildings, as well as long-span bridges, are generally not very susceptible to the
effects of an earthquake [243]. However this does not mean that the dynamic study
should be omitted or underestimated.

In the design process, particular attention must be paid to the determination of
the center of stiffness of the entire building. In fact, considering that the forces of
inertia are applied in the center of mass of each floor, the further this point is away
from the center of stiffnesses the greater the torsional effects due to the action of
horizontal loads [244].

Since many tall buildings have an irregular floor plan, which often changes
geometry from one floor to another, it is very complex to match the stiffness center
and the geometric center of gravity of each floor [155]. For this reason, it is essential
to study the dynamic response of the building by carrying out three-dimensional
flexural and torsional coupled analysis [90].

Today, most engineers use commercial Finite Element software to perform struc-
tural analysis even in the preliminary design stages. This software, although simple
to use, involve long calculation times and results that are difficult to interpret, es-
pecially if dynamic nonlinear pushover analysis is performed. Alternatively, the
analytical methods present in literature can be used, but these often involve com-
plex and difficult calculations to carry out in a hand.

In this context, the analytical procedure proposed in this section is inserted,
which implemented in a calculation code, allows to evaluate with a good approxi-
mation the frequencies of vibration and the modal shapes of a high-rise building in
short times and with little outlay of resources [189]. For this reason, the proposed
method can be an excellent aid for designers who can use it in the preliminary
design phases.

In literature there are two types of study: the former define mathematical mod-
els for analyzing the behavior of a single beam, while the latter are intended to
define analytical models, generally more complex than the former, for the dynamic
behavior of a whole building. In the latter case, it becomes essential to consider
the mass of the floors connecting the various vertical structural elements.

4.1.1 Literature review for the analysis of a thin-walled
open-section beam

From an analytical point of view, the evaluation of the dynamic response of a
thin-walled open-section beam has attracted the attention of many researchers. In
1940 Garland [108] described the behavior of a cantilever beam using the Rayleigh-
Ritz method [70]. Among the results obtained, a graph is shown that summarizes
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the variation of the natural vibration frequencies as a function of the geometric
characteristics of the beam. However, he himself admits that the analytical solu-
tions are approximate and do not necessarily obtain the vibration frequencies for
high order modes.

In the early 1950s, Timoshenko [252] studied the dynamic behavior of beams in
which the geometric center of gravity did not coincide with the shear center and
consequently coupled bending and torsional vibrations occurred. By using energy
methods, he was able to obtain the exact solution just for beams that were simply
supported, while for beams which were, he obtained approximate values. A few
years later, Gere [109], [110] extended this formulation to be able to analyze thin-
walled open-section beams, with various constraint conditions. Further simplified
approaches based on Vlasov’s Theory [261] and on Wagner-Kappus Theory [13]
were proposed by Bishop et al. [28], [29].

The first attempts to determine the exact solution in the case of coupled bend-
ing and torsional vibrations in thin-walled open-section beams were conducted by
Dokumaci [92] in a work published in 1987. Numerical results are given to explain
the effect of the shear centre offset on the natural frequencies.

A few years later, this method was extended by Bishop [27] also taking into
account the deformation of the section. At the end of the 1990s, Yaman [275]
extended this formulation by also introducing an external force while Tanaka e
Bercin [241] implemented the exact formulation proposed by Dokumaci and Bishop
using Mathematica, a software capable of solving differential equations. This work
can be considered a first step towards the automation of the calculation of modal
shapes and the periods of vibration, as it allows the analysis of a beam however it
is restrained.

The effects on dynamic behavior due to shear deformability, which is neglected
in the classical Vlasov’s Theory, as well as the variability of the geometry of the
section along the axis of the beam were examined by Ambrosini [5], [6], [7], [8]
using the state variables.

Nonsymmetrical thin-walled open-section beams have been studied by Arpaci
[14] and Kim [141].

In 2003 Di Egidio et al. [95], [96], using Vlasov’s kinematical hypotheses, for-
mulated a non-linear one-dimensional model for the dynamics of the thin-walled
open-section beam. With this method, three non-linear differential equations of
motion are derived using the Hamilton principle [90]. Numerical and experimental
results confirm the validity of the analytical model [97], and the role of the internal
resonances related to the nonlinear warping coupling terms is considered [94].

Alongside the analytical approaches, numerical procedures based on shape func-
tions have also been developed, such as the methods proposed by Zhang [283], Chen
[69], and Hu [130].

Finally, an interesting experimental study is proposed by Klausbruckner and
Pryputniewicz [145].
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4.1.2 Literature review for the analysis of an high-rise build-
ing

In the preliminary stages of the design of a high-rise building, it is essential
to estimate with good approximation the possible vibrating mode shapes of the
structure in order to guarantee to future occupants the necessary conditions of
comfort.

Among the first studies on the dynamic behavior of a building, is the work of
Mallick [171] who analyzed a shear walls structure. A similar model was taken up in
1981 by Paulay [192]. The case in which the core is composed by thin-walled open-
section shear walls connected by rigid floors was treated by Mendelson [176], [177]
who examined the structural response of a non-symmetrical multi-storey structure
with or without damping effect. Approximate analytical methods for estimating
the vibration periods of high-rise buildings composed by many structural elements
were presented by Stafford Smith and Crowe [229], and some years later by Wang
[266] and Zalka [277].

In the mid-1990s, Pekau published two works [193], [194] in which the Finite
Story Method is used, that is the global behaviour of the building depends on the
nodal displacements of two-storey substructures into which the whole construction
is split.

For the dynamic analysis of coupled shear walls, Swaddiwudhipong [235], [236]
used the continuum medium technique that can model the tip connection gener-
ated by the floors, as a continuum having equivalent geometric properties and also
considers the axial deformation by the Galerkin Method. In 2007, Meftah [173]
formulated a simple analytical method that uses the Galerkin technique, for the
evaluation of the free vibrations of buildings braced by shear walls and open-section
elements.

In 2009 Bozdogan presents a formulation that, using the transfer matrix method
[42], allows approximated dynamic analysis of a symmetric wall-frame building [37]
and thin-walled open-section structures [41]. In the following years this procedure
was optimized as the multi-storey structure was modeled as an equivalent can-
tilever beam [39] and the shear walls and frames were assumed to be flexural and
shear cantilever beam structures [38]. Finally, applying the Differential Transform
Method to convert the differential equation into an algebraic equation, the same
author considered the free vibration analysis of the tube-in-tube tall buildings [40].

In 2015 Piccardo et al. [197] formulated an equivalent nonlinear one-dimensional
shear-shear torsional beam model which reproduces, the dynamic behavior of tower
buildings through a heuristic identification method. Subsequently, taking inspira-
tion from fluid-elastic models, this method was extended to take account of non-
linearities generated by the stretching of the columns [198], and the mechanical
non-linearities [200], which are often believed to be unimportant but do affect the
amplitude of motion. Recently these same authors have proposed a model for static
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and dynamic analysis of tall buildings based on the Timoshenko equivalent column
[199]. There are also techniques in the literature that can evaluate the dynamic
behavior of tall buildings with not only shear walls, but also braced frame systems
[35], [172], outrigger [191], [227], and tube-in-tube structures [156], [160], [265].

Eventually, it is interesting to note how the seismic performance of the building
can vary according to the actual rigidity of the floors [157], [168], or in buildings
with a large bottom podium [284].

In the present work, a formulation is proposed for the three-dimensional analysis
of a high building based on the General Algorithm illustrated in Chapter 3. The
basic formulation has already been published in some works [47], [57], [63], while
in the present elaboration it has been extended in order to analyze the greatest
possible type of high-rise buildings, for example framed tube or diagrid, as well
as for structures in which there are simultaneously cores of different heights, and
irregular buildings in floor plan or in height. Furthermore, the algorithms of the
calculation code in which it is implemented have been improved and enhanced.

4.2 Dynamic analysis of high-rise buildings
An N -storey high-rise building with M vertical bracings is considered. An

arbitrary global reference system and a local reference system with origin in the
shear center of each resistant element are introduced; the vectors {ξ}, {η}, and
{ϑ} containing the displacements of the origin of the global reference system are
designed. It is possible to define the vectors containing the displacements of the
shear center {ξC,i} and {ηC,i} of the i-th resistant element as:

{ξC,i} = {ξ} − yi{ϑ} (4.1a)
{ηC,i} = {η} + xi{ϑ} (4.1b)

where xi and yi are the coordinates of the shear center of the i-th bracing, referring
to the global reference system. In a similar way and as is illustrated in the previous
chapters, the entire building (Figure 4.1a) is modeled as an equivalent cantilever
beam in which the masses of the floors are concentrated in the gravity center of
their own, as shown in Figure (4.1b).

Considering that the dynamic equation of the system in absence of viscous
dissipations can be written as:

[m]{δ̈} + [k]{δ} = {0} (4.2)
for the j-th floor it is possible to write the equation of dynamic equilibrium in
x-direction:

mj ξ̈G,j +
M∑︂

i=0

(︂
{kxi,j

}{ξC,i}
)︂

= 0 (4.3)
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(a) (b)

Figure 4.1: (a) 3D-model of the building; (b) Equivalent cantilever beam with
lumped masses

where mj and ξ̈G,j are mass and acceleration in x-direction of the j-th storey,
respectively, {kxi,j

} is the vector corresponding to the j-th row of the local stiffness
matrix (estimated for the x-direction only) of the i-th resistant element, and {ξC,i}
is the vector containing the i-th vertical bracing displacements in x-direction of the
shear center of all floors. Considering Equation (4.1a), the term ξ̈G,j can be written
as:

ξ̈G,j = ξ̈j − ym,jϑ̈j (4.4)
where ξj and ϑj are respectively the x-direction displacements and the rotation
angle of the global reference system origin of the j-th floor, while, ym,j is the
coordinate of the center of mass of the j-th floor with respect to the origin of the
global reference system. Replacing Equations (4.1a and 4.4) into Equation (4.3),
we obtain:

mj

(︂
ξ̈j − ym,jϑ̈j

)︂
+

M∑︂
i=0

[︂
{kxi,j

} ({ξ} − yi{ϑ})
]︂

= 0 (4.5)
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If we consider all the N storeys of the building, we obtain the following system
of equations:

m1
(︂
ξ̈1 − ym,1ϑ̈1

)︂
+∑︁M

i=0

[︂
{kxi,1}

(︂
{ξ} − yi{ϑ}

)︂]︂
= 0

m2
(︂
ξ̈2 − ym,2ϑ̈2

)︂
+∑︁M

i=0

[︂
{kxi,2}

(︂
{ξ} − yi{ϑ}

)︂]︂
= 0

...

mN

(︂
ξ̈N − ym,N ϑ̈N

)︂
+∑︁M

i=0

[︂
{kxi,N

}
(︂
{ξ} − yi{ϑ}

)︂]︂
= 0

(4.6)

Introducing the matrices:

[Mxx] =

⎡⎢⎢⎢⎢⎣
m1 0 · · · 0
0 m2 · · · 0
... ... . . . ...
0 0 · · · mN

⎤⎥⎥⎥⎥⎦ (4.7a)

[Mxϑ] =

⎡⎢⎢⎢⎢⎣
−m1ym,1 0 · · · 0

0 −m2ym,2 · · · 0
... ... . . . ...
0 0 · · · −mNym,N

⎤⎥⎥⎥⎥⎦ (4.7b)

[Kxi
] =

⎡⎢⎢⎣
{kxi,1}

...
{kxi,N

}

⎤⎥⎥⎦ (4.7c)

the system of Equations (4.6) can be written in compact form:

[Mxx]{ξ̈} + [Mxϑ]{ϑ̈} +
M∑︂

i=0
[Kxi

]{ξ} −
M∑︂

i=0

(︂
yi[Kxi

]
)︂
{ϑ} = {0} (4.8)

Defining the following matrices:

[Kxx] =
M∑︂

i=0
[Kxi

] (4.9a)

[Kxϑ] = −
M∑︂

i=0

(︂
yi[Kxi

]
)︂

(4.9b)

where [Kxx] indicates the stiffness matrix of the entire building evaluated for x-
direction only, the equation of the dynamic equilibrium can be written as:

[Mxx]{ξ̈} + [Mxϑ]{ϑ̈} + [Kxx]{ξ} + [Kxϑ]{ϑ} = {0} (4.10)
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In a completely analogical way, the equation of dynamic equilibrium in the
y-direction can be written as:

[Myy]{η̈} + [Myϑ]{ϑ̈} + [Kyy]{η} + [Kyϑ]{ϑ} = {0} (4.11)
where η indicates the y-direction displacement vector of the global reference system
origin, while the matrices are defined as follows:

[Myy] =

⎡⎢⎢⎢⎢⎣
m1 0 · · · 0
0 m2 · · · 0
... ... . . . ...
0 0 · · · mN

⎤⎥⎥⎥⎥⎦ (4.12a)

[Myϑ] =

⎡⎢⎢⎢⎢⎣
m1xm,1 0 · · · 0

0 m2xm,2 · · · 0
... ... . . . ...
0 0 · · · mNxm,N

⎤⎥⎥⎥⎥⎦ (4.12b)

[Kyy] =
M∑︂

i=0

⎡⎢⎢⎣
{kyi,1}

...
{kyi,N

}

⎤⎥⎥⎦ =
M∑︂

i=0
[Kyi

] (4.12c)

[Kyϑ] =
M∑︂

i=0
xi

⎡⎢⎢⎣
{kyi,1}

...
{kyi,N

}

⎤⎥⎥⎦ =
M∑︂

i=0
xi[Kyi

] (4.12d)

The equation of the dynamic equilibrium rotation for the j-th floor and for the
i-th vertical bracing can be written as:

−
(︂
{kxi,j

}{ξC,i}
)︂
yi,j +

(︂
{kyi,j

}{ηC,i}
)︂
xi,j −

(︂
mj ξ̈G,j

)︂
ym,j+

+
(︂
mj η̈G,j

)︂
xm,j + IG,jϑ̈j = 0

(4.13)

in which the terms
(︂
{kxi,j

}{ξC,i}
)︂

and
(︂
{kyi,j

}{ηC,i}
)︂

are the elastic forces in x and
y directions, the terms

(︂
mj ξ̈G,j

)︂
and

(︂
mj η̈G,j

)︂
are the inertia forces, while the term

IG,jϑ̈j represents the relative angular moment of the j-th floor in which the polar
moment of inertia appears to refer to the center of gravity of the floor. By inserting
Equations (4.1 and 4.4), and the analogous equation written for the y-direction in
Equation (4.13), we obtain:

−
[︂
{kxi,j

} ({ξ} − yi{ϑ})
]︂
yi,j +

[︂
{kyi,j

} ({η} + xi{ϑ})
]︂
xi,j+

−
[︂
mj

(︂
ξ̈j − ym,jϑ̈j

)︂]︂
ym,j +

[︂
mj

(︂
η̈j + xm,jϑ̈j

)︂]︂
xm,j + IG,jϑ̈j = 0

(4.14)
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and carrying out the calculations,

− yi,j

{︂
kxi,j

}︂
{ξ} + y2

i,j

{︂
kxi,j

}︂
{ϑ} + xi,j

{︂
kyi,j

}︂
{η} + x2

i,j

{︂
kyi,j

}︂
{ϑ} +

−mjym,j ξ̈j +mjy
2
m,jϑ̈j +mjxm,j η̈j +mjx

2
m,jϑ̈j + IG,jϑ̈j = 0

(4.15)

For the Huygens-Steiner theorem, the angular moment which refers to the origin
of the global reference system can be written as:

IO,j = IG,j +mj

(︂
x2

m + y2
m

)︂
= IG,j +mjr

2
m (4.16)

from which it follows that:

− yi,j

{︂
kxi,j

}︂
{ξ} + y2

i,j

{︂
kxi,j

}︂
{ϑ} + xi,j

{︂
kyi,j

}︂
{η} + x2

i,j

{︂
kyi,j

}︂
{ϑ} +

−mjym,j ξ̈j +mjxm,j η̈j + IO,jϑ̈j = 0
(4.17)

Considering all the N storeys of the building, and all the M resistant vertical
elements, we get a system of equations that, after introducing the matrices:

[Mϑϑ] =

⎡⎢⎢⎢⎢⎣
IO,1 0 · · · 0
0 IO,2 · · · 0
... ... . . . ...
0 0 · · · IO,N

⎤⎥⎥⎥⎥⎦ (4.18a)

[Kϑϑ] =
M∑︂

i=0
[Kxi

] y2
i +

M∑︂
i=0

[Kyi
]x2

i (4.18b)

takes the following formulation:

[Mxϑ]
{︂
ξ̈
}︂

+[Myϑ] {η̈}+[Mϑϑ]
{︂
ϑ̈
}︂

+[Kxϑ] {ξ}+[Kyϑ] {η}+[Kϑϑ] {ϑ} = {0} (4.19)

The three-dimensional problem can be described by a system of three differential
equations, each of which relates to the dynamic equilibrium in x-direction (4.10),
y-direction (4.11), and to the rotation around the vertical axis of the structure
(4.19).

Defining the mass matrix:

[M ] =

⎡⎢⎣ [Mxx] [0] [Mxϑ]
[0] [Myy] [Myϑ]

[Mϑx] [Mϑy] [Mϑϑ]

⎤⎥⎦ (4.20)

and the stiffness matrix:
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[K] =

⎡⎢⎣ [Kxx] [0] [Kxϑ]
[0] [Kyy] [Kyϑ]

[Kϑx] [Kϑy] [Kϑϑ]

⎤⎥⎦ (4.21)

the previously introduced system can be written in compact form as:

[M ]
{︂
δ̈
}︂

+ [K] {δ} = {0} (4.22)

Assuming that the displacement vector {δ} is given by the product of a vector
depending only on the spatial coordinate {ζ(z)} for a scalar depending only on
time ψ(t):

{δ} = {ζ (z)}ψ (t) (4.23)
and replacing Equation (4.23) into Equation (4.22), we obtain:

[M ] {ζ (z)} ψ̈ (t) + [K] {ζ (z)}ψ (t) = {0} (4.24)
Pre-multiplying both terms for {ζ(z)}T,

{ζ (z)}T [M ] {ζ (z)} ψ̈ (t) + {ζ (z)}T [K] {ζ (z)}ψ (t) = {0} (4.25)
and splitting the terms, it is possible to write:

{ζ (z)}T [K] {ζ (z)}
{ζ (z)}T [M ] {ζ (z)}

= ψ̈ (t)
ψ (t) = ω2

n (4.26)

where the terms ωn are the angular frequencies of the system.
Equation (4.26) can be written as two decoupled equations:

ψ̈ (t) + ω2
nψ (t) = 0 (4.27a)

{ζ (z)}T
(︂
[K] − ω2

n [M ]
)︂

{ζ (z)} = {0} (4.27b)

The solution of Equation (4.27a) can be expressed in the form:

ψ (t) = Acos (ωnt) +Bsin (ωnt) = 0 (4.28)
in which A and B are constants whose values are deducted from the initial condi-
tions of the problem.

Equation (4.27b) is instead an eigenvalue problem and is solved by imposing
that:

det
(︂
[K] − ω2

n [M ]
)︂

= 0 (4.29)
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In this way it is possible to determine the 3N values of ωn from which the natural
frequencies (fn = ωn/2π) and periods of vibration of the building (Tn = 1/fn) are
derived. Noting the n values of the angular frequencies, it is possible to determine
the 3N eigenvectors {ζ (z)} that represent the building’s deformed shapes relative
to every mode of vibration.

In doing so, for each period of vibration, a deformed configuration is determined
relative to the origin of the global reference system. By subsequently applying the
General Algorithm, it is possible to define the displacements of all storeys of the
i-th stiffening element and, therefore, the stresses acting on it.

4.3 Numerical example
In this section there will be illustrated the results that have been obtained inves-

tigating the Piedmont Region Headquarters Tower in Turin, already been published
in [188]. The description of the building and the static analysis has already been
addressed in Section 3.3; while the dynamic analysis carried out by applying the
analytical formulation has determined the primary natural frequencies of the struc-
ture and the relative modes shape of vibration.

As far as the dynamic analysis is concerned, we considered the volume weight of
the slabs to be 18.75 kN/m3 and consequently the mass of each floor was calculated.

The numerical code was used to calculate the vibration frequencies (Table 4.1)
and the mode shapes of the structure.

Table 4.1: Natural frequencies estimate for the first ten modes

Mode Analytical model FEM model Percentage difference
[-] [Hz] [Hz] [%]
1 0.178 0.201 12.92
2 0.195 0.222 13.85
3 0.577 0.671 16.29
4 1.276 1.214 -4.86
5 1.899 1.857 -2.21
6 2.133 1.898 -11.02
7 3.528 3.314 -6.07
8 5.252 4.837 -7.90
9 5.957 5.726 -3.88
10 6.894 6.501 -5.70

The natural frequencies of the first ten vibration modes are shown in Figure
(4.2). In this case too, the rigid connection between cores 1-2 and 3-4 makes
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it possible to obtain the vibration frequencies of the analytical model that lean
towards those of the FEM model. In addition, the graph shows greater accuracy
for the first vibration modes, and while there are larger differences for the others,
this can be accepted as a first approximation.

Figure 4.2: Comparison between FEM and analytical natural frequencies

The first six eigenvectors representing the dimensionless displacements of the
origin of the global reference system (rigid connection between cores 1-2 and 3-4),
are shown in the Figures (4.3, 4.4, 4.5, 4.6, 4.7, and 4.8).

Eventually, the Figure (4.9) shows the first six modes of vibration on the 3D
model of the structure. In the first three vibration modes, nodal sections in de-
formed shapes do not appear, whereas, in the following three, they manifest them-
selves.

In particular, as can be observed in Figure (4.9), the first modal shape is pre-
dominantly bending, while second and third are predominantly torsional. The
fourth mode shape is predominantly bending, but present one nodal section. The
fifth and sixth are predominantly torsional modes, with one nodal section.
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Figure 4.3: Dimensionless eigenvectors of the 1st mode

Figure 4.4: Dimensionless eigenvectors of the 2nd mode
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Figure 4.5: Dimensionless eigenvectors of the 3rd mode

Figure 4.6: Dimensionless eigenvectors of the 4th mode
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Figure 4.7: Dimensionless eigenvectors of the 5th mode

Figure 4.8: Dimensionless eigenvectors of the 6th mode
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Figure 4.9: First six 3-D mode shapes of the building
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Chapter 5

Stability analysis

In the field of structural mechanics, the study of stability is a very important
process because if underestimated in the design stages, it can lead to the collapse
of the individual structural element and in some cases of the entire building or a
substantial portion of it. The collapse of an element due to instability occurs be-
fore it reaches the ultimate stress of the material, values that are generally assumed
for the dimensioning of it. This collapse phenomenon occurs following the loss of
equilibrium of the element, and affects the beams which are highly slender. This
is achieved when the load applied to the structure reaches a critical value, or the
maximum value that the element can withstand without undergoing large deforma-
tions that lead to collapse. This value of the load depends on the geometry cross
section, length and restraints of the beam, as well as its mechanical characteristics.

For complex structures, it is often useful to define the multiplier of external
loads, or the coefficient that, if multiplied by the value of the external load actually
applied to the structure, leads to collapse due to instability. Given this, the load
multiplier can be interpreted as a safety factor, as, the more this value is greater
than the unit (which would lead to the loss of equilibrium), the farther the structure
is from the condition of collapsing. There are two types of loss of equilibrium,
called respectively axial buckling, mainly due to a critical axial load, and lateral-
torsional buckling, due to the critical flexural-torsional bending moment that makes
the structural element bend and twist at the same time. In general, these two types
of collapse are related to each other and cannot be studied independently.

This work will illustrate a three-dimensional formulation, based on Vlasov’s
Theory, which makes it possible to determine the values of critical loads that lead to
collapse by instability of a generic thin-walled open-section beam. This formulation
is quite general, and it will be demonstrated that, using appropriate hypotheses, it
is possible obtain the Euler and Prandtl equations that describe the axial buckling
and lateral-torsional buckling respectively. Finally, by inserting these equations
into the General Algorithm, it is possible to determine the multiplier of the external
loads that leads to collapse due to global instability of a high-rise building.
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5.1 Literature review
The phenomenon of instability is a topic that has received a great deal of at-

tention from academics, but although the first works date back to the middle of
the 18th Century, instability remains a complex theme and over the years there
have not been many particularly innovative studies. This is confirmed by the fact
that even today there is often reference made to models introduced by Euler (axial
buckling) and Prandtl (lateral-torsional buckling) more than a century ago.

The first study on elastic stability is reported in Euler’s Treatise of 1759 [99]
in which axial buckling and axial critical load leading to loss of equilibrium of a
straight beam are defined. But is was only in 1899 that Michell [180] realized the
possibility that there might be a phenomenon of instability in very long beams
subject to transverse loads. Around the same time Prandtl [205] affirmed a theory
that describes the loss of equilibrium by flexion-torsion of a beam subject to bending
moment.

In the mid-30s the German engineer Wagner published a work (first in Ger-
man [264], and later in English [263]) in which he provided the equations for the
determination of the critical forces that determine the torsional instability of the
thin-walled open-section beams present in the structures of aircraft. In this formu-
lation, in order to determine the normal stresses due to twisting, Wagner used a
law similar to that of the sectorial areas introduced by Vlasov in 1936 [260].

In the same years Znamenskii published an article [285] in which he used the
Ritz-Timoshenko method to obtain approximate expressions for critical torsional
force. It should also be noted that, in examining torsional deformations, both
Wagner and Znamenskii hypothesized that the center of torsion coincides with the
shear center. In fact, as was demonstrated a few years later by the studies of Vlasov
[262], this statement is true only in the event that the shear center coincides with the
geometrical centroid of the section. The center of torsion generally does not coincide
with the shear center: the equations obtained by Wagner are only applicable when
the section of the beam has two axes of symmetry. The experiments conducted
by Boloban in 1936 [34] on aircraft spars showed that in beams subject to torsion,
axial instability occurs for critical forces considerably lower than the theoretical
values described by Euler.

In the same year F. and H. Bleich published a work [32] dedicated to the problem
of torsion and stability of thin-walled section beams. Using an energetic method to
describe the problem, the authors obtained a system of three differential equations.

However, these authors hypothesized that after deformation the sections remain
plane, and considered that the resulting stresses be applied in the geometric centroid
of the section. This led to the loss of one of the three roots of the corresponding
solving equation and, considering that the equations are coupled together, gave
incorrect results for the other two.

The stability of a beam with a polygonal section was studied in 1937 by Kappus
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[136], while Lundquist e Fligg [165] determined the position of the center of rotation
corresponding to the minimum critical load. The stability in pure bending of a
rectangular beam made of strain-hardened material was studied in 1952 by Hill
and Clark [126] and by Wittrick [271]. The stability of an I-beam in pure bending
assuming a purely plastic character of the process of buckling was examined by Flint
[101] in 1953, while the stability of eccentrically compressed thin-walled section
beams was studied by Chuvikin [71] in 1954.

In these same years the academics who contributed most to generating a general
theory on the instability of the thin-walled open-section beam, although with differ-
ent methodologies, were Bleich, Timoshenko, and Vlasov. In particular, Bleich [31]
used a procedure describing the total potential energy of the beam as the difference
between its deformation energy and the work of external loads. Timoshenko [248],
[250] instead used the static method, that is, he wrote the equilibrium equations
of the forces in the deformed shape configuration, while Vlasov [261], [262] used
an energetic method in which the stresses that are generated in a beam subject to
deformation are transformed into fictitious external loads.

Many years later, Anderson [9] and Attard [16] carried out experimental stud-
ies on mono-symmetric thin-walled open-section cantilever beams that confirmed
results obtained using the analytical formulations proposed by Timoshenko and
Vlasov.

Over the years, several analytical efforts have followed to rewrite the stability
theory of thin-walled open-section beams. To describe the problem, following the
theories of Bleich and Valsov, many researchers use an energy approach. The use of
this method is the ideal solution to analyze the local stability of a structural element
but involves excessive calculations when applied to more complex structures.

Among others, we can mention the works of Ghobarah [111] and Roberts [216]:
they took up Vlasov’s Theory by removing the hypothesis of annulment of shear
forces on the middle line of the section. Yang and McGuire [276], and Kitipornchai
and Chan [144] improved the deformation energy considering all linear terms and
all non-linear terms. In the first of these studies, the beam with doubly symmetri-
cal sections are analyzed, while in the second, L- and T-section beams (with null
warping) are analyzed. While greatly complicating the calculations, their results
are confirmed as special cases of the classical theory.

In 1985, on the basis of the general theory of elastic stability due to Koiter
[125], [146], [147], Pignataro et al. [202] performed a post-buckling analysis of
simply supported channel beams under uniform compression focused on eulerian
and flexural torsional simultaneous buckling modes interaction.

The total potential energy was written up to third order terms in order to
investigate buckling phenomena. This technique was subsequently improved and
the initial imperfection effects were taken into account [201]. In 1990s, Pi [195]
wrote a new formulation considering the rotation components of the second order,
while Trahair [255] rewrote the deformation energy in a simplified form considering
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only linear terms.
Ronagh [217], [218], instead, studied the instability of the beams with vari-

able section while Mohri [182] studied the post-buckling behavior of thin-walled
open-sections bars. In 2016 Taig et al. [237] presented an analytical approach for
stability analysis of thin-walled beams implemented within the framework of the
Generalised Beam Theory [196], [212]. In this manner, it is possible to account for
the deformability of the cross section in both pre-buckling and buckling analyses.

In addition to these analytical works, numerical procedures using the Finite
Element Method [20], [68] began to spread since the 1970s thanks to the develop-
ment of the first calculators. More recently, Tong and Zhang [254], [282] performed
comparative simulations of beams under different load conditions by using FEM
models. Their studies show using a comparative numerical analysis that, all other
conditions being equal, some theories commonly accepted today lead to critical load
values that are also different from each other.

5.2 Stability analysis of thin-walled open-section
beams

Consider a slender prismatic thin-walled open-section element without symme-
try (Figure 5.1), where ξ and η are the displacements according to x and y axes,
respectively, and ϑ is the angle of rotation with respect to the z axis.

A load system is applied to the beam, restrained to both the ends by cylindrical
hinges, consisting of two distributed forces px(z) and py(z) directed in x and y
directions, respectively, and by a distributed torsional moment mz(z), along the
axis of the beam. Furthermore, one axial force N and two bending moments M̄x

and M̄y, are applied to the ends of the beam, as shown in Figure (5.2).
The assumptions behind the formulation are the following:

• the shape of the cross section remains unchanged after deformation;

• the element is deformable only by bending and twisting;

• Vlasov’s Theory is valid.

In the present formulation, an energy method is used by which it is possible to
determine the equilibrium conditions of the system (that is, the critical concentrated
loads that determine instability) by requiring the annulment of the variation of the
total potential energy of the beam, calculated as the difference between the elastic
deformation energy and the work of external loads.

Using Clapeyron Theorem and considering that the bending moments and the
bimoment are energetically orthogonal to each other, the elastic deformation energy
Φ can be written as:
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Figure 5.1: Thin-walled open-section beam

Φ = 1
2

∫︂ L

0

[︂
−Myξ

′′ −Mxη
′′ −Bϑ′′ +Mzϑ

′
]︂
dl (5.1)

Recalling Vlasov’s Equations,

N = E (Aζ ′ − Syξ
′′ − Sxη

′′ − Sωϑ
′′) (5.2a)

My = E (Syζ
′ − Iyyξ

′′ − Iyxη
′′ − Iyωϑ

′′) (5.2b)
Mx = E (−Sxζ

′ − Ixyξ
′′ − Ixxη

′′ − Ixωϑ
′′) (5.2c)

B = E (Sωζ
′ − Iωyξ

′′ − Iωxη
′′ − Iωωϑ

′′) (5.2d)
if the sectorial area is evaluated with respect to the sectorial centroid, the sectorial
static moment Sω is null for definition. Therefore, from Equation (5.2a), evaluated
with respect to the geometric center of gravity of the section (Sy = Sx = 0), it is
possible to calculate the value of function ζ ′

ζ ′ = N

EA
(5.3)

Physically ζ ′ represents the axial deformation of the beam. By inserting Equa-
tion (5.3) into Equations (5.2b, 5.2c, and 5.2d), and making the following assump-
tions:
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Figure 5.2: Load system applied to the beam

• the origin of the reference system coincides with the shear center of the section

Iyω = Ixω = 0;

• the axes of the reference system are principal

Ixy = Iyx = 0;

• the sectorial area is evaluated with respect to the sectorial centroid

Sω = 0;

the following relationships can be deduced:

My = E
(︃
Sy

N

EA
− Iyyξ

′′
)︃

(5.4a)

Mx = E
(︃

−Sx
N

EA
− Ixxη

′′
)︃

(5.4b)

B = −EIωωϑ
′′ (5.4c)
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5.2 – Stability analysis of thin-walled open-section beams

Noting that:

Sy = AxG =⇒ Sy
N

EA
= NxG

E
(5.5a)

Sx = AyG =⇒ Sx
N

EA
= NyG

E
(5.5b)

Equations (5.4) can be rewritten as follows:

My = NxG − EIyyξ
′′ (5.6a)

Mx = −NyG − EIxxη
′′ (5.6b)

B = −EIωωϑ
′′ (5.6c)

As can be observed, the presence of the axial force N does not allow a perfect
diagonalization of Vlasov’s Equations. Eventually, it is important to remember
that the moments of inertia are evaluated with respect to the shear center of the
section, while the terms xG and yG indicate the coordinates of the geometric center
of gravity of the section evaluated with respect to its shear center.

The primary torsional moment, according to Saint Venant’s Theory, can be
written as:

Mz = GItϑ
′ (5.7)

Inserting Equations (5.6 and 5.7) into Equation (5.1), the elastic deformation
energy Φ takes the following form:

Φ = 1
2

∫︂ L

0

[︂
−NxGξ

′′ + EIyyξ
′′2 +NyGη

′′ + EIxxη
′′2 + EIωωϑ

′′2 +GItϑ
′2
]︂
dl (5.8)

The variation is equal to:

δΦ =
∫︂ L

0

[︂
−1

2NxGξ
′′δξ′′ + EIyyξ

′′δξ′′ + 1
2NyGη

′′δη′′ + EIxxη
′′δη′′+

+ EIωωϑ
′′δϑ′′ +GItϑ

′δϑ′
]︂
dl

(5.9)

which integrated by parts provides:
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δΦ =
[︄

1
2

(︄
−NxGξ

′′δξ′ +NxGξ
′′′δξ

)︄
+ EIyyξ

′′δξ′ − EIyyξ
′′′δξ+

+ 1
2

(︄
NyGη

′′δη′ −NyGη
′′′δη

)︄
+ EIxxη

′′δη′ − EIxxη
′′′δη+

+ EIωωϑ
′′δϑ′ − EIωωϑ

′′′δϑ+GItϑ
′δϑ

]︄L

0
+

+
∫︂ L

0

(︄
−1

2NxGξ
IV δξ + EIyyξ

IV δξ + 1
2NyGη

IV δη + EIxxη
IV δη+

+ EIωωϑ
IV δϑ−GItϑ

′′δϑ

)︄
dl

(5.10)

To evaluate the work of concentrated loads N , M̄x, and M̄y, a longitudinal strip
of the beam having infinitesimal area dA is considered, as shown in Figure (5.3).

Figure 5.3: Thin-walled open-section beam with infinitesimal strip

By replacing the loads with a statically equivalent stress field, evaluated by
Navier’s formula, it is possible to write the equation of the work done by external
forces relative to an infinitesimal strip of beam. Integrating on the entire area
obtains the total work of concentrated loads.
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5.2 – Stability analysis of thin-walled open-section beams

With reference to the generic beam strip, whose position is identified by the
coordinates (x, y), the normal stress σz, equivalent to the concentrated external
loads applied at the end of the beam, is equal to:

σz = N

A
+ M̄x

Ixx

(y − yG) − M̄y

Iyy

(x− xG) (5.11)

The total work of the concentrated external loads is written as:

Lconc =
∫︂ L

0

∫︂
A

[σz∆dA] dl (5.12)

where the term ∆ = dl − dz expresses the approach of the constraints due to the
inflection with respect to the x and y axes, as shown in Figure (5.4).

Figure 5.4: Graphics representation of the term ∆

The displacement ∆, due to the axial displacement of the point of application
of the force N , can be evaluated in function of the first derivatives of transverse
displacements ξ and η, and must be calculated as the vectorial sum of the two
displacement components ∆xz and ∆yz on the [xz] and [yz] planes:

∆ = ∆xz + ∆yz (5.13)
The displacement component ∆yz can be written as:

∆yz = dl − dzy = dl − dlcosφx = (1 − cosφx) dl (5.14)
and expanding the cosφx function in the Taylor series, we get:

cosϕx
∼= 1 − φ2

x

2 (5.15)
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Carrying out similar considerations also for the displacement component ∆xz

and performing the appropriate substitutions, the displacement components can be
rewritten in the following form:

∆yz
∼=
(︄

1 − 1 + φ2
x

2

)︄
dl ∼=

φ2
x

2 dl ∼=
1
2ξ

′2 (5.16a)

∆xz
∼=
(︄

1 − 1 +
φ2

y

2

)︄
dl ∼=

φ2
y

2 dl ∼=
1
2η

′2 (5.16b)

Finally, the total displacement can be written as:

∆ ∼=
1
2
[︂
ξ′2 + η′2

]︂
(5.17)

Since we are considering a generic beam strip, which does not commonly coincide
with the shear center of the section, Equation (5.17) generalizes as:

∆ ∼=
1
2

[︄(︄
d∆x
dz

)︄2

+
(︄

d∆y
dz

)︄2]︄
(5.18)

in which the displacements ∆x and ∆y are respectively:

∆x = ξ − ϑy (5.19a)
∆y = η + ϑx (5.19b)

Ultimately, the axial displacement of the point of application of the force N can
be written as:

∆ ∼=
1
2

[︄(︂
ξ′ − ϑ′y

)︂2
+
(︂
η′ + ϑ′x

)︂2
]︄

∼=

∼=
[︄

1
2
(︂
ξ′2 + η′2

)︂
+ 1

2
(︂
y2 + x2

)︂
ϑ′2 − ξ′ϑ′y + η′ϑ′x

]︄ (5.20)

By inserting Equation (5.20) in Equation (5.11), the deformation work due to
concentrated external loads N , M̄x, and M̄y, can be written as:

Lconc =
∫︂ L

0

∫︂
A

[︄(︄
N

A
+ M̄x

Ixx

(y − yG) − M̄y

Iyy

(x− xG)
)︄

(︄
1
2
(︂
ξ′2 + η′2

)︂
+ 1

2
(︂
y2 + x2

)︂
ϑ′2 − ξ′ϑ′y + η′ϑ′x

)︄]︄
dAdl

(5.21)

144



5.2 – Stability analysis of thin-walled open-section beams

For simplicity of exposure, the contributions of N , M̄x, and M̄y, are calculated
separately, obtaining the following formulations.

The work of the axial force N is:

LN =
∫︂ L

0

[︄∫︂
A

1
2
N

A

(︂
ξ′2 + η′2

)︂
dA+

∫︂
A

1
2
N

A
ϑ′2
(︂
y2 + x2

)︂
dA+

−
∫︂

A

N

A
ξ′ϑ′ydA+

∫︂
A

N

A
η′ϑ′xdA

]︄
dl

∫︂ L

0

[︄
N

2
(︂
ξ′2 + η′2

)︂
+ N

2AIPϑ
′2 − N

A
Sxξ

′ϑ′ + N

A
Syη

′ϑ′
]︄
dl

(5.22)

The variation is equal to:

δLN =
∫︂ L

0
N (ξ′δξ′ + η′δη′) dl +

∫︂ L

0

N

A
IPϑ

′δϑ′dl+

−
∫︂ L

0

N

A
Sx (δξ′ϑ′ + ξ′δϑ′) dl +

∫︂ L

0

N

A
Sy (δη′ϑ′ + η′δϑ′) dl

(5.23)

which integrated by parts provides:

δLN =
[︄
Nξ′δξ +Nη′δη + N

A

(︂
IPϑ

′δϑ− Sxϑ
′δξ − Sxξ

′δϑ+

+ Syϑ
′δη + Syη

′δϑ
)︂]︄L

0
+

−
∫︂ L

0

[︄
Nξ′′δξ +Nη′′δη + N

A

(︂
IPϑ

′′δϑ− Sxϑ
′′δξ − Sxξ

′′δϑ+

+ Syϑ
′′δη + Syη

′′δϑ
)︂]︄

dl

(5.24)

The work of the bending moment M̄x is:

LM̄x
=
∫︂ L

0

[︄∫︂
A

1
2
M̄x

Ixx

(y − yG)
(︂
ξ′2 + η′2

)︂
dA+

+
∫︂

A

1
2
M̄x

Ixx

(y − yG)
(︂
y2 + x2

)︂
ϑ′2dA+

−
∫︂

A

M̄x

Ixx

(y − yG) ξ′ϑ′ydA+

+
∫︂

A

M̄x

Ixx

(y − yG) η′ϑ′xdA
]︄
dl

(5.25)
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where defining the terms: ∫︂
A

y − yG

Ixx

dA = ax (5.26a)∫︂
A

y − yG

Ixx

xdA = bx (5.26b)∫︂
A

y − yG

Ixx

ydA = cx (5.26c)∫︂
A

y − yG

Ixx

(︂
y2 + x2

)︂
dA = dx (5.26d)

it is possible to write:

LM̄x
=M̄x

∫︂ L

0

[︄
1
2ax

(︂
ξ′2 + η′2

)︂
+ 1

2dxϑ
′2 − cxξ

′ϑ′ + bxη
′ϑ′
]︄
dl (5.27)

The variation is equal to:

δLM̄x
=M̄x

∫︂ L

0

[︄
ax

(︂
ξ′δξ′ + η′δη′

)︂
+ dxϑ

′δϑ′+

− cx

(︂
ξ′δϑ′ + ϑ′δξ′

)︂
+ bx

(︂
η′δϑ′ + ϑ′δη′

)︂]︄
dl

(5.28)

which integrated by parts provides:

δLM̄x
=M̄x

{︄[︄
ax

(︂
ξ′δξ + η′δη

)︂
+ dxϑ

′δϑ− cx

(︂
ϑ′δξ + ξ′δϑ

)︂
+

+ bx

(︂
ϑ′δη + η′δϑ

)︂]︄L

0
−
∫︂ L

0

[︄
ax

(︂
ξ′′δξ + η′′δη

)︂
+

+ dxϑ
′′δϑ− cx

(︂
ϑ′′δξ + ξ′′δϑ

)︂
+ bx

(︂
ϑ′′δη + η′′δϑ

)︂]︄
dl
}︄ (5.29)

The work of the bending moment M̄y is:

LM̄y
=
∫︂ L

0

[︄
−
∫︂

A

1
2
M̄y

Iyy

(x− xG)
(︂
ξ′2 + η′2

)︂
dA+

−
∫︂

A

1
2
M̄y

Iyy

(x− xG)
(︂
y2 + x2

)︂
ϑ′2dA+

+
∫︂

A

M̄y

Iyy

(x− xG) ξ′ϑ′ydA+

−
∫︂

A

M̄y

Iyy

(x− xG) η′ϑ′xdA
]︄
dl

(5.30)
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where defining the terms: ∫︂
A

x− xG

Iyy

dA = ay (5.31a)
∫︂

A

x− xG

Iyy

xdA = by (5.31b)
∫︂

A

x− xG

Iyy

ydA = cy (5.31c)
∫︂

A

x− xG

Iyy

(︂
y2 + x2

)︂
dA = dy (5.31d)

it is possible to write:

LM̄y
=M̄y

∫︂ L

0

[︄
−1

2ay

(︂
ξ′2 + η′2

)︂
− 1

2dyϑ
′2 + cyξ

′ϑ′ − byη
′ϑ′
]︄
dl (5.32)

The variation is equal to:

δLM̄y
= − M̄y

∫︂ L

0

[︄
ay

(︂
ξ′δξ′ + η′δη′

)︂
+ dyϑ

′δϑ′+

+ cy

(︂
ξ′δϑ′ + ϑ′δξ′

)︂
+ by

(︂
η′δϑ′ + ϑ′δη′

)︂]︄
dl

(5.33)

which integrated by parts provides:

δLM̄y
= − M̄y

{︄[︄
ay

(︂
ξ′δξ + η′δη

)︂
+ dyϑ

′δϑ+ cy

(︂
ϑ′δξ + ξ′δϑ

)︂
+

− by

(︂
ϑ′δη + η′δϑ

)︂]︄L

0
+
∫︂ L

0

[︄
ay

(︂
ξ′′δξ + η′′δη

)︂
+

+ dyϑ
′′δϑ+ cy

(︂
ϑ′′δξ + ξ′′δϑ

)︂
− by

(︂
ϑ′′δη + η′′δϑ

)︂]︄
dl
}︄ (5.34)

Adding the contributions of the variations of the concentrated loads works,
results in:
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δLconc = δLN + δLM̄x
+ δLM̄y

=

=
[︄
Nξ′δξ +Nη′δη + N

A

(︂
IPϑ

′δϑ− Sxϑ
′δξ − Sxξ

′δϑ+ Syϑ
′δη + Syη

′δϑ
)︂]︄L

0
+

M̄x

{︄[︄
ax

(︂
ξ′δξ + η′δη

)︂
+ dxϑ

′δϑ− cx

(︂
ϑ′δξ + ξ′δϑ

)︂
+ bx

(︂
ϑ′δη + η′δϑ

)︂]︄L

0

}︄
+

− M̄y

{︄[︄
ay

(︂
ξ′δξ + η′δη

)︂
+ dyϑ

′δϑ+ cy

(︂
ϑ′δξ + ξ′δϑ

)︂
− by

(︂
ϑ′δη + η′δϑ

)︂]︄L

0

}︄
+

−
∫︂ L

0

[︄
Nξ′′δξ +Nη′′δη + N

A

(︂
IPϑ

′′δϑ− Sxϑ
′′δξ − Sxξ

′′δϑ+ Syϑ
′′δη + Syη

′′δϑ
)︂]︄

dl+

− M̄x

{︄∫︂ L

0

[︄
ax

(︂
ξ′′δξ + η′′δη

)︂
+ dxϑ

′′δϑ− cx

(︂
ϑ′′δξ + ξ′′δϑ

)︂
+ bx

(︂
ϑ′′δη + η′′δϑ

)︂]︄
dl
}︄

+

− M̄y

{︄∫︂ L

0

[︄
ay

(︂
ξ′′δξ + η′′δη

)︂
+ dyϑ

′′δϑ+ cy

(︂
ϑ′′δξ + ξ′′δϑ

)︂
− by

(︂
ϑ′′δη + η′′δϑ

)︂]︄
dl
}︄

(5.35)

The work of the distributed external loads px, py, and mz, is written as:

Ldistr =
∫︂ L

0

∫︂
A

(︄
pxξ + pyη +mzϑ

)︄
dl (5.36)

and the variation is equal to:

δLdistr =
∫︂ L

0

∫︂
A

(︄
pxδξ + pyδη +mzδϑ

)︄
dl (5.37)

Since the objective of the problem is to determine equilibrium configurations
(or critical loads), the variation of the total potential energy δW of the beam is
determined and it is set equal to zero, that is:

δW = δΦ − δLconc − δLdistr = 0 (5.38)
By inserting Equations (5.10, 5.35, and 5.37), in Equation (5.38), two equations

are obtained which must be satisfied.
The first equation contains the finite terms, and is verified at the end points of

the beam, that is for z = 0, L:
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[︄
1
2

(︄
−NxGξ

′′δξ′ +NxGξ
′′′δξ

)︄
+ EIyyξ

′′δξ′ − EIyyξ
′′′δξ+

+ 1
2

(︄
NyGη

′′δη′ −NyGη
′′′δη

)︄
+ EIxxη

′′δη′ − EIxxη
′′′δη+

+ EIωωϑ
′′δϑ′ − EIωωϑ

′′′δϑ+GItϑ
′δϑ

]︄L

0
+

+
[︄
Nξ′δξ +Nη′δη + N

A

(︂
IPϑ

′δϑ− Sxϑ
′δξ − Sxξ

′δϑ+ Syϑ
′δη + Syη

′δϑ
)︂]︄L

0
+

M̄x

{︄[︄
ax

(︂
ξ′δξ + η′δη

)︂
+ dxϑ

′δϑ− cx

(︂
ϑ′δξ + ξ′δϑ

)︂
+ bx

(︂
ϑ′δη + η′δϑ

)︂]︄L

0

}︄
+

− M̄y

{︄[︄
ay

(︂
ξ′δξ + η′δη

)︂
+ dyϑ

′δϑ+ cy

(︂
ϑ′δξ + ξ′δϑ

)︂
− by

(︂
ϑ′δη + η′δϑ

)︂]︄L

0

}︄
= 0

(5.39)

The second equation is instead integral:

∫︂ L

0

(︄
−1

2NxGξ
IV δξ + EIyyξ

IV δξ + 1
2NyGη

IV δη + EIxxη
IV δη+

+ EIωωϑ
IV δϑ−GItϑ

′′δϑ

)︄
dl+

+
∫︂ L

0

[︄
Nξ′′δξ +Nη′′δη + N

A

(︂
IPϑ

′′δϑ− Sxϑ
′′δξ − Sxξ

′′δϑ+ Syϑ
′′δη + Syη

′′δϑ
)︂]︄

dl+

− M̄x

{︄∫︂ L

0

[︄
ax

(︂
ξ′′δξ + η′′δη

)︂
+ dxϑ

′′δϑ− cx

(︂
ϑ′′δξ + ξ′′δϑ

)︂
+ bx

(︂
ϑ′′δη + η′′δϑ

)︂]︄
dl
}︄

+

− M̄y

{︄∫︂ L

0

[︄
ay

(︂
ξ′′δξ + η′′δη

)︂
+ dyϑ

′′δϑ+ cy

(︂
ϑ′′δξ + ξ′′δϑ

)︂
− by

(︂
ϑ′′δη + η′′δϑ

)︂]︄
dl
}︄

+

−
∫︂ L

0

∫︂
A

(︄
pxδξ + pyδη +mzδϑ

)︄
dl = 0

(5.40)

By separating the terms of Equation (5.40) as a function of their variation δξ,
δη, and δϑ, it is possible to write a system of three equations in three unknowns:

EIyyξ
IV − 1

2NxGξ
IV +Nξ′′ − N

A
Sxϑ

′′ + M̄xaxξ
′′+

− M̄xcxϑ
′′ − M̄yayξ

′′ + M̄ycyϑ
′′ = px

(5.41a)
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EIxxη
IV + 1

2NyGη
IV +Nη′′ + N

A
Syϑ

′′ + M̄xaxη
′′+

+ M̄xbxϑ
′′ − M̄yayη

′′ − M̄ybyϑ
′′ = py

(5.41b)

EIωωϑ
IV −GItϑ

′′ + N

A
IPϑ

′′ − N

A
Sxξ

′′ + N

A
Seη

′′ + M̄xdxϑ
′′+

− M̄xcxξ
′′ + M̄xbxη

′′ − M̄ydyϑ
′′ + M̄ycyξ

′′ − M̄ybyη
′′ = mz

(5.41c)

The previous system of three equations can be rewritten in a compact form:

E [J ]
{︂
δIV

}︂
+G [Jt] {δ′′} +

[︂
{N}T {Cg}

]︂
{δ′′} = {F} (5.42)

where the matrices are defined as follows:

[J ] =

⎡⎢⎣ Iyy 0 0
0 Ixx 0
0 0 Iωω

⎤⎥⎦+ N

E

⎡⎢⎣ −1
2xG 0 0
0 +1

2yG 0
0 0 0

⎤⎥⎦ (5.43a)

[Jt] =

⎡⎢⎣ 0 0 0
0 0 0
0 0 −It

⎤⎥⎦ (5.43b)

{N} =

⎧⎪⎨⎪⎩
N
M̄x

M̄y

⎫⎪⎬⎪⎭ (5.43c)

{Cg} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[︄ 1 0 −Sx/A
0 1 Sy/A

−Sx/A Sy/A IP/A

]︄
[︄ ax 0 −cx

0 ax bx

−cx bx dx

]︄
[︄ −ay 0 cy

0 −ay −by

cy −by −dy

]︄

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.43d)

{F} =

⎧⎪⎨⎪⎩
px

py

mz

⎫⎪⎬⎪⎭ (5.43e)

{δ} =

⎧⎪⎨⎪⎩
ξ
η
ϑ

⎫⎪⎬⎪⎭ (5.43f)

The matrix [J ] consists of two terms: the first is the tensor of moments of inertia
already defined in the previous chapters, while the second, which can be interpreted
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5.2 – Stability analysis of thin-walled open-section beams

as a matrix of geometric stiffness, depends on the axial force and from the cross
section geometry. In case the shear center coincides with the geometric center of
gravity of the section, this term is annulled because xG = yG = 0.

The matrix [Jt] contains only the term related to the torsional stiffness factor
and describes the primary torsion due to Saint Venant’s Theory.

The vector {N} contains the values of concentrated loads at the ends of the
beam. This term can be interpreted as the eigenvalue of the problem.

The vector {Cg} is associated to this term: it composed by three matrices,
each of size 3 × 3, which contain some geometric coefficients that describe the cross
section of the beam.

The {F} and {δ} vectors respectively contain the values of the transverse dis-
tributed external loads and the generalized displacements of the beam.

In conclusion, by imposing the boundary conditions, it is possible to define the
values of the critical loads that determine the instability of the beam. For each of
the two ends of the beam it is possible to identify six boundary conditions which
may be statics or kinematics. In particular, depending on the type of constraint
present, it can be written:

Clamped end =⇒
{︄ ξ = 0
η = 0
ϑ = 0

}︄
;
{︄ ξ′ = 0
η′ = 0
ϑ′ = 0

}︄
(5.44a)

Hinged end =⇒
{︄ ξ = 0
η = 0
ϑ = 0

}︄
;
{︄ ξ′′ = 0
η′′ = 0
ϑ′′ = 0

}︄
(5.44b)

Free end =⇒
{︄ ξ′′ = 0
η′′ = 0
ϑ′′ = 0

}︄
;
{︄ ξ′′′ = 0

η′′′ = 0
GItϑ

′ − EIωωϑ
′′′ = 0

}︄
(5.44c)

5.2.1 Particular cases
The equations written so far are absolutely general. We will now address some

particular cases for geometry or for load conditions.
As a first particular case, consider a thin-walled open-section beams unstressed

by loads concentrated at its ends, that is {N} = {0}. The Equation (5.42) takes
the following form:

⎡⎢⎣ EIyy 0 0
0 EIxx 0
0 0 EIωω

⎤⎥⎦
⎧⎪⎨⎪⎩
ξIV

ηIV

ϑIV

⎫⎪⎬⎪⎭+

⎡⎢⎣ 0 0 0
0 0 0
0 0 −GIt

⎤⎥⎦
⎧⎪⎨⎪⎩
ξ′′

η′′

ϑ′′

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
px

py

mz

⎫⎪⎬⎪⎭ (5.45)
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As seen from this system of equations, the first two are the classic equations of
the elastic line, while the third,

EIωωϑ
IV −GItϑ

′′ = mz (5.46)
is the equation of the non-uniform torsion obtained by energy and not using the
static method proposed by Vlasov (Equation 2.55).

As a second particular case, consider a beam on which the bending moments
applied to the ends are null (M̄x = M̄y = 0); the distributed moment mz is also
null.

Since the beam, of length L and constrained at its ends by cylindrical hinges,
does not have an open-section, it can be analyzed considering Saint Venant’s The-
ory, (Iωω = 0, and ϑ′ = cost =⇒ ϑ′′ = 0), and if the shear center coincides with
the center of gravity of the section (Sx = Sy = 0), then under these hypotheses
Equation (5.42) assumes the following form:[︄

EIyy 0
0 EIxx

]︄{︄
ξIV

ηIV

}︄
+
[︄
N 0
0 N

]︄{︄
ξ′′

η′′

}︄
=
{︄
px

py

}︄
(5.47)

This system contains two decoupled equations each of which represents the
elastic line equation with second-order effects valid respectively in the [yz] plane
and [xz] plane. If px = py = 0, the value of the Euler critical axial force is obtained:

Ncr = min
(︄
π2EIyy

L2 ; π
2EIxx

L2

)︄
(5.48)

The exact critical load for a cantilever beam subject to a uniformly distributed
axial load has been evaluated by Timoshenko [250], and, further, taking into account
the influence of discrete number s of actual concentrated loads applied over the
height of the beam (i.e., the dead load due to the horizontal slab of the high-rise
buildings), it is possible to apply a reduction factor α [127], [278], [280]. The axial
buckling load at the clamped base of the cantilever beam is equal to:

Ncr = min
(︄

3.176απ
2EIyy

(2L)2 ; 3.176απ
2EIxx

(2L)2

)︄
(5.49)

where
α = s

s+ 1.588 (5.50)

As a third particular case, consider that the only load acting on the beam is
the bending moment M̄x (N = M̄y = px = py = mz = 0). Since the beam cross
section has double symmetry (the shear center coincides with the center of gravity)
and Iωω = 0, it is easy to determine, through Equations (5.26 and 5.31), that
ax = ay = bx = cy = dx = dy = 0, while cx = by = 1. Under these assumptions,
Equation (5.42) takes the following form:
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⎡⎢⎣ EIyy 0 0
0 EIxx 0
0 0 0

⎤⎥⎦
⎧⎪⎨⎪⎩
ξIV

ηIV

ϑIV

⎫⎪⎬⎪⎭+

⎡⎢⎣ 0 0 0
0 0 0
0 0 −GIt

⎤⎥⎦
⎧⎪⎨⎪⎩
ξ′′

η′′

ϑ′′

⎫⎪⎬⎪⎭+

+

⎡⎢⎣ 0 0 −M̄x

0 0 0
−M̄x 0 0

⎤⎥⎦
⎧⎪⎨⎪⎩
ξ′′

η′′

ϑ′′

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
0
0
0

⎫⎪⎬⎪⎭
(5.51)

which can be rewritten as: {︄
EIyyξ

IV − M̄xϑ
′′ = 0

M̄xξ
′′ +GItϑ

′′ = 0 (5.52)

Finding ϑ′′ of the second equation and replacing it in the first one, we obtain:

ξIV + M̄
2
x

EGIyyIt

ξ′′ = 0 (5.53)

On the other hand, if we derive the second equation of the system (5.52) twice
and replace it in the first one, we obtain:

ϑIV + M̄
2
x

EGIyyIt

ϑ′′ = 0 (5.54)

Equations (5.53 and 5.54) are the relations obtained by Prandtl to describe the
lateral-torsional buckling.

If the beam, of length L is constrained at its ends by cylindrical hinges, the
solution of Equations (5.53 and 5.54) is the same and provides the value of the
critical bending moment equal to:

Mx,cr = π

L

√︂
EGIyyIt (5.55)

In case a beam is analyzed, where the previous hypotheses remain valid, but
with Iωω /= 0, Equation (5.42) takes the following form:

⎡⎢⎣ EIyy 0 0
0 EIxx 0
0 0 EIωω

⎤⎥⎦
⎧⎪⎨⎪⎩
ξIV

ηIV

ϑIV

⎫⎪⎬⎪⎭+

⎡⎢⎣ 0 0 0
0 0 0
0 0 −GIt

⎤⎥⎦
⎧⎪⎨⎪⎩
ξ′′

η′′

ϑ′′

⎫⎪⎬⎪⎭+

+

⎡⎢⎣ 0 0 −M̄x

0 0 0
−M̄x 0 0

⎤⎥⎦
⎧⎪⎨⎪⎩
ξ′′

η′′

ϑ′′

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
0
0
0

⎫⎪⎬⎪⎭
(5.56)

Considering that:
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ξ′′ = M̄x

EIyy

ϑ (5.57)

the third equation of system (5.56) can be written as:

EIωωϑ
IV −GItϑ

′′ − M̄
2
x

EIyy

ϑ = 0 (5.58)

This is the equation of non-uniform torsion with flexural-torsional buckling ef-
fects.

This equation can also be obtained conceptually, considering the overlapping
of the effects of the non-uniform torsion Equation (5.46) and the equation of the
flexural-torsional instability of Prandtl (5.54). If the beam, of length L, is con-
strained at its ends by cylindrical hinges, by imposing the appropriate boundary
conditions (Equations 5.44), the solution of Equation (5.58) provides the value of
the critical bending moment [203]:

Mx,cr = π

L

√︄
EIyyGIt +

(︃
π

L

)︃2
E2IyyIωω (5.59)

Comparing Equation (5.59) with Equation (5.55), it can be deduced that the
presence of the term Iωω /= 0 leads to an increase in the value of the critical bending
moment Mx,cr. As already pointed out in Chapter 2, the analysis of a thin-walled
open-section using Vlasov’s Theory involves an increase in its stiffness compared to
the value that would be obtained by using Saint Venant’s Theory.

The analogous treatment can be done if the only load present on the beam is
the bending moment M̄y, obtaining:

My,cr = π

L

√︄
EIxxGIt +

(︃
π

L

)︃2
E2IxxIωω (5.60)

For the cantilever beam under uniformly distributed load case, the bending
moment is a second-order parabolic function. Consequently, no-closed form solu-
tions of Equation (5.58) to be sought by analytical procedures are available, and
an alternative approximate numerical method should be use [107]. In this case, the
eigenvalue of Equation (5.58), that is the lateral-torsional buckling moment with
respect to y axis, is equal to:

Mx,cr = 2.046π
L

√︄
EIyyGIt +

(︃
π

L

)︃2
E2IyyIωω (5.61)

Drawing the diagram of Equation (5.61) as a function of the height of the beam,
we obtain a curve very similar to Euler’s hyperbola as shown in Figure (5.5).
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5.2 – Stability analysis of thin-walled open-section beams

Figure 5.5: Lateral-torsional buckling moment as a function of the height of the
beam

This curve envisages lateral-torsional buckling moment tending to zero as the
height of the beam tends to infinity and, conversely, lateral-torsional buckling mo-
ment tending to infinity as the height of the beam tends to zero. The latter tendency
is unlikely, because the failure due to yielding:

Mx,P = WxσP (5.62)
where Wx and σP are the elastic section modulus with respect to the x-axis and
the yield stress of the beam, respectively.

If there were no interaction between the two critical phenomena, there would
be a point of discontinuity in the passage from one to the other, corresponding to
the limit height of the cantilever beam (Hlim).

In this section it has been shown that the remarkable cases present in litera-
ture (Euler’s Problem, Prandtl’s Problem, Non-uniform Torsion Theory) can be
described by Equation (5.42), which proves to be quite general.
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5.3 Contribution of shear deformability
In the previous formulation, the hypothesis was made that the beam is de-

formable only by bending and twisting. In a first approximation the hypothesis is
widely satisfied, but in order to generalize the treatment as much as possible, in
this section it is considered that the beam is also deformable by shearing stresses.

In consideration of this, the total deformation energy of the beam ΦT can be
written as the sum of the derformative contribution due to bending and twisting,
ΦB, and the deformative contribution ΦS due to shear stresses and the secondary
torsional moment:

ΦT = ΦB + ΦS (5.63)
The term ΦB has been widely discussed and can be assessed using Equation

(5.8), while by using Clapeyron Theorem, the elastic deformation energy due to
shearing stresses is written as:

ΦS = −1
2

∫︂
V
τzsγzsdV = 1

2G

∫︂ L

0

[︄∫︂
A
τ 2

zsdA
]︄
dl (5.64)

By choosing the global reference system with origin in the shear center of the
section, the shearing stresses can be assessed using Equation (2.82).

By making substitutions, Equation (5.64) can be written as:

ΦS = − 1
2G

∫︂ L

0

[︄∫︂
A

(︄
TxSy(s)
Iyyb

+ TySx(s)
Ixxb

+ MV L
z Sω(s)
Iωωb

)︄2

dA
]︄
dl (5.65)

and then,

ΦS = − 1
2G

∫︂ L

0

[︄
T 2

x

I2
yy

∫︂
A

(︄
Sy(s)2

b2

)︄
dA+

T 2
y

I2
xx

∫︂
A

(︄
Sx(s)2

b2

)︄
dA+

+ MV L
z

2

I2
ωω

∫︂
A

(︄
Sω(s)2

b2

)︄
dA+ 2 TxTy

IyyIxx

∫︂
A

(︄
Sy(s)Sx(s)

b2

)︄
dA+

+ 2TxM
V L
z

IyyIωω

∫︂
A

(︄
Sy(s)Sω(s)

b2

)︄
dA+ 2TyM

V L
z

IxxIωω

∫︂
A

(︄
Sx(s)Sω(s)

b2

)︄
dA
]︄
dl

(5.66)

As can be seen, the shear stresses Tx, Ty and the secondary torsional moment
MV L

z are not energetically orthogonal to each other. The constant terms, that
depend only on the geometry of the section, are introduced:

tx = A

I2
yy

∫︂
A

(︄
Sy(s)2

b2

)︄
dA (5.67a)
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ty = A

I2
xx

∫︂
A

(︄
Sx(s)2

b2

)︄
dA (5.67b)

tω = A

I2
ωω

∫︂
A

(︄
Sω(s)2

b2

)︄
dA (5.67c)

txy = A

IxxIyy

∫︂
A

(︄
Sx(s)Sy(s)

b2

)︄
dA (5.67d)

txω = A

IxxIωω

∫︂
A

(︄
Sx(s)Sω(s)

b2

)︄
dA (5.67e)

tyω = A

IyyIωω

∫︂
A

(︄
Sy(s)Sω(s)

b2

)︄
dA (5.67f)

In Equations (5.67a, 5.67b, and 5.67d), the well-known shear factors introduced
by Jourawski [56] are recognizable, while Equations (5.67c, 5.67e, and 5.67f) are
constant coefficients, formally similar to the previous ones, but related to the sec-
torial characteristic. For this reason, they can be called sectorial shear factors.

By substituting Equations (2.53 and 5.67) in Equation (5.66), the shear defor-
mation energy equation of the thin-walled open-section beam section is obtained.

ΦS = − E2

2GA

∫︂ L

0

[︄
txI

2
yyξ

′′′2 + tyI
2
xxη

′′′2 + tωI
2
ωωϑ

′′′2+

+ 2
(︄
txyIyyIxxξ

′′′η′′′ + txωIyyIωωξ
′′′ϑ′′′ + tyωIxxIωωη

′′′ϑ′′′
)︄]︄

dl
(5.68)

the variation is equal to:

δΦS = − E2

GA

∫︂ L

0

{︄
txI

2
yyξ

′′′δξ′′′ + tyI
2
xxη

′′′δη′′′ + tωI
2
ωωϑ

′′′δϑ′′′+

+ 2
[︄
txyIyyIxx

(︂
ξ′′′η′′′δξ′′′ + ξ′′′η′′′δη′′′

)︂
+ txωIyyIωω

(︂
ξ′′′ϑ′′′δξ′′′+

+ ξ′′′ϑ′′′δϑ′′′
)︂

+ tyωIxxIωω

(︂
η′′′ϑ′′′δη′′′ + η′′′ϑ′′′δϑ′′′

)︂]︄}︄
dl

(5.69)

which integrated three times by parts, and consider only the integral equation,
provides:
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δΦS = E2

GA

∫︂ L

0

[︄
txI

2
yyξ

V Iδξ + tyI
2
xxη

V Iδη + tωI
2
ωωϑ

V Iδϑ

]︄
dl+

+ E2txyIyyIxx

GA

∫︂ L

0

[︄
ξV Iη′′′ + 3ξV ηIV + 3ξIV ηV + ξ′′′ηV I

]︄
δξdl+

+ E2txyIyyIxx

GA

∫︂ L

0

[︄
ξV Iη′′′ + 3ξV ηIV + 3ξIV ηV + ξ′′′ηV I

]︄
δηdl+

+ E2tyωIyyIωω

GA

∫︂ L

0

[︄
ξV Iϑ′′′ + 3ξV ϑIV + 3ξIV ϑV + ξ′′′ϑV I

]︄
δξdl+

+ E2tyωIyyIωω

GA

∫︂ L

0

[︄
ξV Iϑ′′′ + 3ξV ϑIV + 3ξIV ϑV + ξ′′′ϑV I

]︄
δϑdl+

+ E2txωIxxIωω

GA

∫︂ L

0

[︄
ηV Iϑ′′′ + 3ηV ϑIV + 3ηIV ϑV + η′′′ϑV I

]︄
δηdl+

+ E2txωIxxIωω

GA

∫︂ L

0

[︄
ηV Iϑ′′′ + 3ηV ϑIV + 3ηIV ϑV + η′′′ϑV I

]︄
δϑdl

(5.70)

Adding this term to Equation (5.38), the variation of the total potential energy
δW of the beam also considering its shear deformability is determined.

Following the procedure illustrated above, setting δW = 0, and separating the
terms that derive from them according to their variation, δξ, δη, and δϑ, it is
possible to write a system of three equations in three unknowns.

For beams with a symmetrical cross section, the problem is simplified consid-
erably since the shear factors txy, txω, and tyω, are null. In this case the solved
equation takes the form:

E2

GA
[Jv]

{︂
δV I

}︂
+ E [J ]

{︂
δIV

}︂
+G [Jt] {δ′′} +

[︂
{N}T {Cg}

]︂
{δ′′} = {F} (5.71)

where:

[Jv] =

⎡⎢⎣ txI
2
yy 0 0

0 tyI
2
xx 0

0 0 tωI
2
ωω

⎤⎥⎦ (5.72)

Interestingly, the contribution of shear deformability translates from the addi-
tion to Equation (5.42) of a shear stiffness term that multiplies the vector containing
the sixth derivatives of the displacements.

In order to solve this sixth order differential equation and determine the vector
{N} of the critical loads, as is known, it is necessary to have 18 boundary conditions,
9 for each end of the beam. At the time of writing the present work, not all boundary
conditions, which are necessary to solve the problem, have been defined yet.
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5.4 Stability analysis of thin-walled open-section
shear walls

In Section 5.2, the stability of a generic beam was studied. Now, a method
that allows the analysis of a thin-walled open-section shear wall that is part of the
vertical stiffening system of a high-rise building, will be illustrated, and, with this
procedure, it is possible to calculate the critical loads that determine its instability.

In Chapter 2 it was illustrated that a generic bracing, be it a thin-walled closed-
or open-section, can be modeled as an equivalent cantilever beam using appropriate
techniques.

Consider an n-storey thin-walled open-section shear wall on which the external
distributed loads px, py, and mz, are applied. The entire bracing can be modeled as
a series of n beams, of a length equal to the inter-story h, rigidly connected to each
other. Numbering the beams from top to bottom, assuming that the material is
the same for the entire height, and neglecting the shear deformability, it is possible
to write Equation (5.42) for each individual beam, obtaining in this way a system
of n fourth order differential equations:

E [J1]
{︂
δ1

IV
}︂

+G [Jt1] {δ1
′′} +

[︂
{N1}T

{︂
Cg1

}︂]︂
{δ1

′′} = {F1}
E [J2]

{︂
δ2

IV
}︂

+G [Jt2] {δ2
′′} +

[︂
{N2}T

{︂
Cg2

}︂]︂
{δ2

′′} = {F2}
· · ·

E [Jn]
{︂
δn

IV
}︂

+G [Jtn] {δn
′′} +

[︂
{Nn}T

{︂
Cgn

}︂]︂
{δn

′′} = {Fn}

(5.73)

where each of the matrices has dimension 3 × 3, while the vectors have dimension
3 × 1.

By introducing the matrices, each having dimensions 3n× 3n,

[J∗] =

⎡⎢⎢⎢⎢⎣
[J1] 0 · · · 0
0 [J2] · · · 0
... ... . . . ...
0 0 · · · [Jn]

⎤⎥⎥⎥⎥⎦ (5.74a)

[Jt
∗] =

⎡⎢⎢⎢⎢⎣
[Jt1] 0 · · · 0

0 [Jt2] · · · 0
... ... . . . ...
0 0 · · · [Jtn]

⎤⎥⎥⎥⎥⎦ (5.74b)

[Cg
∗] =

⎡⎢⎢⎢⎢⎢⎢⎣

[︂
Cg1

]︂
0 · · · 0

0
[︂
Cg2

]︂
· · · 0

... ... . . . ...
0 0 · · ·

[︂
Cgn

]︂

⎤⎥⎥⎥⎥⎥⎥⎦ (5.74c)
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and the vectors, each having dimensions 3n× 1,

{δ∗} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{δ1

∗}
{δ2

∗}
...

{δn
∗}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.75a)

{N∗} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{N1

∗}
{N2

∗}
...

{Nn
∗}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.75b)

{F ∗} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{F1

∗}
{F2

∗}
...

{Fn
∗}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.75c)

the following equation, valid for the entire shear wall, can be written:

E [J∗]
{︂
δ∗IV

}︂
+G [Jt

∗]
{︂
δ∗′′
}︂

+
[︂
{N∗}T {Cg

∗}
]︂ {︂
δ∗′′
}︂

= {F ∗} (5.76)
To solve this system of 3n fourth order differential equations, it is necessary to

define the boundary conditions.
Assuming that the shear wall is subject to the external horizontal distributed

load in the x and y directions, respectively, the boundary conditions can be schemat-
ically summarized as follows.

At the base of the shear wall (node n + 1) there is a full restraint, therefore
kinematic conditions require that {δn+1} = {0} and {δ′

n+1} = {0}.
At the top (node 1), there is no constraint; as a result the static conditions

impose that the two bending moments and the bimoment are null ({δ′′
1} = {0}),

just as the two shear forces in the x and y directions, respectively, (ξ′′′
1 = η′′′

1 = 0),
and the total torsional moment (GItϑ

′
1 − EIωωϑ

′′′
1 = 0), must be null.

For all j-th intermediate nodes the conditions of continuity of the displacement
function {δj} and of its first derivative {δ′

j} must be valid.
By solving Equation (5.76), the vector containing the critical loads {N∗} is

obtained. This vector contains the values of the critical axial force Ncr and the
two critical bending moments Mx,cr and My,cr, evaluated for each floor of the shear
wall.

In general, for the verification against axial stability (N ≤ Ncr), the most
unfavorable conditions occur in the lower floors, where the maximum axial force
due to dead load is concentrated. Moreover, since tall buildings have on the ground
floor the entrance hall which usually has height of 10−15 meters (the storeys above
generally are 3 − 4 meters in height), and considering Equation (5.48), it is easy to
verify that in the lower floors the critical axial load is low.
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Regarding the verification against lateral-torsional buckling (Mx ≤ Mx,cr∪My ≤
My,cr), the problem is generally more complex as it is necessary to first evaluate the
values of Mx and My due to the actual external distributed loads that are applied
to the shear wall.

On the other hand, by performing static analysis, it is possible to evaluate
the floor displacements {δ} due to the external load, and the bending moments,
as shown in the Equation (2.46a). By inverting these relationships and replacing
the values of Mx,cr and My,cr, it is possible to obtain the deformed shape of the
structure (buckling shape). By applying Equation (2.46c) we obtain the values of
the external critical loads px,cr and py,cr. These values can also be defined as a
function of the actual horizontal loads px and py acting on the bracing, through
constants:

px,cr = λxpx (5.77a)
py,cr = λypy (5.77b)

The constants λx and λy are defined as multipliers of the external loads for the
x and y directions, respectively.

As illustrated in Chapter 3, if in the high-rise building more than one vertical
bracing is present, by knowing their stiffness matrices and applying the General
Algorithm, it is possible to determine the load distribution matrix [Ri], and conse-
quently the portion of external load that is absorbed by i-th bracing, as illustrated
in Equation (3.19).

By evaluating Equations (5.76 and 5.77) for each i-th vertical bracing, it is
possible to determine the values of the multipliers of the global external loads
acting on the building:

Λx = min (λx,i) (5.78a)
Λy = min (λy,i) (5.78b)

Physically, the multipliers of the external load can be interpreted as safety
factors. If the coefficient Λx or Λy is equal to 1, it means that the load applied to
the building generates instability. The more the coefficients Λx and Λy are greater
than 1, the further the building is from collapse due to instability.
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Chapter 6

Conclusions

This thesis illustrates the main results of the research that I have conducted,
under the supervision of Prof. Alberto Carpinteri and Prof. Giuseppe Lacidogna,
in the three years of my doctoral studies.

As shown in Chapter 1, the number of high-rise buildings being built in the
world, as well as their height, is constantly increasing. This upward trend has been
made possible by the introduction of new building materials and the creation of
calculation models which allow the control of a building’s transversal displacements,
construction speed, and structural lightness while providing greater freedom in
architectural choices. On the other hand, the complexity of designing this type of
building has significantly increased.

In order to deal with these engineering problems, in recent decades the develop-
ment of computer tools, both hardware and software, has had considerable impetus
and improvement, especially in the context of Finite Element Method (FEM) soft-
ware programs. New generations of engineers often completely rely on commercial
software, frequently without evaluating whether the results they obtain are com-
patible with the real behavior of the building. Especially in the initial stages of
design, where it is very important to understand how a structure behaves following
the application of loads, the use of this complex and expensive FEM software is not
necessary, indeed it can also be harmful. In this context, simplified analytical for-
mulations have been developed which describe the behavior of tall buildings in an
uncomplicated, intuitive way and with the use of simple resources and techniques.

As shown in Chapter 2, the first analytical methods were developed in the 1960s
and 1970s, when computer tools were rare and complex to use and almost unknown
to designers. Today, many consider these formulations obsolete and outclassed, but
as shown in this present work, if properly used, they provide results that match
those obtained using FEM software. With the creation of the General Algorithm
by Prof. Alberto Carpinteri, described in Chapter 3, the basis was laid for the
realization of structural software based on these methods.
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Over the years the General Algorithm has been improved and optimized, im-
plementing formulations not only to carry out static analysis, but, as shown in
Chapter 4, also to perform dynamic analyses and estimate the mode shapes, natu-
ral frequencies, and periods of vibration of a high-rise building.

Finally, as described in Chapter 5 of this thesis, the foundations have been laid
for the stability analysis of a high-rise building. This type of analysis, often under-
estimated by designers, is very important in the design process because nowadays
taller and leaner buildings are being built.

6.1 Objectives achieved
Numerous objectives have been achieved through this doctoral thesis which, in

a number of cases, represent the completion of the analytical formulation devised
a few years ago by Prof. Alberto Carpinteri. In particular, the functions that
allow the definition of the stiffness matrices of framed tube and diagrid structures
have been implemented in the General Algorithm. This has greatly expanded the
possibilities of using the software, because nowadays many high-rise buildings are
made using these construction techniques. Furthermore, while in the scientific
literature there are numerous analytical formulations that allow the analysis of
only one type of vertical bracing (thin-walled closed- or open-section shear walls,
frames, braced frames, framed tube or diagrid), the intrinsic potential of the General
Algorithm allow the displacements and stresses to be determined in buildings where
there are simultaneously multiple types of vertical bracings. In this way it is possible
to understand how the external horizontal load is distributed among the various
vertical bracings and which is the most stressed element.

As far as dynamic analysis is concerned, the analytical formulations have been
extended in order to evaluate the mode shapes, natural frequencies, and periods
of vibration of high-rise buildings which have an irregular floor plan or are com-
posed of vertical bracings of different heights. Furthermore, in this doctoral thesis
the possibility of analyzing buildings in which there is a mass damper has been
introduced.

Eventually, a new and original analytical formulation has been developed for the
stability study of thin-walled open-section beams. This complex three-dimensional
formulation, based on Vlasov’s Theory, has proved to be generally applicable and
can be used to evaluate the stability of a beam with any constraint and load con-
ditions. To demonstrate the effectiveness of the method, some particular cases
known in literature have been evaluated. By imposing some simplifying hypothe-
ses, the formulation has been particularized by obtaining the equations that allow
the critical axial load (Euler’s problem) and the critical flexural moment (Prandtl’s
problem) to be established, and the non-uniform torsion equation with flexotor-
sional destabilizing effects has been determined.
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6.2 – Future developments

A further development, which also included the effects of deformation energy
relating to the shearing stresses due to shear forces and to the secondary torsional
moment, has been evaluated, obtaining a sixth order differential equation.

In this formulation some coefficients have been introduced which, analogously
to Jourawski’s Theory, have been defined shear factors related to the sectorial area.

Finally, using the General Algorithm, it is possible to evaluate the stability of
a generic thin-walled shear wall, and consequently of a high-rise building. In this
case the unknowns of the problem are the multipliers of the external loads, which
can be interpreted as safety factors against the collapse instability of the building.

6.2 Future developments
The results obtained in this work are not to be considered conclusive. Instead,

they can represent an original starting point for further study, in order to evaluate
the behavior of a structure in the most realistic possible way. In this regards, a
fundamental hypothesis of the General Algorithm consists in the fact that out of
their plane floors have null rigidity. This simplifying assumption gives conservative
results since it provides greater displacements and stresses than the solution with
floors having a real out-of-plane rigidity. Removing the assumption of null rigidity
should involve the not simple addition to the analytical formulation of further elastic
constraints at the level of each floor. In this way it will be possible to further reduce
the gap, already very small (usually less than 10%) between the results obtained
using the analytical code and those obtained using commercial FEM software.

As regards dynamic analysis, it is planned to introduce algorithms into the ana-
lytical formulation that allow the determination of the modal participation factors
and the evaluation of the stresses on the structural elements, defined by carrying
out the modal analysis. Furthermore, it is also planned to introduce the automatic
evaluation of the structure elastic response spectrum, and consequently the seismic
forces acting on the building, into the code. The reason why this procedure has not
yet been implemented in the software is that it presents some differences according
to the legislation to be used.

As for the stability analysis, the formulation presented in this thesis will soon be
implemented in the analytical calculation code. The clarity of the final expressions,
made even more evident by the matrix form, bodes well for quick and convenient
use in the field of automatic calculation. Finally, by replacing static loads with
dynamic forces, the problem can be further extended in order to assess stability
under dynamic conditions. After introducing these algorithms into our analytic
calculation code, we will be able to affirm that we have developed a powerful soft-
ware that can be distributed to designers all over the world to test its effectiveness
on real structures.
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