
Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (32.th cycle)

End-User Development in the
Internet of Things

Alberto Monge Roffarello
* * * * * *

Supervisor
Prof. Fulvio Corno

Politecnico di Torino
May 14, 2020

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Alberto Monge Roffarello

Turin, May 14, 2020

www.creativecommons.org

Summary

In the contemporary Internet of Things (IoT) era, people can interact with a
multitude of smart devices, always connected to the Internet, in the majority of
today’s environments. With lamps, thermostats, and many other appliances that
can be remotely controlled, homes and workplaces are becoming “smart.” Further-
more, by using PCs and smartphones, users can access a variety of online services,
ranging from social networks to news and messaging apps. The result is a com-
plex network of connected entities, be they physical devices or virtual services, that
can communicate with each other, with humans, and with the environment. This
complex scenario opens up, at the same time, possibilities and issues.

By taking advantage of End-User Development (EUD) solutions, users can ac-
tively participate in the IoT by personalizing the functionality of their connected
entities. Nowadays, in particular, many different visual programming platforms
such as IFTTT and Zapier allow the personalization of the joint behaviors of con-
nected entities through IF-THEN rules, i.e., in the form of “if something happens
on a device or a service, then execute an action on another device or service.” The
growing spread of new smart devices and online services, however, makes this per-
sonaliziation a complex task, especially for users without programming experience.
The trigger-action programming paradigm, indeed, is typically implemented at a
low-level of abstraction, with representation models that strongly depend on the
exploited technologies. This negatively influences the rule definition process: end
users experience difficulties in finding and managing the functionality they are in-
terested in, and they are likely to introduce dangerous run-time errors in the defined
IF-THEN rules.

Stemming from these issues, this thesis presents a set of research works that aim at
assisting end users in easily and efficiently personalizing the functionality of their
connected entities. Through rigorous user studies and controlled experiments, we
report on different approaches and practical solutions to a) simplify the definition
of IF-THEN rules, b) promote the discovery of new rules and related functional-
ity, and, c) enable the identification and the resolution of run-time problems in
IF-THEN rules. For supporting these results, we first define a semantic representa-
tion, named EUPont (End-User Programming ontology), to model abstract and

iii

technology-independent IF-THEN rules that can be adapted to different contextual
situations. We demonstrate that EUPont is more expressive than the representa-
tion models offered by contemporary trigger-action programming platforms, and
that it improves the processes needed by end users to define IF-THEN rules in
terms of time, understandability, and ease of use.

After presenting EUPont, we then report on how we used it to facilitate users in
discovering and managing rules and related functionality. We present, in particular,
two different approaches, namely EUDoptimizer and RecRules. EUDoptimizer is
an optimization tool that adopts semantic optimization methods to dynamically
redesign layouts in trigger-action programming user interfaces on the basis of the
choices made by the user during the definition of a rule. The tool is based on
SDP-FSM, a predictive model for trigger-action programming that exploits EUPont
and a state-of-the-art model of human performance in menu search named Search-
Decision-Pointing. RecRules, instead, is an innovative recommender system of IF-
THEN rules that, by exploiting EUPont, is able to compute suggestions on the basis
of the final behaviors users would like to define, e.g., increasing the temperature in
a room.

Finally, we explore the urgent need of assessing the correctness of IF-THEN
rules by presenting two end-user debugging tools, i.e., EUDebug and My IoT Puz-
zle. By exploiting SCPN, i.e., a novel formalism based on Petri Nets and the
EUPont model, such tools are able to assist users in identifying possible loops,
inconsistencies, and redundancies that their rules may generate at run-time. EU-
Debug, in particular, is built on top of an IFTTT-like interface, while the My IoT
Puzzle exploits the Jigsaw metaphor, and it has been designed on a set of guidelines
extracted from previous work on end-user debugging in different contexts.

Summarizing, the main outcomes of this thesis are the following:

EUPont, an ontological high-level representation for end-user development that
allows the definition of abstract and technology-independent IF-THEN rules
that can be adapted to different contextual situations, independently of man-
ufacturers, brands, and other technical details.

EUDoptimizer, an optimization tool to dynamically redesign layouts in trigger-
action programming interfaces in an interactive way, i.e., by considering the
choices made by end users during the definition of a rule.

RecRules, a hybrid and semantic recommendation system of IF-THEN rules that
allows users to discover new rules on the basis of the underlying functionality,
rather than the involved brands or manufacturers.

EUDebug, an end-user debugging tool built on top of an IFTTT-like interface
that enables end users to debug their IF-THEN rules at definition time.

iv

My IoT Puzzle, an end-user debugging tool to compose and debug IF-THEN
rules though the Jigsaw metaphor, designed according to a set of guidelines
extracted from the literature.

v

Acknowledgements

I would like to thank you my supervisor, Fulvio Corno, and Luigi De Russis for
their continuous support and mentorship. Their guidance helped me in becoming
a better researcher.

A special thanks to all the current and past members of the e-Lite research
group, and, in particular, to Juan Pablo Saénz, with whom I have shared this PhD
journey.

Thank you to my parents, Elisa e Paolo, and my girlfriend, Cecilia, for their
patient and unconditional support over these years.

vii

Contents

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Defining IF-THEN Rules . 1

1.1.1 Rule Definition Process . 2
1.1.2 Identified Issues . 3

1.2 Thesis Contributions . 4
1.2.1 Thesis Organization . 7

2 End-User Development in the IoT: an Overview 9

3 Moving Towards a Higher Level of Abstraction 13
3.1 Simplifying Trigger-Action Programming: a High-Level Semantic

Approach . 14
3.1.1 Background . 15
3.1.2 EUPont Desing and Implementation 17
3.1.3 Model Expressiveness . 24
3.1.4 User Evaluation . 26
3.1.5 Results . 33

3.2 Discussion and Guidance for Future Research 36

4 Discovering IF-THEN Rules and Functionality 39
4.1 EUDoptimizer : Defining IF-THEN Rules with an Optimizer in the

Loop . 40
4.1.1 Background . 41
4.1.2 Optimizing IF-THEN Rule Definition 41
4.1.3 SDP-FSM: A Predictive Model for Trigger-Action Program-

ming . 43
4.1.4 Optimization Problem and Methods 47
4.1.5 Implementation and Technical Assessment 48
4.1.6 User Evaluation . 54

viii

4.1.7 Results . 56
4.2 Recommending IF-THEN Rules for End-User Development 58

4.2.1 Background . 59
4.2.2 Recommending By Functionality 62
4.2.3 Knowledge Graph Model & Problem Formulation 63
4.2.4 The RecRules Algorithm . 65
4.2.5 Algorithm Evaluation . 72
4.2.6 Results . 77

4.3 Discussion and Guidance for Future Research 82

5 End-User Debugging in Trigger-Action Programming 87
5.1 Run-Time Problems in IF-THEN Rules 88

5.1.1 Background . 88
5.1.2 Characterizing Problems . 89
5.1.3 Modeling and Detecting Problems 91
5.1.4 SCPN RESTful Server . 96

5.2 Exploring End-User Debugging in Trigger-Action Programming Plat-
forms . 96
5.2.1 Background . 98
5.2.2 The EUDebug Tool . 98
5.2.3 User Evaluation . 99
5.2.4 Results . 104

5.3 Debugging IF-THEN Rules Through the Jigsaw Metaphor 109
5.3.1 Background & Adopted Technologies 110
5.3.2 Extracting Design Guidelines 110
5.3.3 The My IoT Puzzle System 113
5.3.4 User Evaluation . 115
5.3.5 Results . 118

5.4 Discussion and Guidance for Future Research 119

6 Conclusions 123
6.1 Summary of Contributions . 123
6.2 Future Works . 125

A Publications 127
A.1 International Journals . 127
A.2 Proceedings . 128
A.3 Book Chapters . 129

Bibliography 131

ix

List of Tables

1.1 Thesis contributions and main outcomes 5
3.1 The main OWL classes modeled in the EUPont ontology 20
3.2 Ur et al. dataset [137] description 25
3.3 Translation of IFTTT rules in the EUPont representation 26
3.4 General demographics in the EUPont user study 29
3.5 Quantitative results of the EUPont user study 33
4.1 Results of Simulated Annealing and Ant Colony System for trigger

layouts . 51
4.2 Results of Simulated Annealing and Ant Colony System for action

layouts . 53
4.3 Statistics of the dataset exploited in the RecRules evaluation 73
4.4 Example of a rule used in the RecRules evaluation 73
4.5 Distribution of the computed Graded Implicit Feedback (GIF) in the

RecRules evaluation . 74
4.6 Comparative results of the three learning to rank algorithms in im-

plemented in RecRules . 78
4.7 Diversity, coverage, and serendipity results in the RecRules evaluation 78
4.8 Accuracy comparison of RecRules with other state-of-the-arts algo-

rithms . 80
4.9 Diversity, coverage, and serendipity comparison of RecRules with

other state-of-the-arts algorithms 82
5.1 A list of IF-THEN rules analyzed by EUDebug 93
5.2 General demographics in the EUDebug user study 101
5.3 The 12 trigger-action rules defined in the EUDebug study 102
5.4 Quantitative results in the EUDebug user evaluation 104
5.5 Qualitative results in the EUDebug user evaluation 108
5.6 Design guidelines for end-user debugging tools for trigger-action pro-

gramming . 111
5.7 Quantitative results in the My IoT Puzzle user evaluation 118

x

List of Figures

1.1 The complex network of connected entities with which users interact
daily . 2

1.2 The definition process to define an IF-THEN rule 3
3.1 Connected Entity Selection in IFTTT and Zapier 13
3.2 The EUPont structure . 18
3.3 How the individual instances of the EUPont’s OWL classes can be

linked together . 19
3.4 Temperature-related actions in EUPont 21
3.5 Location-related triggers in EUPont 22
3.6 Rule modeling in EUPont . 23
3.7 The IFTTT-like interface implemented for testing EUPont at defi-

nition time . 27
3.8 The EUPont interface implemented for testing EUPont at definition

time . 28
4.1 An overview of EUDoptimizer . 42
4.2 Some screenshots of the user interface used in the empirical evalu-

ation. The interface resembles IFTTT and allows the definition of
trigger-action rules with both the IFTTT version and the EUDopti-
mizer enhanced version. In the IFTTT terminology, rules are named
applets, while connected entities are named services. 50

4.3 Trigger layout for defining triggers: IFTTT vs. EUDoptmizer . . . 52
4.4 Optimized action layout calculated by EUDoptimizer 54
4.5 General time performances in theEUDoptimizer user study 57
4.6 Time performances for uncommon rules in theEUDoptimizer user

study . 57
4.7 The knowledge graph model exploited by RecRules 64
4.8 RecRules architecture . 65
4.9 An example of a knowledge graph built by RecRules 66
4.10 The Semantic Linking & Graph Instantiation phase of RecRules . . 67
4.11 The Semantic Reasoning Process phase of RecRules 69
4.12 Collaborative path in RecRules . 70
4.13 Technology path in RecRules . 70

xi

4.14 Functionality path in RecRules . 71
5.1 The elements characterizing the SCPN formalism 92
5.2 A SCPN example . 94
5.3 The SCPN RESTful server architecture 96
5.4 An overview of the EUDebug tool 97
5.5 The user interface of EUDebug for defining a new IF-THEN rule . . 99
5.6 EUDebug Problem Checking . 100
5.7 EUDebug Step-by-Step Explanation 100
5.8 Quantitative results for direct and indirect in the EUDebug user

evaluation . 108
5.9 Two mockups produced in designing My IoT Puzzle 114
5.10 Defining an IF-THEN rule with My IoT Puzzle 115
5.11 Real time feedback provided by My IoT Puzzle 116
5.12 Resolving a problem with My IoT Puzzle 117

xii

Chapter 1

Introduction

The Internet of Things (IoT) is the paradigm whereby everyday objects are no
longer disconnected from the virtual world, but they can be controlled remotely
and can serve as an access point to the Internet [95]. The advent of the IoT already
helps society in many different ways, through applications ranging in scope from
the individual to the planet [25]. People, in particular, can nowadays interact with
a multitude of smart devices: with lamps, thermostats, and many other appliances,
including fridges and ovens, that can be connected to the Internet, homes are
becoming “smart.” Other environments as well, ranging from workplaces to entire
cities, are extensively leveraging on the IoT. A smart environment, in particular,
can be defined as a “small world where all kinds of smart devices are continuously
working to make inhabitants’ lives more comfortable [29].” Besides physical devices,
many different online services, ranging from social networks to news and messaging
apps, are greatly used by almost everyone: the number of people using the Internet
has passed 4.5 billion marks in January, 2020, with more than 3.8 billion people
actively using social media [128]. As a result, users can easily access a complex
network of connected entities (Figure 1.1), be they smart devices or online services,
that can communicate with each other, with humans, and with the environment.

1.1 Defining IF-THEN Rules
In the scenario offered by such a complex network, the End-User Development

(EUD) vision [87] aims at putting customization mechanisms in the hands of end
users, i.e., the subjects who are most familiar with the actual needs to be met.
Starting from iCAP [47], an early rule-based system for building context-aware
applications, several works in the literature demonstrated the effective applicabil-
ity of EUD techniques for the personalization of the functionality of smart devices
and online services in different areas, including mobile environments [105], smart

1

Introduction

Figure 1.1: The complex network of connected entities with which users interact
daily. Besides interacting with smart devices in different contexts, e.g., lamps and
cars, users can easily access a variety of online services such as Facebook and
WhatsApp through their smartphones.

homes [136, 16], and web mashups [130, 43]. Nowadays, end users can take ad-
vantage of visual programming platforms such as IFTTT [72] and Zapier [151] to
personalize the joint behaviors of their own connected entities, without the need
of writing any code. Most of these platforms [46], in particular, adopt the trigger-
action programming paradigm, i.e., they allow the definition of IF-THEN rules such
as

• if I publish a photo on Facebook, then upload it to my Google Drive;

• if the Nest security camera detects a movement, then blink the kitchen’s
Philips Hue lamp;

• if the Nest thermostat detects that the temperature rises above 22 Celsius
degrees, then open the SmartThings window.

1.1.1 Rule Definition Process
In contemporary trigger-action programming platforms, users can define IF-

THEN rules through similar wizard-based procedures [46]. Figure 1.2 summarizes
the rule definition process to be followed. Defining a rule means defining, separately,
a trigger and an action to be linked together.

To define a trigger, the following steps must be completed:

1. select, through some menus, the generic connected entity involved in the rule’s
trigger (Connected Entity Selection). In this step, entities are typically mod-
eled through the underlying manufacturer or brand, e.g., Nest thermostat.

2

1.1 – Defining IF-THEN Rules

Figure 1.2: The definition process that users must follow to define an IF-THEN
rule in the most common trigger-action programming platforms, e.g., IFTTT and
Zapier.

2. select, through some menus, the specific trigger to be monitored (Trigger
Selection), e.g., the detection of a high temperature;

3. complete the trigger with additional details (Trigger Details), e.g., the iden-
tifier of the specific Nest thermostat, or a temperature threshold.

The same three steps need to be repeated to define the rule’s action (steps 4,5,
and 6 in Figure 1.2).

1.1.2 Identified Issues
Ideally, the trigger-action programming paradigm and can express most of the

behaviors desired by potential users [136]. Unfortunately, despite its wide adoption,
the way it is implemented nowadays presents its own set of problems. We identify,
in particular, 3 main issues related to the definition of IF-THEN rules with con-
temporary trigger-action programming platforms, namely low-level of abstraction,
information overload, and run-time problems.

Low-Level Abstraction. In the forthcoming IoT world, new “things” will not al-
ways be knowable a priori [152] but they may appear and disappear at every
moment, also depending on user location (e.g., as with public services in a
smart city). Unfortunately, contemporary trigger-action programming plat-
forms adopt highly technology-dependent representation models that poorly
adapt to the increasing complexity of the IoT ecosystem: they work with well-
know connected entities, previously associated to a specific user, only. Two
smart devices or online services that provide equivalent or identical functions

3

Introduction

(e.g., setting the indoor temperature) but differ in brands or manufacturers,
in particular, are currently treated like distinct entities. Therefore, as the
number of available connected entities grows and varies, the complexity of
the IoT ecosystem grows [9], and defining IF-THEN rules becomes a complex
task for non-programmers [71].

Information Overload. With the low-level of abstraction of contemporary trigger-
action programming platforms, i.e., every device and online service modeled
on the basis of the underlying brand or manufacturer, the number of possible
combinations among triggers and actions of different technologies is high, and
the number of rules shared on these platforms is growing. Zapier, for exam-
ple, supports more than 1,000 devices and web applications, each one with its
own triggers and actions, while the number of publicly available and reusable
rules on IFTTT already exceeded 200,000 in September, 2016 [137]. Unfor-
tunately, contemporary trigger-action programming platforms do not provide
users with any discovery support [137], and the explosion of new smart devices
and online service results in user interfaces with too much information.

Run-Time Problems. Another important and urgent challenge is the need to
provide users with instruments for understanding and debugging their IF-
THEN rules, i.e., to avoid possible conflicts [21] and to assess the rules’
correctness [46]. Indeed, given the low-level of abstraction of contemporary
trigger-action programming platforms, users frequently misinterpret the be-
havior of trigger-action rules [17], often deviating from their actual semantics,
and are prone to introduce errors [70]. Errors in this context, however, can
lead to unpredictable and dangerous behaviors [17]: while posting a content
on a social network twice could be considered a trivial issue, the wrong rules
could unexpectedly unlock the main door of a house, thus generating a secu-
rity threat. Unfortunately, even if providing end users with validation features
and warning mechanisms could facilitate the adoption of EUD solutions in
the real world [46], relatively little work has been done in this area.

1.2 Thesis Contributions
Stemming from the aforementioned issues, this thesis presents a set of research

works at the intersection of EUD, trigger-action programming, and IoT to assist
end users in easily and efficiently personalizing the functionality of their connected
entities. Table 1.1 summarizes the contributions of this work and its main out-
comes. We organized them according to 3 different categories, one for each identi-
fied issue, i.e., low-level abstraction, information overload, and run-time problems,
respectively.

4

1.2 – Thesis Contributions

Table 1.1: Thesis contributions and main outcomes for each identified issue, i.e.,
low-level abstraction, information overload, and run-time problems.

Category Thesis Contributions Main Outcomes

Higher
Abstraction

• An ontological high-level representa-
tion for end-user development in the
IoT.

• The implementation of a user interface
to define abstract and technology inde-
pendent IF-THEN rules.

• EUPont

Discovery

• A predictive model for trigger-action
programming to optimize user inter-
faces of trigger-action programming
platforms.

• A tool to dynamically redesign layouts
in trigger-action programming user in-
terfaces.

• A hybrid and semantic recommenda-
tion algorithm of IF-THEN rules.

• SDP-FSM

• EUDoptimizer

• RecRules

Debugging

• The formal characterization of the
control-flow problems that may arise
in IF-THEN rules at run-time.

• A novel formalism based on Petri Nets
and semantic information to model
and check the run-time behavior of IF-
THEN rules.

• A set of guidelines extracted from
the literature to design user interfaces
for end-user debugging in the trigger-
action programming context.

• Two different end-user debugging tools
for trigger-action programming.

• SCPN

• EUDebug

• My IoT Puzzle

5

Introduction

Moving Towards a Higher Level of Abstraction

To overcome the low-level abstraction issue, we envisioned a new breed of pro-
gramming environments able to support a “higher level” representation of smart
devices and online services, with the aim of simplifying the rule definition pro-
cess. To this end, we designed and implemented EUPont, an ontological high-level
representation for end-user development that allows the definition of abstract and
technology-independent IF-THEN rules that can be adapted to different contextual
situations, independently of manufacturers, brands, and other technical details. We
integrated the model in a trigger-action programming user interface, by testing it
in a controlled user study with 30 participants. Results demonstrate that EU-
Pont is more expressive than the representation models offered by contemporary
trigger-action programming platforms, and it introduces several benefits in the rule
definition process. By defining IF-THEN rules such as “if I enter a closed space,
then cool the environment”, users are not requested to specify technological details,
and they can personalize the functionality of their connected entities with fewer
rules, fewer mistakes, and in less time.

Discovering IF-THEN Rules and Functionality

As a response to the information overload issue, we supported the need of
providing users of trigger-action programming platforms with more support for
discovering and managing new rules and related functionality [137]. To this end,
we explored two different approaches. First, we designed and implemented an
optimization tool, named EUDoptimizer, that dynamically reorders the layouts in
trigger-action programming user interfaces in an interactive way, i.e., by considering
the choices made by users during the rule composition phase. The aim is to promote
the discovery of the “right” connected entity to be used for defining the trigger or
the action, according to the current user need. For the optimization problem,
we defined SDP-FSM, a predictive model for trigger-action programming based
on EUPont and a state-of-the-art model of human performance in menu search.
Results of a user study with 12 participants suggest that EUDoptimizer can help
end users define IF-THEN in less time, by reducing the cognitive effort needed in
the rule definition process.

In the second approach, we built on the idea that information overload in trigger-
action programming platforms could be addressed through recommender systems.
To this end, we proposed RecRules, a hybrid and semantic recommendation system
of IF-THEN rules. By exploiting the EUPont model, it allows users to discover
new rules on the basis of the underlying functionality, rather than the involved
brands or manufacturers. A rule for turning on a Philips Hue lamp, for example, is
functionally similar to a rule for opening the Hunter Douglas blinds, because they

6

1.2 – Thesis Contributions

share a common final goal, i.e., to light up a place. Results from different experi-
ments demonstrate the benefits of using semantic information in the recommenda-
tion process, and show that RecRules outperforms state-of-the-art recommendation
algorithms.

End-User Debugging in Trigger-Action Programming

To mitigate the run-time problems issue, we claim that users should be as-
sisted in identifying programming bugs in IF-THEN rules and reason about how
to fix them during the rule definition process, as already highlighted by previous
work [14]. This implies designing trigger-action programming platforms that pro-
vide users with mechanisms to debug their IF-THEN rules. We started by formally
characterizing the control-flow problems that may arise in IF-THEN rules at run-
time, i.e., loops, inconsistencies, and redundancies. Then, we defined SCPN, a
novel formalism based on Petri Nets and EUPont to model the run-time behavior
of IF-THEN rules and identify possible problems.

We used the SCPN formalism in two different end-user debugging tools for
trigger-action programming, namely EUDdebug and My IoT Puzzle. We designed
and implemented EUDdebug on top of an IFTTT-like interface: it enables end
users to debug their IF-THEN rules at definition time by a) assisting them in
identifying rule conflicts, and b) allowing them to foresee the run-time behavior of
their rules through step-by-step simulation. Results from a controlled user study
with 15 participants show evidence that users can successfully face computer-related
concepts such as loops, inconsistencies, and redundancies with the help of EUDebug.
The step-by-step simulation, in particular, helps users understand why their rules
might generate a specific problem.

To improve the user interface of EUDdebug, we then reviewed previous work on
end-user debugging in different contexts, e.g., spreadsheets and web mashups, and
we extracted a set of design guidelines. Based on this analysis, we designed and
implemented My IoT Puzzle, an end-user debugging tool to define and debug IF-
THEN rules that exploits the Jigsaw metaphor. The tool interactively assists users
in the definition process by representing triggers and actions as complementary
puzzle pieces, and by providing real-time feedback to test on-the-fly the correctness
of the rule under definition. Results of a preliminary user study with 6 participants
suggest that the usage of different representations and visual languages facilitates
users in analyzing problems and helps them understand, identify, and correct errors
in IF-THEN rules.

1.2.1 Thesis Organization
The thesis is organized as follow:

7

Introduction

Chapter 2 presents related works on EUD and trigger-action programming in the
IoT.

Chapter 3 focuses on the low-level abstraction issue, and it speculates on the usage
of a higher level of abstraction to simplify the end-user definition of IF-THEN
rules. It presents, in particular, EUPont and its evaluations (Section 3.1).

Chapter 4 focuses on the information overload issue, by exploringhow to assist
users in discovering rules and related functionality. It presents EUDopti-
mizer (Section 4.1), including the exploited SDP-FSM predictive model (Sec-
tion 4.1.3), and RecRules (Section 4.2).

Chapter 5 focuses on the run-time problems issue, and it investigates the need
of empowering users in debugging IF-THEN rules. It presents the SCPN
formalism (Section 5.1), the two different end-user debugging tools, i.e., EU-
Debug (Section 5.2) and MyIoTPuzzle (Section 5.3), and the guidelines to
design trigger-action programming user interfaces (Section 5.3.2).

Chapter 6 concludes the thesis and presents future works.

8

Chapter 2

End-User Development in the
IoT: an Overview

The IoT already changed the way end users use the Internet, as well as mobile
and sensor-based devices: people are increasingly moving from passive consumers
to active producers of information, data, and software [103]. They can access new
building blocks and tools, analogously to what happened with blogs and wikis dur-
ing the early phases of the Web [38]. As demonstrated by previous works [46, 60],
the IoT facilitates the creation of heterogeneous ecosystems wherewith users can
access functionality and data offered by the so called “smart objects [4],” i.e., in-
terconnected physical devices equipped with electronics, sensors, and actuators. In
this context, end users are willing to link together the different “behaviors [46]”
exposed by such devices, with the aim of accommodating their everyday needs.
According to Ghiani et al. [60], in particular, end users can be considered as the
most suitable stakeholder to specify how the available smart devices should be ex-
ploited to create new valuable applications: they know what is required to build
applications that can support their tasks, and the availability of new technologies
increases their motivation to participate in the creation of applications that satisfy
their needs [52]. Furthermore, the wide adoption of online services such as so-
cial networks and messaging apps has further expanded the possibility of creating
applications in various domains [137].

Providing users with efficient End-User Development (EUD) methodologies and
tools to customize the behavior of their connected entities, be they physical smart
objects or online services, is therefore an urgent challenge. According to Lieberman
et al. [87], EUD can be defined as “a set of methods, techniques, and tools that allow
users of software systems, who are acting as non-professional software developers,
at some point to create, modify or extend a software artifact”.

Integration of IoT technologies with online services and applications through
end-user programming environments allows users to effectively participate in the
IoT [42]. The research community, especially in the HCI and ubiquitous computing

9

End-User Development in the IoT: an Overview

fields, started to explore the possibilities offered by EUD more than 10 years ago.
One of the first works in this domain is iCAP [47], a visual, PC-based, and rule-
based system for building context-aware applications that does not require users to
write any code. Nowadays, EUD approaches and methodologies have been already
extensively explored in different contexts, e.g., mobile environments [105], smart
homes [136, 16], and web mashups [130, 43].

One of the most popular paradigm to empower end users in directly programming
their connected entities is the trigger-action programming [136, 47]. Trigger-action
programming offers a very simple and easy to learn solution for creating end-user
applications, according to Barricelli and Valtolina [9]: it is not surprising that, in
the last years, several commercial trigger-action programming platforms were born
with the aim of allowing end-user personalization of connected entities. Examples
include IFTTT [72], Zapier [151], Microsoft Flow [100], Mozzilla’s Thing Gate-
way [141], SmartRules [127], and many others. In its basic form, trigger-action
programming allows users to connect a single event to a single action: by defining
trigger-action (IF-THEN) rules, users can connect a pair of devices or online ser-
vices in such a way that, when an event (the trigger) is detected on one of them,
an action is automatically executed on the latter. Although some behaviors would
require greater expressiveness to be defined in a single rule, e.g., through multiple
actions or additional trigger conditions, many of the most popular trigger-action
programming platforms, e.g., IFTTT, Zapier, and Microsoft Flow, still continue to
adopt the basic form of the trigger-action programming paradigm [14].

In this thesis, we focus on IF-THEN rules with a single trigger and a single
action. Despite the presented models and tools can be easily generalized to in-
clude more expressive versions of the trigger-action programming paradigm, our
aim was to avoid unnecessary difficulties for the users involved in our studies. In-
deed, while some studies found that users are able to define rules with multiple
triggers, conditions, and actions [136], others demonstrated that users often mis-
interpret the behavior of rules with more complex triggers and actions [70], e.g.,
because they do not understand the differences between states, instantaneous trig-
gers, and conditions. Moreover, despite apparent simplicity, even the process of
composing IF-THEN rules with single events and single actions has been found
to be a complex task for non programmers [71], and the expressiveness and un-
derstandability of platforms like IFTTT have been criticized since they are rather
limited [136, 70, 137]. Barricelli and Valtolina [9] analyzed the most popular end-
user tools for personalizing connected entities, including IFTTT, and found that
some of them “offers a too complex solution for supporting end-users in expressing
their preferences.” To better assist users in defining personalization in the evolving
IoT scenario, the authors presented an extension of the trigger-action paradigm
that incorporated not only devices, sensors, and online services, but also recom-
mendation systems, other IoT users, space and time, and the social dimension. Ur

10

End-User Development in the IoT: an Overview

et al. [136] found that the trigger-action approach can be both useful and usable
for end-user development in IoT settings like smart homes, but they also found
that the level of abstraction end users employ to express triggers needs to be better
explored. Their paper investigated the practicality of end-user programming for
customizing smart home devices, by evaluating thousands of trigger-action rules
publicly shared on IFTTT, and conducting a usability test with more than 200
participants. They found that many users express triggers one level of abstrac-
tion higher, e.g., “when I am in the room” instead of “when motion is detected
by the motion sensor.” In another study, Ur et al. [137] empirically analyzed more
than 200,000 IFTTT public rules, the largest-scale investigation of this type up to
now, finding that a large number of users are crafting a diverse set of IF-THEN
rules, which represents a very broad array of connections for filling gaps in devices
and services functionality. According to the authors, this explosion of entities and
connections highlights the need to provide users with more support for discovering
functionality and managing collections of IF-THEN rules. The analysis empha-
sizes also the future need of making “IFTTT rules more expressive.” Similarly,
Huang and Cakmak [70] systematically studied the impact of different trigger and
action types in trigger-action programming environments, focusing their efforts on
IFTTT. Two user studies revealed inconsistencies in interpreting the behavior of
trigger-action programming and some errors in creating programs with a desired
behavior. This highlights the need of assisting users in assessing the correctness
of their rules, e.g., through debugging approaches [46]. As IF-THEN rules are de-
ployed in increasingly complex scenarios, indeed, users must be able to identify
programming bugs and reason about how to fix them, as highlighted by Brack-
enbury et al. [14]. In their analysis on how users interpret bugs in trigger-action
program, the authors provided a specification of the trigger-action programming
model, by identifying ten programming bugs that might arise in IF-THEN rules.
They found 10 types of problems, by classifying them into control-flow bugs (e.g.,
infinite loops), timing bugs (e.g., non-deterministic timing), and inaccurate user
expectations (e.g., priority conflicts). They also showed that eight out of the ten
identified bugs negatively influence users’ ability to correctly predict the outcomes
of IF-THEN rules. While the work of Brackenbury et al. is an important contri-
bution to understand trigger-action programming bugs, however, the question on
how to help users with these problems is still underexplored.

To solve the aforementioned issues, several recent works explored new approaches
to empower end users in programming their connected entities. Huang and Cak-
mak offered four recommendations for improving the IFTTT interface with the
aim of mitigating the issues that arise from mental model inaccuracies: (a) to in-
clude prompts for warning users in ambiguous situations; (b) to disallow confusing
options; (c) to better distinguish event and state triggers when they are related
to the same underlying concept (e.g., “it starts raining” and “it is raining”); and

11

End-User Development in the IoT: an Overview

(d) to consider higher level program statements alternatives to “if” and “then.”
Danado and Paternò developed Puzzle [42], a mobile framework which allows end
users without IT background to create, modify, and execute applications. Brich et
al. [16] reported on the comparison of two different notations, i.e., rule-based and
process-oriented, in the smart home context, showing that trigger-action rules are
generally sufficient to express simple automation tasks, while processes fit well with
more complex tasks. Akiki et al. [1] presented ViSiT, an approach that allows end
users to specify transformations on IoT objects that are automatically converted
into executable workflows. Desolda et al. [46] reported on the results of a study to
identify possible visual paradigms to define trigger-action rules in the IoT. They
proposed a model that includes new operators for defining rules, by combining
multiple events and conditions exposed by smart objects. The authors also pre-
sented the architecture of a platform to support rules execution. The architecture
was composed of three layers, i.e., interaction layer, logic layer, and service layer.
The separation of concepts enables the definition of multiple front-ends addressing
different execution platforms, i.e., different devices. Ghiani et al. [60] proposed
a method and a set of tools for end users to personalize the contextual behavior
of their IoT applications through trigger-action rules. The authors, in particular,
described a generic model and its specialization in a home automation use case,
evaluating it during the rule definition process.

Our work starts from the issues and the opportunities presented in this Chap-
ter. We explored, in particular, how to improve the definition of IF-THEN rules
by taking advantage of abstract representations of triggers and actions, discov-
ery mechanisms, and debugging features, with the aim of better coping with the
evolving IoT scenario.

12

Chapter 3

Moving Towards a Higher Level of
Abstraction

Contemporary trigger-action programming platforms adopt highly technology-
dependent representation models that poorly adapt to the increasing complexity of
the IoT ecosystem (low-level abstraction issue). In the case of IFTTT and Zapier,
for example, devices and services in the Connected Entity Selection step of the rule
definition process (Section 1.1.1) are simply grouped by manufacturer or brand,
as shown in Figure 3.1. As a result, the definition of IF-THEN rules becomes a
complex task for non-programmers [71].

(a) Connected entity selection
in IFTTT

(b) Connected entity selection in Zapier

Figure 3.1: Connected Entity Selection in IFTTT (a) and Zapier (b). The first
step in the rule definition process is the selection of the type of device or online
service involved in the rule’s trigger. Such a selection is typically performed by
searching in large menus of supported products. With the spread of new supported
technologies, the amount of information may become too high, thus making the
rule definition process difficult.

13

Moving Towards a Higher Level of Abstraction

Take John, for example:

John, a manager of an insurance company, is always hot, especially
in summer. He loves air conditioning, and he would like to set a low
temperature wherever it is possible. At home, John has an intelligent
Nest thermostat that he controls through his Android smartphone. John
goes to work by car. There, all the offices are equipped with a Samsung
smart air conditioner.

By exploiting the procedures and the representation models provided by contem-
porary trigger-action programming platforms, John has to define several IF-THEN
rules to reach his comfort goal, at least one for his home, one for his office, and
one for his car, even if they perform the same logical operations (i.e., set a specific
temperature when he enters a place). Furthermore, he has to be aware of every
single technology he may encounter before creating his rules (e.g., Nest, Samsung,
etc.), to choose the right one for each rule. Finally, even with an authorization,
John will not be able to define similar rules for unknown places or “things” (e.g.,
his friend’s car), i.e., similar rules do not adapt to different contexts.

With such a “low-level” of abstraction, the user experience with contemporary
trigger-action programming platforms is put to a hard test. Remembering and
maintaining all the specific rules that users are forced to define is challenging,
especially when users’ needs change over time. To simplify the definition of IF-
THEN rules, we envisioned a new breed of programming environments that are
designed to support a “higher level” representation of smart devices and online
services. Our idea was to allow John to define a single rule for his need, e.g., “if I
enter a closed space, then cool the environment”.

To this end, we designed and implemented EUPont (End-User Programming
ontology), a high-level representation for End-User Development. Part of the work
described in this chapter has been previously published in several papers. A generic
overview of the approach can be found in [30] and [102]. The detailed description
of the EUPont ontology (Section 3.1), along with its user evaluation (Section 3.1.4),
are based on the work published in [31]. The evaluation of the EUPont expressive-
ness (Section 3.1.3) is based on the work published in [32].

3.1 Simplifying Trigger-Action Programming: a
High-Level Semantic Approach

To take a step towards a higher level of abstraction in trigger-action program-
ming platforms, EUPont allows users to model abstract and technology-independent
IF-THEN rules. Such rules can be adapted to different contextual situations, inde-
pendently of manufacturers, brands, and other technical details. The representation

14

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

abstracts the IoT ecosystem by modeling connected entities on the basis of their
functionality. Through semantic and reasoning capabilities, in particular, EUPont
is able to link real devices and services to the abstract behaviors they can execute,
thus providing a strong support for the run-time execution of the high-level rules.

3.1.1 Background
EUPont is a semantic representation designed as an OWL ontology. OWL

ontologies are a fundamental part of the Semantic Web framework used for formally
defining classes, attributes, and relationships between the concepts in a specific
domain. The OWL language1, in particular, is characterized by a formal semantic,
and it is built upon the World Wide Web Consortium’s (W3C) XML standard for
objects called the Resource Description Framework (RDF)2. Generally speaking,
an OWL ontology is composed of a set of classes, i.e., the concepts describing the
modeled domain, that can be instantiated through individuals. Individuals can be
linked together by means of object properties, while data properties can be used to
associate particular attributes, e.g., a name or a numerical value, to each individual.

We chose to exploit the Semantic Web framework to design EUPont for four
main reasons.

Reasoning capabilities: semantic reasoning can be used to infer information that
has not been explicitly told about, thus facilitating the mapping between
abstract information to the low-level details needed to actually execute high-
level rules.

Data integration and reuse: the continuous growing of the IoT ecosystem raises
the question of how new connected entities can be easily integrated in existing
trigger-action programming platforms. Semantic technologies offer by nature
advantages in terms of data reuse and integration, thus making it easy to
integrate new devices and online services.

Meaningful information: in a semantic model, and, in particular, in a OWL
ontology, data is enriched with semantic information, i.e., meaning. Thanks
to such a semantic, we can easily perform queries on the representation such
as “which smart devices or online services can perform a particular action?”
or “which connected entity can generate a particular event?”

Concept hierarchies: a semantic model is described as a graph that embeds in-
heritance relationships among concepts, thus allowing the definition and the
linking of multiple levels of abstraction with ease.

1https://www.w3.org/TR/owl2-overview/, last visited on November 18, 2019
2https://www.w3.org/RDF/, last visited on November 18, 2019

15

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/RDF/

Moving Towards a Higher Level of Abstraction

Adding semantics to IoT systems is a topic of particular interest in the literature:
researchers agree that the IoT could benefit from a semantic approach in terms of in-
teroperability, data integration, and knowledge extraction [8], and the lack of open
and shared IoT standards naturally leads to a semantic-oriented perspective [4].
Indeed, contemporary IoT systems have an app-centric or device-centric approach
towards their users, as they are too often designed with an industry-centered ap-
proach that promotes vertical silos [103]. IoT adopters can control their own smart
thermostat with a dedicated app, they are able to query information from their
cars with another app, and they can turn their connected lamps on and off with
yet another app. As a result, all of these web or smartphone-based apps are often
neither intuitive nor efficiently usable [96].

Semantics in the IoT has mainly been adopted in a very specific area, i.e., for de-
scribing sensors and their capabilities. One of the most significant and widespread
models in use in this field is the Semantic Sensor Network (SSN) [27], an ontology to
describe sensors, observations, and features of interest. Other contributions in this
area have been proposed by the Open Geospatial Consortium (OGC), that devel-
oped a set of XML-based standards to describe sensors and their related data [13].
The expressiveness of these vocabularies and ontologies allows them to be used on a
very wide range of applications. However, as reported by Bermudez et al. [10], they
are too specific, and the description of non-essential components for many use cases
can make the ontologies heavy to query and process. To tackle this issue, they pro-
posed IoT-lite [10], a lightweight instantiation of SSN that allows interoperability
and discovery of sensory data in heterogeneous IoT platforms.

The IoT, however, is not composed by sensors, only. Unfortunately, few previ-
ous works included in their models other concepts, such as users, on-line services,
interfaces, etc. In the IOT-A project3, the authors identified entities, resources,
and services as key concepts of the IoT domain. In [45], the authors proposed
a modeling approach in which IoT resources are able to expose standard service
interfaces. Similarly, Wang et al. [140] exploited the concept of services to extend
SSN and to represent other IoT-related concepts such as actuators, gateways, and
servers.

Even with the introduction of such new concepts to sensor modeling, all the
aforementioned vocabularies represent the IoT with a device and technology-oriented
perspective. This approach does not entirely take into account contemporary IoT
ecosystems, where categories (e.g., lighting systems, temperature systems, etc.)
and final capabilities of connected entities (e.g., “can this lighting device be turned
on?”) are a fundamental information.

Such information is partially taken into account by some previous works in the
field of smart environments. With DogOnt [12], the authors presented a building

3http://www.iot-a.eu/public (last visited on November 11, 2016)

16

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

modeling ontology designed to fit real world home automation system capabilities
and to support interoperation between currently available and future solutions. By
exploiting reasoning capabilities, DogOnt is able to describe, for example, where
a device is located, the set of capabilities of such a device, and the technology-
specific features needed to interface the device. In the same field, on behalf of the
European Commission, the TNO4 organization developed SAREF5, a shared model
of consensus that facilitates the matching of existing assets (standards, protocols,
data-models, etc.) in the smart appliances domain. Mayer et al. [96], instead,
presented a high-level description language that captures the semantic of the inter-
actions provided by smart devices, with the aim of implementing intuitive interfaces
for remote control. The idea is to enrich smart devices with a minimal amount of
markup representing a) the type of information that they can exchange, and b) the
high-level semantics of the provided interaction, e.g., set or get a value.

EUPont is inspired by the aforementioned smart environment models, but it
is specifically designed to support abstract and technology-independent IF-THEN
rules in the broader context of connected entities personalization.

3.1.2 EUPont Desing and Implementation
In the EUPont design process, we carefully reviewed the content and the struc-

ture of existing trigger-action programming platforms as well as the reported issues
and challenges from the literature. In particular, we analyzed the IFTTT and Za-
pier platforms, i.e., the supported connected entities with their available triggers
and actions, to find high-level behaviors and possible common functionality. Then,
we grouped the triggers and the actions of the different devices and services ac-
cording to each identified behavior. For example, we obtained the behavior “set
thermostat temperature” by grouping different actions of 20 diverse devices (e.g.,
Caleo, ecobee, Nest, tado Smart AC Control, Wink Aros, etc.). Stemming from
such an analysis, we finally developed the EUPont ontology by using Protégé6, a
free and open-source OWL ontology editor for building intelligent systems. More-
over, we adopted HermiT7 as the semantic reasoner. The resulting ontology is
available at http://elite.polito.it/ontologies/eupont.owl.

4https://www.tno.nl/en/ (last visited on November 27, 2019)
5http://ontology.tno.nl/saref (last visited on November 27, 2019)
6https://protege.stanford.edu (last visited on November 27, 2019)
7http://www.hermit-reasoner.com/ (last visited on November 27, 2019)

17

http://elite.polito.it/ontologies/eupont.owl
https://www.tno.nl/en/
http://ontology.tno.nl/saref
https://protege.stanford.edu
http://www.hermit-reasoner.com/

Moving Towards a Higher Level of Abstraction

EUPont Architecture

Figure 3.2 shows the general structure of EUPont. The ontology is composed of
three layers, which are interlinked to support both the definition and the execution
of abstract and technology-independent IF-THEN rules:

Figure 3.2: The EUPont structure. The Trigger-Action Programming and the IoT
Ecosystem layers refer to the same Contextual Information, and are linked together
thanks to a set of SWRL rules.

Trigger-Action Programming (TAP) Layer allows the definition of abstract
IF-THEN rules, that are independent from manufacturers, brands, or any
other technological details. It defines a hierarchy of triggers and actions to
be used for defining rules in the trigger-action form.

IoT Ecosystem (IoT) Layer models smart devices and online services on the
basis of their categories (e.g., environment systems, user devices, etc.) and fi-
nal capabilities (e.g., switching capabilities, communication capabilities, etc.).

Contextual Information (CI) Layer describes locations and users that are shared
between the TAP and the IoT layers, e.g., the position of a device, or the users
subscribed to an online service.

The three layers are linked together in two ways:

18

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

1. The IoT layer and the TAP layer are both connected to the same CI layer.
For example, a device is linked with its current position, and an action of a
rule can be linked with the location in which the action has to be performed.

2. The TAP layer can be directly connected to the IoT layer. A semantic
reasoning process, in particular, automatically maps the defined EUPont
rules with real entities in the IoT layer able to reproduce the desired abstract
behaviors, according to the capabilities of the available devices and services.

EUPont Axiomatisation

Each ontology layer is composed of a series of top-level OWL classes (reported
in Table 3.1), while individual instances of such classes can be connected together
by means of different object properties, as shown in Figure 3.3.

Figure 3.3: How the individual instances of the EUPont’s OWL classes can be
linked together. The figure clearly shows the layered structure of the ontology.

The TAP layer is composed by OWL classes representing IF-THEN Rule(s),

19

Moving Towards a Higher Level of Abstraction

Table 3.1: The main OWL classes modeled in the EUPont ontology.

Class Description Layer

Rule A Rule in the trigger-action form. TAP
Trigger The trigger of an IF-THEN rule, i.e., an event to react to. It

is specialized in a hierarchy of OWL subclasses representing
events expressed at different level of abstraction.

TAP

Action The action of an IF-THEN rule, i.e., an action to perform when
the trigger of the rule occurs. It is specialized in a hierarchy
of OWL subclasses representing actions expressed at different
level of abstraction.

TAP

Trigger Detail A detail to be associated with a trigger, e.g., a temperature
threshold.

TAP

Action Detail A detail to be associated with an action, e.g., a message to be
sent.

TAP

Agent A user in the modeled ecosystem. The class is imported from
the FOAF ontology.

CI

SpatialThing A location involved in the modeled ecosystem. The class is
imported from the W3C Basic Geo Vocabulary.

CI

IoT Entity A hierarchy of connected entities (smart devices or online ser-
vices) classified by their categories (e.g., environment systems,
user devices, social networks, etc).

IoT

Service A service (i.e., a capability) exposed by a connected entity. IoT
Command A specific low-level action that can be executed by a connected

entity. It includes the technology-specific features needed to
interface the entitiy.

IoT

Notification A specific low-level event that can be generated by a connected
entity. It includes the technology-specific features needed to
interface the entitiy.

IoT

Trigger(s), Actions(s), and related details (Figure 3.3, (a)). As suggested by pre-
vious work [46], a rule can have multiple triggers and multiple actions (hasTrigger
and hasTrigger object properties, Figure 3.3). In this way, the model can be easily
generalized to different versions of the trigger-action programming paradigm. To
allow end users to choose their preferred level of abstraction, triggers and actions
are organized hierarchically by functionality in two levels:

High-Level (HL) trigger and action classes model generic event to be verified or
actions to be executed, respectively, and they do not include any technical
detail, nor the type of device or service to be used to implement the desired
behavior.

Medium-Level (ML) trigger and action classes model specific events to be ver-
ified or actions to be executed, respectively, and they allow the specification

20

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

of the generic devices or services type to be used, without including any tech-
nological detail.

As an example, Figure 3.4 shows a partial view of the hierarchical tree that
characterizes temperature-related actions. Increase and Lower temperature are
HL actions, since the behaviors they define can be achieved in different ways, e.g.,
by turning the heater on or off, or by closing or opening a window. If an end user is
interested in better specifying the desired operation, she can use ML actions, which
for temperature-related actions include Turn Heater On, Close the Window, etc.

Figure 3.4: A partial view of the hierarchical class tree that characterizes
temperature-related actions.

Figure 3.5, instead, shows some location-related triggers. Enter Place and
Exit Place are HL triggers, since the event of entering or leaving a place can be
monitored in different ways and through different connected entities. ML location-
related triggers, for example, model a door that has been opened, or a camera that
detects a presence.

As shown in Figure 3.3, each trigger and action can have different details
(details object property), and it can be connected to contextual information
(Figure 3.3, (b)) by means of the who and where object properties. We mod-
eled users and locations by reusing established ontologies and vocabularies, as
suggested by well-known ontology development guidelines [50]. Users can be in-
stantiated as individuals of the Agent FOAF8 class. For locations, instead, we
specialized the SpatialThing class of the W3C Basic Geo Vocabulary9. We added
subclasses needed to describe the locations involved in IoT ecosystems, e.g., build-
ings (Bulding) and rooms (Room), as well as cars (Car) and other vehicles.

8http://www.foaf-project.org/ (last visited on November 11, 2019)
9http://www.w3.org/2001/sw/interest/ (last visited on November 11, 2019)

21

http://www.foaf-project.org/
http://www.w3.org/2001/sw/interest/

Moving Towards a Higher Level of Abstraction

Figure 3.5: A partial view of the hierarchical class tree that characterizes location-
related triggers.

Locations and users, i.e., the CI layer, can also be connected to the IoT layer
(Figure 3.3, (c)) thtough the isOf and location object properties. The IoT layer,
in particular, is composed of different OWL classes that describe connected en-
tities. The IoT Entity class is specialized in various subclasses that represent
different device and service types, e.g., Thermostat, Lamp, Social Network, etc.
Each IoT Entity individual offers one or more Service, that represent a par-
ticular capability. Services may have Command(s), i.e., actions that can be exe-
cuted, and Notification(s), i.e., events that can be registered (hasCommand and
hasNotification object properties, respectively). Command(s) and Notification(s)
classes, in particular, capture the semantics of the provided interaction, e.g., to set
or get a particular environmental parameter, as in the work of Mayer et al. [96].

Finally, the allowTo object property of Figure 3.3 represents the result of the
reasoning process that directly connects IF-THEN rules in the TAP layer with real
devices and services able to reproduce the desired behaviors. The reasoning process
is supported by a set of SWRL rules, which are in charge of dynamically instantiat-
ing allowTo properties between IoT Entity individuals and Trigger and Action
individuals. Such an ability connection, along with the information stored on the
shared CI layer, can be used at run-time by trigger-action programming platforms
to execute EUPont rules onto real connected entities, according to the contextual
situation. In case of multiple options, different solutions could be adopted to select
the final connected entities in charge of executing the abstract EUPont rules. As
proposed in the discussion of this work (Section 3.2), a possibility is to provide
users with multi-level interfaces exposing the hierarchy of possible triggers and ac-
tions, from the highest level of abstraction to triggers and actions with more specific
details. Other solutions range from preference-based approaches, where the user
explicitly declares her preference towards specific devices and online services, to

22

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

fully automatic solutions, e.g., by using machine learning algorithms. A particular
type of an automatic solution that uses the abstract triggers and actions of EUPont
to extract IF-THEN rules in the IFTTT representation is reported in Section 4.2.

EUPont in Practice

To exemplify the proposed semantic approach, let us consider a user, i.e., John,
and the following IF-THEN rule:

RULE_123 “if I enter home, then set the thermostat temperature to 23
Celsius degree”

Figure 3.6: Graphical representation of the rule “if I enter home, then set the
thermostat temperature to 23 Celsius degree” as modeled in EUPont. Thanks to
the reported SWRL rule, the action is linked to a real device able to reproduce it.

The rule has exactly one trigger and one action. According to the EUPont
model, the trigger is expressed with a High-Level of abstraction, since it does not
include any technical detail, nor the type of device or service to be used to detect
the event. The action, instead, is expressed with a Medium-Level of abstraction: it
mentions, at least in a generic way, a thermostat. Figure 3.6 partially shows how
RULE_123 is modeled in EUPont, and how EUPont supports its real time execution.

a) The trigger is of type Enter Place, a HL class, while the action is an instance
of the Set Thermostat Temperature ML class (ACTION_222). The action,

23

Moving Towards a Higher Level of Abstraction

in particular, is connected to John, i.e., the rule’s creator, and the John’s
home, respectively.

b) The John’s home is equipped with a NEST_HOME smart thermostat that offers a
Heating Service. Such a service allows to set a target temperature through
a Set_To Command.

c) EUPont exploits the SWRL rule reported in Figure 3.6 to link NEST_HOME
to ACTION_222. Following the SWRL rule, in particular, any Thermostat
that offers a Heating Service with a Set_To Command is automatically con-
sidered able to reproduce Set Thermostat Temperature actions, i.e., an
allowTo object property is automatically instantiated between NEST_HOME
and ACTION_222. Since the Set Thermostat Temperature is a ML action,
the same NEST_HOME thermostat is also automatically able to reproduce the
HL behaviors that are parents of that action in the TAP hierarchy, e.g.,
Increase Temperature.

3.1.3 Model Expressiveness
As a first evaluation of our EUPont model, we focused on its expressiveness,

i.e., the set of different triggers and actions it allows to represent. To this end, we
compared it with the representational models currently adopted in trigger-action
programming, by investigating the following research questions:

RQ1) Is EUPont at least as expressive as the representations used by contemporary
trigger-action programming platforms? Does it allow to represent the same
behaviors expressed by low-level triggers and actions?

RQ2) Is EUPont compatible with low-level trigger-action rules defined with con-
temporary trigger-action programming platforms?

To answer these questions, we exploited a dataset of IF-THEN rules publicly
shared on IFTTT as of September 2016 [137], by trying to categorize all the involved
triggers and actions in their corresponding ML and HL EUPont classes. Two re-
searchers were involved in this manual mapping. The resulting ontology is available
at http://elite.polito.it/ontologies/eupont-ifttt.owl. Table 3.2 (column
“Original dataset”) reports some statistics about the original dataset. For each of
the 295,156 rules, the dataset includes:

• id, creation date, description, and number of shares of the rule;

• trigger name, description, and channel (i.e., involved device or service);

• action name, description, and channel (i.e., involved device or service).

24

http://elite.polito.it/ontologies/eupont-ifttt.owl

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

Table 3.2: Ur et al. dataset [137] description.

Original dataset After pre-processing

Rules 295,156 290,963
Distinct Triggers 976 951
Distinct Actions 551 528
Users 129,206 127,173
Rules for each user (in average) 2.29 (SD=6.5) 2.29 (SD=6.5)
Max number of rules for a user 982 982
Min number of rules for a user 1 1

Before translating the IF-THEN rules in the EUPont representation, we per-
formed a data pre-processing step. Since we were interested in the final behaviors
of the defined rules, we identified in the dataset the rules composed of ambiguous
triggers or actions in terms of functionality. For example, the rule “if the Wemo
switch is turned on, then send me an Android SMS” has an ambiguous trigger,
because we do not know which devices are connected to the switch. For all the
identified ambiguous rules, we manually inspected the description field, trying to
discover more information about actual devices involved in triggers and actions and
the user’s intent. We deleted from the dataset 4,193 rules for which it was impos-
sible to resolve the ambiguity. Finally, the pre-processed dataset was composed
of 290,963 rules composed by 127,173 different users (Table 3.2, column “After
pre-processing”).

After data pre-processing, we carried out the translation process in three distinct
phases. First, we developed a Java program that uses the OWL API library [67]
to automatically instantiate and connect IFTTT triggers, actions, and rules in the
EUPont ontology. Then we manually mapped each instantiated trigger and action
to one or more Trigger(s) or Action(s) ML classes, e.g., Close Window and Turn
Heater Off (Figure 3.4). Finally, we redefined the IFTTT rules by replacing their
trigger and action individuals with the corresponding ML and HL Trigger(s) and
Action(s) versions, respectively, by removing all the duplicates resulting from the
translation towards a higher level of abstraction.

As an example, the dataset rule

• if the entrance Nest Cam recognizes me, then turn on the kitchen Philips Hue
lamp (IFTTT)

was translated as follow:

• if the kitchen’s management system detects a presence, then turn the kitchen’s
lights on (Medium-Level);

• if I enter the kitchen, then illuminate it (High-Level);

25

Moving Towards a Higher Level of Abstraction

Table 3.3: Translation of IFTTT rules in the EUPont representation.

Medium-Level High-Level

Number of translated rules 290,963 290,963
Number of rules after translation 179,110 170,353
Number of spared rules 111,853 120,610
% of spared rules 37.90% 41.45%
% of spared rules per user 12.26% (SD=24.12%) 13.26% (SD = 25.18%)

Table 3.3 reports the results of the translation process with both ML and HL
classes. All the 290,963 IFTTT rules in the pre-processed dataset were translated.
With respect to the original dataset, EUPont allowed to translate 98.58% of the
rules, along with 97.44% of triggers and 95.83% of actions. Furthermore, as already
explained, the 4,193 ambiguous rules were mainly due to a lack of information in
the original dataset: by knowing the functionality defined by the users, also those
rules could be translated.

The translation confirms that EUPont could significantly reduce the number of
rules needed by end users to satisfy their needs. With the Medium-Level transla-
tion, the total number of rules is reduced by 37.90%, and, in average, each user
could save the 12.26% of their rules. By expressing the rules in an even more ab-
stract way, i.e., with the High-Level of abstraction, the percentage of saved rules
increases (41.45% in total, and with an average saving of 13.26% for each user).
Moreover, such promising results are influenced by the dataset distribution. In fact,
87,796 users (i.e., 68%) share one rule, only. In this case, obviously, the transla-
tion does not influence the final number of rules for the users but may avoid the
creation of similar rules in the future. These findings show that EUPont is as least
as expressive than the representation model used by IFTTT (RQ1), and it is fully
compatible with low-level rules as defined in IFTTT (RQ2). Moreover, the flex-
ible trigger-action approach adopted by EUPont (e.g., with multiple triggers and
actions) increases the expressiveness of the representation.

3.1.4 User Evaluation
After investigating the EUPont expressiveness, we conducted a user study to

evaluate the suitability and the understandability of the EUPont approach by end
users. The user study was a controlled in-lab experiment that involved 30 partici-
pants, of which 15, only, had programming experience. It focused on the creation
of IF-THEN rules both with the current representation of IFTTT and the EUPont
representation, i.e., ML and HL triggers and actions. The study addressed the
following research questions:

RQ3) Does the EUPont representation help users creating their IF-THEN rules

26

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

more effectively and efficiently compared with the IFTTT representation?

RQ4) Which of the two representations is preferred by users, and which are the
perceived advantages and disadvantages of the two solutions?

To carry out the study, we built two versions of a graphical interface mod-
eled after IFTTT. Whereas our IFTTT-like interface resembled the representation
adopted by IFTTT (Figure 3.7), but with a limited number of supported entities,
our EUPont interface allowed users to create IF-THEN rules with the EUPont rep-
resentation, i.e., through ML and HL triggers and actions (Figure 3.8). For the
EUPont interface, in particular, we used HL classes for triggers and ML classes for
actions. We made this choice according to previous the work of Ur et al. [137], that
shows that users are typically more abstract when referring to event, while they
are more specific in defining actions.

Figure 3.7: The study interface in the IFTTT-like representation, showing the
recipe “If I my Android smartphone detects that I enter the home area, then set
my Nest thermostat to 22 Celsius degree.”

The study was composed of five tasks related to the definition of IF-THEN rules.
All the participants performed all the five tasks twice, once with the IFTTT-like
and once with the EUPont interface. We followed a two-way mixed design. We
considered the used representation (IFTTT-like or EUPont) as the within-subject
factor, and the participant group (users with or without programming experience)
as the between-subject factor. The experiment was carried out in an office of our
university, and took about 1 hour per participant. Two tasks out of five were carried
out with the think-aloud protocol. In this case, we asked participants to vocalize
their thought process as they performed the tasks. All study sessions were video
recorded and observation notes were taken by the researchers. System activities
and associated data were logged as well.

27

Moving Towards a Higher Level of Abstraction

Figure 3.8: The study interface in the EUPont representation, showing the recipe
“If I enter home, then set the temperature to 22 Celsius degree.”

Participants

The study involved 30 participants. To avoid the introduction of biases in
the population sample, we recruited two different groups of university students by
considering their formal programming training and experience. Each group was
composed of 15 participants. We sent an e-mail to a mailing list of students of
the Department of Control and Computer Engineering of our university (POLITO)
to recruit participants with programming experience. For the second group of
participants, we held a brief seminar during a psychology class of the University of
Turin (UNITO), to introduce the students to IoT and trigger-action programming.
At the end of the seminar, we explained the nature of the study that we wanted to
carry out, and we recruited 15 volunteers.

During the study, we gave the participants an initial questionnaire to gather
general information. Table 3.4 summarizes the demographics of our participants.
All the participants were students (15 female) with a mean age of 22.23 years
(SD = 2.19). We asked them about their programming experience, their experience
with connected entities, and whether they were familiar with IFTTT, through three
questions based on a Likert scale from 1 (Very low) to 5 (Very high). The 15
participants with formal programming training indicated a quite high programming
experience level (M = 3.33, SD = 0.62). The difference with the other group of
participants was substantial (M = 1.13, SD = 0.35). Even the experience with
smart devices and online services was different between the two groups (M = 2.73,
SD = 0.70 for the POLITO students, and M = 1.73, SD = 1.16 for the UNITO
students). Instead, we found that the declared experience with IFTTT was similarly
low for both groups (M = 1.47, SD = 0.74 for the POLITO students, and M =
1.00, SD = 0 for the UNITO students).

28

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

Table 3.4: General demographics in the EUPont user study.

Id Age Gender University Programming
Experience

IoT
Experience

IFTTT
Experience

P1 25 M POLITO 3 2 1
P2 19 M POLITO 3 2 1
P3 22 M POLITO 2 3 1
P4 21 F POLITO 3 2 1
P5 26 M POLITO 4 3 3
P6 24 M POLITO 4 2 1
P7 25 M POLITO 4 3 1
P8 22 M POLITO 4 4 3
P9 24 F POLITO 3 3 2
P10 25 M POLITO 4 2 1
P11 25 M POLITO 3 2 1
P12 25 M POLITO 4 3 2
P13 24 M POLITO 3 3 2
P14 24 M POLITO 3 4 1
P15 23 M POLITO 3 3 1
P16 20 F UNITO 1 1 1
P17 20 F UNITO 1 1 1
P18 22 M UNITO 1 1 1
P19 24 F UNITO 2 2 1
P20 19 F UNITO 2 3 1
P21 20 F UNITO 1 1 1
P22 19 F UNITO 1 5 1
P23 20 F UNITO 1 1 1
P24 20 F UNITO 1 3 1
P25 23 F UNITO 1 2 1
P26 20 F UNITO 1 2 1
P27 20 F UNITO 1 1 1
P28 23 M UNITO 1 1 1
P29 21 F UNITO 1 1 1
P30 22 F UNITO 1 1 1

Procedure and Tasks

We gave participants the initial questionnaire and a privacy module. Then, we
introduced them to trigger-action programming and to the IFTTT environment. In
this “training” phase, we showed to the participants each connected entity involved
in the study, and we defined an IF-THEN rule in both the IFTTT-like and EUPont
interfaces as an example. After the training phase, participants started to complete
the five tasks. The order of the tasks and the order of the used iterfaces were coun-
terbalanced. At the end of each session, we performed a final debriefing with the
participant, with the aim of finding the perceived advantages and disadvantages of
the two experimental representations. Task descriptions, questionnaires, debriefing
questions and answers, and moderator interventions were in Italian, and translated

29

Moving Towards a Higher Level of Abstraction

for the purpose of this thesis.

We designed five tasks of the same type to be completed with both the IFTTT-
like and the EUPont interface. Each task consisted of two different parts: a user
scenario and a goal. The user scenario described a generic user, the devices she
owned and her registered services, and some of her typical activities. It did not
contain any explicit reference to the general categories of the EUPont ontology.
Moreover, to avoid any biases towards ML and HL triggers and actions, the user
scenario reflected the contemporary low-level abstraction by specifying all men-
tioned connected entities in “low-level” terms, i.e., with manufacturers and brands.
The goal defined a specific behavior that the user wanted to obtain from her con-
nected entities, and it was definable with one or more IF-THEN rules. The tasks
were:

T1 User scenario: Mary is a researcher in a university. She is environmentally
friendly, and, in particular, she is interested in saving energy. However, she
is distracted, and she often forgets to turn the lights off. For this reason,
she started to gather information about IoT devices, and she equipped her
home with some smart lights. She installed two Philips Hue lamps in her
bedroom, and two Stack Lighting lamps in the living room and in the kitchen.
Furthermore, she used a Samsung SmartThings Hub to remotely control the
doors and the surveillance system. Also her office is equipped with smart
devices: a surveillance system connected to a SmartThings hub, and few
LIFX smart lights.
Goal: Mary would like to automatically turn the lights off when she leaves
a room or her office.

T2 User scenario: John lives in the countryside, near Turin. He loves sport,
and, in particular, cycling. When available, he always uses bike-sharing ser-
vices. John reaches his workplace, an engineering study with offices in Turin
and Milan, by train. When he arrives at the train stations of Turin or Milan,
he checks the availability of bikes with the bike-sharing services of the 2 cities.
If there are not available bikes, he has to go to work on foot, thus arriving
late, typically. When this happens, John alerts his manager with a phone call
from your iPhone.
Goal: When the train is approaching a station, John would like a bike to be
automatically booked.

T3 User scenario: The mother of Jack is very thoughtful, and she is always
worried when her son goes around alone. In particular, she is anxious when
Jack takes the bus, the subway, or a friend’s car, and she would like to con-
stantly receive updates from Jack on her iPhone. Unfortunately, Jack always
forgets to warn his mother when he arrives at his destination.

30

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

Goal: When he uses a means of transport and he arrives at his destination,
Enrico would like to automatically send a message to his mother from his
Android smartphone.

T4 User scenario: Paul is an architect that lives in Turin. He loves technology,
and he has equipped his home with a Nest thermostat, that he can control
with his Android smartphone, to regulate the temperature of all his rooms.
Paul is very satisfied, because he realized that he can save money with heating
automation. For this reason, he decided to equip his office with a Netatmo
thermostat.
Goal: Paul is always cold, and he would like to automatically set the tem-
perature to 22 Celsius degrees when he enters an indoor space.

T5 User scenario: Mark and Andrew are managers of an important tech-
company with offices in Turin, Milan, and Rome. The offices are equipped
with many IoT technologies: doors are connected to a SmartThings hub, and
there are Nest smart cameras and Samsung air conditioners in each room.
When Mark and Andrew meet, they typically have a coffee and discuss their
work plans for the near future. Both Mark and Andrew are constantly moving
between the various company offices, and they find it difficult to meet each
other.
Goal: Mark would like Andrew to be automatically notified on his iPhone
when they are in the same company office.

To investigate whether the participants were aware of the potential and the
limitations of the two representations, tasks were divided in a) solvable (completely
or at least approximately) in both the interfaces (T1, T2, and T4), or b) impossible
to be solved in the IFTTT-like interface (T3 and T5). One task for each category
(T1 and T5) was performed by the participants following the think-aloud protocol.
Users could complete a task with one or more IF-THEN rules, or, in any moment,
they could mark a task as impossible if they thought the task was not completely
realizable. For example, proximity of other people (e.g., in T5) can be included in
EUPont rules, but it is not supported by contemporary low-level representations
such as the one adopted in IFTTT. During the study design phase, we defined a
possible solution for each task in both representations. In the reported example,
the task could be solvable with one rule in the EUPont interface:

• if I leave an indoor place, then turn the lights off in the same indoor place.

With the IFTTT-like interface, instead, the task could be successfully completed
with the following set of rules:

• if the SmartThings hub no longer detects presence (from the bedroom cam-
era), then turn the bedroom Philips Hue lamps off;

31

Moving Towards a Higher Level of Abstraction

• if the SmartThings hub no longer detects presence (from the living room
camera), then turn the living room Stack Lighting lamp off;

• if the SmartThings hub no longer detects presence (from the kitchen camera),
then turn the kitchen Stack Lighting lamp off;

• if the office SmartThings hub no longer detects presence (from the office
camera), then turn the office LIFX lamps off.

Measures

Data from the study depended on two main factors (independent variables): the
interface used to carry out a task (IFTTT-like or EUPont), and the participants
group (users with or without programming experience).

For each task completion (with both interfaces), we collected the following quan-
titative measures: a) the time (in seconds) needed by the participants to complete
a task10, b) the number of incorrect triggers, c) the number of incorrect actions in
the inserted rules, and d) the number of times that a participant pressed “back”.
Since the number of required rules for completing a task differed in the two rep-
resentations, we normalized the four measures with respect to the number of rules
inserted by the user in the given task completion. Then, to conduct statistical
analysis, we calculated the means of these measures by considering all the tasks
completed by a user in the same representation. At the end, for each user, we
obtained the following four dependent variables:

• incorrect triggers: the normalized average number of incorrect triggers in
rules defined in a given representation;

• incorrect actions: the normalized average number of incorrect actions in
rules defined in a given representation;

• back number: the normalized average number of times a participant pressed
“back” in the definition of a rule in a given representation;

• duration: the average time (expressed in seconds) needed by the participants
to define a trigger-action rule in a given representation.

We also collected qualitative measures from the study by observing the users in the
two tasks performed with the think-aloud protocol, and the perceived advantages
and disadvantages of the two representations in the final debriefing. Furthermore,
we analyzed whether participants recognized impossible tasks.

10except for think-aloud tasks

32

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

3.1.5 Results
EUPont Effectiveness

To understand whether the EUPont representation effectively helps and guides
users in defining their IF-THEN rules (RQ3), we analyzed the effect of the interface
independent variable (IFTTT-like or EUPont) over the four dependent variables.
Table 3.5 reports the means of the four analyzed measures in both interfaces.

Table 3.5: Means and standard deviations of the four normalized dependent vari-
ables investigated in the study.

IFTTT-like EUPont-like

Incorrect Triggers 0.279± 0.028 0.120± 0.025
Incorrect Actions 0.203± 0.028 0.038± 0.010
Back Number 0.971± 0.150 0.588± 0.117
Duration 39.647s± 2.600s 25.054s± 1.948s

We conducted four different two-way mixed ANOVA in SPSS with a post-hoc
analysis with Bonferroni correction. We considered incorrect triggers, incorrect
actions, the number of back, and the tasks’ duration as the dependent variables;
the used interface as the within-subject; and the participants group as the between-
subject. The Mauchly’s sphericity test was satisfied for the used representation in
all the four analysis.

a) We found that, if we ignore whether the participant had programming ex-
perience or not, the number of errors in the selection of triggers for rules
defined with different representations significantly differ (F (1,28) = 19.14,
p < .05): on average, participants defined EUPont rules with less errors dur-
ing the definition of triggers with respect to IFTTT-like rules (0.120± 0.025
vs. 0.279 ± 0.028, respectively). A post-hoc test with the Bonferroni cor-
rection revealed that this difference was statistically significant (p < .05).
The programming experience level of the participants did not significantly
influence the variable (F (1,28) = 3.347, p > .05). Furthermore, there was
not a significant interaction between the used interface and the programming
experience in terms of incorrect triggers (F (1,28) = 8.348× 10−6, p > .05).

b) We found that there was a significant main effect of the interface used (F (1,28) =
35.837, p < .05). As for the triggers, by ignoring the programming experience,
the number of errors in the definition of the actions for rules defined with
different representations significantly differs. Participants made less errors
during the definition of actions in EUPont rules, as the means of the incor-
rect actions variable were higher with the IFTTT-like than with the EUPont

33

Moving Towards a Higher Level of Abstraction

interface (0.203 ± 0.028 vs. 0.038 ± 0.010, respectively). Also in this case,
a post-hoc test with Bonferroni revealed that this difference was statistically
significant (p < .05). The programming experience level of the participants
did not significantly influence the incorrect actions variable (F (1,28) = 0.001,
p > .05) nor there was a significant interaction between the interface and
the programming experience in terms of incorrect actions (F (1,28) = 0.343,
p > .05).

c) We found that the average time needed for defining rules was significantly
different for the two iterfaces (F (1,28) = 25.402, p < .05), independent from
the programming experience. Users defined rules with the EUPont represen-
tation faster than with the IFTTT-like representation. In fact, the means
of the duration variable were lower for the EUPont than for the IFTTT-like
interface (25.054s± 1.948s vs. 39.647s± 2.600s), as confirmed by a post-hoc
test with the Bonferroni correction (p < .05). Also in this case, there was not
a significant effect of the programming experience level of the participants
on the duration variable (F (1,28) = 0.263, p > .05) nor a significant interac-
tion between the used interface and the programming experience in terms of
duration (F (1,28) = 0.354, p > .05).

d) We found that there was not a significant main effect of the used interface
on the back number variable (F (1,28) = 4.152, p > .05). However, the back
number was lower with the EUPont interface (0.588±0.117 vs. 0.971±0.150).

Users’ Perception

We analyzed the qualitative data collected during the study to establish which
representation is preferred by the users, and what are the perceived advantages
and disadvantages of the two solutions (RQ4). The qualitative analysis was con-
ducted by two researchers in an iterative coding process. Inter-rater reliability
was determined using Fleiss’Kappa coefficient. First, a researcher transcribed the
experiment videos and interviews. Then, both researchers individually coded the
transcriptions. After this phase, they met and discussed disagreements. Eventu-
ally, they settled on three code sets: (1) understanding low level limits, (2) avoiding
mistakes and confusion, and (3) advantages and disadvantages.

Understanding Low-Level Limits. The limits of the low-level of abstraction
provided by the IFTTT-like representation were easily recognized by the ma-
jority of the participants. During a task resolution, 15 of them asserted that
a proximity event of two people was impossible to define with the IFTTT-
like interface, since the rules definable with IFTTT cannot explicitly involve
other users than the rule creator. A user said “I cannot know the position of
another person in this interface.” All of these 15 participants correctly stated

34

3.1 – Simplifying Trigger-Action Programming: a High-Level Semantic Approach

that the task was impossible to complete. Another 5 participants defined the
event anyway, but they explicitly acknowledged they were aware of the ap-
proximation they made. In another task, 11 participants were upset because
they had to insert the same rule for different technologies and places. Even
if the action was the same (turn the lights off), they had to consider all the
different lights manufacturers, e.g., a participant said “I would like to use the
same action for all the rules.”

Avoiding Mistakes and Confusion. From the analysis of the thoughts and be-
haviors of the participants, it emerges that the EUPont interface helped users
avoid mistakes in the rules definition. During the solution of a task with the
IFTTT-like interface, a participant said “It is important to stay focused, oth-
erwise it’s easy to make mistakes and forget something.” Furthermore, when
we looked at the task solutions with the IFTTT-like interface, we noticed
that errors and omissions were very common, even if users followed a correct
reasoning process. This was evident when participants had to face many dif-
ferent technologies, as in the task reported in subsection 3.1.4. In this case,
11 participants forgot to replicate the same IF-THEN rule for all the differ-
ent devices and rooms, or they incorrectly defined some triggers or actions
details (e.g., the specific light type). With more general attributes, the EU-
Pont representation seemed to mitigate this problem, since 26 participants
completed the tasks without any difficulty and correctly with the related in-
terface. The video recordings analysis shows that users seemed to be more
confused in defining IF-THEN rules with the IFTTT-like interface. With
such an interface, on a total of 60 think-aloud task resolutions, only 2 partic-
ipants successfully completed a task by immediately identifying the correct
triggers and actions (3.3%). In all the other cases, participants changed their
mind several times before reaching a solution. On the contrary, 29 think-
aloud tasks were completed with the EUPont interface without changing idea
(48.3%).

Advantages and Disadvantages. By analyzing the data from the debriefings,
we coded the feedback given by the participants about the IFTTT-like in-
terface in some disadvantages and advantages. First of all, participants ac-
knowledged that a user has to know in advance the devices she owns to
define her IF-THEN rules. This disadvantage was especially cited by partici-
pants without programming experience. Starting from this fact, tasks in the
IFTTT-like interface required various (complex) rules, and the required time
to define rules was higher than the time required with the EUPont interface.
The majority of the participants agreed that generic concepts were impossi-
ble to define with the IFTTT-like interface. Other users were disappointed
about the large number of supported connected entities, often perceived as

35

Moving Towards a Higher Level of Abstraction

not necessary. Not surprisingly, the specific nature of the IFTTT-like in-
terface emerged as an advantage for some tasks, especially from participants
with programming experience, since it allows them to choose the best solution
for their needs (e.g., specify the GPS position of the smartphone).

3.2 Discussion and Guidance for Future Research
In this chapter, we explored a new way of personalizing smart devices and

services through the definition of abstract and technology-independent IF-THEN
rules. The “low-level” representation adopted by contemporary trigger-action pro-
gramming platforms (e.g., IFTTT) is, in fact, not suitable to overcome the issues
brought on by the steady growth of the IoT ecosystem (low-level abstraction issue).
The fact that devices and services with similar capabilities but different brands
are treated as separate entities, and that contemporary solutions only work with
well-known devices and services are two evident examples.

To take a step towards a higher level of abstraction, we formally defined EU-
Pont, an ontological high-level representation for end-user development in the IoT.
The model allows the definition of abstract and technology-independent IF-THEN
rules, e.g., “if I enter a closed space, then cool the environment,” and it supports
the selection of currently available real devices and services able to reproduce the
defined abstract behaviors. By translating a large set of IFTTT rules in the EU-
Pont representation, we demonstrated that the model is more expressive than the
representation models offered by contemporary trigger-action programming plat-
forms. Furthermore, thanks to a user study with 30 participants, we successfully
demonstrated that the EUPont representation allows end users to avoid errors and
to reduce the time needed to define their IF-THEN rules. Furthermore, it intro-
duces numerous benefits in terms of understandability and ease of use.

Different insights to inspire future research in the fields of IoT, EUD, and trigger-
action programming can be extracted from the presented results. We organized
them across different themes, ranging from the design of user interfaces to trustful-
ness, security, and privacy.

Reducing Information and Adapting Contexts. In the upcoming IoT ecosys-
tem, smart devices and online services will not always be knowable a priori
and the complexity of the entire IoT ecosystem will continuously increase.
As some participants in our user evaluation found, a low-level representa-
tion risks the generation of user interfaces that are cluttered and with too
much information. By presenting a lower amount of information, the high-
level interface powered by EUPont allowed participants to define rules in less
time, with less errors, and with more guidance towards the choices they had.

36

3.2 – Discussion and Guidance for Future Research

During the EUPont study, we noticed that some participants often forgot to
replicate the same rule for all their available devices in the low-level represen-
tation, or they incorrectly defined some specific trigger or action details. By
analyzing the experiment videos and interviews, we also found that often users
would like to reuse the same Low-Level trigger or action for different rules,
since their final meaning was the same. For this purpose, EUPont naturally
provides ways to adapt trigger-action rules to different contextual-situation,
with the aim of addressing extremely contextualized user needs [60]. Clearly,
the usage of a higher level of abstraction leads to different aspects that need
to be addressed in future works. Abstract behaviors such as “illuminate a
place” or “send a message,” for instance, could be potentially reproduced in
different ways, on the basis of the current context. How can we decide how
to reproduce them? Which is the “best” solution for a given user? Different
solutions could be adopted, ranging from preference-based approaches to fully
automated solutions, e.g., by means of machine learning algorithms.

Custom Level of Abstraction. Even by being able to reproduce abstract behav-
iors on real devices and services, our results demonstrate that the sole usage
of a high-level of abstraction is not sufficient. As some participants of our
study noted, the interface for defining IF-THEN rules sometimes appeared to
be too generic and did not offer the possibility to manage particular details
of involved connected entities, especially in case of HL triggers. Although
this can be seen as a normal effect of moving from a more specific model to
a more abstract representation, some participants would like to provide more
details during the creation of their own rules (e.g., select all the lights but
not the shades for illuminating a place). This may suggest that users did not
immediately understand the full potential of the High-Level of abstraction of
EUPont or that they would like more precise control. However, they desired
not to have the same amount of details as in the low-level representation.
Therefore, a promising direction for future works is to explore multi-level in-
terfaces exposing the hierarchy of possible triggers and actions, ranging from
the highest level of abstraction to triggers and actions with more specific de-
tails. For example, the Medium-Level of abstraction of EUPont could provide
more fine-grained control than the highest level of abstraction also for the trig-
gers, e.g., by allowing users to specify how to capture the event of entering
their home. The need of more than one level of abstraction is also motivated
by the study Ur et al. [136], in which the authors explored the trigger-action
paradigm in the smart home scenario. In particular, consistently with other
related work [47, 135], they found that participants tended not to mention
sensors directly, and they discovered that many participants express triggers
at one level of abstraction higher.

Programming by Functionality. The leitmotif of the presented work is the

37

Moving Towards a Higher Level of Abstraction

need to put the user at the center of the interaction, so that she can express
her needs and desires without recurring to a device-centric or app-centric
language, but directly indicating the functionality in which she is interested.
EUPont was designed to model triggers and actions on the basis of the behav-
ior they aim to reproduce, without the need of specifying any technological
(e.g., brands or manufacturers) details. In this way, different low-level triggers
or actions collapsed in the corresponding ML/HL trigger or action, e.g., all
the lamps offered the same turn lights on action. The advantages of this
modeling pattern have been confirmed by the result of the user study: besides
reducing the displayed information, a different organization of triggers and
actions, i.e., in terms of their final functionality, helped participants defining
their IF-THEN rules in terms of effectiveness and efficiency. Different ap-
proaches could be investigated in future works to further explore the benefits
of “programming by functionality” in trigger-action programming platforms.
Chapter 4 of this thesis is an example: through optimization methods and
recommender systems, trigger-action programming platforms could provide
users with more support to discover functionality. Another possibility could
be the design of conversational interfaces, through which users could be guided
in exploring the range of different functionality offered by their connected en-
tities.

Trustfulness, Security, and Privacy. Some participants in our user study high-
lighted that they should have a profound trust in a system adopting EUPont.
Similarly, two participants were worried about privacy and security issues
that a system based on the high-level model could present, especially due to
the abstract nature of the representation. To adopt a high-level representa-
tion model such as EUPont, future works would need to carefully consider
trustfulness, privacy, and security issues. This may include warning mech-
anisms in user interfaces to alert users about possible dangerous rules, and
debug features to help people simulate and foresee rule behavior under differ-
ent conditions [46]. In our work, we started to investigate end-user debugging
approaches for contemporary trigger-action platforms (Chapter 5). Debug
could be even more important in case of abstract IF-THEN rules: based on
the context, showing on which real devices and services a high-level rule is
mapped onto could increase the system trustfulness.

+

38

Chapter 4

Discovering IF-THEN Rules and
Functionality

With connected entities modeled on the basis of the underlying brand or man-
ufacturer, the number of possible combinations among triggers and actions of dif-
ferent technologies in contemporary trigger-action programming platforms is high,
and the number of shared rules is growing (information overload issue). IFTTT
and Zapier, for example, force users to define their rules by searching between 500
and 1,000 supported entities displayed with a meaningless order, each one with its
own triggers and actions, while the number of publicly available rules on IFTTT
already exceeded 200,000 back in September, 2016 [137]. Consequently, a user who
wants to customize the behavior of her smart home through IFTTT has many pos-
sibilities: she can define a temperature to be set on her Nest thermostat whenever
her BMW smart car is approaching the home area, or she can make the Philips
Hue lamp in the kitchen turn on whenever the Arlo security camera detects some
movements. Even in such a limited scenario, the 4 mentioned technologies offer
15 triggers and 19 actions on IFTTT, thus generating 285 candidate rules. This
number is even larger if we consider specific details of each trigger and action, such
as the temperature threshold for the thermostat or the light intensity of the lamp.

This particular type of information overload suggests the need of providing
users with more support for discovering and managing rules and related function-
ality [137]. Therefore, instead of using EUPont for defining rules with a new level
of abstraction, we explored how to use the model to help users discover proper
“low-level” triggers, actions, and rules without requiring any radical change in the
adopted representation model. To this end, we proposed:

a) EUDoptimizer (Section 4.1), an optimization approach to dynamically re-
design layouts in trigger-action programming interfaces in an interactive way,
i.e., by considering the choices made by end users during the rule definition
process; and,

39

Discovering IF-THEN Rules and Functionality

b) RecRules a hybrid and semantic recommendation system of IF-THEN rules.

Part of the work described in this chapter has been previously published in
three different papers. The description and the evaluation of EUDoptimizer, in
particular, is based on the work published in [102] and [34], while RecRules was
initially presented in [36].

4.1 EUDoptimizer: Defining IF-THEN Rules with
an Optimizer in the Loop

As already explained in Section 1.1.1, contemporary trigger-action programming
platforms force users to define IF-THEN rules through a multi-step procedure, i.e.,
what we called the rule definition process. The more critical step, in particular, is
the Connected Entity Selection, i.e., the selection of the generic connected entity
to be used in the trigger and in the action. Indeed, user interfaces of platforms like
IFTTT and Zapier force users to browse thousands of supported entities through
unordered grid layouts, i.e., a particular type of menu where items are organized in
rows and columns, without any particular support. To better assist users in defin-
ing rules, we designed and implemented EUDoptimizer (End-User Development
optimizer), an optimizer in the loop to dynamically redesigning such grid layouts
in an interactive way, i.e., by considering the choices made by end users during the
rule definition process. The goal is to promote the discovery of the “right” con-
nected entity to be used for defining the trigger or the action, according to the user’s
need. To reach our goal, we defined two different predictive models to be used in a
multi-objective optimization problem. In particular, we adapted Search-Decision-
Pointing (SDP), a state-of-the-art predictive model of user performance in linear
menu search, to work with grid layouts. Furthermore, we proposed the Functional-
ity Similarity Model (FSM), a novel model based on EUPont to take into account
whether different and heterogeneous technologies provide similar functionality. In
line with previous works [137], we claim that users would benefit from more support
in discovering functionality, rather than being forced to get acquainted with tech-
nological details. As demonstrated in Chapter 3, indeed, users are often interested
in what a device or service can do, and they reason about abstract behaviors, e.g.,
“turn on the lights of the kitchen”, rather than specific technologies, e.g., “turn on
the Philips Hue lamp in the kitchen.”

To explore the design space of grid-based trigger-action programming interfaces,
we considered two different optimization algorithms, i.e., Simulated Annealing and
Ant Colony Optimization, and we integrated those optimization methods on top of
IFTTT.

40

4.1 – EUDoptimizer: Defining IF-THEN Rules with an Optimizer in the Loop

4.1.1 Background
With EUDoptimizer, we adopted combinatorial optimization methods for re-

designing trigger-action programming user interfaces. Applying optimization meth-
ods to user interface design is a long standing topic in human-computer interaction
research: when assumptions are appropriate, optimization methods offer a greater-
than-zero chance of finding an optimal design [112]. Optimization methods have
been firstly adopted for keyboard layouts [153, 113], and then in many other ap-
plication areas, e.g., accessibility [55], menus [94, 7], sketching [134], and web lay-
outs [123]. Since trigger-action programming user interfaces are typically organized
through grid menus, our work is strictly related to the menu optimization problem.

Due to large design space, menus are good candidates for optimization prob-
lems. A menu with n elements, in fact, can be organized in n! ways. Design
heuristics, e.g., displaying frequently used items at the top, may be effective for
small n but fail with larger n or if additional human factors such as semantic
relationships among items are considered [7]. Combinatorial optimization meth-
ods, instead, explore a large number of designs in order to find a good (preferably
optimal) solution that minimizes or maximizes an objective function. While the
computational cost is often a problem, reasonable solutions can be obtained by
adopting interactive approaches, i.e., by involving users in redefining and refining
the optimization problem [7]. In EUDoptimizer, the problem of defining trigger-
action rules contains steps that are intrinsically interactive: components layout for
defining an action, for example, may change on the basis of the defined trigger.

Similarly to previous works, we followed a model-based optimization approach [112].
Unlike heuristic approaches, which do not predict effects on end users, model-based
optimization exploits predictive models of user performance and layout perception.
The idea is to represent a design problem, along with a design knowledge, as an
objective function. Then, a search algorithm is used to iteratively improve designs
for the stated object. Several models of user performance and layout perception
have been proposed for specific tasks. Examples can be seen in Sketchplore [134],
a multi-touch sketching tool that uses a real-time layout optimizer, and MenuOp-
timizer [7], an interactive design tool for menus that exploits the SDP [26] model,
and a model of expected item groupings. Similarly to MenuOptimizer, we adapted
SDP to predict the selection time of a connected entity from a grid layout, and we
involved the user in the optimization process: by defining the trigger, users inter-
actively provide the optimizer with fundamental information to produce the layout
for defining the action.

4.1.2 Optimizing IF-THEN Rule Definition
Figure 4.1 provides an overview of our optimization approach to define IF-THEN

rules. EUDoptimizer calculates an optimized layout to be used in the Connected

41

Discovering IF-THEN Rules and Functionality

Entity Selection step of the trigger definition (optimized trigger layout, (a)). In
the optimized layout, in particular, the optimizer finds a trade-off for a) displaying
supported connected entities according to their usage probability, and b) pulling to-
gether connected entities that share functionality similarities in logical groups. The
user exploits the optimized layout to select the generic connected entity involved in
the trigger, e.g., a Nest thermostat. As the user is completing the definition of the
trigger, e.g., with the selection of a specific event, EUDoptimizer dynamically uses
the user’s choice (b) to refine a precomputed layout to be used in the action defini-
tion phase (intial action layout, (c)). The optimizer, in particular, finds a trade-off
for promoting the entities most commonly associated with Nest thermostats, i.e.,
the generic connected entity selected for the trigger, without affecting groups of
functionally similar entities. The user can use the optimized action layout (d) to
select the connected entity involved in the action.

Figure 4.1: An overview of EUDoptimizer. The optimizer calculates an optimized
layout for defining triggers (a), and it dynamically uses the user’s choice (b), along
with an initial action layout (c), to produce an optimized layout for defining actions
(d).

To further exemplify our optimization approach, let us consider the following
scenario of trigger-action programming:

John owns many devices always connected to the Internet, and he is
subscribed to various social networks and cloud services. John has just

42

4.1 – EUDoptimizer: Defining IF-THEN Rules with an Optimizer in the Loop

started to use EUDoptimizer to define trigger-action rules for customiz-
ing the joint behavior of his devices and services. John would like to
have all the photos taken with his two smartphones saved in different
places, e.g., for backup purposes, and for making them available on all
his other devices. Furthermore, he would like to automatically share
the photos on image sharing platforms. John opens EUDoptimizer and
starts to define a trigger-action rule.

Trigger Definition

When John starts to define the trigger, EUDoptimizer shows a grid layout in
which popular photo and video technologies with similar functionality are grouped
together on the top of the menu (as shown later in Figure 4.3), thus facilitating
John in finding what he needs. John select the iOS Photo entity, that allows him
to define a trigger to monitor every time he takes a photo on his iOS smartphone.

Action Definition

The grid menu for selecting the connected entity for the action dynamically
change according to the connected entity chosen for the trigger. EUDoptimizer
already calculated an initial action layout on the basis of usage probabilities and
functional similarities. As soon as John selects iOS Photo during the definition of
the trigger, EUDoptimizer starts to refine the initial solution according to the user
choice. When John starts to define the action, EUDoptimizer shows the grid layout
of Figure 4.4. Not surprisingly, the functionality in which John is interested are not
uncommon. At the top of the layout, John can find different connected entities that
allow him to reach his goals. With Dropbox, Google Drive, etc., John can save the
photos taken with his smartphone on the cloud, thus making them available for all
his other Internet-enabled devices. John decides to the define an action for saving
the photos on his Dropbox folder. John is very satisfied of EUDoptimizer : now he
can define many other rules to customize his other smartphone, an Android-based
device, and to save and share his photos with many different online services.

4.1.3 SDP-FSM: A Predictive Model for Trigger-Action
Programming

The goal of EUDoptimizer is to employ model-based optimization methods to
dynamically redesign grid layouts in trigger-action programming interfaces in an
interactive way, i.e., by considering the choices made by end users. Model-based
optimization methods need to be supported by valid and comprehensive predictive
models. One of the most recent model of menu performance is SDP [26]. We
adapted such a model to work with grid layouts in trigger-action programming

43

Discovering IF-THEN Rules and Functionality

interfaces displaying connected entities. We used SDP in combination with a novel
model that takes into account the expectation of item groups, i.e., the expectations
of users in finding certain items together. We called our model for item grouping
Functionality Similarity Model (FSM). It considers similarities between connected
entities in terms of the functionality they allow to define through their triggers and
actions. Roughly speaking, a Philips Hue lamp shares some functionality with a
Hunter Duglas blind for defining an action, because they both allow the increase
or decrease of the brightness of a room. The Android Location service and the
Nest surveillance camera, instead, allow the definition of triggers with the same
final goal, i.e., to monitor when someone is entering a place. To discover such
similarities, we used the Semantic Web framework, and, in particular, the EUPont
ontology.

SDP: Search Decision Pointing

SDP is a state-of-the-art model of human performance in linear menu search.
It incorporates both Hick-Hyman and Fitts’ law, and integrates a transition from
novice to expert performance. We adapted the model to be used for grid layouts,
i.e., a particular type of menu, by using the euclidean distance between items.

SDP predicts the average performance of a menu through the following formula:

SDP =
∑︂

n
i=1pi · Ti, (4.1)

where Ti is the selection time of an item i from the menu, pi is the probability of
item i being selected, i.e., its usage probability, and n is the number of menu items.

Item Probabilities. In our work, we preliminary define the probability function
pi as the frequency probability, i.e., the probability of a generic connected entity i
to be used in a trigger or in an action. The idea is to move towards the top of the
grid layout the entities most commonly selected as triggers or actions. When the
user selects a generic entity k for the trigger, the SDP model interactively changes
in

SDPk =
∑︂

n
j=1pkj · Tj, (4.2)

where p is reformulated as the bigram probability pkj of selecting an action entity
j after having selected the entity k for the trigger. The idea is to move towards
the top of the grid layout the connected entities most commonly connected to the
entity k used for defining the trigger.

Selection time. For predicting the selection time Ti of an item i from a menu,
SDP uses the following formula:

Ti = (1− ei) · Tst + ei · Tdt + Tpt, (4.3)

44

4.1 – EUDoptimizer: Defining IF-THEN Rules with an Optimizer in the Loop

Consistently with previous work [83, 20], we assume a predominantly top-to-
bottom search order for end users, i.e., novices, that want to define trigger-action
rules. The parameters we use in the formula are the same used both in the original
paper [26] and in the optimizations carried out in MenuOptimizer [7]. Parameters
are therefore calibrated according to the analysis of two opposite menu designs, i.e.,
static and random menus [26]. More specifically:

• ei models the user expertise with the item i, and varies between 0 (inexpert)
and 1 (expert) according to the formula ei = L · (1− 1/ti). In the formula, ti

represents the number of previous selections of the item i, while L represents
the “learnability” of the menu, with L = 0 that is used for not learnable
menus, e.g., with items that move randomly, and L = 1 that is used for
entirely learnable menus, e.g., when items do not change their position over
time. We initially suppose that users do not know anything about the used
menu, i.e., ei = 0 for all the menu items. Furthermore, we differentiate the
value of L on the basis of the used menu. For layouts that rarely change over
time, e.g., all the grid menus of contemporary trigger-action programming
platforms, or the optimized trigger layout of Figure 4.1, we set L = 1. Instead,
we set L = 0.5 for the optimized action layout of Figure 4.1. Here, in fact, the
layout may vary depending on the defined trigger, but the optimizer continues
to maintain logical groups of functionally-related entities.

• Tst = bst ·n + ast is the search time, i.e., the time to localize the item in the
menu, linear with the total number of items n when the user is inexperienced.
In the formula, the parameters bst = 0.08 and ast = 0.3 are constants.

• Tdt = bdt · log2(1/pi) + adt is the decision time, i.e., the time to decide from
among items, given by the Hick-Hyman law once the user becomes expert
with the item i. The factor log2(1/pi) represents the entropy of the item, and
it is based on its frequency (or bigram) probability. The parameters bdt = 0.08
and adt = 0.24, instead, are constants.

• Tpt = a + b · log2(Ai/Wi + 1) is the pointing time, i.e., the time to “point”
to the item, described according to the Fitts’ law, which predicts that items
closer to the top are faster to select. Ai and Wi are the amplitude of movement
to the target item i and its width, respectively, while a = 0.37 and b = 0.13
are constants. In our work, we set Wi as the (fixed) width of the boxes
displaying connected entities. Ai is instead modeled as the euclidean distance
from the top left corner of the grid menu to the target item i.

FSM: Functionality Similarity Model

We defined the Functionality Similarity Model to allow EUDoptimizer to pro-
duce groups of connected entities that are functionally correlated, even if they are

45

Discovering IF-THEN Rules and Functionality

heterogeneous technologies. By considering the EUPont categorization of triggers
and actions (Section 3.1.2), the Trigger Functionality Association (FAt) between
two generic connected entities i and j is calculated as:

FAt(i, j) = αf · LLt(i, j) + βf ·MLt(i, j) + γf ·HLt(i, j), (4.4)

where:

• LLt(i, j) is the number of Low-Level (i.e., IFTTT-like) triggers shared by i
and j.

• MLt(i, j) is the number of Medium-Level triggers shared by i and j.

• HLt(i, j) is the number of High-Level triggers shared by i and j.

• αf , βf , and γf sum to 1, and are used to weights the three elements modeled
in FSM, i.e., LLt, MLt, and HLt.

In the same way, the Action Functionality Association (FAa) between i and j
is calculated as:

FAa(i, j) = αf · LLa(i, j) + βf ·MLa(i, j) + γf ·HLa(i, j) (4.5)

Given the hierarchical characterization of triggers and actions in EUPont, con-
nected entities that shares Low-Level (very specific) triggers and actions are in-
trinsically more similar, in terms of functionality, than connected entities that only
shares more abstract Medium or High-Level triggers and actions. For this reason,
we set αf = 0.6, βf = 0.3, and γf = 0.1, with the aim of promoting the creation of
groups of connected entities that are strongly characterized by similar functionality.

To use the model in a minimization problem, we exploited the pairwise Func-
tionality Associations to compute the Functionality Incoherence score of a given
grid menu, both for the definition of triggers and actions (FIt and FIa):

FIt =
∑︂

n
i=1

∑︂
n
j=i+1FAt(i, j) · d(i, j), (4.6)

FIa =
∑︂

n
i=1

∑︂
n
j=i+1FAa(i, j) · d(i, j), (4.7)

where d(i, j) is the euclidean distance between objects i and j in the grid layout.
As shown in Figure 4.3c, the FSM model has desirable effects on the optimizer:
connected entities that offer triggers (or actions) with similar functionality tend to
be pulled together, while unrelated entities are moved away.

46

4.1 – EUDoptimizer: Defining IF-THEN Rules with an Optimizer in the Loop

4.1.4 Optimization Problem and Methods
Problem Formulation

To explore the design space looking for “good” or “desirable” grid menu al-
ternatives, we defined a multi-objective task. The goal is to minimize a weighted
combination of the outputs of the the two models Mi exploited by EUDoptimizer,
i.e., SDP and FSM:

SDP-FSM = min
∑︂ 2

i=1λi ·Mi, (4.8)
where the sum of all the weights λi is 1. In our implementation, we empirically
tuned the λ values thanks to the trials performed in the technical assesment of the
implemented algorithms (Section 4.1.5).

To make the single objectives less sensitive to weight selection, we normalized
each Mi with the the objective value θi calculated for an initial point x0:

θi = Mi(x0). (4.9)

The problem for designing the grid menu for trigger definition is therefore:

min (λ1 · SDP + λ2 · FIt) (4.10)

while for the action the problem is:

min (λ1 · SDP + λ2 · FIa) (4.11)

Based on the interaction of the user, i.e., when the user select a technology k,
the problem for the action changes, and becomes:

min (λ1 · SDPk + λ2 · FIa) (4.12)

Solving the Optimization Problem

The problem of designing menu systems, both linear and grid-based, can be
formulated as a Quadratic Assignment Problem (QAP) [7]. Developed in opera-
tional research, QAP [115] allows the modeling of relationships between elements
of two sets to minimize the total pairwise cost. In designing menus, m items have
to be assigned to m predetermined locations in order to maximize usability, e.g.,
expected selection time, menu coherence, etc. QAP is a NP-hard problem, and it is
considered one of the hardest optimization problems since general instances of size
m > 20 cannot be solved to optimality. In our case, for example, m technologies
(typically with m > 200) can be organized in m! ways. Given the complexity of
the problem, we cannot claim global optimality, e.g., through exact methods. To
attack the problem, we exploit metaheuristic strategies. A heuristic is a technique
that seeks near-optimal solutions at a reasonable computational cost without guar-
anteeing optimality. Some heuristic methods, however, can get easily trapped in a

47

Discovering IF-THEN Rules and Functionality

local optimum: metaheuristics methods modify their use of heuristics methods as
optimization progresses [62]. Our implementation, described in the next section,
supports two metaheuristics successfully used for QAP problems, i.e., Simulated
Annealing [143, 28] and Ant Colony System [48].

Algorithm 1 Simulated Annealing
1: Let s = s0
2: for k = 0 through kmax do
3: T ← temperature(k/kmax)
4: Pick a random neighbour, snew ← neighbour(s)
5: if P (E(s), E(snew), T) ≥ random(0, 1) then
6: s← snew

7: Output: the final state s

Algorithm 2 Ant Colony System
1: while (not converged) do
2: Position each ant in a starting node
3: repeat
4: for all ant do
5: Chose next node with the transition rule
6: Apply local pheromone update
7: until every ant has built a solution
8: Update best solution
9: Apply global pheromone update

Simulated Annealing is based on mimicking the metal annealing processing and
exploits local and random search in a exploration/exploitation scheme. The main
advantage of simulated annealing is its ability to avoid being trapped in local op-
tima. In fact, a neighboring solution is not considered only when it yields to a
better objective value: with a certain probability the solution is accepted even if
it does not improve the objective. The pseudo-code for the simulated annealing is
reported in Algorithm 1. Instead, Ant Colony System is based on the biological
metaphor of an ant colony foraging for food, in which multiple searchers cooperate
to produce solutions according to a memory of past solutions. The pseudo-code of
ACS is presented in Algorithm 2.

4.1.5 Implementation and Technical Assessment
We implemented the proposed optimization approach on top of an IFTTT-like

web interface, and we assessed it through different “off-line” experiments. While

48

4.1 – EUDoptimizer: Defining IF-THEN Rules with an Optimizer in the Loop

our approach is generic, i.e., it can be applied to any grid-based EUD interface for
trigger-action programming, we chose IFTTT due to the popularity of the platform
and the availability of real usage data [137].

Implementation

To maintain a high level of interactivity, we implemented a client-server archi-
tecture between the optimizer and the user interface for defining trigger-action rules.

Optimizer. We exploited the IFTTT dataset of Ur et al. [137] to calculate the
frequency and bigram probabilities to be used in the SDP model. To calculate the
Functionality Associations (FA) to be used in the FSM model, instead, we used
the translation results described in Section 3.1.3 that linked each IFTTT trigger
and action with the corresponding EUPont classes. We implemented two different
solvers in Python, based on Simulated Annealing (SA) and Ant Colony System
(ACS), respectively. We executed them on a regular laptop (a 2015 MacBook Pro
with a 2.7 Ghz Intel Core i5 and 8 GB of RAM), separately. To define the algo-
rithm parameters of SA and ACS, we empirically run a set of 100 optimizations
by varying the parameter values. Both optimizers provide the same functionality.
They initially generate the optimized trigger layout and the initial action layout of
Figure 4.1 by using the two “static” versions of the optimization problem (Equa-
tion 4.10 and Equation 4.11). Such layouts are periodically recalculated to reflect
changes in the probability distributions, e.g., due to new rules defined by the user.
As soon as the user selects a connected entity for defining the trigger, each optimizer
interactively receives the information. Starting from the initial action layout, each
of them starts to explore the problem described by the Equation 4.12 to refine the
layout according to the user’s choice. When the user finishes the trigger definition,
i.e., she completes it with all the required parameters, each optimizer generates op-
timized action layout, an improved layout version in which the connected entities
that are most likely to be used with the selected trigger are promoted towards the
top.

User Interface. By exploiting the information extracted from the IFTTT dataset,
we modeled a user interface after IFTTT with the AngularJS framework1. The in-
terface, shown in Figure 4.2, allows the definition of trigger-action rules exactly as
in IFTTT, i.e., by following the multi-step definition procedure described in Sec-
tion 1.1.1. For defining the trigger, for example, users have to click on the “this”
button (Figure 4.2a), and then select the generic connected entity from a grid lay-
out (Figure 4.2b). Finally, they can select the specific trigger to be monitored

1https://angularjs.org/, last visited on November 12, 2019

49

https://angularjs.org/

Discovering IF-THEN Rules and Functionality

(Figure 4.2c), by filling any required details. To compare EUDoptimizer with the
original IFTTT, we realized two versions of the same interface, namely IFTTT
and EUDoptimizer. The difference is obviously in the grid menu of Figure 4.2b:
while for EUDoptimizer the layout of such a menu is provided by the optimizer, in
IFTTT it reflects the same menu available on the original platform.

(a) New Rule (b) Connected Entity Se-
lection

(c) Trigger Selection

Figure 4.2: Some screenshots of the user interface used in the empirical evaluation.
The interface resembles IFTTT and allows the definition of trigger-action rules with
both the IFTTT version and the EUDoptimizer enhanced version. In the IFTTT
terminology, rules are named applets, while connected entities are named services.

Technical Assessment

To assess the feasibility of our approach, and to evaluate which optimizer pro-
vide better solutions, we carried out different “off-line” experiments by changing
the number of iterations of the optimization algorithms.

Trigger Definition. We first run EUDoptimizer to calculate an optimized trigger
layout, thus solving Equation 4.10. Table 4.1 compares the results obtained with
100, 1,000, 5,000, and 10,000 iterations with SA and ACS, respectively. Despite
the ACS solver provided better solutions, i.e., lower values of the objective value,
for 100 and 1,000 iterations, the SA solver performed better with a higher number
of iterations. Furthermore, SA was faster than ACS in all cases. SA, for exam-
ple, employed 1,031 seconds to produce a solution with 10,000 iterations, while the
time employed by ACS with the same number of iterations was considerably higher
(20,515 seconds).

Figure 4.3 compares the trigger layout of IFTTT2 (Figure 4.3a) with two screen-
shots of the optimized trigger layout calculated in less than 20 minutes by EUDop-
timizer with 10,000 iterations of SA (Figure 4.3b and Figure 4.3c).

We can observe that:

2The figure reflects the grid menu of IFTTT as of September, 2016, i.e., with the data included
in the exploited dataset [137].

50

4.1 – EUDoptimizer: Defining IF-THEN Rules with an Optimizer in the Loop

Table 4.1: Results of Simulated Annealing (SA) and Ant Colony System (ACS) for
the optimized trigger layout with 100, 1,000, 5,000, and 10,000 iterations. Com-
paring to ACS, SA was faster. Furthermore, as the number of iterations increased,
SA performed better than ACS, i.e., it produced lower objective values.

100 1000 5000 10,000
SA ACS SA ACS SA ACS SA ACS

Time [s] 12 178 106 1,896 536 10,012 1,031 20,515
Obj. value 0.99 0.89 0.98 0.88 0.47 0.86 0.43 0.82

• in the optimized trigger layout, the 10 most frequently used connected enti-
ties3 for defining triggers are prominently placed in the 10 positions closer to
the top of the grid menu, as indicated by the added stars of Figure 4.3b. In
the IFTTT layout, instead, popular connected entities for trigger definition,
e.g., Android Location and iOSPhoto, are scattered along the menu;

• with respect to IFTTT, where connected entities are displayed in a meaning-
less order, the optimized trigger layout includes logical groups of connected en-
tities that share functional similarities, e.g., locations (Android Location, iOS
Location) and photos & videos (iOSPhoto, Android Photo, Eyefy, Youtube,
Flickr, Dailymotion, and 500px) in Figure 4.3b. Figure 4.3c further highlights
that EUDoptimizer is able to pull together entities with functional similar-
ities. The figure, in particular, shows a huge group of hubs, cameras, and
doorbells, all related to home security.

By using the otpimized trigger layiut, John, i.e., the user of our scenario of
trigger-action programming (Section 4.1.2), can easily find the connected entity for
defining his trigger (iOSPhoto) at the fourth position of the first row of the menu.
In IFTTT, instead, John would find iOSPhoto at the third position of the sixth
menu row. By using the SDP model (Section 4.1.3), and, in particular, equation 4.3,
we can predict how long it will take John to select the iOSPhoto item with the 2
layouts. If we assume that John has never seen the menu before, i.e., eiOSP hoto = 0,
the selection time Ti will include the time to search the item (Tst) and the time to
point to the item (Tpt):

Ti = Tst + Tpt (4.13)
Under these circumstances, the time to select iOSPhoto is expected to be 3.97

seconds with the IFTTT trigger layout. This predicted time drops to 1.29 seconds
by using the optimized trigger layout calculated by EUDoptimizer.

3according to the dataset of Ur et al. [137]

51

Discovering IF-THEN Rules and Functionality

(a) IFTTT trigger layout

(b) Optimized trigger layout (c) Optimized trigger layout

Figure 4.3: A comparison between the trigger layout of IFTTT (a) and the op-
timized trigger layout calculated by EUDoptimizer with the Simulated Annealing
solver (10,000 iterations, (b) and (c)). With respect to IFTTT, in (b) the 10 most
frequently used connected entities are placed towards the top of the menu, as indi-
cated by the added stars. Furthermore, the optimized trigger layout is structured
in logical groups of entities with functional similarities: in (c), for example, the
yellow border highlights a logical group of entities related to home security.

Action Definition. After calculating the optimized trigger layout, we then run
EUDoptimizer to calculate an optimized action layout. In this case, each solver

52

4.1 – EUDoptimizer: Defining IF-THEN Rules with an Optimizer in the Loop

initially calculated (with 10,000 iterations) an initial solution for the menu (initial
action layout), i.e., by solving Equation 4.11. Then, we manually fixed the selected
trigger entity to iOS Photo, and we tested the optimizers to solve the problem de-
fined by Equation 4.12, i.e., the interactive optimization. Table 4.2 compares the
results obtained with SA and ACS. Also in this case, SA was faster than ACS, and
it performed better than ACS with 5,000 and 10,000 iterations, i.e., it produced
lower objective values. Figure 4.4 shows the top part of the best grid menu ob-
tained by EUDoptimizer with 10,000 iterations of SA (Figure 4.4). Both the figure
and the table confirm that the SA solver produced good solutions in a reasonable
amount of time. In fact, 9 of the 10 connected entities most frequently associated4

with iOS Photo are presented on the top of the grid layout. Furthermore, there are
logical groups of related entities that allow the definition of similar functionality,
e.g., One Note, Nimbus Note, and Evernote.

Table 4.2: Results of Simulated Annealing (SA) and Ant Colony System (ACS)
for the optimized action layout with 100, 1,000, 5,000, and 10,000 iterations when
the selected trigger entity is iOS Photo. As happened for trigger layouts, SA was
faster that ACS and performed better as the number of iterations increased, i.e., it
produced lower objective values.

100 1000 5000 10,000
SA ACS SA ACS SA ACS SA ACS

Time [s] 10 171 91 1,669 468 11,547 895 20,517
Obj. value 1.01 0.88 0.98 0.83 0.47 0.82 0.45 0.82

John, i.e., the user of our scenario of trigger-action programming (Section 4.1.2),
can find the connected entity to define his desired action (Dropbox) in the second
position of the first row of the optimized action layout. Online services to store
files, indeed, are frequently associated with triggers involving photos & video en-
tities, e.g., iOS Photo. According to the SDP model, John can select Dropbox in
roughly 1.04 seconds, even tough he has never seen the menu before. This time is
considerably lower than the one predicted for IFTTT. In the IFTTT action layout,
indeed, Dropbox, is displayed in the 12th row of the grid menu5, and the predicted
selection time is 6.90 seconds.

4according to the dataset of Ur et al. [137]
5The Dropbox position is calculated by considering the grid menu of IFTTT as of September,

2016, i.e., with the data included in the exploited dataset [137].

53

Discovering IF-THEN Rules and Functionality

Figure 4.4: Optimized action layout calculated with SA when the selected connected
entity in the trigger is iOS Photo (10,000 iterations). Stars indicate the most
frequently used entities: 9 out of 10 are at the top of the grid layout.

4.1.6 User Evaluation
Thanks to the technical assessment, we selected SA as the solver to be used

in EUDoptimizer, and we compared the optimized interface with IFTTT in a user
study with 12 participants, by asking participants to define trigger-action rules with
both interfaces. In the study, we explored the following research questions:

RQ5) Does EUDoptimizer improve the user performance, i.e., the time needed for
defining IF-THEN rules?

RQ6) Does EUDoptimizer reduce the cognitive load in the definition of IF-THEN
rules with respect to the IFTTT interface?

Participants

We recruited 12 participants (4 female and 8 male) with a mean age of 25.91
years (SD = 4.48, range : 19− 34). To consider users with and without program-
ming skills, participants were recruited from different background, i.e., Education,
Biology, Aerospace Engineering, Management Engineering, and Computer Engi-
neering. 3 participants were undergraduate students, 7 were Ph.D. students, while
2 where post-doc researchers, all coming from different universities. On a Likert
scale from 1 (No experience at all) to 5 (I am an expert), participants declared
their programming experience level (M = 3, SD = 1.04), and their experience
with IFTTT (M = 1.67, SD = 0.89).

Procedure & Tasks

We devised a within-subject user study, where we considered the interface ver-
sion (IFTTT vs. EUDoptimizer) as the independent variable. We first provided

54

4.1 – EUDoptimizer: Defining IF-THEN Rules with an Optimizer in the Loop

participants an initial questionnaire to collect demographic data and information
about their programming skills and their previous experience with IFTTT. Then,
we introduced them to trigger-action programming and to the IFTTT environment,
and we explained the nature of the study. During this phase, we showed the inter-
face to the users, by defining an IF-THEN rule in IFTTT as an example. After
the training phase, we asked participants to complete 6 similar tasks related to the
definition of trigger-action rules with both interface versions, without telling them
which version they were using. Interface versions and tasks were fully counterbal-
anced between the participants. The study was carried out in a university office,
and took about 30 minutes per participant. All the sessions were audio recorded.

In the study, each task consisted in the definition of a single IF-THEN rule.
We defined 6 different tasks that asked participants to replicate trigger-action rules
previously extracted from the IFTTT dataset [137]. To explore the full range of pos-
sible alternatives, e.g., to evaluate EUDoptimizer both with commonly and rarely
used connected entities, we first divided the dataset in three layers by grouping
together the most common rules (i.e., shared more than 10,000 times), the com-
mon rules (i.e., shared 1,000 to 10,000 times), and the uncommon ones (i.e., shared
fewer than 1,000 times). Then, we randomly selected 2 rules for each category. The
rules, rephrased for the sake of readability, were:

Most common rules

• if the Weather Underground service notifies that tomorrow’s forecast call for
rain, then use Notifications to send me a notification;

• if I share a photo on Instagram, then add the file on my Dropbox.

Common rules

• if I add a photo on iOS Photo, then add the file on my Google Drive;

• if I receive a new labeled email on Gmail, then create a note on Evernote.

Uncommon rules

• if the laundry cycle of my Samsung Washer is finished, then add an event on
Google Calendar ;

• if the Nest Cam recognizes a new sound or motion event, then turn the Philips
Hue on.

Measures

For each task completion (with both the IFTTT and the EUDoptimizer inter-
face), we measured the following times:

55

Discovering IF-THEN Rules and Functionality

• Trigger Time (TT): the time for selecting the generic connected entity to
define the trigger from the grid layout, i.e., the time to complete the trigger
Connected Entity Selection step in the rule definition process.

• Action Time (AT): the time for selecting the generic connected entity to
define the action from the grid layout, i.e., the time to complete the action
Connected Entity Selection step in the rule definition process.

• Rule Time (RT): the time for defining the entire rule, composed of the
Trigger and Action times (TT and AT), and the time needed for completing
the other steps of the rule definition process, i.e., Trigger Selection, Trigger
Details, Action Selection, and Action Details.

Furthermore, we extracted any consideration made by the participants from the
audio registrations.

4.1.7 Results
Improving Users’ Performance

All the time measures were lower with the optimized interface. Therefore, EU-
Doptimizer improved the Connected Entity Selection time in the trigger and in
the action definition. For defining triggers, users spent 37.29 seconds on average
(SD = 13.44) to select the connected entity when using the IFTTT interface,
while they spent 21.69 seconds (SD = 11.02) for the same operation when using
EUDoptimizer. Similarly, users spent 20.87 seconds (SD = 11.18) on the IFTTT
interface to select the connected entity for the action, while they spent 8.26 seconds
(SD = 8.97), only, for the same operation in EUDoptmizer. Such improvements
were reflected in the time needed by end users to define an IF-THEN rule (RT): the
EUDoptimizer interface, in fact, allowed participants to define rules faster that the
IFTTT interface (51.68± 18.28 seconds vs. 81.77± 23.14 seconds, respectively).

To investigate whether the differences in the measures were significant, we an-
alyzed the effect of the independent variable (IFTTT vs. EUDoptimizer) over the
three dependent variables (TT, AT, and RT) with a one-way repeated measures
ANOVA carried out in SPSS. The Mauchly’s sphericity test was satisfied in all
the three analysis. There was a significant main effect of the used interface on TT
(F (1,11) = 8.30, p < .05), AT (F (1,11) = 12.46, p < .05) and RT (F (1,11) = 15.82,
p < .05). For all the 3 dependent variables, a post-hoc test with the Bonferroni
correction revealed that the mean differences between the two interfaces were sta-
tistically significant (p < .05), thus confirming the evidence that EUDoptimizer
improved the selection time in the trigger and action definition phases, and the
overall definition time of trigger-action rules (RQ5).

To further demonstrate such a statement, we separately analyzed the measures
for the two uncommon rules, only (Figure 4.6). We were particularly interested in

56

4.1 – EUDoptimizer: Defining IF-THEN Rules with an Optimizer in the Loop

Figure 4.5: Average Trigger Time (TT), Action Time (AT), and Rule Time (RT)
compared between the IFTTT interface and its EUDoptmizer enhanced version.
All the time measures are lower in the optimized interface.

evaluating the potential of EUDoptimizer in the worst case. In fact, since we used
the dataset to weight items by their frequency, connected entities involved in the
uncommon rules were not placed in the first positions of the produced grid layouts.

Figure 4.6: Average Trigger Time (TT), Action Time (AT), and Rule Time (RT)
compared between the IFTTT interface and its EUDoptmizer version for the two
uncommon rules.

We found that the optimized interface improved the definition of triggers also for
the two uncommon rules. The TT measure was lower with the EUDoptimizer in-
terface (75.32±44.25 seconds vs. 116.81±49.19 seconds). On average, the selection
of an entity for defining actions was instead performed with similar performances
by participants (16.67 ± 24.21 seconds vs. 17.70 ± 33.43 seconds). However, the
time for defining the entire rules (RT measure) was considerably lower with the
EUDoptimizer interface (116.52± 59.82 seconds vs. 158.31± 53.17 seconds).

57

Discovering IF-THEN Rules and Functionality

Reducing Cognitive Load

Qualitative data extracted from the audio recorded files shows that the benefits
of EUDoptimizer are not restricted to time performance, only. The indications of
the participants, in fact, suggest that EUDoptimizer reduces the cognitive effort
to find connected entities by ordering the components layout with logical groups
of functional-related elements (RQ6). In particular, we found that the majority
users were frustrated in using the IFTTT interface. Without knowing the differ-
ences between the two evaluated interface versions, a participant using the IFTTT
interface said “I hate this task, it’s very difficult to find the desired technology,
I have already looked over the menu 4 times!” Other 4 participants pointed out
that entities seemed to be displayed in a random order, thus making impossible to
apply any search criterion. One participant said “I am forced to search the tech-
nology by looking sequentially to all the listed elements, from the top to the end
of the grid.” On the contrary, EUDoptimizer provided more support for selecting
the desired smart devices and online services. 5 participants were happy of the
“logical” groups of connected entities showed by EUDoptimizer. A participant, for
example, said: “in this interface elements are ordered meaningfully. This helps me
to find what I need.” Another participant said “here the Samsung Washer is near
to other appliances of the same type, it’s easy to find it.” The other participants
were instead happy because the entities they needed, especially for defining actions,
were displayed towards the top of the grid layout. A participant said: “I like this
interface [EUDoptimizer] because it proposes me the technologies I need in the first
positions and I can immediately select them.”

Despite promising, such findings are preliminary and based on qualitative data,
only. Future works would need to confirm the effects of EUDoptimizer in reduc-
ing cognitive load by means of quantitative measures, e.g., through NASA-TLX
surveys.

4.2 Recommending IF-THEN Rules for End-User
Development

In parallel with EUDoptimizer, we also explored another approach to assist
users in discovering and managing rules and related functionality. We tackled, in
particular, the emerging problem of recommending rules to end users. To this end,
we designed RecRules, a hybrid and semantic recommendation system of IF-THEN
rules. Recommendation techniques could improve both the reuse and the definition
of trigger-action rules, thus helping users who do not have technological and pro-
gramming skills to easily customize their smart devices and online services. When
browsing rules already created and shared by other users, in fact, a recommender
system could suggest relevant rules to be reused. When defining a new rule, instead,

58

4.2 – Recommending IF-THEN Rules for End-User Development

a recommender system could help users to complete their rules, e.g., by dynam-
ically suggesting relevant actions to auto-complete a defined trigger. Through a
mixed content and collaborative approach, the goal of RecRules is to recommend
by functionality: it suggests rules on the basis of the final behaviors users would
like to define, thus abstracting details such as brands or manufactures.

RecRules is designed as a top-N recommendation algorithm and it addresses
OWL content-based information and collaborative user preferences in a graph-based
setting to train learning to rank techniques. By leveraging the EUPont model, the
algorithm firstly uses a semantic reasoning process to enrich IF-THEN rules with
semantic information. Such a process allows RecRules to model rules in terms of
shared functionality. A rule for turning on a Philips Hue lamp, for example, is func-
tionally similar to a rule for opening the Hunter Douglas blinds, because they share
a common final goal, i.e., to light up a place. The semantically enriched rules are
then combined with collaborative information in a graph-based setting. RecRules
extracts different types of features based on the paths, i.e., acyclic sequences of
relationships between items, modeled in the graph. Such features are finally used
to train a learning to rank algorithm and compute top-N recommendations.

4.2.1 Background
Recommendation opportunities in EUD have not yet been consistently explored,

and most contemporary EUD solutions still continue to offer limited types of sug-
gestions, e.g., by promoting the most popular rules, only. From the early works,
EUD systems like EAGER [39] and Dynamic Macro [93] were using simple proactive
suggestions to help end users define their programs. Moreover, in the last decade,
recommendation technologies have been studied in the field of software engineer-
ing, mainly, from systems for feature recommendations [80, 65] to tools for source
code suggestions [98]. The goal of these works, however, is to assist developers,
instead of end users. In the same field, Ye and Fisher proposed CodeBroker [149],
a development environment that autonomously locates and delivers task-relevant
and personalized components into the current software development environment.
Malheiros et al. [91], instead, developed a recommender system to help novice de-
velopers solve change requests in their source code. Other previous work targeting
developers aim at suggesting APIs to facilitate expert-users in performing different
tasks. Duala-Ekoko and Robillard [49] proposed an approach that leverages the
structural relationships between API elements to make the related methods more
discoverable. Nguyen et al. [106] presented a novel API recommendation approach,
based on statistical learning, that taps into the predictive power of repetitive code
changes to provide relevant API recommendations. D’Souza et al. [40] developed
PyReco, an intelligent code completion system for Python that uses the mined
API usages from open source repositories to order the results according to rele-
vance rather than the conventional alphabetic order. Besides developers, only a

59

Discovering IF-THEN Rules and Functionality

few recent works takes into account end users, e.g., by suggesting relevant smart
“things” based on user preferences and interests, to optimize the time and cost
of using IoT in a particular situation [147]. Instead of suggesting smart “things,”
RecRules suggests IF-THEN rules that relate pairs of connected entities: to the
best of our knowledge, RecRules is one of the first examples of a recommendation
algorithm that aims at helping users define IF-THEN rules for personalizing their
smart devices and online services.

The algorithm is designed as a top-N semantic recommendation system. Refer-
ring to the top-N recommendation problem, several works have been proposed in
the last few years. One of the most popular algorithm in this field is SLIM [107],
an algorithm that uses a sparse linear method for learning a sparse aggregation
coefficient matrix to be used for computing top-N recommendations. SLIM has
been extended to incorporate both users and side information about items [108].
More recently, Wu et al. [145] proposed the Collaborative Denoising Auto-Encoder
(CDAE) algorithm, a novel method for top-N recommendation that utilizes the idea
of Denoising Auto-Encoders. Other works represented the top-N recommendation
task as a ranking problem using learning to rank. Rendle et al. [118] proposed a
Bayesian Personalized Ranking (BPR) criterion for optimizing a ranking loss. Also
BPR has been extended in other works, e.g., to compute useful recommendations in
cold start scenarios (BPR-MF [56]). Shi et al. [126] developed CLiMF, a novel col-
laborative filtering approach in which the model parameters are learned by directly
maximizing the Mean Reciprocal Rank (MRR), which is a well-known informa-
tion retrieval metric for measuring the performance of top-N recommendations.
The same authors developed TFMAP [126], a model that directly maximizes Mean
Average Precision with the aim of creating an optimally ranked list of items for
individual users under a given context. TFMAP uses tensor factorization to model
implicit feedback data (e.g., purchases, clicks) with contextual information. In our
work, we compared RecRules with several state-of-the-art top-N recommendation
algorithms, ranging from BPR-MF to Least Square SLIM [54].

Regarding semantic recommender systems, instead, several works have been
proposed in the literature [124, 23, 2, 101] with the aim of improving recommenda-
tion performances, and to overcome some drawbacks of collaborative methods such
as cold start and data sparsity. Furthermore, in the last 10 years, the advent of the
Linked Open Data (LOD) [11] initiative opened the way for a new class of ontolog-
ical recommender systems based on data freely available on the Web. One of the
first approaches that exploits LOD to build a recommender system was the work
of Heitmann and Hayes [66]. Here, the authors demonstrated that the usage of
Linked Data mitigates the new-user, new-item, and sparsity problems of collabora-
tive recommender systems. Fernández-Tobias et al. [51] showed a knowledge-based

60

4.2 – Recommending IF-THEN Rules for End-User Development

framework for cross-domain recommendations leveraging DBpedia6. Khrouf and
Troncy [75], instead, presented a novel hybrid approach built on top of Semantic
Web for event recommendations. Their system was enhanced by the integration of
a user diversity model designed to detect user propensity towards specific topics.
Contextually to the progression of LOD-based recommender systems, recommen-
dation methods based on generic heterogeneous networks have recently emerged.
Knowledge graph embedding approaches, in particular, have proven to be effective
to improve recommendations: they connect various types of information related
to items (e.g., genre, director, actor of a movie) in a unified global space, which
helps to develop insights on recommendation problems that are difficult to uncover
with user-item interaction data only [132]. State of-the-art methods in this context
mainly extend the latent factor model by considering similarities between items
derived from paths in a knowledge graph. Yu et al. [150], for instance, presented
a network-based entity recommendation method that uses path-based latent fea-
tures to represent the connectivity between users and items along different types
of paths. A global and local matrix factorization model, in particular, are learnt
by using the BPR [118] approach. Lao and Cohen [82] improved the classic Ran-
dom Walk with Restart approach by proposing a proximity measure defined as a
weighted combination of path types, called path experts, obtained by fitting a logis-
tic regression model. Ostuni et al. proposed SPRank [111], a hybrid recommender
system to compute top-N recommendations from implicit feedback using linked
data sources. SPRank directly formulates the problem of computing top-N recom-
mendations in the standard learning to rank setting adopted in Web search [90] by
replacing queries with users and document with items, and using user’s ratings as
relevance scores. It exploits an RDF graph, and it computes recommendations by
training a learning to rank algorithm through path-based features. SPRank has
also been extended to work with explicit feedback [109]. Similarly to SPRank, but
with a more specific application area, Oramas et al. [110] described how to create
and exploit a knowledge graph to supply a hybrid recommendation engine with
information that builds on top of a collection of documents describing musical and
sound items. They link the items to be recommended to external graphs such as
WordNet and DBpedia through tags and textual descriptions, thus semantically
enriching the initial data, and they add to the knowledge graph collaborative fil-
tering information by connecting users to musical and sound items on the basis
of their ratings. Then, they use the resulting knowledge graph in two versions of
the algorithm, by formulating different explicit graph feature mappings based on
entities and paths, respectively. Our approach is similar to previous works based
on heterogeneous networks, in the way that we combine semantic and collaborative
information to build a hybrid knowledge graph, and we use features based on the

6http://dbpedia.org, last visited on November 27, 2019

61

http://dbpedia.org

Discovering IF-THEN Rules and Functionality

paths modeled in the graph for mining the user-item interactions. However, we
exploit a semantic reasoning process on OWL ontologies to enrich IF-THEN rules
with side information. Such a process allows the algorithm to uncover connections
between rules in terms of shared functionality, and to capture the meaning of dif-
ferent types of path-based features. To implement the algorithm, in particular, we
used the Linked Open Data Recommender Systems Library (lodreclib7) provided
by the authors of SPRank [109].

4.2.2 Recommending By Functionality
RecRules aims to suggest IF-THEN rules on the basis of the final behaviors

users would like to define, e.g., increasing the temperature in a room. In this
way, RecRules can be exploited to compute recommendations for yet unknown or
rarely used devices or services, thus helping users to discover new functionality,
starting from their actual needs. The idea, in particular, is to abstract details
such as involved technologies, brands or manufactures while maintaining the same
low-level of abstraction of contemporary trigger-action programming platforms.

In these platforms, IF-THEN rules that differ from each other for some minor
details, only, e.g., the manufacturer of a device, are considered different even if they
are conceptually similar. A user that has already defined a rule for turning on her
Philips Hue lamp in the kitchen, however, could be also interested in turning on
other types of lamps, e.g., her LIFX lamp in the bedroom, or in opening the living
room blinds. Specifically, she could be interested in the following rules:

R1 if the kitchen Nest Cam recognizes me, then turn on the kitchen Philips Hue;

R2 if the living room Homeboy Cam detects a movement, then open the Hunter
Douglas blinds;

R3 if I open the SmartThings bedroom door, then turn on the bedroom LIFX
lamp.

Even if they share a common goal, i.e., to light up a room, R1, R2, and R3 are
considered different in contemporary trigger-action programming platforms because
they refer to different manufacturers. With such a technological-centric approach,
the users experience with trigger-action programming platforms is very limited,
and the actual end-user needs’ are not taken into account. As suggested by Ur et
al. [137], the continuous growth of trigger-action programming in the real world, and
its application to a range of online services and physical devices, suggests the need
to provide users with more support for discovering functionality, i.e., the behaviors
that rules aim to define.

7https://github.com/sisinflab/lodreclib, last visited on November 27, 2019

62

https://github.com/sisinflab/lodreclib

4.2 – Recommending IF-THEN Rules for End-User Development

To capture the similarities between R1, R2, and R3, thus characterizing them
on the basis of their final purpose, we exploited a semantic reasoning process that
enrich IF-THEN rules with semantic information. Different to previous works on
semantic recommender systems, that simply associate items with relevant entities
defined in online semantic datasets [58], the usage of reasoning capabilities allows
RecRules to capture detailed information and to discover hidden relationships be-
tween IF-THEN rules, e.g., in terms of shared functionality. The reasoning process
uses EUPont, with which the the similarities between R1, R2, and R3 can be re-
trieved by semantically reasoning on the ML and HL classes of the involved triggers
and actions. Both the actions “turn on the Philips Hue lamp” (R1) and “turn on
the LIFX lamp” (R3), for example, are instances of the Turn Lights On action
class, which is a subclass of the Illuminate action class. Furthermore, the action
“open the Hunter Douglas blinds” (R2) is an instance of the Open Blinds class,
which is a sibling class with respect to the Turn Lights On one, since the two
ML classes share a HL class, i.e., Illuminate. The semantic reasoning process is
detailed in Section 4.2.4.

4.2.3 Knowledge Graph Model & Problem Formulation
Linked Open Data (LOD) datasets can be viewed as vast decentralized knowl-

edge graphs, where nodes correspond to RDF8 entities, and labeled edges are prop-
erties connecting them. Furthermore, the semantic graph can be enriched with
collaborative filtering information by embedding the collaborative filtering prob-
lem in the semantic graph as well, where users and items to be recommended are
the nodes, and users’ feedback, either implicit or explicit, are the links [109]. By
reasoning on OWL ontologies, the semantic graph can be further enriched with
the additional properties and features given by OWL classes and sub-classes (Fig-
ure 4.7).

The resulting multi-relational graph can be modeled as a directed graph G =
{V, Σ} where V denotes the set of vertices and Σ indicates the set of properties that
connect them. In our model, the set of vertices is defined as V = U ∪ R ∪ I ∪ C,
where u ∈ U are users, r ∈ R are rules, i ∈ I are RDF individuals, and c ∈ C are
OWL classes.

Semantic properties may have different nature, so each property is labeled with
one label from the set L = {F, E, T}. The set of properties Σ ⊆ V × V × L is the
union of such different types of relationships, i.e., Σ = ΣF ∪ ΣE ∪ ΣT :

• ΣF ⊆ U×R×{F} represents the set of feedback relationships (label F), which
connects users to rules;

8https://www.w3.org/RDF/, last visited on November 13, 2019

63

https://www.w3.org/RDF/

Discovering IF-THEN Rules and Functionality

Figure 4.7: The knowledge graph built in RecRules. Users are connected to rules by
means of feedback relationships. Rules are in turn connected to RDF individuals
through individual relationships, and to OWL classes through class relationships

• ΣE ⊆ I × R × {E} ∪ I × I × {E} represents the set of entity relationships
(label E), which connects rules with RDF individuals, or RDF individuals
among themselves;

• ΣT ⊆ C × R × {T} ∪ C × C × {T} represents the set of type relationships
(label T), which connects rules with OWL classes, or OWL classes among
themselves.

Given the described model, the recommendation problem is formulated as fol-
lows. Considering the set of all users U , and the set of all rules R, the user profile
of each user u ∈ U is defined as Hu = {r ∈ R | r̂ur ∈ R̂}, where:

• in case of explicit feedback, R̂ is the user-item matrix, with each r̂ur ∈ R
representing the rating of the user u on the rule r;

• in case of implicit feedback, R̂ is the implicit feedback matrix, with each
r̂ur ∈ R representing the implicit relevance of the rule r for the user u.

Regardless of the feedback type, the matching between user interests and rule
content for each user-rule pair (u, r) ∈ U × R is mapped in the feature vector
xur⃗ ∈ RD, where D is the dimension of the feature space: each component xur ∈ R
represents the connection of the rule r to the user u according to a specific feature
k. The definition of the features is detailed in Section 4.2.4. In particular, we
rely on different types of path-based features, able to characterize the interaction
between users and rules with respect to collaborative information, technology-based

64

4.2 – Recommending IF-THEN Rules for End-User Development

similarities, and functionality-based similarities. Eventually, the training set TS
and the recommendation set RS are defined as:

TS =
⋃︂
u

{< u, r, xur⃗ , r̂ur > | r ∈ Hu} (4.14)

RS =
⋃︂
u

{< u, r, xur⃗ , r̂∗
ur > | r ∈ (R\Hu)} (4.15)

The final goal of the recommender system is to learn a scoring function from
the training data TS able to predict r̂∗

ur, in order to replicate for each user their
perfect ranking.

4.2.4 The RecRules Algorithm
Figure 4.8 shows the architecture of RecRules. The algorithm has been im-

plemented in Java by using the Linked Open Data Recommender Systems Li-
brary [109] (lodreclib9), and it is composed of two main phases, i.e., Knowledge
Graph Construction and Learning, joined by a contextual filter (User Context Fil-
ter). The implementation we adopted for our experiments is available at https:
//git.elite.polito.it/public-projects/recrules.

Figure 4.8: A schematic representation of the RecRules algorithm

Knowledge Graph Construction

Starting from a set of recommendable IF-THEN rules and the users’ history, i.e.,
which rules have been already defined or reused, RecRules first build a knowledge
graph that combines RDF individuals, OWL classes, and collaborative information.
Individuals, in particular, represent the technology information that characterize
the involved rules, i.e., low-level rules, triggers, actions, and involved connected
entities. Classes, instead, represent the functionality information that are used to
characterize the rules in terms of their final goal, independently of the involved
technological details.

9https://github.com/sisinflab/lodreclib, last visited on November 13, 2019

65

https://git.elite.polito.it/public-projects/recrules
https://git.elite.polito.it/public-projects/recrules
https://github.com/sisinflab/lodreclib

Discovering IF-THEN Rules and Functionality

Figure 4.9: The knowledge graph built by RecRules by considering the rules R1
and R2. Rules are linked with individuals (ovals), i.e., the technology information,
classes (rectangles), i.e., functionality information, and users, i.e., collaborative
information.

Figure 4.9 shows an example of a simple knowledge graph built by considering
R1 and R2, already reported in Section 4.2.2. Both rules have been extracted from
the dataset exploited in the evaluation and rephrased for the sake of readability:

R1 if the kitchen Nest Cam recognizes me, then turn on the kitchen Philips Hue;

R2 if the living room Homeboy Cam detects a movement, then open the Hunter
Douglas blinds.

Here, we describe the creation of the graph reported in the figure by highlight-
ing its different parts, and we show how the graph is used in the recommendation
process. In the example, we deliberately chose to represent a simple scenario with
2 users and 2 rules, only, to allow a better understanding of the underlying process.
In a normal recommendation process, the algorithm models much more complex
scenarios, where multiple users and rules are connected through different complex
paths.

66

4.2 – Recommending IF-THEN Rules for End-User Development

Semantic Linking & Graph Instantiation. To build a semantic graph such
as the one reported in Figure 4.9, IF-THEN rules need to be linked to ontologi-
cal sources. Different techniques and available ontological sources can be used for
this purpose: the identification of entities in text-based resources is a well-known
task in the Natural Language Processing community and it has recently gained
momentum thanks to the availability of knowledge bases publicly available on the
Web [125]. In our work, we link IF-THEN rules with the EUPont ontology. Since
the dataset exploited in the evaluation (Section 4.2.5) is composed of trigger-action
rules extracted from IFTTT, we exploit the instantiation of EUPont for IFTTT,
that offers a hierarchical functionality representation of more than 500 triggers and
actions supported by the popular platform. For linking rules to EUPont, in particu-
lar, we use the translation procedure described in Section 3.1.3, with which triggers
and actions are linked to the corresponding ontological entities on the basis of their
description and the devices involved and web applications. After the linking pro-
cess, RecRules instantiates a semantic graph by adding the IF-THEN rules to be
recommended, and by connecting them to the technology information that can al-
ready be extracted from contemporary trigger-action programming platforms. Such
information are represented as RDF individuals, while their connections as entity
relationships. In the graph of Figure 4.9 individuals are represented as ovals, and
their connections as the hasAction, hasTrigger, isOfChannel, and hasCategory
entity relationships. As zoomed in Figure 4.10, the rule “if the kitchen’s Nest Cam
recognizes me, then turn on the kitchen Philips Hue” (R1) is linked with the Nest
Cam User Recognized trigger and with the Philips Hue Turn Light On action,
for example.

Figure 4.10: The figure is a zoom of Figure 4.9 that exemplifies the Semantic
Linking & Graph Instantiation phase of RecRules. The rule R1, in particular,
is linked to its trigger and its action by means of hasTrigger and hasAction
entity relationships, respectively. The trigger and the action are in turn linked
to other technology information through isOfChannel and hasCategory entity
relationships, respectively.

67

Discovering IF-THEN Rules and Functionality

Semantic Reasoning Process. To enrich IF-THEN rules with semantic infor-
mation, and to characterize them in terms of shared functionality, we use a se-
mantic reasoning process. The process analyzes triggers and actions of each rule,
and recursively extracts their OWL ML and HL classes that represent the hier-
archical characterization of triggers and actions offered by EUPont (functionality
information, represented as rectangles in Figure 4.9). Such information are then
linked in the form of OWL classes to the involved IF-THEN rules by means of the
triggerFunctionality, actionFunctionality, and subclassOf type relation-
ships. To implement the semantic reasoning process, RecRules uses OWL API [68],
a high level Application Programming Interface (API) for working with OWL on-
tologies in Java, and the HermiT reasoner [61]. A semantic reasoner is a piece of
software able to infer logical consequences from a set of asserted facts or axioms.
HermiT, in particular, supports several specialized reasoning services such as class
and property classification, as well as a range of features outside the OWL stan-
dard such as DL-safe rules and description graphs. We employ it to discover all the
EUPont classes that can be used to characterize a trigger or an action, including
the cases in which this information is not explicitly available, e.g., when a trigger
or an action can be classified under different branches of the EUPont hierarchy.
As zoomed in Figure 4.11, the rule “if the living room Homeboy Cam detects a
movement, then open the Hunter Douglas blinds” (R2), for example, is connected
both to the Lighting Action and the Temperature Action hierarchy branches.

Collaborative Filtering Mapping. The last part of Knowledge Graph Con-
struction phase is the Collaborative Filtering Mapping, with which RecRules adds
collaborative information to the semantic graph, i.e., how the rules are used and
supported by the community of end users. In this way, the algorithm is able to dis-
criminate between relevant rules, i.e., rules that are appreciated by the users, and
not relevant rules, i.e., rules that are not appreciated and therefore should not be
recommended. To add such feedback relationships, the algorithm defines a labeling
function

γ : R −→ {relevant, not relevant} (4.16)

Different strategies can be used to define the labeling function, ranging from
implicit feedback metrics (e.g., how many times a rule has been reused by other
users), to explicit feedback metrics (e.g., rule ratings). In our evaluation of the
approach (Section 4.2.5) we exploit a Graded Implicit Feedback [84] strategy by
normalizing between 1 and 5 the number of times a rule has been reused by others.

68

4.2 – Recommending IF-THEN Rules for End-User Development

Figure 4.11: The figure is a zoom of Figure 4.9 that exemplifies the Semantic
Reasoning Process phase of RecRules. The rule R2, in particular, is linked to the
Lighting Action and the Temperature Action hierarchy branches of EUPont by
means of triggerFunctionality, actionFunctionality, and subclassOf type
relationships.

Learning

The generated semantic graph is then used in the Learning phase to extract
different types of path-based features and to train a learning to rank model. De-
pending on the user for whom the recommendations need to be computed, the graph
can be dynamically filtered through the User Context Filter. After the filtering pro-
cess, the graph is restricted to IF-THEN rules that can be actually recommended
to that user, i.e., the rules involving devices or web applications that the user is
authorized to control.

Path-Based Features Extraction. To recommend IF-THEN rules, RecRules
exploit the underlying connections modeled in the semantic graph. From the graph,
in particular, the algorithm extracts path-based features able to characterize the
interaction between users and rules. Given the sets of users U and rules R, a path
pu,r is an acyclic sequence of adjacent relationships of length greater or equal than
2 that links a user u ∈ U to a rule r ∈ R in the semantic graph. The first step of
the path pu,r links the user u to a rule belonging to her user profile Hu, while the
rest of the path reaches the terminal rule r that does not necessarily belong to the
user profile. Thanks to the information coded in the semantic graph, RecRules is

69

Discovering IF-THEN Rules and Functionality

able to distinguish paths on the basis of their meaning:

Collaborative Paths. A collaborative path involves feedback relationships, only,
i.e., it connects a user to a rule by means of other users. Considering the prop-
erty labels L, collaborative paths have the form (F, F, F, ..., F). Figure 4.12
shows a collaborative path extracted from the semantic graph of Figure 4.9.
Here, u1 is linked to r2 by means of the path p1u1,r2 = {relevant, relevant−1,
relevant}. Besides this simple example, the algorithm is able to deal with
more complex collaborative paths, i.e., that involve multiple rules connected
through feedback relationships.

Figure 4.12: Connection between User 1 and Rule 2 through a collaborative path.

Technology Paths. A technology path is a path that, excluding the first re-
lationship, involves entity relationships, only, i.e., it connects a user to a
rule by means of technological information. Technology paths have the form
(F, E, E, ..., E). Figure 4.13 shows a technology path extracted from the se-
mantic graph of Figure 4.9. Here, u1 is linked to r2 by means of the path
p2u1,r2 = {relevant, hasTrigger, isOfChannel, hasCategory, hasCategory−1,
isOfChannel−1, hasTrigger−1}. Besides this simple example, the algorithm
is able to deal with more complex technology paths, i.e., that involve multiple
rules connected through entity relationships.

Figure 4.13: Connection between R1 and R2 through a technology path.

Functionality Paths. A functionality path is a path that, excluding the first
relationship, involves type relationships, only, i.e., it connects a user to a
rule by means of functionality information. Functionality paths have the

70

4.2 – Recommending IF-THEN Rules for End-User Development

form (F, T, T...T). Figure 4.14 shows a functionality path extracted from the
semantic graph of Figure 4.9. Here, u1 is linked to r2 by means of the path
p3u1,r2 = {relevant, actionFunctionality, subClassOf, subClassOf−1,
actionFunctionality−1}. Also in this case, besides this simple example,
the algorithm is able to deal with more complex technology paths, i.e., that
involve multiple rules connected through type relationships.

Figure 4.14: Connection between R1 and R2 through a functionality path.

We define the signature k of a path pu,r as the sequence of the actual properties
traversed by the path. The signature k = 1 of the path p1u1,r2 is, for example,
{relevant, relevant−1, relevant}. Each distinct signature k maps to a distinct
dimension xur(k) of the feature vector xur⃗ . Considering a path with signature k,
in particular, the feature component xur(k) is computed by counting #pu,r(k), i.e.,
how many instances of paths having signature k exist between a user u and a rule r.
For the graph of Figure 4.9, for example, #pu1,r2(1) = 2, since there are 2 instances
of the path {relevant, relevant−1, relevant} that connect u1 to r2. To compare
features between different users, we follow the strategy of Di Noia et al. [109] by
introducing a user-based normalization. At the end, the components of the feature
vector are computed with the following formula:

xur(k) = #pu,r(k)−minw∈R (#pu,w(k))
maxw∈R (#pu,w(k))−minw∈R (#pu,w(k)) (4.17)

Equation (4.17) represents the importance of the path of type k between user u
and rule r.

Model Training. To finally compute top-N recommendations, a ranking model
from training data is built using a learning to rank technique. The goal of the Model
Training phase is to learn a scoring function in such a way the model can sort new
items according to their relevance. Different techniques can be used for this pur-
pose. They can be classified into three main categories: pointwise, pairwise, and
listwise. In our evaluation of RecRules (Section 4.2.5) we explore three popular
learning to rank algorithms that can be considered as the baseline in the corre-
sponding learning to rank category, namely Random Forest [15], RankBoost [53],
and LambdaMart [144].

Pointwise Learning to Rank. Pointwise approaches look at a single instance at
a time, and transform the ranking problem into a regression or a classification

71

Discovering IF-THEN Rules and Functionality

one. In particular, they take a single instance at a time, and train a classifier
(or a regressor) to predict its relevance. Each instance is therefore indepen-
dent from each other, and the final ranking is achieved by simply sorting
the result list looking at the predicted scores. For the pointwise category,
RecRules uses Random Forest, an algorithm that constructs a multitude of
decision trees at training time and outputs the class label for classification
(or the mean prediction for regression) of the individual trees.

Pairwise Learning to Rank. Pairwise approaches look at a pair of instances at
a time, and try to find out their optimal ordering. The goal for a pairwise
ranker is to minimize the number of inversions in ranking, i.e., cases where
the pair of results are in the wrong order relative to the ground truth. For
the pairwise category, RecRules uses RankBoost, an algorithm that builds a
linear combination of weak rankers, and optimizes a loss function based on
the exponential difference between the relevance of pairs of items.

Listwise Learning to Rank. Listwise approaches directly look at the entire list
of instances. In particular, they try to come up with the optimal ordering
by minimizing a loss function defined over the ranked list of instances. For
the listwise category, RecRules uses LambdaMart (LMART), an algorithm
that exploits the normalized Discounted Cumulative Gain (nDCG) metric for
fitting the parameters of the regression trees

4.2.5 Algorithm Evaluation
We evaluated RecRules through different experiments. First, we assessed the ef-

fectiveness of recommending by functionality by exploring the accuracy of 3 learning
to rank techniques trained with different types of path-based features. Finally, we
compared RecRules with state-of-the-art collaborative filtering, ranking-oriented,
and semantic-aware recommendation algorithms. Two research questions, in par-
ticular, guided the study:

RQ7) To what extent the different types of path-based features influence the rec-
ommendation accuracy?

RQ8) Does RecRules outperform state-of-the-art recommendation systems in sug-
gesting IF-THEN rules?

Dataset

The evaluations were based on the IFTTT dataset of Ur et al. [137]. To the
best of our knoweldge, this is the only publicly available dataset of IF-THEN rules
defined and shared by different users. As already reported in Section 3.1.3, the

72

4.2 – Recommending IF-THEN Rules for End-User Development

dataset contains 295,156 rules created and shared by 129,206 different authors, and
has a high degree of sparsity (97.51%, Table 4.3).

Table 4.3: IFTTT dataset statistics.

Metric Value
Users (#) 129,206
Items (#) 295,156

Sparsity (%) 97.51

Table 4.4: Example of a rule stored in the IFTTT dataset exploited for the evalu-
ation.

Field Value

Id 100301
Description Save Soundcloud likes to Google Drive.
Author gigaphon
Trigger Channel SoundCloud
Trigger New public like
Trigger Descrip-
tion

This Trigger fires every time you like a public track.

Action Channel Google Drive
Action Upload file from URL
Action Description This Action will download a file at a given URL and add it

to Google Drive at the path you specify. NOTE: 30 MB file
size limit.

Shares 2.2k

Table 4.4 shows a rule extracted from the dataset. Beside the information about
the trigger (Trigger Channel, i.e., involved connected entity, Trigger, and Trigger
Description) and the action (Action Channel, i.e., involved connected entity, Action,
and Action Description), each rule includes data about the author who created it
(Author), a description of the entire rule (Description), and the information about
how many times the rule has been reused by other users (Shares). According to the
dataset, some rules were reused more than 400,000 times, while others were reused
only by one user (M=837.79, SD=9452.77, range=1 : 476355). We used this in-
formation to calculate the labeling function γ (Eq. 4.16), in order to define relevant
and not relevant rules. As suggested in [84], instead of randomly choosing negative
data points, we computed a Graded Implicit Feedback (GIF) by normalizing the
number of reuse between 1 and 5. Then, we defined γ as

73

Discovering IF-THEN Rules and Functionality

γ =

⎧⎨⎩relevant, if GIF > 3
not relevant, otherwise

(4.18)

The threshold was empirically set to 3 to obtain two homogeneous groups.
Our idea was to promote rules that were already reused by a consistent number
of users. Table 4.5 reports the distribution stemming from the labeling function
γ: at the end, 45.88% of the rules were considered as “not relevant”, while the
remaining 54.12% were considered as “relevant.” Finally, since the dataset does
not contain any information about which smart devices or online services can be
actually controlled by each user, we set up the User Context Filter by supposing
that each user is authorized to control any connected entity. For all the experiments,
we follow a k-fold cross-validation approach by randomly splitting up the dataset
into 10 groups. Similarly, the tuning of the parameters in the learning to rank
algorithms was performed through cross validation on validation data obtained by
selecting 15% of items for each user from the original dataset.

Table 4.5: Distribution of the computed Graded Implicit Feedback (GIF), obtained
by normalizing between 1 and 5 the number of shares.

GIF Label Coverage
1 not relevant 32.46%
2 not relevant 13.42%
3 relevant 5.38%
4 relevant 14.3%
5 relevant 34.44%

Procedure

In all the evaluations, we used the “all unrated items” methodology [129], that
consists in computing a top-N recommendation list for each user and by predicting a
score for every item not rated by that particular user, including those that are not in
the test set. The main assumption in this methodology is that all the unrated items
are considered to be irrelevant for the user, with the effect of underestimating the
recommendation quality. However, the user experience in top-N recommendation
applications depends on the ranking of all items. This implies that, in this case, the
“all unrated items” methodology is more suitable than the “rated test-items,” where
only the test data are considered for generating the top-N recommendations [129].

74

4.2 – Recommending IF-THEN Rules for End-User Development

Metrics

We used different metrics for investigating the results. All of them were com-
puted for each single user and then averaged. In particular, we measured the
recommendation accuracy with three standard performance metrics, i.e., precision,
recall, and normalized discounted cumulative gain.

For the definition of the metrics, we considered:

• R, i.e., the set of all the trigger-action rules;

• S, i.e., the set of top-N recommendations;

• m+,N , i.e., the number of recommendations in S that are relevant;

• m+, i.e., the number of all relevant rules.

Precision represents the fraction of the top-N recommended rules that are relevant
among all the recommended items S. It is computed with the formula

prec@N = m+,N

N
(4.19)

Recall represents the fraction of the top-N recommended rules that are relevant
over the total amount of relevant rules. The recall is computed with the formula

rec@N = m+,N

m+ (4.20)

Different from precision and recall, which are binary metrics that consider the rele-
vance of the items, only, normalized Discounted Cumulative Gain (nDCG)
can handle graded values by taking into account both relevance and rank position.
Given r̂urj

, i.e., the GIF of u to the rule rj in the j-th position of the recom-
mended rules S, and IDCG@N , i.e., a normalization factor that represents the
score obtained by an ideal or perfect top-N ranking, nDCG@N is computed with
the formula

nDCG@N = 1
IDCG@N

N∑︂
j=1

2r̂urj − 1
log2(1 + j) (4.21)

In addition to precision, recall, and nDCG, we used diversity, coverage, and serendip-
ity metrics to investigate our results beyond accuracy. Standard accuracy metrics,
in fact, cannot measure all the different aspects of a recommendation process, and
the recommendations that are most accurate according to the standard metrics are

75

Discovering IF-THEN Rules and Functionality

sometimes not the recommendations that are most useful to users [97].

Diversity measures how dissimilar recommended items are for a user. A pop-
ular metric for measuring diversity is the Intra-List Similarity (ILS) [156]. We used
the Jaccard similarity coefficient J to calculate the similarity between 2 rules in
terms of technologies, i.e., involved smart devices or online services. We firstly
defined τ(r) as the set of connected entities involved in triggers and actions of a
given rule r. Then, we define ILS as

ILS@N = 1
2

∑︂
ri∈S

∑︂
rj∈S

J(τ(ri), τ(rj)) (4.22)

The Jaccard similarity coefficient measures similarity between finite sample sets,
e.g., A and B. The coefficient is defined as the size of the intersection divided by
the size of the union of the sample sets:

J(A, B) = |A ∩B|
|A ∪B|

(4.23)

In our case, A = τ(ri) and B = τ(rj) represent the set of connected entities
involved in triggers and actions of 2 different rules.

Coverage represents the percentage of things (items, users, or ratings) that the
recommender system is able to recommend. Not being able to predict a particular
set of users or items is usually caused by an insufficient number of ratings, and is
generally known as the cold start problem. In our work, we used the item cover-
age metric, i.e., the number total number of recommended rules (n) over the total
number of trigger-action rules

COV @N = n

|R|
100 (4.24)

Serendipity is the measure of how surprising the successful or relevant recom-
mendations are. We assessed serendipity through the unserendipity metric [155],
by using the Jaccard similarity coefficient J to measure the technological similarity
in terms of involved connected entities between rules in the user’s profile (Hu) and
new recommendations in S. Lower values of this metric indicate that recommen-
dations deviate from a user’s traditional behavior, and hence are more surprising.
For a given user u, in particular, unserendipity is defined as

UNSER@N = 1
|Hu|

∑︂
ri∈Hu

∑︂
rj∈S

J(τ(ri), τ(rj))
20 (4.25)

76

4.2 – Recommending IF-THEN Rules for End-User Development

4.2.6 Results
Approach Effectiveness

We analyzed the main characteristic of RecRules, i.e., recommending by func-
tionality, by exploring to what extent the different types of path-based features
influence the recommendation process, and, in particular, recommendation accu-
racy (RQ7).

For this purpose, we compared the accuracy of the 3 learning to rank techniques
implemented in RecRules, i.e., Random Forest, RankBoost, and LambdaMart, in
two different configurations, by changing the Learning phase of RecRules. In par-
ticular, i) we first trained the algorithms by exploiting collaborative and technology
paths, only (CT configuration), and ii) we then trained the same algorithms by us-
ing all the collaborative, technology, and functionality paths (CTF configuration),
with the aim of understanding whether the functionality information improved the
recommendation process. Table 4.6 reports the results of such a comparison in
terms of precision, recall, and nDCG. As shown in the table, the exploitation of
functionality paths in the recommendation process resulted in an increase of the
recommendation accuracy: except for nDCG@10 of LambdaMart, which values
are almost equal, all the accuracy metrics are better in the CTF configuration
than the CT configuration. This suggests that, by extracting similarities between
rules in terms of shared functionality, RecRules is able to uncover useful hidden
connections between rules that cannot be identified in contemporary trigger-action
programming platforms. This introduces different advantages: the algorithm can
overcome technological constraints and suggest IF-THEN rules even for rarely used
devices and web applications, on the basis of the actual user’s needs.

Another result that can be extracted from Table 4.6 is that Random Forest
and LambdaMart (the pointwise and listwised approaches, respectively) provided
similar results, and performed better than RankBoost (the pairwise approach) for
all the metrics and configurations. Random Forest in the CTF configuration, in
particular, was selected as the winning configuration since it provided the best
results in general. The Random Forest algorithm, indeed, works especially well for
high-variance, low-bias datasets (as the one exploited in this evaluation), and it
offers a good handling of missing data.

To further investigate the potential of recommending by functionality, we analyzed
the recommendations computed by RecRules in its 2 configuration, i.e., CT and
CTF, with diversity (ILS), coverage (COV), and serendipity (UNSER) metrics.
The goal was to go beyond accuracy, thus identifying other advantages of recom-
mending by functionality. Table 4.7 reports the results for the ILS, COV, and
UNSER metrics using Random Forest. While the 2 configurations resulted in rec-
ommendations with similar coverage and serendipity, recommendations computed

77

Discovering IF-THEN Rules and Functionality

Table 4.6: Comparative results in terms of precision, recall, and nDCG of the
three learning to rank algorithms implemented in RecRules in two different config-
urations, i.e., CT (collaborative and technology features) and CTF (collaborative,
technology, and functionality features). Bold numbers are used to highlight the
best results for to the same learning to rank algorithm, while gray cells indicate the
best results across all the evaluated algorithms. Results are the average of 5 equal
experiments.

Algorithm prec@5 rec@5 nDCG@5 prec@10 rec@10 nDCG@10

CT 0.1077 0.2090 0.4920 0.0772 0.2901 0.5830Random
Forest CTF 0.1211 0.2177 0.5054 0.0813 0.3019 0.6452

CT 0.0743 0.1309 0.4558 0.0570 0.1998 0.5515Rank
Boost CTF 0.0967 0.1894 0.4861 0.0660 0.2536 0.5753

CT 0.0900 0.1918 0.4884 0.0633 0.2589 0.5756Lambda
Mart CTF 0.1115 0.2123 0.4893 0.0858 0.2941 0.5754

by RecRules in the CTF configuration were less similar in terms of involved con-
nected entities with respect to the suggestions proposed by RecRules in the CT
configuration (ILS = 0.0439 vs. ILS = 0.1088, respectively). This confirms that,
by using functionality-based features, RecRules encourages the recommendation of
IF-THEN rules for controlling new devices and online services, without affecting
accuracy.

Table 4.7: Diversity (ILS metric), coverage (COV metric), and serendipity (UNSER
metric) results for CT and CTF configurations using Random Forest. Bold num-
bers are used to highlight the best results. Results are the average of 5 equals
experiments.

Configuration ILS@10 COV@10 UNSER@10

CT 0.1088 13.94% 0.6774
CTF 0.0439 13.57% 0.6243

Comparison With Other Algorithms

Beside investigating the effectiveness of the functionality-based features, we
compared RecRules in its best setting, i.e., Random Forest in the CTF configu-
ration, with state-of-the-art collaborative filtering, ranking-oriented and semantic
recommendation algorithms (RQ8), namely:

• Item-KNN. The Item-KNN algorithm used for the evaluation is a baseline

78

4.2 – Recommending IF-THEN Rules for End-User Development

item-based K-Nearest Neighbours (KNN) algorithm [57]. KNN is a non-
parametric, lazy learning method that uses a database in which the data
points, i.e., the items, are separated into several clusters to make inference for
new samples. Item-KNN does not make any assumptions on the underlying
data distribution but it relies on item feature similarity.

• User-KNN. The User-KNN algorithm used for the evaluation is a baseline
user-based K-Nearest Neighbours algorithm [57]. Differently from Item-KNN,
User-KNN recommends items by analyzing similar users: it firstly finds the
K-nearest neighbors to a specific user a, and it then predicts the rating that
a will give to all items the k neighbors have consumed but a has not.

• Soft Margin Ranking MF (SMR MF). The SMR MF is a matrix fac-
torization model for item ranking which uses ordinal regression score as loss
function [142]. Matrix factorization methods represent the state-of-the-art
for rating prediction tasks.

• BPR-MF. The BPR-MF algorithm [56] is a hybrid extension of the Bayesian
personalized ranking (BPR) [118] that learns a linear mapping on the user/item
features from the factorization matrix. This extension of BPR is able to com-
pute useful recommendations in cold-start scenarios.

• BPR-SLIM. The BPR-SLIM algorithm is an extension of the SLIM algo-
rithm [107] that uses the BPR criterion. SLIM, in particular, uses a Sparse
Linear method for learning a sparse aggregation coefficient matrix.

• WRMF. The WRMF algorithm [69] is a weighted matrix factorization method
that interprets the number of times an item is observed by a user as a measure
for the user preference, and uses regularization to prevent overfitting.

• Least Square SLIM (LS SLIM). The LS SLIM algorithm is a variant of
the SLIM algorithm in which the the model is learned using a coordinate
descent algorithm with soft thresholding [54].

• Item Attribute KNN (IA KNN). The IA KNN algorithm used for the
evaluation is an attribute-based K-Nearest Neighbours approach [57]. Be-
sides items, users, and ratings, the algorithm can access other types of side
information in the form of item attributes. In our evaluation, we provided
the algorithm with the semantic information used in RecRules, i.e., OWL
classes and super-classes of each trigger and action according to the EUPont
ontology.

• BPR-Linear. BPR-Linear [56] is a hybrid matrix factorization method able
to work with sparse datasets. As for the Item Attribute KNN algorithm, BPR-
Linear is able to manage side information. Also in this case, we enriched the

79

Discovering IF-THEN Rules and Functionality

algorithm with the semantic information provided by EUPont.

• Entity Graph-Embedding (EGE). The EGE algorithm is a hybrid se-
mantic recommender system proposed by Oramas et al. [110]. The algorithm
exploits a knowledge graph and two different embedding approaches to en-
code knowledge graph information into a linear feature representation. In the
Entity Graph-Embedding, in particular, features are calculated by analyzing
the neighborhood of each entity composing the knowledge graph.

To compute the recommendations with Item-KNN, User-KNN, Soft Margin
Ranking MF, BPR-MF, BPR-SLIM, WRMF, Least Square SLIM, Item Attribute
KNN, and BPR-Linear we used MyMediaLite [57], a publicly available software
library for recommender systems. For implementing the Entity-Based Graph-
Embedding algorithm, instead, we used the lodreclib library [109], by building the
same knowledge graph built in RecRules, i.e., with the semantic information of
EUPont.

Table 4.8: Comparison of RecRules with other state-of-the-arts algorithms in terms
of precision, recall, and normalized discounted cumulative gain on top-N recommen-
dations (with N=5 and 10). Results are the average of 5 equals experiments.

prec@5 rec@5 nDCG@5 prec@10 rec@10 nDCG@10

RecRules 0.1211 0.2177 0.5054 0.0813 0.3019 0.6452
Item-KNN 0.0847 0.1807 0.1939 0.0514 0.2383 0.2095
User-KNN 0.0961 0.2103 0.2410 0.0520 0.2277 0.2419
SMR MF 0.0760 0.1716 0.1942 0.0452 0.2019 0.1905
BPR-MF 0.1085 0.1898 0.2082 0.0664 0.2148 0.2131
BPR-SLIM 0.1110 0.1976 0.2224 0.0616 0.2200 0.2216
WRMF 0.1155 0.2045 0.2228 0.0618 0.2217 0.2223
LS SLIM 0.1105 0.1970 0.2196 0.0604 0.2158 0.2229
IA KNN 0.0273 0.0845 0.2398 0.0207 0.1302 0.2357
BPR-Linear 0.0504 0.1708 0.2957 0.0356 0.2383 0.2890
EGE 0.0975 0.1918 0.4728 0.0656 0.2467 0.5625

Table 4.8 reports the results of the comparison evaluation in terms of accuracy
metrics for all the algorithms. Looking at the results, our algorithm outperformed
the algorithms that do not take into account semantic information in computing
recommendations. In particular, RecRules performed better than baseline collabo-
rative filtering methods (i.e., Item-KNN and User-KNN) and Matrix Factorization
approaches (i.e., Soft Margin Ranking MF, BPR-MF, and WRMF) in terms of pre-
cision, recall, and nDCG. Furthermore, it also outperformed other hybrid learning
to rank methods such as BPR-SLIM and Least Square SLIM. This further confirms

80

4.2 – Recommending IF-THEN Rules for End-User Development

the usage of semantic information capturing functionality similarities improved the
recommendation accuracy (RQ7).

The comparison of RecRules with Item Attribute KNN and BPR-Linear, i.e.,
the 2 algorithms that used semantic information as item attributes, highlights that
the potential of our approach is not the usage of semantic information, only, but is
its usage as a graph. Indeed, the usage of the underlying knowledge graph, along
with the extraction of different path-based features, provided clear advantages in
terms of precision, recall, and nDCG with respect to Item Attribute KNN and
BPR-Linear.

The benefits of using a graph-based model, in particular, can be glimpsed by
looking at the results of the Entity Graph-Embedding (EGE) approach, i.e., the
other algorithm able to exploit the same knowledge graph built in RecRules. EGE,
in particular, outperformed all the other evaluated state-of-the-art algorithms in
terms of recommendation accuracy, and provided results in line with those obtained
with RecRules, especially for what concern the nDCG metric. The high nDCG val-
ues of EGE and RecRules, in particular, suggest that the usage of an underlying
knowledge graph positively influences the capability of the 2 algorithms in ranking
IF-THEN rules by relevance. Moreover, precision, recall, and nDCG were slightly
higher with RecRules: we can reasonably conclude that using the knowledge graph
to capture connections between IF-THEN rules in terms of shared functionality,
i.e., functionality paths, is a promising approach.

To further investigate the potential of RecRules, we repeated our analysis of diver-
sity, coverage, and serendipity by looking at the recommendations of the previous
state-of-the-art approaches. Table 4.9, in particular, reports the results of the ILS,
COV, and UNSER metrics for all the evaluated algorithms.

Only the recommendations computed with EGE covered a higher number of
rules with respect to RecRules (COV = 18.72% vs. COV = 13.57%, respectively),
but its recommendations were in general less surprising than the rules suggested
by RecRules (UNSER = 0.9812 vs. UNSER = 0.6243, respectively). Looking
at the table, also the recommendations computed by the other 2 algorithms that
used semantic information, i.e., Item Attribute KNN and BPR-Linear, were in
general less surprising than the rules suggested by RecRules: this may suggest that
using different semantic path-based features, based on technology, collaborative,
and functionality information, resulted in a higher serendipity. Furthermore, even
if the RecRules suggestions were in general less surprising than the rules suggested
by the other collaborative filtering and ranking-oriented methods, i.e., Item-KNN,
User-KNN, Soft Margin Ranking MF, BPR-MF, BPR-SLIM, WRMF, and Least
Square SLIM, recommendations computed by RecRules were less similar in terms
of involved technologies, brands, and manufacturers with respect to the majority of
the other evaluated algorithms: only for the Item-KNN and Soft Margin Ranking
MF the ILS metric was slightly lower.

81

Discovering IF-THEN Rules and Functionality

Table 4.9: Comparison of RecRules with other state-of-the-arts algorithms in terms
of diversity (ILS metric), coverage (COV metric), and serendipity (UNSER met-
ric) on top-N recommendations (with N=10). Results are the average of 5 equals
experiments.

ILS@10 COV@10 UNSER@10
RecRules 0.0439 13.57% 0.6243
Item-KNN 0.0362 4.53% 0.0167
User-KNN 0.0476 3.14% 0.0129
SMR MF 0.0419 3.64% 0.0208
BPR-MF 0.0571 3.66% 0.5083
BPR-SLIM 0.0685 5.18% 0.5360
WRMF 0.0857 4.28% 0.5253
LS SLIM 0.0476 3.46% 0.4851
IA KNN 0.1125 12.01% 1.1616
BPR-Linear 0.1328 11.90% 1.2695
EGE 0.0471 18.72% 0.9812

4.3 Discussion and Guidance for Future Research
With the representation models adopted by contemporary trigger-action pro-

gramming platforms, where connected entities are modeled on the basis of the
underlying brand or manufacturer, the number of supported triggers and actions is
continuously growing, and users experience difficulties in finding the functionality
they need to define their IF-THEN rules (information overload issue). In this chap-
ter, we investigated two different approaches to support end users in discovering
and managing rules and related functionality, i.e., EUDoptimizer and RecRules.

EUDoptmizer. We proposed EUDoptimizer to interactively assist end users in
defining IF-THEN rules with an optimizer in the loop. The goal is to dy-
namically redesign layouts in a trigger-action programming interface in an
interactive way, i.e., by considering the choices made by the user, so that that
the needed functionality are immediately displayed on the top of the interface.
To reach our goal, we adapted a state-of-the-art predictive model of user per-
formance in menu search, and we defined a novel model to organize connected
entities (i.e., various smart devices, online services, ...) on the basis of their
final functionality. We used different optimization algorithms to explore the
design space, and we integrated the optimization methods on top of IFTTT.
The EUDoptimizer implementation, in particular, suggests that the approach
is valuable. Off-line results obtained with 10,000 iterations (~15/20 minutes
on a regular laptop) were promising, and showed that satisfactory solutions

82

4.3 – Discussion and Guidance for Future Research

can be obtained in a reasonable amount of time. This is confirmed by the
results of the user study, where EUDoptimizer performed the optimizations in
real-time, by interacting with the participants. By comparing EUDoptimizer
with IFTTT, in particular, we found that IF-THEN rules were defined in less
time with the optimized interface. Even for the most uncommon rules, for
which the involved connected entities were not placed on the top of the lay-
outs, EUDoptimizer partially reduced the time effort needed by participants
to complete the tasks. Furthermore, qualitative data extracted from the user
evaluation suggest that EUDoptimizer reduces the cognitive effort to define
IF-THEN rules by redesigning the grid layouts of user interfaces for trigger-
action programming with a focus on the final functionality of the supported
technologies.

RecRules. As suggested by previous work [64], an alternative approach to func-
tionality discovery is to directly suggests proper IF-THEN rules to be acti-
vated, on the basis of the user’s needs. To this end, we presented RecRules,
our hybrid and semantic recommendation algorithm for suggesting IF-THEN
rules. Through a mixed content and collaborative approach, RecRules ex-
ploits different path-based features and learning to rank techniques, and it is
able to interact with OWL ontologies to compute top-N recommendations.
For the semantic part, we exploited the EUPont model. With such a rep-
resentation, RecRules not only takes into account connected entities already
used by users, but is able to recommend IF-THEN rules on the basis of
their final functionality, i.e., the behavior that they aim to define. By ex-
ploiting a dataset of trigger-action rules created and shared by real users
on IFTTT, we demonstrated the effectiveness of our approach by evaluat-
ing three different learning to rank algorithms, and by investigating to what
extent the different path-based features affected the computed recommen-
dations. Furthermore, we showed that RecRules outperforms state-of-the-
art ranking-oriented and semantic recommendation algorithms. In terms of
accuracy metrics, i.e., precision, recall, nDCG, RecRules outperformed all
the other evaluated approaches, ranging from baseline collaborative filter-
ing methods, e.g., Item-KNN and User-KNN, to other semantic-based ap-
proaches that used the same underlying semantic information, e.g., Entity
Graph-Embedding. Furthermore, the usage of different semantic path-based
features increased the coverage and the diversity of the computed recom-
mendations, by allowing RecRules to remain competitive (and in some cases
better) in terms of serendipity. Moreover, functionality paths increased the
recommendation accuracy of the explored learning to rank approaches: this
suggest that the main characteristic of RecRules, i.e., recommending by func-
tionality, is effective in suggesting IF-THEN rules, and could help end users

83

Discovering IF-THEN Rules and Functionality

discover new rules based on their final purpose, rather than the involved de-
vices and online services. Our approach is therefore able to uncover useful
hidden connections between rules that cannot be identified in contemporary
trigger-action programming platforms and through conventional and estab-
lished recommendation systems based on popularity or involved technologies.
Such a feature can be glimpsed by qualitatively analyzing the recommenda-
tions computed by RecRules. For a specific user, for example, we found the
following recommended rule: “if my Nest detects a smoke alarm, then send
me an Android SMS”. By analyzing the training set for that user, we found
that it contained “if the Scout Alarm triggers, then send me a notification
on my Google Glasses”, that is conceptually equivalent to the recommended
rule in terms of final functionality, i.e., “let me know if something is wrong in
my home,” but includes different technologies, i.e., Scout Alarm and Google
Glasses.

Results presented in this chapter point to novel trigger-action programming
platforms that proactively support users in discovering the functionality they need.
On the one hand, integrating optimization methods in trigger-action programming
interfaces could help end users better deal with trigger-action programming, and
could open up new possibilities for users to program their devices and services. Be-
sides reorganizing grid layouts to display connected entities, as in EUDoptimizer,
several applications of optimization methods in trigger-action programming inter-
faces can be further explored in future works, e.g., to display relevant information,
only, or to dynamically change the rule definition process.

On the other hand, the adoption of recommender systems in the EUD context
could effectively help end users define their applications. Few EUD systems today
take advantage of recommender technologies [64], and the most common trigger-
action programming platforms still continue to offer limited types of suggestions.
With RecRules, we hope to open the way to a new class of recommender systems
in EUD based on the actual end-users’ needs. While a conventional recommender
system would probably suggest, regardless of the user goal, rules that involve the
same connected entities, RecRules is able to establish, in high-level terms, what
the user is trying to achieve with the rules she has already defined. Future works
would need to assess the RecRules algorithm with further evaluations, e.g., by ex-
ploiting data coming from different platforms. For this purpose, a urgent challenge
is to provide the scientific community with more datasets in the trigger-action pro-
gramming context. Indeed, differently from other domains such as movies and
songs, recommendations in the EUD are in their early stages, and, to the best of
our knowledge, the IFTTT dataset of Ur et al. [137] is the only publicly available
collection of IF-THEN rules. Besides testing RecRules offline, future works would
need to perform more user-centered evaluations of the approach, e.g, by integrating
it in a real platform to define trigger-action rules. Recommendations computed by

84

4.3 – Discussion and Guidance for Future Research

RecRules could be used in a “traditional” way, e.g., by displaying them in the home
page of the interface, or they could be used to assist users in the rule definition
process. An example of a possible integration of RecRules for supporting the defi-
nition of IF-THEN rules can be found in our recent work [37]. In the implemented
trigger-action programming platforms, recommendations are continuously adapted
in real-time to the current personalization goal of the user, and can be used to
suggest relevant actions to “auto-complete” a defined trigger.

85

86

Chapter 5

End-User Debugging in
Trigger-Action Programming

Besides supporting users in defining and discovering IF-THEN rules, another
important and urgent challenge is the need to avoid possible conflicts [21] and to
assess the correctness of IF-THEN rule [46] (run-time problems issue). Problems in
trigger-action programs, indeed, negatively influence users’ ability to correctly pre-
dict the outcomes of trigger-action programs [14], and can lead to unpredictable and
dangerous behaviors [17], e.g., a door that is unexpectedly unlocked. Unfortunately,
contemporary trigger-action programming platforms often expose too much func-
tionality [71] and adopt technology-dependent representation models, thus forcing
users to have a deep knowledge of all the smart devices and online services involved.
As a result, users frequently misinterpret the behavior of trigger-action rules [17],
often deviating from their actual semantics, and are prone to introduce errors [70].

Previous work started to address the challenge of avoiding run-time problems in
trigger-action programming leveraging software engineering techniques, e.g., formal
verification [86, 154] and information flow-control [133]. Instead of checking rules
“off-line”, i.e., after their definition, we agree with previous work [14] that users
must be able to identify programming bugs in IF-THEN rules and reason about
how to fix them during the definition process. This implies designing tools for
trigger-action programming that are specifically tailored for end users who are not
accustomed to programming, by providing users with mechanisms to debug their
IF-THEN rules.

Debugging is the process of finding the cause of an identified misbehavior and
fixing or removing it. If prompted with the right information, even end users
are able to design correct applications and programs [24]. To investigate end-user
debugging in the trigger-action programming context, we firstly reviewed previous
works on rule analysis in different areas to understand how to characterize, model,
and detect problems in IF-THEN rules (Section 5.1). Then, we proposed 2 different
end-user debugging tools:

87

End-User Debugging in Trigger-Action Programming

a) EUDebug (Section 5.2), an integration of different end-user debugging features
on top of an IFTTT-like interface; and,

b) My IoT Puzzle (Section 5.3), a tool to define and debug IF-THEN rules based
on the Jigsaw metaphor.

Part of the work described in this chapter has been previously published in three
different papers. The description and the evaluation of EUDdebug, in particular,
is based on the work published in [44] and [33], while My IoT Puzzle was initially
presented in [35].

5.1 Run-Time Problems in IF-THEN Rules
To better understand which problems should be detected and shown to end

users in trigger-action programming platforms, we reviewed previous works on rule
analysis in different contexts, e.g., [85, 139, 99]. Then, we defined a novel Seman-
tic Colored Petri Net (SCPN) formalism to model and check IF-THEN rules at
definition time.

5.1.1 Background
Many prior works faced the problem of formally or semi-formally verifying event-

based rules with different approaches, especially in the area of databases [59, 85],
expert systems [146], and smart environments [139, 5]. Rules, indeed, have the
ability to interact with each other, and even a small set of dependencies between
them makes it hard (and often undecidable) the problem of predicting their overall
behavior [6].

In the field of smart environments, Vannucchi et al. [139] adopted formal verifi-
cation methods for ECA rules, while Augusto and Hornos [5] proposed a method-
ological guide to use the Spin model checker to inform the development of more
reliable intelligent environments.

Li et al. [85], instead, proposed a Conditional Colored Petri Net (CCPN) for-
malism to model and simulate Event-Condition-Action (ECA) rules for active
databases. Petri nets were also used by Yang et al. [146] to verify rules in ex-
pert systems, and by Jin et al. [74] to dynamically verify ECA properties such
as termination and confluence. Petri nets are bipartite directed graphs, in which
directed arcs connect places and transitions. Places may hold tokens, which are
used to study the dynamic behavior of the net. They can naturally describe the
rules as well as their non-deterministic concurrent environment [74]. In our work,
we defined a novel Petri net formalism, similar to CCPN but enhanced with new
elements and with semantic information. Furthermore, different to the majority of
the works described above, that aim at checking “off-line” the consistency of a set

88

5.1 – Run-Time Problems in IF-THEN Rules

of fixed and already defined rules, our goal was to assist end users in real time, i.e.,
during the actual definition of IF-THEN rules.

5.1.2 Characterizing Problems
Recently, Brackenbur et al. [14] identified ten programming bugs that might

arise in IF-THEN rules by reviewing existing literature, and by considering bugs
from other domains. They found, in particular, a) bugs in control flow, b) timing-
related bugs, and c) errors in user interpretation. Since we aim at assisting users
during the definition process, we focused on control-flow problems, i.e., loops, in-
consistencies, and redundancies. In the following formal definitions of the problems,
R(T, A) models an IF-THEN rule where T is the trigger and A is the action. Fur-
thermore, the notation ex is used to describe a specific connected entity, i.e., a
smart device or an online service, that belongs to the set E of all the supported
connected entities.

Loops. Loops occur when a set of trigger-action rules are continuously activated
without reaching a stable state [22, 99]. More formally, given a set S of TA
rules, a loop arise when it exists at least a subset S ′ ⊂ S whose cardinality is
|S ′| ≥ 2 such that ∀(Ri, Ri+1) ∈ S ′ the following conditions are met:

1. Ai ⇒ Ti+1, 1 ≤ i < n− 1;
2. An ⇒ T1.

Here, the implication symbol means that an action of a rule activates the
trigger of another rule of the same set, and the index i models the run-time
execution order of the n trigger-action rules, i.e., the order in which the rules
are triggered by each other. An example of a loop is:

• if I post a photo on Facebook, then save the photo on my iOS library;
• if I add a new photo on my iOS library, then post the photo on Insta-

gram;
• if I post a photo on Instagram, then post the photo on Facebook.

Inconsistencies. In active databases [85] and smart environments [22], inconsis-
tencies occur when the execution order of rules may render different final
states in the system. We generalized this concept to take into account all the
elements of the contemporary IoT ecosystem, i.e., not only physical devices
but online services, too. The large vision of the IoT ecosystem, that nowa-
days includes many different devices and online services in many different
contexts, is intrinsically different from other domains. The order of actions
performed on online services, e.g., posting a content on Facebook or sending
a WhatsApp message, indeed, is not really important, because they do not
change the internal state of a device and they do not leave the system in

89

End-User Debugging in Trigger-Action Programming

a unpredictable or dangerous state. For this reason, inconsistencies in IF-
THEN rules occur when rules that are activated at (nearly) the same time1

may try to execute contradictory actions. More formally, given a subset of
trigger-action rules Ri(Ti, Ai), 1 ≤ i ≤ n, an inconsistency arise if:

1. all the Ri are simultaneously or consequently executed, i.e.,
• Ti = Tj, 1 ≤ i, j ≤ n, i /= j; or
• Ai ⇒ Tj, 1 ≤ i, j ≤ n, i /= j;

2. ∃Ai, Aj : Ai¬Aj and Ai, Aj ∈ ex.
where ex is a specific connected entity. Here, the negation symbol means that
the two actions are contradictory in terms of final functionality. An example
of a set of rules that produces an inconsistency is:

• if my Android GPS detects that I exit the home area, then lock the
SmartThings entrance door;

• if my Android GPS detects that I exit the home area, then set the Nest
thermostat to Away mode;

• if the SmartThings entrance door is locked, then set the Nest thermostat
to Manual mode.

Here, the three rules are executed at the same time because the first two rules
share the same trigger, while the first rule implicitly activates the third rule.
They produce two inconsistent actions, since they set 2 contradictory modes
on the Nest thermostat, i.e., Away and Manual.

Redundancies. Redundancies occur when two or more rules that are activated
(nearly) at the same time have replicated functionality[22]. Given a subset of
trigger-action rules Ri(Ti, Ai), 1 ≤ i ≤ n, there is a redundancy when:

1. Ri are simultaneously or consequently executed, i.e.,
• Ti = Tj, 1 ≤ i, j ≤ n, i /= j; or
• Ai ⇒ Tj, 1 ≤ i, j ≤ n, i /= j;

2. ∃ Ai, Aj : Ai is similar to Aj, i.e.,
• Ai = Aj and Ai, Aj ∈ Ex; or
• Ai and Aj provide the same functionality.

An example of a set of rules that produce a redundancy is:

• if I play a new song on my Amazon Alexa, then post a tweet on Twitter ;
• if I play a new song on my Amazon Alexa, then save the track on Spotify;
• if I save a track on Spotify, then post a tweet on Twitter.

1e.g., when rules share the same trigger or when some rules trigger other rules

90

5.1 – Run-Time Problems in IF-THEN Rules

Here, the three rules are executed at the same time because the first two
rules share the same trigger, while the second rule implicitly activates the
third rule. They produce two redundant actions, i.e., the first and the third
rule post the same content on Twitter.

5.1.3 Modeling and Detecting Problems
To model and check loops, inconsistencies, and redundancies in IF-THEN rules,

we defined a novel Semantic Colored Petri Net (SCPN) formalism. Petri nets were
selected as they can naturally describe the rules as well as their non-deterministic
concurrent environment [74], and they easily allow the step-by-step simulation of
the run-time behaviors of the modeled rules: by firing a transition at a time, tokens
move in the net by giving the idea of a possible execution flow. As a member of
Petri nets family, Colored Petri Net (CPN) [73] combine the strengths of ordinary
Petri nets with the strengths of a high-level programming language.

SCPN is a Colored Petri Net similar to the Conditional Colored Petri Net
(CCPN) formalism [85] proposed to model ECA rules in active databases. Different
from such a formalism, SCPN do not consider conditions, and it uses a semantic
model both to generate and analyze the net. Furthermore, as explained in the
following, each token assumes different semantic “colors” by moving in the net. Such
semantic information allows the inference of more information from the simulation
of the net, i.e., to discriminate between problematic and safe rules.

Adding Semantics to Trigger-Action Rules

The novel characteristic of the SCPN formalism is the usage of Semantic Web
technologies in conjunction with a Colored Petri Net. Adding semantics to IoT
objects, triggers, and actions is a common approach [3]. In our case, we exploited
the IFTTT-translation version of EUPont (Section 3.1.3) as the semantic model,
by adding further relationships between the modeled IFTTT triggers and actions,
e.g., the fact that the action turn on the Philips Hue lamp implicitly activates the
trigger the Philips Hue lamp has been turned on.

The SCPN formalism, in particular, exploits EUPont information to “color” the
places of the Petri net and to discriminate between similar and contradictory actions
in terms of final functionality, i.e., to detect inconsistencies and redundancies among
rules, respectively. Actions that are classified under the same EUPont classes,
indeed, are similar in terms of final functionality, while actions that do not share
any EUPont class are functionally contradictory. For example, the two actions
“set the Nest thermostat to Home mode” and “set 25 Celsius degree on the Nest
thermostat” share the same final functionality, because they are both classified
under the same EUPont class, i.e., Increase Temperature. Compared to these
actions, the action “set the Nest thermostat to Away mode” is contradictory in

91

End-User Debugging in Trigger-Action Programming

terms of functionality, because it is classified under a different EUPont class, i.e.,
Lower Temperature.

Formalism

(a) (b) (c) (d) (e)

Figure 5.1: Figure 5.1a, Figure 5.1b, and Figure 5.1c show the basic elements of
the SCPN formalism, while Figure 5.1d and Figure 5.1e show the 2 cases in which
places are duplicated, i.e., when the same trigger is in common between two or
more rules (Figure 5.1d), or when the same action implicitly activate two or more
different triggers belonging to other rules (Figure 5.1e).

A SCPN is a 9-tuple

SCPN = {P, T, Σ, A, N, C, G, E, I} (5.1)

where:
1. P = T ∪A∪Tcopy∪Acopy is a finite set of places. Given a set of IF-THEN rules,

triggers and actions are modeled as T and A places, respectively (Figure 5.1a).
Therefore, a token in a T place means that the associated trigger has been
detected, while a token in a A place means that the associated action has been
executed. Tcopy and Acopy places are used when the same trigger is in common
between two or more rules (Figure 5.1d), or when the same action implicitly
activate two or more different triggers belonging to other rules (Figure 5.1e).
In this case, the “original” place is replicated in such a way all the involved
rules can be enabled when the trigger is detected, or the action is executed.

2. TR = TRrule∪TRactivate∪TRcopy is a finite set of transitions. A TR = TRrule

models a connection from a T place to a A place by means of a IF-THEN
rule, i.e., it models a rule defined by the user (Figure 5.1a). A TRactivate

models a connection from a A place to a T place and is used when an action
of a rule implicitly activate the trigger of another rule (Figure 5.1c). Such
transitions are extracted thanks to the semantic information of the EUPont

92

5.1 – Run-Time Problems in IF-THEN Rules

ontology. A TRcopy is used to connect a T place (or a A place) with its copies
(Figure 5.1b).

3. Σ is a finite set of non-empty types, called color sets. Each Σ represent
the color of a place, and contains the URI of the first EUPont class in the
tree under which the associated trigger or action is classified, i.e., its final
functionality, the smart device or online service by which the trigger or the
action is offered, and all the details of the trigger or the action (Figure 5.1a).

4. A is a finite set of arcs such that P ∩ TR = P ∩ A = TR ∩ A = ∅.
5. N : A→ P × TR ∪ TR× P is a node function.
6. C : P → Σ is a color function.
7. G is a guard function. In SCPN, the guard function returns true, always,

i.e., ∀t ∈ TR : [Type(G(t)) = True]. Therefore, when there are enough
tokens in the input places, the associated transition is fired, and a new token
is generated in each output places.

8. E is an arc expression function that assigns an arc expression to each arc a
such that Type[E(a)] = C(p)MS, where p is the places connected to arc a.

9. I is an initialization function that assigns an initialization expression to each
place p such that Type[I(p)] = C(p)MS.

To exemplify and better explain the SCPN formalism, Figure 5.2 shows the net
built starting from the seven rules in Table 5.1, with R7 being the rule in definition.

Trigger (if. . .) Action (then. . .)

R1 my Android GPS detects that I exit
the home area (T1)

lock the SmartThings entrance door
(A1)

R2 the SmartThings entrance door is
locked (T2)

set the Nest thermostat to Away
mode (A2)

R3 the SmartThings entrance door is
locked (T2)

turn off the Philips Hue lamp in the
kitchen (A3)

R4 the SmartThings entrance door is un-
locked (T3)

arm the Homeboy security camera
(A4)

R5 the Homeboy security camera is
armed (T4)

send me a Telegram message (A5)

R6 the Homeboy security camera is
armed (T4)

lock the SmartThings entrance door
(A1)

R7 the Homeboy security camera is
armed (T4)

unlock the SmartThings entrance
door (A6)

Table 5.1: The rules that generate the SCPN of Figure 5.2.

Triggers and actions of a given connected entity, e.g., SmartThings, are modeled
as T and A places, respectively, e.g., T1 and A1. When a trigger is in common
between more than one rule, as in R2 and R3, the associated places are duplicated
(e.g., T2copy in Figure 5.2) and connected through a TRcopy transition. When a

93

End-User Debugging in Trigger-Action Programming

Figure 5.2: The SCPN generated by analyzing the rules of Table 5.1.

token is in the original place, such a transition simply replicates the token in each
copied place. A places follow a slightly different process than T places: an A place
can be reused for rules that share the same action, e.g., A1 models the action offered
by both R1 and R6 (Figure 5.2). The rule transitions, e.g., TRruleR2, model the
7 rules of Table 5.1 by connecting the involved triggers and actions. The activate
transitions, instead, e.g., the one between A1 and T2, model the fact that an
action of a rule triggers the event of another rule. Finally, as exemplified for A2 in
Figure 5.2, all the places are characterized by a semantic color that represents the
semantic information associated with the corresponding trigger or action. When a
token cross a place, it assumes the place color.

Rule Analysis with SCPN

To detect loops, inconsistencies, and redundancies in IF-THEN rules at defini-
tion time, the following procedure is adopted:

Net Generation. Given a set of IF-THEN rules already defined, and the “cur-
rent” rule, i.e., the rule that is being defined, the first step of the rule analysis
is the generation of a SCPN net. All the IF-THEN rules are firstly translated
in the EUPont semantic representation. Triggers and actions are enumerated
in order to create a T and a A for each unique trigger and action, respectively.
Furthermore, thanks to the semantic information extracted from EUPont, a
semantic color is assigned to each place. For each trigger in common between
two or more rules, and for each action that implicitly activate two or more
different triggers belonging to other rules, a series of Tcopy and Acopy are cre-
ated. Copy places are linked to the corresponding T or A places by means
of TRcopy transitions. By analyzing the set of IF-THEN rules, then, trigger

94

5.1 – Run-Time Problems in IF-THEN Rules

places, either “original” (T) or copies (Tcopy), are connected to action places
(A) by means of TRrule transitions. Furthermore, by reasoning on the infor-
mation extracted from the EUPont ontology, further transitions are added to
model rules that implicitly activate other rules. In this case, action places,
either “original” (A) or copies (Acopy), are connected to trigger places (T) by
means of TRactivate transitions.

Initial Marking. After the generation, the net is marked with an initial marking.
Different strategies can be adopted: when the net is used to assist users during
the rule definition process, in particular, the initial marking is a single token
in the T place related to the rule that is being defined.

Net Analysis. When the net is marked, it can be analyzed. Loops are detected
by performing a depth-first search on the net. To detect inconsistencies and
redundancies, instead, the SCPN is executed, and all the A places crossed
by the tokens during the execution, i.e., the executed actions, along with the
associated semantic colors are analyzed. An inconsistency is found if there
are at least two executed actions that a) act on the same connected entity,
and b) are classified under different EUPont classes. Similarly, a redundancy
is found if there are at least two executed actions that a) act on the same
connected entity, and b) share the same EUPont classes.

Net Simulation. Beside being analyzed, the net can be executed step-by-step by
randomly selecting a transition to be fired from the set of transitions that are
enabled in a given moment.

As an example, the net in Figure 5.2 presents a loop arising between R4 and
R7. A redundancy and an inconsistency are also present, and can be identified
by executing and analyzing the net. The net is initially marked with a token a
single token in the T place related to the rule that is being defined, i.e., T4 for R7.
Then, the net is executed, and the activated transitions move the token in the net.
When the token is in a T place, all the rules that share such a specific trigger are
activated: in the first step of the execution of Figure 5.2, for example, the token is
removed from T4 by the TRcopy and replicated in each copy of T4, thus enabling
the TRrule of R6, R5, and R7. In the next step, the net may execute R6, i.e., one of
the activated TRrule, thus moving the token from the T4copy to A1. This simulate
the execution of action associated with A1.

Following this process, the analysis of the crossed A places show that a redun-
dancy arises since the action of R5 (A5) contains multiple tokens at the end of
the net execution, thus generating many Telegram messages (an infinite number),
as the trigger of R5 (T4) is involved in the loop. Crossed places also highlight an
inconsistency, A1 and A6 model two inconsistent actions, i.e., “lock the entrance
door” and “unlock the entrance door”. By getting rid of R7, a user can eliminate
all those problems.

95

End-User Debugging in Trigger-Action Programming

5.1.4 SCPN RESTful Server
We implemented the SCPN formalism in a RESTful server by exploiting the

Java Spring framework2 (Figure 5.3). The server is composed of three modules:
Rule Service, SCPN Service, and Rule Controller. The Rule Service offers the fea-
tures needed to manage collections of IF-THEN rules, i.e., to create, read, update,
and delete rules through the interaction with a MySQL database. Once a rule is
saved, the SCPN Service generates and analyzes the SCPN by retrieving the de-
fined rules from the Rule Service, and by using the OWL API3 library to extract
the needed semantic information from the EUPont ontology. The same module
is also responsible for the step-by-step simulation of the involved rules. Finally,
the Rule Controller exposes a list of REST APIs that can be exploited by a user
interface, as shown in the following two sections describing the EUDdebug and My
IoT Puzzle tools, respectively.

Figure 5.3: The SCPN RESTful server architecture.

5.2 Exploring End-User Debugging in Trigger-
Action Programming Platforms

To firstly explore whether end users would be able to debug their IF-THEN
rules at definition time, we proposed EUDebug, a system that exploits the same
definition interface, metaphors and expressiveness of IFTTT, and that enables end

2https://spring.io, last visited on November 12, 2019
3http://owlapi.sourceforge.net, last visited November 12, 2019

96

https://spring.io
http://owlapi.sourceforge.net

5.2 – Exploring End-User Debugging in Trigger-Action Programming Platforms

users to debug their IF-THEN rules according to two strategies: (i) by assisting
them in identifying rule conflicts, and (ii) by helping them foresee the run-time
behavior of their rules through step-by-step simulation. Figure 5.4 shows a sample
usage scenario:

a) The user defines a new IF-THEN rule in a web-based application modeled
after IFTTT (e.g., “if the security camera in the office is armed, then unlock
the door”). As the user is defining the rule, EUDebug employs SCPN to
model, check, and simulate the rule with respect to previously defined IF-
THEN rules.

b) When the rule definition is completed, EUDebug highlights possible problems
that the rule may generate, by providing a short explanation to the user.

c) If needed, the user can further inspect and understand the problems by asking
EUDebug to perform and show a step-by-step simulation of the problematic
rules.

d) Finally, the user can edit the defined rule or decide to ignore the highlighted
problems, thus saving the rule in the current format.

Figure 5.4: EUDebug is a system for debugging IF-THEN rules that allows the
user to: a) define a new rule; b) view any problems that the rule may generate;
c) further investigate each problem with a step-by-step simulation; and d) edit the
rule to fix the problem or save it anyway.

97

End-User Debugging in Trigger-Action Programming

5.2.1 Background
Today’s end-user programmers include anyone who creates artifacts that in-

struct computers how to perform an upcoming computation, without being nec-
essarily interested in learning how to program. Along with the ability to create
programs comes the need to debug them, and work on end-user debugging is only
beginning to become established [63].

To our knowledge, EUDebug is one of the first attempt to provide debugging
features to end users who define IF-THEN rules for their IoT ecosystem. Previ-
ous work on end-user debugging are not related to trigger-action programming nor
the IoT, but mainly focus on mashup programming [24] and, especially, spread-
sheets [18, 76, 63]. In using spreadsheets, in particular, users are likely to make a
large number of mistakes [19, 114], and the need of supporting end-users’ debug-
ging efforts in such tools has gained interest in the last years [63]. By focusing on
novice developers, instead, Ko and Myers [77] propose an interrogative debugging
interface for the Alice programming environment. The interrogative debugging is
a debugging paradigm by which novices can ask why and why not questions about
their program’s run-time failures. EUDebug is inspired by this paradigm, as it
assists end users in understanding why their trigger-action rules may be problem-
atic through the step-by-step simulation of the run-time behavior of the rules. To
model, check, and simulate IF-THEN rules, in particular, EUDebug exploits the
SCPN formalism described in Section 5.1.3.

5.2.2 The EUDebug Tool
We developed EUDebug as a web-based end-user debugging interface through

the Angular framework4. The tool exploits the SCPN RESTful server (Section 5.1.4)
to assist users during the definition of IF-THEN rules. The interface can be logically
split in three parts: a) Rule Definition, b) Problem Checking, and c) Step-by-Step
Explanation.

The Problem Checking and the Step-by-Step Explanation interfaces implement
two strategies for end-user debugging, respectively: identification of rule conflicts,
and simulation of the run-time behavior. To allow the definition of IF-THEN rules,
we modeled the definition interface after IFTTT (Figure 5.5) due to the popularity
of the platform [46], its ease of use and accuracy in the rule definition process [21],
and the availability of real usage data [137], which we used to define available
triggers and actions. In addition, the form-filling procedure it adopt helps users to
avoid syntactical errors during the rule definition. As reported in Section 1.1.1, to
define a rule a user needs to first select which connected entity they want to use
as a trigger (Figure 5.5). Once they select an entity, they can choose the specific

4https://angular.io, last visited on September 18, 2018

98

https://angular.io

5.2 – Exploring End-User Debugging in Trigger-Action Programming Platforms

Figure 5.5: The user interface for defining a new IF-THEN rule, showing the selec-
tion of the connected entity to be used as a trigger.

trigger to be used (e.g., “turned on” for Philips Hue lamps) and fill any additional
information required by the trigger (e.g., which Philips Hue lamp they want to
use). To define the action part of the rule, the user has to repeat the same steps.

The defined rule is, then, described according to the SCPN formalism, and
analyzed by the net to look for any loops, inconsistencies, and redundancies. The
results of the analysis of the SCPN are, in real time, shown to the user in the
Problem Checking interface (Figure 5.6). The Problem Checking interface shows
the rule just defined by the user and any problems that the rule may generate. In
Figure 5.6, for instance, a possible inconsistency between two rules is highlighted.
To better understand the problems and to foresee the run-time behavior of the
involved trigger-action rules, the user can click on the “Explanation” button to
open the Step-by-Step Explanation interface (Figure 5.7). In such an interface, the
user can simulate step-by-step what happens within their rule, to try to understand
why the highlighted problems arise. For instance, Figure 5.7 shows that the event
“You exit an area” activates a sequence of IF-THEN rules that includes the rule
that is being defined, and two inconsistent actions that close and open a door at
the same time.

5.2.3 User Evaluation
We ran an exploratory study with 15 participants to evaluate whether EUDebug

helps them a) understand and b) identify problems that may arise in their IF-THEN
rules. The following questions guided our study:

RQ9) Can EUDebug help end users debug their IF-THEN rules? Do they under-
stand the involved problems and why their rules generate them?

99

End-User Debugging in Trigger-Action Programming

Figure 5.6: The Problem Checking interface showing an inconsistency between an
already existent rule and the defined one.

(a) (b) (c) (d)

Figure 5.7: Step-by-Step Explanation: a sequence of screenshots of the user in-
terface related to the step-by-step simulation of the inconsistency problem of Fig-
ure 5.6.

RQ10) Is highlighting the detected problems sufficient to identify such problems, or
do users need the additional details provided by the step-by-step simulation?

Participants

We recruited 15 university students (9 males and 6 females) with a mean age of
20.34 years (SD = 2.50, range : 18 − 25) by sending emails and private messages
to students coming from various backgrounds. We excluded users who had previ-
ous experience in computer science and programming. Table 5.2 summarizes the

100

5.2 – Exploring End-User Debugging in Trigger-Action Programming Platforms

demographics of our participants. On a Likert-scale from 1 (Very Low) to 5 (Very
High), participants stated their level of technophilia (M = 3.94, SD = 0.80) and
technological savviness (M = 2.67, SD = 0.82). Furthermore, on a Likert-scale
from 1 (No knowledge at all) to 5 (Expert), participants declared their experience
with trigger-action programming (M = 1.34, SD = 1.04).

Table 5.2: General demographics in the EUDebug user study.

Id Age Gender Education Technophilia Tech
savviness

TA
Programming

P1 21 F Education sciences 3 2 1
P2 19 M Aerospace engineering 5 4 2
P3 19 M Aerospace engineering 5 4 5
P4 19 M Management 4 2 1
P5 20 M Biology 5 3 1
P6 22 F Law 4 3 1
P7 25 M Architecture 4 3 1
P8 24 F Music therapy 3 3 1
P9 25 M Civil engineering 4 2 1
P10 18 F Scientific high school 4 3 1
P11 19 F Linguistic high school 3 1 1
P12 18 M Agricultural high school 3 2 1
P13 19 M Economics 5 3 1
P14 18 M Industrial Institute 4 3 1
P15 19 F Architecture 3 2 1

Procedure

We brought each participant to our lab for a 45-minute session using EUDebug
on a Macbook Pro connected to an external 22-inch monitor. At the beginning
of the study, participants were introduced to trigger-action programming and to
EUDebug with an example of a rule definition. To allow us to investigate the EU-
Debug understandability (RQ9), participants were not introduced to the problems
that rules may generate. We then presented a task requiring the definition of the
12 trigger-action rules reported in Table 5.3, which include both smart devices and
online services. The rules generated 5 different problems (i.e., 2 inconsistencies, 2
redundancies, and 1 loop):

• IC1. TA1 and TA2 generate an inconsistency, because they share the
same trigger (“entering the home area”) while producing contradictory actions
on the same device, i.e., they turn on and off the same Philips Hue lamp,
respectively;

• IC2. TA7 and TA9 generate an inconsistency, because they produce con-
tradictory actions on the same device, i.e., locking and unlocking the office

101

End-User Debugging in Trigger-Action Programming

ID Trigger
Service

Trigger Action
Service

Action

TA1 Android
Location

You enter an area (where:
home)

Philips Hue Turn on lights (what: kitchen
lamp)

TA2 Android
Location

You enter an area (where:
home)

Philips Hue Turn off lights (what: kitchen
lamp)

TA3 Android
Location

You enter an area (where:
home)

Philips Hue Turn on color loop (what:
kitchen lamp)

TA4 iOS Photo New photo added to album
(album: ios photos)

Dropbox Add file from URL (URL: ios
photo, folder: drpb photos)

TA5 Dropbox New file in your folder (Folder:
drpb photos)

Facebook Upload a photo from URL
(URL: drpb photo)

TA6 Facebook New photo post by you iOS Photo Add photo to album (URL:
facebook photo, Album: ios
photos)

TA7 iOS Loca-
tion

You exit an area (where:
work)

SmartThings Lock (what: office door)

TA8 SmartThings Locked (what: office door) Homeboy Arm camera (what: office
camera)

TA9 Homeboy Camera armed (what: office
camera)

SmarThings Unlock (what: office door)

TA10 Amazon
Alexa

New song played Twitter Post a tweet (text: I liked the
Alexa song)

TA11 Amazon
Alexa

New song played Spotify Save a track (track: alexa
song)

TA12 Spotify New saved track Twitter Post a tweet (text: I liked the
Spotify song)

Table 5.3: The 12 trigger-action rules defined in the EUDebug study.

door, and they are activated nearly at the same time, since TA7 activates
TA8, and TA8 activates TA9. Indeed, the action of TA7 (“lock the office
door”) activates the trigger of TA8 (“the office door has been locked”), while
the action of TA8 (“arm the office camera”) activates the trigger of TA9 (“the
office camera has been armed”);

• RD1. TA1 and TA3 generate a redundancy, because they share the same
trigger (“entering the home area”) while producing two similar actions on
the same device, i.e., they turn on the same Philips Hue lamp with different
colors;

• RD2. TA10 and TA12 generate a redundancy, because they produce similar
actions on the same online service (“posting a tweet about a liked song”) and
are activated nearly at the same time, since TA10 and TA11 share the same
trigger (“new song played on Alexa”) and TA11 activates TA12. Indeed, the
action of TA11 (“save the song on Spotify”) activates the trigger of TA12

102

5.2 – Exploring End-User Debugging in Trigger-Action Programming Platforms

(“new song saved on Spotify”);

• LP. TA4, TA5, and TA6 generate an infinite loop, because TA4 activates
TA5, TA5 activates TA6, and TA6 activates TA4. Indeed, the action of
TA4 (“add file to Dropbox”) activates the trigger of TA5 (“new file added to
Dropbox”), the action of TA5 (“upload a photo on Facebook”) activates the
trigger of TA6 (“new photo post on Facebook”), and the action of TA6 (“add
a photo to iOS Photo”) recursively activates the trigger of TA4 (“new photo
added to the iOS Photo library”).

Rules were presented one at a time on a sheet of paper in a counterbalanced
order. To make sure that all the participants experienced a given problem in the
same way, however, we maintained the order within each problem, e.g., TA2 was
always presented after TA1. When the EUDebug interface highlighted some prob-
lems (Problem Checking), participants were free to decide whether to save the rule
or not. Our aim was to investigate whether participants understood the presented
problems and their dangerousness, without forcing them to discard problematic
rules. Before deciding, participants could optionally use the Explanation button to
perform the step-by-step simulation of the rules that generated the problem. All
the sessions were audio recorded for further analysis.

Measures

During the study, we collected the following quantitative measures:

• S: number of rules that generated a problem saved anyway by participants,
monitored for each highlighted problem, e.g., number of saved rules in case
of loops.

• D: number of rules that generated a problem discarded by participants, mon-
itored for each highlighted problem.

• SbS: number of times participants used the Step-by-Step Explanation when
experienced a specific problem.

In addition, if participants used the Step-by-Step Explanation, we asked them:

• SbS Motivation: why they decided to use the Step-by-Step Explanation.

• SbS Usefulness: whether and how the explanation helped (or not) them to
understand the problem.

Furthermore, when the definition of a rule generated a problem, we asked partic-
ipants for their Interpretation. The interpretation was asked before the optional
usage of the Step-by-Step Explanation interface. In particular, when a participant

103

End-User Debugging in Trigger-Action Programming

decided to discard a rule that generated a problem, they had to demonstrate their
understanding of the problem by retrospectively explaining why the rule generated
the issue. When they decided to save anyway a rule that generated a problem, in-
stead, they had to justify their choice. In the next sections, we present and discuss
the findings of the study, by organizing the discussion around the main topics that
emerged from the analysis of the results. Qualitative analysis was conducted by
two researchers in an iterative coding process.

5.2.4 Results
Differences in Users’ Behavior

Most of the participants perceived EUDebug as a helper for understanding
whether the highlighted problems were “dangerous” or not (RQ9). Moreover, they
exhibited different behaviors when facing the various problems, i.e., they considered
redundancies as less problematic than loops and inconsistencies, at least in some
specific cases.

In detail, we analyzed how many times participants saved (or discarded) a
rule that generated a given problem, i.e., the S and D measures. As reported
in Table 5.4, 12 participants out of 15 (80%) discarded TA6, i.e., the rule that
generated the loop L. Instead, participants discarded the rule that generated an
inconsistency in the 96.67% of the cases, on average: for IC1, 14 participants out
of 15 (93.34%) discarded TA2, while for IC2 all the participants discarded TA12.
This seems to suggest that participants were aware of the “danger” caused by such
problems. Conversely, participants discarded the rule that generated a redundancy,
i.e., RD1 and RD2, only in 53.34% of cases, on average. Therefore, at least in some
cases, redundancies seemed to be considered less “dangerous” and even acceptable
than loops and inconsistencies.

Rule Problem Type S D SbS
TA2 IC1 Inconsistency 1 14 5
TA9 IC2 Inconsistency 0 15 5
TA3 RD1 Redundancy 12 3 3
TA12 RD2 Redundancy 2 13 8
TA6 LP Loop 3 12 7

Table 5.4: The number of times participants (N = 15) saved a rule (S), discarded a
rule (D), or used the Step-by-Step explanation (SbS) when a problem is highlighted.

Since participants had opposite behaviors when facing with the two redundan-
cies, we further analyze the collected data and the audio recording of the entire

104

5.2 – Exploring End-User Debugging in Trigger-Action Programming Platforms

session. In fact, only 3 participants out of 15 (20%) discarded the rule that gener-
ated the RD1 problem, while 13 participants out of 15 (86.67%) discarded TA12,
i.e., the rule that generated RD2. The reason for such a difference in the partici-
pants’ behavior can be glimpsed by inspecting the nature of the rules involved in
the two redundancies. In the first redundancy, considered as “acceptable” by the
majority of the participants, both involved rules turned on the kitchen lamp with
different colors. Instead, the second redundancy, considered as “unacceptable” by
the majority of the participants, produced two similar messages on Twitter. We can
preliminary conclude that redundancies in the “virtual” world, e.g., multiple mes-
sages on the web, are more annoying compared to redundancies in the “physical”
world. In fact, rules in “physical” redundancies often send similar commands to a
device without drastically modifying its current state, e.g., the fact that a lamp is
turned on. On the contrary, “virtual” redundancies typically result in duplicated
messages and notifications, a potentially more annoying behavior.

Differences in Users’ Interpretation

Most of the participants gave a correct interpretation about their choice of
saving or discarding a problematic rule. However, not all the problems were equally
understood, with loops being the most difficult problem to understand.

To investigate whether participants understood the meaning of the encountered
problems and why they happened, we used the SbS measure and the participants’
interpretations extracted from the audio recording. As reported in the following,
the loop turned to be the most difficult problem to understand, and led participants
to frequently use the Step-by-Step Explanation.

Inconsistencies. For what concerns IC1, all the 14 participants that discarded
TA2 provided a sound interpretation. P1, for example, said “the rules did
not have any sense. They turned the lights on and off at the same time. The
two commands (turn the lights on and turn the lights off) cannot be executed at
the same time.” P7, beside explaining the problem, also identified a possible
alternative: “I would have modified the trigger: this rule is ok when you
exit the home area.” Only 1 participant, the one that decided to save TA2,
provided an incorrect interpretation of the problem even after using the Step-
by-Step Explanation. In her interpretation, in particular, she said “I do not
trust the platform, I am sure that such two rules will never be activated at the
same time.” The 15 interpretations collected for IC2 are also encouraging. 11
participants, in particular, provided a sound interpretation after discarding
TA9, such as “if the door is locked, the camera is armed, but when the camera
is armed, this rule unlocked the door!” or “this rule will unlock the door
when I leave the office: not good.” The remaining 4 participants immediately
discarded TA9, but they provided a misinterpretation. In their interpretation,

105

End-User Debugging in Trigger-Action Programming

in particular, they focused on the rule they were evaluating, only, rather than
on the entire chain of rules that generated the problem, i.e., TA7, TA8, and
TA9. P7, for example, said “I did not save the rule because I want the door
to remain closed”, while P8 said “if the camera is armed, the door must be
closed.” A possible explanation can be found in their decision to discard the
rule without using the Step-by-Step Explanation. On average, 5 participants
out of 15 (33.34%) used the Step-by-Step Explanation (Table 5.4).

Redundancies. The number of wrong interpretations of redundancies was similar
to the number of wrong interpretations of inconsistencies. For what concerns
RD1, 13 participants out of 15 (86.67%) provided a sound interpretation. In
particular, 11 participants out of 12 (91.67%) successfully provided an inter-
pretation for their decision to save TA3 anyway. All of them declared that
they were aware of what would happen, and that the highlighted issue was
not a problem at all. P6 said that the color can be seen as a “new feature”
of the first rule, while P7 asserted that “the important thing is that the lamp
is turned on, I do not care its color.” The only participant that provided a
wrong interpretation was P15, the same participants that made an error for
IC1. No one of the 12 participants that saved TA3 used the Step-by-Step
Explanation. Instead, all the 3 participants that discarded TA3 used the
Step-by-Step Explanation, and 2 of them provided a sound interpretation,
while the other focused on TA3, only, by saying “I do not want a colored light
in the kitchen”. Also for the second redundancy, i.e., RD2, no one of the 2
participants that saved TA12 anyway used the Step-by-Step Explanation, but
all of them provided a sound interpretation. Instead, 11 of the remaining 13
participants (84.61%) that discarded TA12 successfully provided an interpre-
tation. P1, for example, explained exactly what happened by saying “When
I listen to a song on Alexa, the defined rules post a tweet and save the track
on Spotify. Now I’m defining a rule to post on Twitter when I saved a track
on Spotify, but there is already a post on Twitter!” The remaining 2 par-
ticipants, even after using the Step-by-Step Explanation, focused on TA12,
only, by saying, for example, “it does not have any sense to post on Twitter
the song you are listening”. On average, participants used the Step-by-Step
Explanation in 36.67% of cases (Table 5.4).

Loop. The loop LP led participants to make more errors in their interpretations.
Since a loop can never be considered as “acceptable”, all the 3 participants
that saved TA6 failed in providing a correct interpretation. P13, for example,
did not understand that the 3 involved rules would be executed infinite times,
because she said “I am sure that this problem will never occur with the rules I
have defined. Moreover, such rules are useful, because the photo will be saved
in 3 places at the same time.” Furthermore, also 3 of the participants that
discarded TA6 provided an incorrect interpretation. The prevailing error was

106

5.2 – Exploring End-User Debugging in Trigger-Action Programming Platforms

that participants did not understand that the involved rules would have been
executed for an infinite number of times: both P1 and P12, for example,
said “I did not save the rule because otherwise the same photo would have
been shared twice on Facebook.” Therefore, in line with previous works [14],
results suggest that a loop among IF-THEN rules is one of the most complex
concept to understand. A series of paired-samples t-test confirm this finding.
In fact, the number of errors in loop interpretations was significantly higher
than in redundancies (t(14) = 2.25, p < 0.05), while such a difference was not
significant with respect to inconsistencies (t(14) = 1.97, p = 0.06). For the
loop, the Step-by-Step Explanation was more used (7 participants out of 15,
46.67%, Table 5.4) than for the other problems. A possible explanation of
such understandability problems is that the concept of loop is strictly related
to the mental model of users with a computer science background.

We also noticed a possible link between the “nature” of a problem and its
understandability by further analyzing the number of Step-by-Step Explanations
used and the number of wrong interpretations in each problem. In particular,
when subjected to the first 2 problems, i.e., IC1 and RD1, participants used the
Step-by-Step Explanation in fewer cases, and provided less wrong interpretations
with respect to the other three problems, i.e., LP, IC2, and RD2. Such a difference
can be associated with the nature of the problems. IC1 and RD1, in fact, are
direct problems, i.e., problems between rules that shared the same trigger. On
the contrary, LP, IC2, and RD2 are indirect problems, because they are caused by
implicit activations between rules, i.e., an action of a rule that implicitly activates
the trigger of another rule. Figure 5.8 visually shows the differences between direct
and indirect problems, and further suggests that indirect problems are more difficult
to understand, and need more efforts, e.g., a step-by-step simulation, to be identified
by end users.

Highlighting Problems or Explaining Them?

To investigate whether participants found more useful one of the two strategies
adopted by EUDebug for identifying problems in trigger-action rules (RQ10), we
studied the correlation between the interface used, i.e., Problem Checking or Step-
by-Step Explanation, and the participants’ interpretations in case of a problem
(Table 5.5). On average, the usage of the Problem Checking interface, only, resulted
in a correct interpretation in 77.81% of cases. When participants decided to use
the Step-by-Step Explanation, the percentage of correct interpretations increased
to 83.78%. Such a difference is particularly evident for the loop L. Only 50% of the
participants, in fact, discarded TA6 by providing a correct interpretation by using
the Problem Checking interface, only. Participants that used the Step-by-Step
Explanation, instead, provided a correct interpretation in 71.43% of cases. This

107

End-User Debugging in Trigger-Action Programming

Figure 5.8: Average number of explanations used and average number of wrong
interpretations for direct/indirect problems

seems to suggest that, at least in some cases, highlighting the detected problems
(i.e., Problem Checking) may be not sufficient to allow end users in identifying
possible problems in their rules, and that a step-by-step simulation of the involved
rules could instead help users in understanding what happens. To confirm this
finding, we analyzed the participants’ feedback about the usage of the Step-by-
Step Explanation (used 28 times in total) by group it into several topics described
below.

L I R Total
PC success 50% 85% 84.52% 77.81%
SbS success 71.43% 80% 93.75% 83.78%

Table 5.5: Number of times participants provided a correct interpretation by using
the Problem Checking interface, only (PC success), or after using the Step-by-Step
explanation (SbS success).

For what concern the SbS Motivation, in most of the cases participants asserted
that they used the Step-by-Step Explanation to “better understand the problem”
(13). When subjected to IC1, for example, P1 said “I used the Step-by-Step Expla-
nation because I did not understand the problem. The two rules seemed the same
to me.”. Similarly, P10 used the step-by-step explanation for RD2 “to better un-
derstand the redundancy concept”, while P15 provided the same motivation when
subjected to the loop. In a considerable number of cases (8), the Step-by-Step
Explanation was instead used because “the problems were composed of too many
steps”, i.e., rules that activated other rules. Not surprisingly, such motivation was

108

5.3 – Debugging IF-THEN Rules Through the Jigsaw Metaphor

used for indirect problems, only. In one case, for example, P14 said “I used the
Explanation because I did not understand the execution path of the rules”, while
in another case, P12 said “I used the Explanation because I did not understand
the relationship between the rules.” In the remaining cases, participants used the
Step-by-Step Explanation because “they did not remember a rule they defined be-
fore” (4), “to confirm their first idea about the problem” (2), and because the
“Explanation helped them before” (1).

Participants provided interesting feedback also when asked to evaluate whether
and how the Explanation helped (or not) them in understanding the problems (SbS
Usefulness). In 13 cases, participants asserted that the Step-by-Step Explanation
was useful because it allowed them “to see all the involved steps.” Participants
provided this feedback for indirect problems, mainly. The loop, in particular, was
the problem for which this feedback was more common. P6, for example, said
“the Explanation helped me in understanding the loop because I could better see the
evolution of the rules,” while P10 pointed out that seeing the figures related to
the rules one at a time helped her in understanding the problem. In other 5 cases,
the Step-by-Step Explanation helped “participants to remember a rule they had
defined before” (“The Explanation helped me in understanding the problem because
it told me: hey, you have defined this rule before!”, P8). This feedback takes even
more importance if we think to the real usage of an EUD platforms, where rules
are defined in different moments, even months later. In other 5 cases, participants
asserted that “the Explanation helped them by visually highlighting the problem”
(“The Explanation helped me to understand the problem because it visually told me
what happened”, P6). In the remaining cases, participants provided generic feedback
about the usefulness of the Explanation, i.e., “it helped me in understanding the
problem” (3) and “it confirmed my first idea” (2).

5.3 Debugging IF-THEN Rules Through the Jig-
saw Metaphor

Besides proposing and evaluating EUDebug, we focused on additional questions
in the field of end-user debugging in trigger-action programming platforms that
are still underexplored. Which visual languages, for instance, are more appropri-
ate for debugging rules, and which information do end users need to understand,
identify, and correct errors? To answer these questions, we firstly conducted a
literature analysis by reviewing previous work on end-user debugging in different
contexts, with the aim of extracting design guidelines. Then, we used the extracted
guidelines to implement My IoT Puzzle, a tool to define and debug IF-THEN rules
based on the Jigsaw metaphor. The tool interactively assists users in the definition
process by representing triggers and actions as complementary puzzle pieces, and
by providing real-time feedback to test on-the-fly the correctness of the rule under

109

End-User Debugging in Trigger-Action Programming

definition. Puzzle pieces, for example, deteriorate over time according to their us-
age (Figure 5.10), while the tool is able to warn users in case of conflicts, namely
infinite loops, inconsistencies, and redundancies (Figure 5.11). Furthermore, the
tool empowers end users in resolving problems through textual and graphical ex-
planations. Following the interrogative debugging paradigm [77], for instance, the
tool is able to answer questions such as “why it is not working?”, thus providing
the user with a textual explanation of the detected problem (Figure 5.12).

5.3.1 Background & Adopted Technologies
In the trigger-action programming context, work on end-user debugging is still in

its early stage. While the majority of previous studies focused on mashup program-
ming [24], spreadsheets [63], and novice developers [77], only a few recent works,
including our EUDebug and the ITAD tool [92], started addressing the problem
of end-user debugging in the IoT. ITAD (Interactive Trigger-Action Debugging),
in particular, warns users in case of rule conflicts, and it allows the simulation of
trigger-action rules in fixed contexts.

In this work, we stemmed from both EUDebug and ITAD for taking a step
forward: with My IoT Puzzle, our aim was to understand how we could make
debug of IF-THEN rules more understandable by end users. To identify problems
between the defined rules, we used the same approach also adopted by EUDebug ,
i.e., our novel SCPN formalism.

5.3.2 Extracting Design Guidelines
We reviewed previous work on end-user debugging in different contexts, with

the aim of extracting design guidelines for end-user debugging tools for trigger-
action programming (Table 5.6). The analysis was guided by the following research
questions:

RQ11) Which information, e.g., feedback and explanations, do end users need to
understand, identify, and correct errors in IF-THEN rules?

RQ12) Which visual languages are more appropriate for debugging IF-THEN rules?

End-User Debugging: How to Avoid and Correct Errors (RQ11)

Debugging is the process of finding the cause of an identified misbehavior and
fixing or removing it. Different previous studies, e.g., [104, 79], investigated how
developers try to fix bugs, and discovered many slow, unproductive strategies. If it
is challenging for programmers, the debugging process can become an insurmount-
able barrier for end users. In different contexts, ranging from spreadsheets [63]

110

5.3 – Debugging IF-THEN Rules Through the Jigsaw Metaphor

Table 5.6: The design guidelines extracted by reviewing previous works on end-user
debugging in different contexts.

Guideline Description

GL1 A debugging tool for IF-THEN rules should empower users in frequently
testing their solutions, e.g., by providing real-time feedback about pos-
sible run-time problems the rules may generate.

GL2 During the debugging of trigger-action rules it is important to provide
users with tools for updating on-the-fly their solutions, e.g., to remove
possible errors during the rule definition process.

GL3 In case of problems, a debugging tool for IF-THEN rules should pro-
vide users with textual and graphical explanations about the run-time
behavior of the defined applications.

GL4 The Interrogative Debugging paradigm, with which users can ask ques-
tions like “why something happens?”, can be easily adapted to the event-
driven nature of trigger-action rules.

GL5 Block programming based on the Jigsaw metaphor is understandable
and easily adaptable to the definition of trigger-action rules.

GL6 The data-flow visual language is suitable for representing complex in-
formation such as the run-time behavior of a set of trigger-action rules.

to mashup programming [24], studies have demonstrated that end users try to fix
problems by following a “debugging into existence” approach [122], i.e., they con-
tinuously twist and adapt their solutions until the failure “miraculously” goes away.
Cao et al. [24], however, demonstrated that, if prompted with the right informa-
tion, end users are also able to design applications and programs. In the context of
mashup programming, for example, they proposed to add micro-evaluations of local
portions of the mashup during the implementation phase, with the aim of reducing
the effort of connecting the run-time output with the program’s logic itself. We
envision similar approaches also for our context, i.e., IF-THEN rules for personal-
izing IoT devices and online services. By providing real-time feedback during the
definition of trigger-action rules, an EUD tool may empower users in frequently
testing the correctness of their solutions (GL1), thus allowing them to update on-
the-fly problematic rules (GL2), Table 5.6. This may increases the chances of fixing
possible conflicts [24].

Previous studies on end-user debugging also highlight the benefits of providing
users with textual and graphical explanations, to represent the run-time behaviors
of the defined programs and their possible problems [88, 89] (GL3). Indeed, Ko et
al. [77] discovered that programmers’ questions at the time of failure are typically
one of two types: “why did” questions, which assume the occurrence of an unex-
pected run-time action, and “why didn’t” questions, which assume the absence of an
expected run-time action [77]. The same authors extended the Alice programming

111

End-User Debugging in Trigger-Action Programming

environment [138], a platform for creating interactive 3D virtual worlds, to support
a “whyline” that allows users to receive answers concerning program outputs. Their
work opened the way for a new paradigm, named interrogative debugging, that has
been adopted in many different works on end-user debugging, ranging from tools to
support more experienced developers [78] to interactive machine learning [81]. As
preliminary suggested by Manca et al. [92], the interrogative debugging paradigm
may effectively help end users debug their trigger-action rules (GL4). The event-
driven nature of IF-THEN rules, in particular, naturally leads to questions such as
“why was this action executed?” or “why was this event not triggered?”

Visual Languages for End-User Development (RQ12)

Besides the question of identifying which information end users need for debug-
ging trigger-action rules, another important question is which visual languages are
more appropriate in this context. Despite visual programming languages striving
to simplify the intricate process of programming, in fact, they need to be tailored
towards the domains in which they will be used [119]. The most common visual
languages adopted in end-user development tools can be categorized into 3 main
categories: a) form-filling, b) block programming, and c) data-flow.

Form-filling visual languages, also known as wizard-based languages, are exten-
sively used in commercial platforms such as IFTTT and Zapier [46]. Also EUDe-
bug [44] and ITAD [92], i.e., the first two works that explore end-user debugging in
the context of trigger-action rules, exploit wizard-based interfaces. To define appli-
cations with the form-filling approach, be they rules or other types of programs, the
user makes use of menus and fields to be completed. Tools that exploit form-filling
visual languages, in particular, guide the user through a predefined, bounded proce-
dure, by reducing the user interaction in completing a series of forms step-by-step.
Despite form-filling approaches have been proved to be intuitive and easy to use
for simple use cases, their closed form can be perceived as restrictive [117, 116].

Another popular approach in end-user development is block programming. A
popular example of the approach can be seen in Scratch [120], a block-based visual
programming language targeted primarily at children. With block programming,
users can connect blocks of different sizes and shapes by dragging and dropping
them on a work area. Different from form-filling approaches, tools based on block
programming are less restrictive, and stimulate the user creativity. One of the
most appreciated ways of representing blocks, in particular, is the Jigsaw metaphor.
Here, blocks are represented as puzzle pieces that can be combined on the go, thus
decreasing the learning curve and motivating users to explore the underlying tool.
An application example is Puzzle, a visual environment for opportunistically creat-
ing mobile applications in mobile phones [42]. We envision that block programming
approaches based on the Jigsaw metaphor could be easily adapted to the definition
of IF-THEN rules for IoT personalization (GL5).

112

5.3 – Debugging IF-THEN Rules Through the Jigsaw Metaphor

Finally, the last category of visual languages commonly adopted in EUD is data-
flow. Different from the previous approaches, which were useful for simple use case
such as the definition of a single rule, the process-oriented nature of data-flow pro-
gramming languages makes them one of the best choice to represent complex use
cases [16]. Process-oriented notations have been employed to provide increased ex-
pressiveness while still retaining easy-to-comprehend visualizations [121, 41]. The
expressiveness of such notations, however, is often coupled with complex user in-
terfaces [16]. This makes them difficult to be used at definition time, but useful
to visualize complex information such as triggers, actions, and their relationships.
For this reason, we envision that a data-flow visual language could be adopted for
representing the behavior of multiple trigger-action rules (GL6), with the aim of
helping users understand and identify unwanted run-time behaviors.

5.3.3 The My IoT Puzzle System
We integrated the extracted guidelines (Table 5.6) in My IoT Puzzle, a novel

tool for defining and debugging IF-THEN rules. Under the hood, the tool ex-
ploits the SCPN RESTful server (Section 5.1.4), thus allowing the definition and
the debug of IFTTT rules through the identification of loops, inconsistencies, and
redundancies. The user interface of My IoT Puzzle has been implemented with the
the Angular framework, by exploiting the jQuery5 and Bootstrap6 libraries. The
interface iteratively assists end users in defining and debugging IF-THEN rules in
3 main phases, i.e., definition, problem detection, and problem resolution.

Definition

IF-THEN rules are defined through a block programming approach based on the
Jigsaw metaphor (GL5). To design the definition metaphor 3 researchers produced
and evaluated different mockups.

Figure 5.9 shows an example of the mockups produced: to avoid complex solu-
tions, we decided to use 2 types of puzzle pieces, only, one for triggers and one for
actions. Triggers and actions are therefore represented as complementary puzzle
pieces that can be dragged and dropped in a Drop Area.

Figure 5.10 shows an example of the definition phase. A user selects a device
(her Android smartphone) on which monitoring an event, and drops a specific trig-
ger on the drop area (“You enter an area”). Then, she completes the trigger details
by specifying the geographical area of her home. The tool uses initial feedback to
preliminary allow the user assess her solution (GL1). Indeed, due to the com-
plementary nature of the puzzle pieces, some wrong operations are prevented by

5https://jquery.com/, last visited on November 12, 2019
6https://getbootstrap.com/, last visited on November 12, 2019

113

https://jquery.com/
https://getbootstrap.com/

End-User Debugging in Trigger-Action Programming

(a) (b)

Figure 5.9: Two mockups produced to design the definition metaphor

construction: pieces of the same type, e.g., two trigger pieces, cannot be connected.
Furthermore, as shown in Figure 5.10, the dropped trigger piece is worn, since it
has been already used in other rules. In My IoT Puzzle, in particular, puzzle pieces
deteriorate over time according to their usage history. Using the same trigger in
multiple rules, in fact, means that the involved rules will be executed at the same
time, thus increasing the chances of introducing conflicts such as redundancies and
inconsistencies.

Problem Detection

The problem detection phase starts every time that My IoT Puzzle detects loops,
inconsistencies, or redundancies during the definition phase. Figure 5.11 shows an
example of the problem detection phase. The user selects her kitchen Philips Hue
lamp, and she connects to the “You enter an area” trigger an action (“Turn off
lights”) that is inconsistent with some previously saved rules. Therefore, the system
warns the user with a red feedback (GL1), and allows her to get more information
on how to solve the issue.

Problem Resolution

The problem resolution phase helps the user understand and fix the inconsis-
tency conflicts detected during the previous phases (Figure 5.12). The user can see
textual and graphical explanations of the detected problem (GL3). For graphically
explaining the inconsistency, a data-flow visual language is used (GL6). Instead,
the textual explanation follows the Interrogative Debugging paradigm (GL4), by
explicitly describing why the problem is happening. Both the textual and graphical

114

5.3 – Debugging IF-THEN Rules Through the Jigsaw Metaphor

Figure 5.10: The definition of a new IF-THEN rule starts with the drag & drop of a
new trigger on the Drop Area. The tool provides the user with an initial feedback:
the piece of puzzle is worn, since it has been already used in other rules of the same
user.

explanations, in particular, show that there is a saved rule that shares the same
trigger, i.e., entering the home geographical area, but with an inconsistent action,
i.e., turning on the kitchen Philips Hue lamp. The user has the possibility of up-
dating on-the-fly the problematic rule by changing the trigger, the action, and/or
the related details (GL2).

5.3.4 User Evaluation
We preliminary evaluated My IoT Puzzle through an exploratory study with

6 participants. Our aim was to assess the implemented design guidelines. The
following question, in particular, guided our study:

RQ13) Do the different features offered by My IoT Puzzle, ranging from the provided
feedback to the graphical and textual explanations, help participants correctly
understand and fix potential conflicts in IF-THEN rules?

Participants

We recruited 6 university students (3 males and 3 females) with a mean age of
21.5 years (SD = 2.88) who had very limited or no experience in computer science

115

End-User Debugging in Trigger-Action Programming

Figure 5.11: The user connects to the trigger an action that is inconsistent with
some previously saved rules. The system warns the user with a red feedback.

and programming: on a Likert scale from 1 (No knowledge at all) to 5 (Expert),
participants declared their experience with programming (M = 1.16, SD = 0.40)
and with the trigger-action approach (M = 1.00, SD = 0).

Procedure

We brought each participant to our lab for a 45-minute session using My IoT
Puzzle. At the beginning of the study, participants were introduced to trigger-action
programming and the evaluated tool with an example of a rule definition. We then
presented a task requiring the definition of 12 rules (definition phase). We reused,
in particular, the same rules exploited in the EUDebug user study (Table 5.3).
Rules were presented one at a time on a sheet of paper in a counterbalanced order,
and were artificially constructed to generate 2 inconsistencies, 2 redundancies, and
1 loop. When My IoT Puzzle highlighted some problems (problem detection phase),
participants were free to decide whether to save, update, or delete the problematic
rule (problem resolution phase). All the sessions were video recorded for further
analysis.

116

5.3 – Debugging IF-THEN Rules Through the Jigsaw Metaphor

Figure 5.12: By opening the Resolve Problems area, the user can see textual and
graphical explanation of the inconsistency, and she can resolve the problem by
changing the rule.

Measures

We quantitatively measured the number of problematic rules that were saved,
updated, or deleted. Furthermore, after each highlighted problem, we asked
participants to qualitatively provide an explanation for their choices. When they
decided to update or delete a rule that generated a problem, for example, they
had to demonstrate to understand the problem by retrospectively explaining why
the rule generated the issue. At the end of each session, we asked participants
to quantitatively evaluate, on a Likert scale from 1 (Not understandable at all)
to 5 (Very understandable), the understandability of a) the visual languages
and feedback used in the definition and problem detection phases, b) the textual
explanations, and c) the graphical explanations in the problem resolution phase.
Finally, we performed a debriefing session with each participant.

117

End-User Debugging in Trigger-Action Programming

5.3.5 Results
Table 5.7 reports the quantitative measures collected during the evaluation. In

total, participants saved a rule that generated a problem in a limited number of
cases, i.e., 3 out of 30 (10%), thus preliminary demonstrating that My IoT Puzzle
helped them in identifying problems in trigger-action rules. In 2 cases, the saved
rule generated a redundancy, while in the remaining cases a participant saved a rule
that generated a loop. Participants deleted a rule that generated a problem in 18
cases out of 30 (60%), while they updated and successfully fixed the problem in 9
cases out of (30%). By analyzing the type of the problems, we found that rules that
generated loops or redundancies were deleted most of the time (66.66% and 75%,
respectively), while rules that generated an inconsistency were more frequently up-
dated (58.33%) than deleted (41.67%). Such results are promising and suggest that
feedback and explanations effectively assisted participants in understanding and fix-
ing the highlighted problems (RQ13). Both loops and redundancies, indeed, result
in some functionality that are replicated, thus motivating the deletion. Inconsis-
tencies, instead, are typically caused by a mistake over a set of rules with different
and specific purposes, thus making the “update” choice the most appropriate.

Rules Deleted Updated Saved
Loop 6 4 (66.66%) 1 (16.67%) 1 (16.67%)
Redundancy 12 9 (75%) 1 (8.33%) 2 (16.67%)
Inconsistency 12 5 (41.67%) 7 (58.33%) 0 (0%)

TOTAL 30 18 (60%) 9 (30%) 3 (10%)

Table 5.7: The number of times a rule that generated a problem was deleted,
updated, or saved in the My IoT Puzzle study

We further investigated the results by analyzing the qualitative explanations
given by the participants in case of a detected problem. We first tried to under-
stand whether the participants who saved a problematic rule were aware of what
would happened in the real world, or whether they simply made a mistake, thus
unconsciously introducing a potential conflict at run-time. Both the users that
saved a rule that generated a redundancy provided a sound explanation. When 2
rules simultaneously turned on the same lamp with different colors, for example,
P1 said “I don’t care about the color, the important thing is that the lamp is turned
on.” On the contrary, P3 failed in providing an explanation for saving the rule that
generated a loop. She said “I don’t know how to solve the problem. I would save the
rule, and then I would try the involved rules in the real world, to see what happens.”
For what concerns the problematic rules that were deleted, participants provided
a sound explanation in 17 cases out of 18 (94.44%). Only in 1 case a participant

118

5.4 – Discussion and Guidance for Future Research

discarded a rule without providing any explanation. Finally, participants made
a reasonable change in all the rules that were updated, by successfully fixing the
problem and by providing a sound explanation.

The promising results arising from the interaction between participants and My
IoT Puzzle are confirmed by the answers they provided at the end of the study.
Participants positively evaluated the understandability of the definition and prob-
lem detection phases (M = 4.50, SD = 0.54), and the understandability of the
textual (M = 4.50, SD = 0.81) and graphical (M = 4.50, SD = 0.30) explanations
in the problem resolution phase. Finally, users provided interesting suggestions
to improve My IoT Puzzle. P1, for example, focused on the definition phase, by
suggesting the possibility of defining multiple rules at the same time. P4 and P5,
instead, focused on the problem resolution phase, and they asked to introduce rec-
ommendations and suggestions for updating problematic rules. P4, in particular,
said that suggestions such as “try to replace the trigger X with the trigger Y” would
allow non-expert users to better understand and fix the problem.

5.4 Discussion and Guidance for Future Research
In this chapter, we explored the urgent need of allowing end users to debug IF-

THEN rules [46, 21, 14]. Unfortunately, even if providing end users with validation
features and warning mechanisms could facilitate the adoption of EUD solutions in
the real world [46], relatively little work has been done in this area. The complex-
ity brought by the adoption of highly technology-dependent representation models,
however, makes users often misinterpret the behavior of triggers and actions [17].
Users may therefore introduce errors in their IF-THEN rules that can potentially
lead to unpredictable and even dangerous behaviors (run-time problems issue), e.g.,
a door that is unexpectedly unlocked.

To mitigate this issue, we started by formally characterizing control-flow problems
that may arise in sets of IF-THEN rules, i.e., loops, inconsistencies, and redun-
dancies, and we defined a novel formalism based on Petri Nets and the and the
EUPont model and check IF-THEN rules at run-time. Then, we designed and im-
plemented two different end-user debugging tools for trigger-action programming,
namely EUDdebug and My IoT Puzzle.

EUDebug. With EUDebug, we added debugging features on top of an IFTTT-
like interface. EUDebug highlights possible loops, inconsistencies, and re-
dundancies that the defined rules may generate at run-time and allows their
step-by-step simulation. We tested the tool in an exploratory study with 15
participants with the aim of preliminary investigating whether users without
programming experience would be able to understand and debug IF-THEN

119

End-User Debugging in Trigger-Action Programming

rules at definition time. Results were promising: with the help of EUDe-
bug, participants successfully faced computer-related concepts such as loops,
inconsistencies, and redundancies. Moreover, they were able to understand
why their rules might generate a specific problem in most of the cases. Re-
sults also highlighted different perceptions among the various problems, i.e.,
participants demonstrated to be more tolerant with redundancies than with
loops and inconsistencies. Furthermore, we found that highlighting a de-
tected conflict, only, without providing any additional information, was often
not sufficient for participants to understand the problem. Indeed, the step-by-
step simulation was often a fundamental element for a successful debugging
process, especially in case of complex problems like loops.

My IoT Puzzle. Stemming from these preliminary findings, we explored more
specific questions about which visual languages and what information users
would need to successfully debug IF-THEN rules. To this end, we extracted a
set of guidelines for designing user interfaces for trigger-action programming
from the literature, and we implemented them in My IoT Puzzle, a tool to
define and debug IF-THEN rules based on the Jigsaw metaphor. The tool
allows end users to define IF-THEN rules by representing triggers and ac-
tions as complementary puzzle pieces. Furthermore, it empowers end users to
debug their rules through different real-time feedback, textual and graphical
explanations, by following established theories such as the interrogative de-
bugging paradigm [77]. Results of a preliminary user study were promising,
and demonstrated that My IoT Puzzle was helpful for correctly identifying
and fixing potential problems in trigger-action rules. Results also confirmed
that the extracted design guidelines are valuable: the provided information
and the exploited visual languages effectively helped participants understand,
identify, and correct errors in trigger-action rules. The Jigsaw metaphor, for
example, was appreciated by the participants, and turned to be easy to use
and understand: all the participants defined the proposed IF-THEN rules
without any problem. Also the feedback used in the definition phase turned
to be useful for preliminary assessing the correctness of IF-THEN rules. When
using a worn piece of puzzle, for example, P3 said “now I’m going to make
a mistake, I need to stay focused.” Furthermore, if the typical reaction to an
highlighted problem was a mix of surprise and uncertainty, the problem res-
olution phase progressively made participants aware of the detected conflict:
in most of the cases, the provided feedback and explanations allowed them
to successfully fix the problem, either by deleting or updating the rule that
generated it. This confirms that the usage of different representations of the
same information facilitates users in analyzing problems [131].

Different questions and possible extensions can guide future research in this
field. A first step to take is to move beyond control-flow problems, i.e., loops,

120

5.4 – Discussion and Guidance for Future Research

inconsistencies, and redundancies. The work of Brackenbury et al. [14] provides
a comprehensive overview on ten types of programming bugs that might arise in
IF-THEN rules. Besides control-flow problems, other important bugs influencing
users’ ability to predict the outcomes of IF-THEN rules are timing issues and
inaccurate user expectations. Timing bugs relate to the difficulty of understanding
when triggers and actions are actually executed, while inaccurate user expectations
can include, for example, priority conflicts and secure-default biases, i.e., assuming
that the system has a default state that is safe [148]. To assist users in dealing
with these types of problems, different solutions could be adopted, ranging from
warning mechanisms to simulated animations that graphically exemplify when and
how the defined rules are potentially executed. Future works would also need to
explore the application of the presented approaches and methodologies to trigger-
action programming paradigms that include trigger conditions and multiple actions.
Indeed, while the exploited SCPN formalism can be easily generalized, users may
experience further difficulties when dealing with more complex rules.

121

122

Chapter 6

Conclusions

6.1 Summary of Contributions
In the current Internet of Things era, users are surrounded by a multitude

of smart devices, always connected to the Internet, that can communicate with
each other, with humans, and with the environment. Some of such devices, e.g.,
smartphones and PCs, serve as a gateway for a variety of online services such as
social networks and messaging applications. The result is a complex (and grow-
ing) network of connected entities, either physical or virtual, that presents both
opportunities and problems.

To take advantage of such a network, users must be able to personalize it.
In this thesis, we presented a set of research works that aim to assist end users
in easily and efficiently personalizing the functionality of their connected entities.
We focused on one of the most common paradigms that allow end users to define
custom applications over their own connected entities, i.e., trigger-action program-
ming. Through rigorous user studies and controlled experiments, in particular, we
reported on different approaches and practical solutions to improve the definition,
the discovery, and the debugging of IF-THEN rules.

Summarizing, the main outcomes presented in this thesis are the following.

EUPont is an ontological high-level representation for end-user development that
allows the definition of abstract and technology-independent IF-THEN rules
that can be adapted to different contextual situations, independently of man-
ufacturers, brands, and other technical details. The aim is to simplify the
processes needed by end users to define personalizations: by defining IF-
THEN rules such as “if I enter a closed space, then cool the environment”,
users are not requested to specify technological details, and they can per-
sonalize the functionality of their connected entities with fewer rules, fewer
mistakes, and in less time.

123

Conclusions

EUDoptimizer is an optimization tool that dynamically redesign layouts in trigger-
action programming interfaces in an interactive way, i.e., by considering the
choices made by end users during the rule definition process. The aim is to
promote the discovery of the “right” connected entity to be used for defin-
ing the trigger or the action, according to the current user need: the tool
moves towards the top of the interface layout the set of devices or online
services that are typically used for defining triggers, or that are typically as-
sociated as an action to a defined trigger, while maintaining logical groups of
semantically correlated items. The tool is based on SDP-FSM, a predictive
model for trigger-action programming that exploits EUPont and the Search-
Decision-Pointing model of human performance in menu search. Through
EUDoptimizer, end users define IF-THEN rules in less time, since the tool
reduces the cognitive load required to discover appropriate connected entities
to be personalized.

RecRules is a hybrid and semantic recommendation system of IF-THEN rules.
Its aim is to allow users to discover new rules on the basis of the underlying
functionality, rather than the involved brands or manufacturers. A rule for
turning on a Philips Hue lamp, for example, is functionally similar to a rule
for opening the Hunter Douglas blinds, because they share a common final
goal, i.e., to light up a place. RecRules outperforms state-of-the-art ranking-
oriented and semantic recommendation algorithms. Its main characteristic,
i.e., recommending by functionality, increases diversity and serendipity in the
recommended rules while maintaining a high recommendation accuracy.

EUDebug is an end-user debugging tool built on top of an IFTTT-like interface
that enables end users to debug their IF-THEN rules at composition time. It
assists users in identifying rule conflicts, and it allows them to foresee the run-
time behavior of their rules through step-by-step simulation. To model and
check the run-time behavior of IF-THEN rules, we defined a novel formalism,
named SCPN, based on Petri Nets and the EUPont model. With the help of
EUDebug, users can successfully face computer-related concepts such as loops,
inconsistencies, and redundancies. The step-by-step simulation, in particular,
helps users understand why their rules might generate a specific problem.

My IoT Puzzle is an end-user debugging tool to compose and debug IF-THEN
rules based on the Jigsaw metaphor. As EUDebug, it exploits the SCPN
formalism, and it is based on a set of design guidelines extracted from the
literature. My IoT Puzzle represents triggers and actions as complementary
puzzle pieces, and it provides users with different real-time feedback, textual
and graphical explanations, by following established theories such as the in-
terrogative debugging paradigm. The usage of different representations and

124

6.2 – Future Works

visual languages facilitates users in analyzing problems and helps them un-
derstand, identify, and correct errors in IF-THEN rules.

6.2 Future Works
As reported at the end of the main chapters of this thesis, our work provides

researchers with different insights to inspire further research in the fields of Internet
of Things, end-user development, and trigger-action programming.

The usage of EUPont to define IF-THEN rules (Chapter 3), for instance, raises
questions on the actual execution of abstract behaviors. Furthermore, moving
towards a higher level of abstraction requires taking into account trustfulness, se-
curity, and privacy issues. If we imagine IF-THEN rules such as “if I enter a closed
space, then cool the environment”, which environments and connected entities is
the user authorized to control? How can end users be authenticated for using public
and shared IoT devices and services, and how can we taking into account the user
privacy?

Also the approaches and tools we presented to assist users in discovering rules
and related functionality (Chapter 4), i.e., EUDoptimizer and RecRules could open
up new possibilities to design novel trigger-action programming platforms. Opti-
mization methods and recommendation techniques, in particular, could be used
to improve existing trigger-action programming platforms without requiring major
changes in the underlying representation models. The same applies to end-user de-
bugging tools, e.g., the ones we presented in Chapter 5. By extending the presented
approaches and methodologies, debugging mechanisms may be also helpful to tran-
sitioning to more complex versions of the trigger-action programming paradigm,
e.g., with trigger conditions and multiple actions.

Finally, all the presented works have been evaluated through “in-lab” user stud-
ies, mainly. Future works would need to test the proposed solutions for defining,
discovering, and debugging IF-THEN rules “in the field,” with real devices and on-
line services. By observing users personalizing their own connected entities during
their daily activities, researchers could better evaluate the efficacy of tools such as
EUDebug and RecRules, along with their acceptance.

125

126

Appendix A

Publications

April: January, 2020.

A.1 International Journals
1. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2019) RecRules:

Recommending IF-THEN Rules for End-User Development in: ACM
Transactions on Intelligent Systems and Technology, ACM, pages: 27, Volume
10
ISSN: 2157-6904
DOI: 10.1145/3344211

2. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2019) EUDopti-
mizer: Assisting End Users in Composing IF-THEN Rules Through
Optimization in: IEEE Access, IEEE, pages: 11, Volume 7
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2019.2905619

3. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2019) A High-
Level Semantic Approach to End-User Development in the Internet
of Things in: International Journal of Human-Computer Studies, Elsevier,
pages: 14, Volume 125
ISSN: 1071-5819
DOI: 10.1016/j.ijhcs.2018.12.008

4. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2018) AwareNoti-
fications: Multi-Device Semantic Notification Handling with User-
Defined Preferences in: Journal of Ambient Intelligence and Smart Envi-
ronments, IOS Press, pages: 17, Volume 10
ISSN: 1876-1364
DOI: 10.3233/AIS-180492

127

Publications

5. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2017) A Semantic
Web Approach to Simplifying Trigger-Action Programming in the
IoT in: IEEE Computer, IEEE, pages: 7, Volume 50,
ISSN: 0018-9162, DOI: 10.1109/MC.2017.4041355

A.2 Proceedings
1. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (in press) TAPrec:

Supporting the Composition of Trigger-Action Rules Through Dy-
namic Recommendations in: IUI ’20: ACM International Conference on
Intelligent User Interfaces, ACM, Cagliari (IT), March 17-20, 2020, pages: 10
DOI: 10.1145/3377325.3377499

2. Alberto Monge Roffarello, Luigi De Russis (2019) Towards Detecting and
Mitigating Smartphone Habits in: Proceedings of the 2019 ACM Interna-
tional Joint Conference and 2019 International Symposium on Pervasive and
Ubiquitous Computing and Wearable Computers (UbiComp 2019), ACM,
London (UK), September 10-14, 2019
DOI: 10.1145/3341162.3343770]

3. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2019) My IoT
Puzzle: Debugging IF-THEN Rules Through the Jigsaw Metaphor
in: IS-EUD: the 7th International Symposium on End-User Development,
Springer, Hertfordshire (UK), July 10-12, 2019, pages: 16
DOI: 10.1007/978-3-030-24781-2_2

4. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2019) Empow-
ering End Users in Debugging Trigger-Action Rules in: Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (CHI
’19), ACM, Glasgow (UK), May 4-9, 2019, pages: 13
DOI: 10.1145/3290605.3300618

5. Alberto Monge Roffarello, Luigi De Russis (2019) The Race Towards Dig-
ital Wellbeing: Issues and Opportunities in: Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (CHI ’19), ACM,
Glasgow (UK), May 4-9, 2019, pages: 14
DOI: 10.1145/3290605.3300616

6. Alberto Monge Roffarello (2018) End User Development in the IoT: a
Semantic Approach in: Proceedings of 14th International Conference on
Intelligent Environments, IEEE, Rome (Italy), June 25-28, 2018, pages: 4
DOI: 10.1109/IE.2018.00026

128

A.3 – Book Chapters

7. Luigi De Russis, Alberto Monge Roffarello (2018) A Debugging Approach
for Trigger-Action Programming in: Proceedings of the 2018 CHI Con-
ference Extended Abstracts on Human Factors in Computing Systems, ACM,
Montreal, QC (Canada), April 21–26, 2018, pages: 6
DOI: 10.1145/3170427.3188641

8. Luigi De Russis, Alberto Monge Roffarello (2017) On the Benefit of Adding
User Preferences to Notification Delivery in: Proceedings of the 2017
CHI Conference Extended Abstracts on Human Factors in Computing Sys-
tems, ACM, Denver, CO (USA), May 6–11, 2017, pages: 7
DOI: 10.1145/3027063.3053160

9. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2017) A High-
Level Approach Towards End User Development in the IoT in: Pro-
ceedings of the 2017 CHI Conference Extended Abstracts on Human Factors
in Computing Systems, ACM, Denver, CO (USA), May 6–11, 2017, pages: 7
DOI: 10.1145/3027063.3053157

10. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2016) A Health-
care Support System for Assisted Living Facilities: an IoT Solution
in: 2016 IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), IEEE, Atlanta, Georgia (USA), June 10-14, 2016, pages: 9
DOI: 10.1109/COMPSAC.2016.29

A.3 Book Chapters
1. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2018) IoT for

Ambient Assisted Living: Care4Me - A Healthcare Support System
in: Wearable Technologies: Concepts, Methodologies, Tools, and Applications
(reprint), IGI Global, pages: 27, Chapter 9
ISBN: 9781522554851

2. Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello (2017) IoT for
Ambient Assisted Living: Care4Me - A Healthcare Support System
in: Internet of Things and Advanced Application in Healthcare, pages: 32,
Chapter 3
ISBN: 1522518207

129

Bibliography

[1] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. “Visual Simple Trans-
formations: Empowering End-Users to Wire Internet of Things Objects”.
In: ACM Transactions on Computer-Human Interaction 24.2 (Apr. 2017),
10:1–10:43. issn: 1073-0516. doi: 10.1145/3057857.

[2] Sarabjot Singh Anand, Patricia Kearney, and Mary Shapcott. “Generat-
ing Semantically Enriched User Profiles for Web Personalization”. In: ACM
Transactions on Internet Technology 7.4 (Oct. 2007). issn: 1533-5399. doi:
10.1145/1278366.1278371.

[3] Carmelo Ardito, Paolo Buono, Giuseppe Desolda, and Maristella Matera.
“From smart objects to smart experiences: An end-user development ap-
proach”. In: International Journal of Human-Computer Studies 114 (2018).
Advanced User Interfaces for Cultural Heritage, pp. 51–68. issn: 1071-5819.
doi: https://doi.org/10.1016/j.ijhcs.2017.12.002.

[4] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of Things:
A Survey”. In: Computer Networks: The International Journal of Computer
and Telecommunications Networking 54 (Oct. 2010), pp. 2787–2805. issn:
1389-1286. doi: 10.1016/j.comnet.2010.05.010.

[5] Juan Carlos Augusto and Miguel J. Hornos. “Software simulation and veri-
fication to increase the reliability of Intelligent Environments”. In: Advances
in Engineering Software 58.Supplement C (2013), pp. 18–34. issn: 0965-
9978. doi: 10.1016/j.advengsoft.2012.12.004.

[6] James Bailey, Guozhu Dong, and Kotagiri Ramamohanarao. “On the decid-
ability of the termination problem of active database systems”. In: Theo-
retical Computer Science 311.1 (2004), pp. 389–437. issn: 0304-3975. doi:
10.1016/j.tcs.2003.09.003.

[7] Gilles Bailly, Antti Oulasvirta, Timo Kötzing, and Sabrina Hoppe. “Men-
uOptimizer: Interactive Optimization of Menu Systems”. In: Proceedings of
the 26th Annual ACM Symposium on User Interface Software and Tech-
nology. UIST ’13. St. Andrews, Scotland, United Kingdom: ACM, 2013,
pp. 331–342. isbn: 978-1-4503-2268-3. doi: 10.1145/2501988.2502024.

131

https://doi.org/10.1145/3057857
https://doi.org/10.1145/1278366.1278371
https://doi.org/https://doi.org/10.1016/j.ijhcs.2017.12.002
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.advengsoft.2012.12.004
https://doi.org/10.1016/j.tcs.2003.09.003
https://doi.org/10.1145/2501988.2502024

BIBLIOGRAPHY

[8] Payam Barnaghi, Wei Wang, Cory Henson, and Kerry Taylor. “Semantics
for the Internet of Things: Early Progress and Back to the Future”. In:
International Journal on Semantic Web and Information Systems 8.1 (Jan.
2012), pp. 1–21. issn: 1552-6283. doi: 10.4018/jswis.2012010101.

[9] Barbara Rita Barricelli and Stefano Valtolina. “End-User Development: 5th
International Symposium, IS-EUD 2015, Madrid, Spain, May 26-29, 2015.
Proceedings”. In: Cham, Germany: Springer International Publishing, 2015.
Chap. Designing for End-User Development in the Internet of Things, pp. 9–
24. isbn: 978-3-319-18425-8. doi: 10.1007/978-3-319-18425-8_2.

[10] Maria Bermudez-Edo, Tarek Elsaleh, Payam Barnaghi, and Kerry Taylor.
“IoT-Lite: A Lightweight Semantic Model for the Internet of Things”. In:
Proceedings of 13th International Conference on Ubiquitous Intelligence and
Computing. (in press). 2016.

[11] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked data - the story
so far”. In: International Journal on Semantic Web and Information System
5.3 (2009), pp. 1–22.

[12] Dario Bonino and Luigi De Russis. “DogOnt as a viable seed for semantic
modeling of AEC/FM”. In: Semantic Web 9.6 (2018), pp. 763–780. issn:
1570-0844. doi: 10.3233/SW-180295.

[13] Mike Botts, George Percivall, Carl Reed, and John Davidson. “OGC Sensor
Web Enablement: Overview and High Level Architecture”. In: GeoSensor
Networks. Ed. by Silvia Nittel, Alexandros Labrinidis, and Anthony Ste-
fanidis. Springer-Verlag, 2008, pp. 175–190. isbn: 978-3-540-79995-5. doi:
10.1007/978-3-540-79996-2_10.

[14] Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Jason Vallee, Wei-
jia He, Guan Wang, Michael L. Littman, and Blase Ur. “How Users In-
terpret Bugs in Trigger-Action Programming”. In: Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. CHI ’19. Glas-
gow, Scotland Uk: ACM, 2019, 552:1–552:12. isbn: 978-1-4503-5970-2. doi:
10.1145/3290605.3300782.

[15] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001),
pp. 5–32. issn: 0885-6125. doi: 10.1023/A:1010933404324.

[16] Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber, and Florian
Schaub. “Exploring End User Programming Needs in Home Automation”.
In: ACM Transaction on Computer-Human Interaction 24.2 (Apr. 2017),
11:1–11:35. issn: 1073-0516. doi: 10.1145/3057858.

132

https://doi.org/10.4018/jswis.2012010101
https://doi.org/10.1007/978-3-319-18425-8_2
https://doi.org/10.3233/SW-180295
https://doi.org/10.1007/978-3-540-79996-2_10
https://doi.org/10.1145/3290605.3300782
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3057858

BIBLIOGRAPHY

[17] A.J. Bernheim Brush, Bongshin Lee, Ratul Mahajan, Sharad Agarwal, Ste-
fan Saroiu, and Colin Dixon. “Home Automation in the Wild: Challenges and
Opportunities”. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. CHI ’11. Vancouver, BC, Canada: ACM, 2011,
pp. 2115–2124. isbn: 978-1-4503-0228-9. doi: 10.1145/1978942.1979249.

[18] Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg Rothermel, Jay Sum-
met, and Chris Wallace. “End-user Software Engineering with Assertions in
the Spreadsheet Paradigm”. In: Proceedings of the 25th International Con-
ference on Software Engineering. ICSE ’03. Portland, Oregon: IEEE Com-
puter Society, 2003, pp. 93–103. isbn: 0-7695-1877-X.

[19] Raymond J. Butler. “Is this spreadsheet a tax evader? How HM Customs
and Excise test spreadsheet applications”. In: Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences. Jan. 2000, 6 pp. vol.1-.
doi: 10.1109/HICSS.2000.926737.

[20] Michael D. Byrne, John R. Anderson, Scott Douglass, and Michael Matessa.
“Eye Tracking the Visual Search of Click-down Menus”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI
’99. Pittsburgh, Pennsylvania, USA: Association for Computing Machinery,
1999, pp. 402–409. isbn: 0201485591. doi: 10.1145/302979.303118. url:
https://doi.org/10.1145/302979.303118.

[21] Danilo Caivano, Daniela Fogli, Rosa Lanzilotti, Antonio Piccinno, and Fabio
Cassano. “Supporting end users to control their smart home: design impli-
cations from a literature review and an empirical investigation”. In: Journal
of Systems and Software 144 (2018), pp. 295–313. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2018.06.035.

[22] Julio Cano, Gwenaël Delaval, and Eric Rutten. “Coordination of ECA Rules
by Verification and Control”. In: Coordination Models and Languages. Ed.
by Eva Kühn and Rosario Pugliese. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2014, pp. 33–48. isbn: 978-3-662-43376-8.

[23] Iván Cantador, Alejandro Bellogin, and Pablo Castells. “A Multilayer Ontology-
based Hybrid Recommendation Model”. In: AI Communications 21.2-3 (Apr.
2008), pp. 203–210. issn: 0921-7126.

[24] Jill Cao, Kyle Rector, Thomas H. Park, Scott D. Fleming, Margaret M.
Burnett, and Susan Wiedenbeck. “A Debugging Perspective on End-User
Mashup Programming”. In: 2010 IEEE Symposium on Visual Languages
and Human-Centric Computing. Sept. 2010, pp. 149–156. doi: 10.1109/
VLHCC.2010.29.

[25] Vint Cerf and Max Senges. “Taking the Internet to the Next Physical Level”.
In: IEEE Computer 49.2 (Feb. 2016), pp. 80–86. issn: 0018-9162. doi: 10.
1109/MC.2016.51.

133

https://doi.org/10.1145/1978942.1979249
https://doi.org/10.1109/HICSS.2000.926737
https://doi.org/10.1145/302979.303118
https://doi.org/10.1145/302979.303118
https://doi.org/https://doi.org/10.1016/j.jss.2018.06.035
https://doi.org/10.1109/VLHCC.2010.29
https://doi.org/10.1109/VLHCC.2010.29
https://doi.org/10.1109/MC.2016.51
https://doi.org/10.1109/MC.2016.51

BIBLIOGRAPHY

[26] Andy Cockburn, Carl Gutwin, and Saul Greenberg. “A Predictive Model
of Menu Performance”. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. CHI ’07. San Jose, California, USA:
ACM, 2007, pp. 627–636. isbn: 978-1-59593-593-9. doi: 10.1145/1240624.
1240723.

[27] Michael Compton, Payam Barnaghi, Luis Bermudez, Raúl García-Castro,
Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Hen-
son, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David Kelsey,
Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy
Nikolov, Kevin Page, Alexandre Passant, Amit Sheth, and Kerry Taylor.
“The SSN ontology of the W3C semantic sensor network incubator group”.
In: Web Semantics: Science, Services and Agents on the World Wide Web 17
(2012), pp. 25–32. issn: 1570-8268. doi: 10.1016/j.websem.2012.05.003.

[28] David T. Connolly. “An improved annealing scheme for the QAP”. In: Eu-
ropean Journal of Operational Research 46.1 (1990), pp. 93–100. issn: 0377-
2217. doi: 10.1016/0377-2217(90)90301-Q.

[29] Diane Cook and Sajal Das. Smart Environments: Technology, Protocols and
Applications. Vol. 43. Wiley Series on Parallel and Distributed Computing.
Wiley-Interscience, 2004. isbn: 0471544485.

[30] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “A High-Level
Approach Towards End User Development in the IoT”. In: Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing
Systems. CHI EA ’17. Denver, Colorado, USA: ACM, 2017, pp. 1546–1552.
isbn: 978-1-4503-4656-6. doi: 10.1145/3027063.3053157.

[31] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “A high-level
semantic approach to End-User Development in the Internet of Things”. In:
International Journal of Human-Computer Studies 125 (2019), pp. 41–54.
issn: 1071-5819. doi: 10.1016/j.ijhcs.2018.12.008.

[32] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “A Semantic
Web Approach to Simplifying Trigger-Action Programming in the IoT”. In:
Computer 50.11 (Nov. 2017), pp. 18–24. issn: 0018-9162. doi: 10.1109/MC.
2017.4041355.

[33] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “Empower-
ing End Users in Debugging Trigger-Action Rules”. In: Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. CHI ’19.
Glasgow, Scotland Uk: Association for Computing Machinery, 2019. isbn:
9781450359702. doi: 10.1145/3290605.3300618.

134

https://doi.org/10.1145/1240624.1240723
https://doi.org/10.1145/1240624.1240723
https://doi.org/10.1016/j.websem.2012.05.003
https://doi.org/10.1016/0377-2217(90)90301-Q
https://doi.org/10.1145/3027063.3053157
https://doi.org/10.1016/j.ijhcs.2018.12.008
https://doi.org/10.1109/MC.2017.4041355
https://doi.org/10.1109/MC.2017.4041355
https://doi.org/10.1145/3290605.3300618

BIBLIOGRAPHY

[34] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “EUDopti-
mizer: Assisting End Users in Composing IF-THEN Rules Through Op-
timization”. In: IEEE Access 7 (2019), pp. 37950–37960. doi: 10.1109/
ACCESS.2019.2905619.

[35] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “My IoT
Puzzle: Debugging IF-THEN Rules Through the Jigsaw Metaphor”. In: End-
User Development. Cham: Springer International Publishing, 2019, pp. 18–
33. isbn: 978-3-030-24781-2.

[36] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “RecRules:
Recommending IF-THEN Rules for End-User Development”. In: ACM Trans-
actions on Intelligent Systems and Technology 10.5 (Sept. 2019), 58:1–58:27.
issn: 2157-6904. doi: 10.1145/3344211.

[37] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “TAPrec:
Supporting the Composition of Trigger-Action Rules through Dynamic Rec-
ommendations”. In: Proceedings of the 25th International Conference on
Intelligent User Interfaces. IUI ’20. Cagliari, Italy: Association for Com-
puting Machinery, 2020, pp. 579–588. isbn: 9781450371186. doi: 10.1145/
3377325.3377499.

[38] Irena Pletikosa Cvijikj and Florian Michahelles. “Architecting the Inter-
net of Things”. In: ed. by Dieter Uckelmann, Mark Harrison, and Florian
Michahelles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. Chap. The
Toolkit Approach for End-user Participation in the Internet of Things, pp. 65–
96. isbn: 978-3-642-19157-2. doi: 10.1007/978-3-642-19157-2_4.

[39] Allen Cypher. “EAGER: Programming Repetitive Tasks by Example”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’91. New Orleans, Louisiana, USA: ACM, 1991, pp. 33–39.
isbn: 0-89791-383-3. doi: 10.1145/108844.108850.

[40] Andrea Renika D’Souza, Di Yang, and Cristina V. Lopes. “Collective Intel-
ligence for Smarter API Recommendations in Python”. In: 2016 IEEE 16th
International Working Conference on Source Code Analysis and Manipula-
tion (SCAM). Oct. 2016, pp. 51–60. doi: 10.1109/SCAM.2016.22.

[41] Yngve Dahl and Reidar-Martin Svendsen. “End-User Composition Interfaces
for Smart Environments: A Preliminary Study of Usability Factors”. In: De-
sign, User Experience, and Usability. Theory, Methods, Tools and Practice.
Ed. by Aaron Marcus. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 118–127. isbn: 978-3-642-21708-1.

[42] Jose Danado and Fabio Paternò. “Puzzle: A mobile application development
environment using a jigsaw metaphor”. In: Journal of Visual Languages &
Computing 25.4 (2014), pp. 297–315. issn: 1045-926X. doi: http://dx.
doi.org/10.1016/j.jvlc.2014.03.005.

135

https://doi.org/10.1109/ACCESS.2019.2905619
https://doi.org/10.1109/ACCESS.2019.2905619
https://doi.org/10.1145/3344211
https://doi.org/10.1145/3377325.3377499
https://doi.org/10.1145/3377325.3377499
https://doi.org/10.1007/978-3-642-19157-2_4
https://doi.org/10.1145/108844.108850
https://doi.org/10.1109/SCAM.2016.22
https://doi.org/http://dx.doi.org/10.1016/j.jvlc.2014.03.005
https://doi.org/http://dx.doi.org/10.1016/j.jvlc.2014.03.005

BIBLIOGRAPHY

[43] Florian Daniel and Maristella Matera. Mashups: Concepts, Models and Ar-
chitectures. Springer Publishing Company, Incorporated, 2014. isbn: 3642550487,
9783642550485.

[44] Luigi De Russis and Alberto Monge Roffarello. “A Debugging Approach
for Trigger-Action Programming”. In: Extended Abstracts of the 2018 CHI
Conference on Human Factors in Computing Systems. CHI EA ’18. Montreal
QC, Canada: Association for Computing Machinery, 2018. isbn: 9781450356213.
doi: 10.1145/3170427.3188641.

[45] Suparna De, Tarek Elsaleh, Payam Barnaghi, and Stefan Meissner. “An
Internet of Things Platform for Real-World and Digital Objects”. In: Scalable
Computing: Practice and Experience 13.1 (2012), pp. 45–57. url: http:
//epubs.surrey.ac.uk/531903/.

[46] Giuseppe Desolda, Carmelo Ardito, and Maristella Matera. “Empowering
End Users to Customize Their Smart Environments: Model, Composition
Paradigms, and Domain-Specific Tools”. In: ACM Transactions on Computer-
Human Interaction 24.2 (2017), 12:1–12:52. issn: 1073-0516. doi: 10.1145/
3057859.

[47] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. “iCAP:
Interactive Prototyping of Context-aware Applications”. In: Proceedings of
the 4th International Conference on Pervasive Computing. PERVASIVE’06.
Dublin, Ireland: Springer-Verlag, 2006, pp. 254–271. doi: 10.1007/11748625_
16.

[48] Marco Dorigo and Luca Maria Gambardella. “Ant Colony System: A Coop-
erative Learning Approach to the Traveling Salesman Problem”. In: Trans.
Evol. Comp 1.1 (Apr. 1997), pp. 53–66. issn: 1089-778X. doi: 10.1109/
4235.585892.

[49] Ekwa Duala-Ekoko and Martin P. Robillard. “Using Structure-Based Rec-
ommendations to Facilitate Discoverability in APIs”. In: ECOOP 2011 –
Object-Oriented Programming: 25th European Conference, Lancaster, Uk,
July 25-29, 2011 Proceedings. Ed. by Mira Mezini. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 79–104. isbn: 978-3-642-22655-7. doi: 10.1007/
978-3-642-22655-7_5.

[50] Natalya F. Noy and Deborah L. Mcguinness. Ontology Development 101:
A Guide to Creating Your First Ontology. Tech. rep. Stanford University,
2001.

[51] Ignacio Fernández-Tobias, Iván Cantador, Marius Kaminskas, and Francesco
Ricci. “A Generic Semantic-based Framework for Cross-domain Recommen-
dation”. In: Proceedings of the 2Nd International Workshop on Information
Heterogeneity and Fusion in Recommender Systems. HetRec ’11. Chicago,

136

https://doi.org/10.1145/3170427.3188641
http://epubs.surrey.ac.uk/531903/
http://epubs.surrey.ac.uk/531903/
https://doi.org/10.1145/3057859
https://doi.org/10.1145/3057859
https://doi.org/10.1007/11748625_16
https://doi.org/10.1007/11748625_16
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892
https://doi.org/10.1007/978-3-642-22655-7_5
https://doi.org/10.1007/978-3-642-22655-7_5

BIBLIOGRAPHY

Illinois: ACM, 2011, pp. 25–32. isbn: 978-1-4503-1027-7. doi: 10.1145/
2039320.2039324.

[52] Gerhard Fischer. “End-User Development and Meta-design: Foundations
for Cultures of Participation”. In: End-User Development. Ed. by Volkmar
Pipek, Mary Beth Rosson, Boris de Ruyter, and Volker Wulf. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2009, pp. 3–14. isbn: 978-3-642-00427-8.

[53] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. “An Efficient
Boosting Algorithm for Combining Preferences”. In: Journal of Machine
Learning Research 4 (Dec. 2003), pp. 933–969. issn: 1532-4435.

[54] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. “Regularization Paths
for Generalized Linear Models via Coordinate Descent”. In: Journal of Sta-
tistical Software 33.1 (2010), pp. 1–22. url: http://www.jstatsoft.org/
v33/i01/.

[55] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld. “Improving
the Performance of Motor-impaired Users with Automatically-generated,
Ability-based Interfaces”. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. CHI ’08. Florence, Italy: ACM, 2008,
pp. 1257–1266. isbn: 978-1-60558-011-1. doi: 10.1145/1357054.1357250.

[56] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle,
and Lars Schmidt-Thieme. “Learning Attribute-to-Feature Mappings for
Cold-Start Recommendations”. In: Proceedings of the 2010 IEEE Inter-
national Conference on Data Mining. ICDM ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 176–185. isbn: 978-0-7695-4256-0. doi:
10.1109/ICDM.2010.129.

[57] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-
Thieme. “MyMediaLite: A Free Recommender System Library”. In: Proceed-
ings of the Fifth ACM Conference on Recommender Systems. RecSys ’11.
Chicago, Illinois, USA: ACM, 2011, pp. 305–308. isbn: 978-1-4503-0683-6.
doi: 10.1145/2043932.2043989.

[58] Andrés Garcia-silva, Oscar Corcho, Harith Alani, and Asunción Gómez-
pérez. “Review: Review of the State of the Art: Discovering and Associ-
ating Semantics to Tags in Folksonomies”. In: The Knowledge Engineer-
ing Review 27.1 (Feb. 2012), pp. 57–85. issn: 0269-8889. doi: 10.1017/
S026988891100018X.

[59] Stella Gatzio Gatziu and K. R. Dittrich. “Detecting composite events in
active database systems using Petri nets”. In: Proceedings of IEEE Interna-
tional Workshop on Research Issues in Data Engineering: Active Databases
Systems. Feb. 1994, pp. 2–9. doi: 10.1109/RIDE.1994.282859.

137

https://doi.org/10.1145/2039320.2039324
https://doi.org/10.1145/2039320.2039324
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
https://doi.org/10.1145/1357054.1357250
https://doi.org/10.1109/ICDM.2010.129
https://doi.org/10.1145/2043932.2043989
https://doi.org/10.1017/S026988891100018X
https://doi.org/10.1017/S026988891100018X
https://doi.org/10.1109/RIDE.1994.282859

BIBLIOGRAPHY

[60] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro. “Per-
sonalization of Context-Dependent Applications Through Trigger-Action Rules”.
In: ACM Transactions on Computer-Human Interaction 24.2 (2017), 14:1–
14:33. issn: 1073-0516. doi: 10.1145/3057861.

[61] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang.
“HermiT: An OWL 2 Reasoner”. In: Journal of Automated Reasoning 53.3
(Oct. 2014), pp. 245–269. issn: 0168-7433. doi: 10.1007/s10817- 014-
9305-1.

[62] Fred Glover and Manuel Laguna. Tabu Search. Norwell, MA, USA: Kluwer
Academic Publishers, 1997. isbn: 079239965X.

[63] Valentina Grigoreanu, Margaret Burnett, Susan Wiedenbeck, Jill Cao, Kyle
Rector, and Irwin Kwan. “End-user Debugging Strategies: A Sensemaking
Perspective”. In: ACM Transaction on Computer-Human Interaction 19.1
(May 2012), 5:1–5:28. issn: 1073-0516. doi: 10.1145/2147783.2147788.

[64] Will Haines, Melinda Gervasio, Aaron Spaulding, and Bart Peintner. “Rec-
ommendations for End-User Development”. In: Proceedings of the ACM Rec-
Sys 2010 Workshop on User-Centric Evaluation of Recommender Systems
and Their Interfaces (UCERSTI). 2010.

[65] Mostafa Hamza and Robert J. Walker. “Recommending Features and Fea-
ture Relationships from Requirements Documents for Software Product Lines”.
In: Proceedings of the Fourth International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering. RAISE ’15. Florence, Italy:
IEEE Press, 2015, pp. 25–31.

[66] Benjamin Heitmann and Conor Hayes. “Using linked data to build open, col-
laborative recommender systems”. In: Artificial Intelligence (2010), pp. 76–
81.

[67] Matthew Horridge and Sean Bechhofer. “The OWL API: A Java API for
OWL Ontologies”. In: Semantic Web 2.1 (Jan. 2011), pp. 11–21. issn: 1570-
0844. doi: 10.3233/SW-2011-0025.

[68] Matthew Horridge and Sean Bechhofer. “The OWL API: A Java API for
OWL Ontologies”. In: Semantic Web 2.1 (Jan. 2011), pp. 11–21. issn: 1570-
0844.

[69] Peizhao Hu, Jadwiga Indulska, and Ricky Robinson. “An Autonomic Con-
text Management System for Pervasive Computing”. In: 2008 Sixth Annual
IEEE International Conference on Pervasive Computing and Communica-
tions (PerCom). Mar. 2008, pp. 213–223. doi: 10.1109/PERCOM.2008.56.

138

https://doi.org/10.1145/3057861
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1145/2147783.2147788
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.1109/PERCOM.2008.56

BIBLIOGRAPHY

[70] Justing Huang and Maya Cakmak. “Supporting Mental Model Accuracy in
Trigger-action Programming”. In: Proceedings of the 2015 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing. UbiComp
’15. Osaka, Japan: ACM, 2015, pp. 215–225. isbn: 978-1-4503-3574-4. doi:
10.1145/2750858.2805830.

[71] Ting-Hao K. Huang, A. Azaria, and J. P. Bigham. “InstructableCrowd: Cre-
ating IF-THEN Rules via Conversations with the Crowd”. In: Proceedings
of the 2016 CHI Conference Extended Abstracts on Human Factors in Com-
puting Systems. CHI EA ’16. Santa Clara, California, USA: ACM, 2016,
pp. 1555–1562. isbn: 978-1-4503-4082-3. doi: 10.1145/2851581.2892502.

[72] IFTTT. Accessed: 2019-11-20. 2019. url: https://ifttt.com/.
[73] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and

Practical Use, Vol. 2. London, UK, UK: Springer-Verlag, 1995. isbn: 3-540-
58276-2.

[74] Xiaoqing Jin, Yousra Lembachar, and Gianfranco Ciardo. “Symbolic Termi-
nation and Confluence Checking for ECA Rules”. In: Transactions on Petri
Nets and Other Models of Concurrency IX. Ed. by Maciej Koutny, Serge
Haddad, and Alex Yakovlev. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 99–123. isbn: 978-3-662-45730-6. doi: 10.1007/978- 3- 662-
45730-6_6.

[75] Houda Khrouf and Raphaël Troncy. “Hybrid Event Recommendation Using
Linked Data and User Diversity”. In: Proceedings of the 7th ACM Confer-
ence on Recommender Systems. RecSys ’13. Hong Kong, China: ACM, 2013,
pp. 185–192. isbn: 978-1-4503-2409-0. doi: 10.1145/2507157.2507171.

[76] Cory Kissinger, Margaret Burnett, Simone Stumpf, Neeraja Subrahmaniyan,
Laura Beckwith, Sherry Yang, and Mary Beth Rosson. “Supporting End-user
Debugging: What Do Users Want to Know?” In: Proceedings of the Working
Conference on Advanced Visual Interfaces. AVI ’06. Venezia, Italy: ACM,
2006, pp. 135–142. isbn: 1-59593-353-0. doi: 10.1145/1133265.1133293.

[77] Andrew J. Ko and Brad A. Myers. “Designing the Whyline: A Debugging
Interface for Asking Questions About Program Behavior”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI
’04. Vienna, Austria: ACM, 2004, pp. 151–158. isbn: 1-58113-702-8. doi:
10.1145/985692.985712.

[78] Andrew J. Ko and Brad A. Myers. “Finding Causes of Program Output with
the Java Whyline”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’09. Boston, MA, USA: ACM, 2009,
pp. 1569–1578. isbn: 978-1-60558-246-7. doi: 10.1145/1518701.1518942.

139

https://doi.org/10.1145/2750858.2805830
https://doi.org/10.1145/2851581.2892502
https://ifttt.com/
https://doi.org/10.1007/978-3-662-45730-6_6
https://doi.org/10.1007/978-3-662-45730-6_6
https://doi.org/10.1145/2507157.2507171
https://doi.org/10.1145/1133265.1133293
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/1518701.1518942

BIBLIOGRAPHY

[79] Andrew J. Ko, Brad A. Myers, Michael L. Coblenz, and Htet Htet Aung. “An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks”. In: IEEE Transactions
on Software Engineering 32.12 (Dec. 2006), pp. 971–987. issn: 0098-5589.
doi: 10.1109/TSE.2006.116.

[80] Jacob Krüger. “When to Extract Features: Towards a Recommender Sys-
tem”. In: Proceedings of the 40th International Conference on Software En-
gineering: Companion Proceeedings. ICSE ’18. Gothenburg, Sweden: ACM,
2018, pp. 518–520. isbn: 978-1-4503-5663-3. doi: 10.1145/3183440.3190328.

[81] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf.
“Principles of Explanatory Debugging to Personalize Interactive Machine
Learning”. In: Proceedings of the 20th International Conference on Intelli-
gent User Interfaces. IUI ’15. Atlanta, Georgia, USA: ACM, 2015, pp. 126–
137. isbn: 978-1-4503-3306-1. doi: 10.1145/2678025.2701399.

[82] Ni Lao and William W. Cohen. “Relational Retrieval Using a Combination
of Path-constrained Random Walks”. In: Mach. Learn. 81.1 (Oct. 2010),
pp. 53–67. issn: 0885-6125. doi: 10.1007/s10994-010-5205-8.

[83] Eric Lee and James Macgregor. “Minimizing User Search Time in Menu
Retrieval Systems”. In: Human Factors 27.2 (1985), pp. 157–162. doi: 10.
1177/001872088502700203.

[84] Lukas Lerche and Dietmar Jannach. “Using Graded Implicit Feedback for
Bayesian Personalized Ranking”. In: Proceedings of the 8th ACM Conference
on Recommender Systems. RecSys ’14. Foster City, Silicon Valley, California,
USA: ACM, 2014, pp. 353–356. isbn: 978-1-4503-2668-1. doi: 10.1145/
2645710.2645759.

[85] Xiaoou Li, Joselito Medina, and Sergio Chapa. “Applying Petri Nets in
Active Database Systems”. In: IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 37.4 (July 2007), pp. 482–
493. issn: 1094-6977. doi: 10.1109/TSMCC.2007.897329.

[86] Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Börje F.
Karlsson, Dongmei Zhang, and Feng Zhao. “Systematically Debugging IoT
Control System Correctness for Building Automation”. In: Proceedings of
the 3rd ACM International Conference on Systems for Energy-Efficient Built
Environments. BuildSys ’16. Palo Alto, CA, USA: Association for Comput-
ing Machinery, 2016, pp. 133–142. isbn: 9781450342643. doi: 10.1145/
2993422.2993426.

140

https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/3183440.3190328
https://doi.org/10.1145/2678025.2701399
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1177/001872088502700203
https://doi.org/10.1177/001872088502700203
https://doi.org/10.1145/2645710.2645759
https://doi.org/10.1145/2645710.2645759
https://doi.org/10.1109/TSMCC.2007.897329
https://doi.org/10.1145/2993422.2993426
https://doi.org/10.1145/2993422.2993426

BIBLIOGRAPHY

[87] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. “End
User Development”. In: ed. by Henry Lieberman, Fabio Paternò, and Volker
Wulf. Dordrecht, Netherlands: Springer Netherlands, 2006. Chap. End-User
Development: An Emerging Paradigm, pp. 1–8. isbn: 978-1-4020-5386-3.
doi: 10.1007/1-4020-5386-X_1.

[88] Brian Y. Lim and Anind K. Dey. “Toolkit to Support Intelligibility in
Context-aware Applications”. In: Proceedings of the 12th ACM International
Conference on Ubiquitous Computing. UbiComp ’10. Copenhagen, Denmark:
ACM, 2010, pp. 13–22. isbn: 978-1-60558-843-8. doi: 10.1145/1864349.
1864353.

[89] Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. “Why and Why Not Ex-
planations Improve the Intelligibility of Context-aware Intelligent Systems”.
In: Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. CHI ’09. Boston, MA, USA: ACM, 2009, pp. 2119–2128. isbn:
978-1-60558-246-7. doi: 10.1145/1518701.1519023.

[90] Tie-Yan Liu. “Learning to Rank for Information Retrieval”. In: Foundations
and Trends In Information Retrieval 3.3 (Mar. 2009), pp. 225–331. issn:
1554-0669. doi: 10.1561/1500000016.

[91] Yuri Malheiros, Alan Moraes, Cleyton Trindade, and Silvio Meira. “A Source
Code Recommender System to Support Newcomers”. In: 2012 IEEE 36th
Annual Computer Software and Applications Conference. July 2012, pp. 19–
24. doi: 10.1109/COMPSAC.2012.11.

[92] Marco Manca, Fabio, Paternò, Carmen Santoro, and Luca Corcella. “Sup-
porting end-user debugging of trigger-action rules for IoT applications”. In:
International Journal of Human-Computer Studies 123 (2019), pp. 56–69.
issn: 1071-5819.

[93] Toshiyuki Masui and Ken Nakayama. “Repeat and Predict: Two Keys to
Efficient Text Editing”. In: Conference Companion on Human Factors in
Computing Systems. CHI ’94. Boston, Massachusetts, USA: ACM, 1994,
pp. 31–32. isbn: 0-89791-651-4. doi: 10.1145/259963.259999.

[94] Shouichi Matsui and Seiji Yamada. “Genetic Algorithm Can Optimize Hier-
archical Menus”. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. CHI ’08. Florence, Italy: ACM, 2008, pp. 1385–
1388. isbn: 978-1-60558-011-1. doi: 10.1145/1357054.1357271.

[95] Friedemann Mattern and Christian Floerkemeier. “From the Internet of
Computers to the Internet of Things”. In: From Active Data Management to
Event-Based Systems and More: Papers in Honor of Alejandro Buchmann on
the Occasion of His 60th Birthday. Ed. by Kai Sachs, Ilia Petrov, and Pablo
Guerrero. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 242–259.
isbn: 978-3-642-17226-7. doi: 10.1007/978-3-642-17226-7_15.

141

https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1145/1864349.1864353
https://doi.org/10.1145/1864349.1864353
https://doi.org/10.1145/1518701.1519023
https://doi.org/10.1561/1500000016
https://doi.org/10.1109/COMPSAC.2012.11
https://doi.org/10.1145/259963.259999
https://doi.org/10.1145/1357054.1357271
https://doi.org/10.1007/978-3-642-17226-7_15

BIBLIOGRAPHY

[96] Simon Mayer, Andreas Tschofen, Anind K. Dey, and Friedemann Mattern.
“User Interfaces for Smart Things – A Generative Approach with Seman-
tic Interaction Descriptions”. In: ACM Transaction on Computer-Human
Interaction 21.2 (Feb. 2014). issn: 1073-0516. doi: 10.1145/2584670.

[97] Sean M. McNee, John Riedl, and Joseph A. Konstan. “Being Accurate is Not
Enough: How Accuracy Metrics Have Hurt Recommender Systems”. In: CHI
’06 Extended Abstracts on Human Factors in Computing Systems. CHI EA
’06. Montreal QC, Canada: ACM, 2006, pp. 1097–1101. isbn: 1-59593-298-4.
doi: 10.1145/1125451.1125659.

[98] Kim Mens and Angela Lozano. “Source Code-Based Recommendation Sys-
tems”. In: Recommendation Systems in Software Engineering. Ed. by Martin
P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 93–130. isbn: 978-
3-642-45135-5. doi: 10.1007/978-3-642-45135-5_5.

[99] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. “An Empirical
Characterization of IFTTT: Ecosystem, Usage, and Performance”. In: Pro-
ceedings of the 2017 Internet Measurement Conference. IMC ’17. London,
United Kingdom: ACM, 2017, pp. 398–404. isbn: 978-1-4503-5118-8. doi:
10.1145/3131365.3131369.

[100] Microsoft Flow. Accessed: 2019-11-20. 2019. url: https://flow.microsoft.
com/en-us/.

[101] Bamshad Mobasher, Xin Jin, and Yanzan Zhou. “Web Mining: From Web to
Semantic Web”. In: Web Mining: From Web to Semantic Web: First Euro-
pean Web Mining Forum, EWMF 2003, Cavtat-Dubrovnik, Croatia, Septem-
ber 22, 2003, Invited and Selected Revised Papers. Ed. by Bettina Berendt,
Andreas Hotho, Dunja Mladenič, Maarten van Someren, Myra Spiliopoulou,
and Gerd Stumme. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Chap. Semantically Enhanced Collaborative Filtering on the Web, pp. 57–
76. isbn: 978-3-540-30123-3. doi: 10.1007/978-3-540-30123-3_4.

[102] Alberto Monge Roffarello. “End User Development in the IoT: A Semantic
Approach”. In: 2018 14th International Conference on Intelligent Environ-
ments (IE). June 2018, pp. 107–110. doi: 10.1109/IE.2018.00026.

[103] Dejan Munjin. “User Empowerment in the Internet of Things”. eng. PhD
thesis. Université de Genève, May 2013. url: http://archive-ouverte.
unige.ch/unige:28951.

[104] Brad A. Myers, Andrew J. Ko, Chris Scaffidi, Stephen Oney, YoungSeok
Yoon, Kerry Chang, Mary Beth Kery, and Toby Jia-Jun Li. “Making End

142

https://doi.org/10.1145/2584670
https://doi.org/10.1145/1125451.1125659
https://doi.org/10.1007/978-3-642-45135-5_5
https://doi.org/10.1145/3131365.3131369
https://flow.microsoft.com/en-us/
https://flow.microsoft.com/en-us/
https://doi.org/10.1007/978-3-540-30123-3_4
https://doi.org/10.1109/IE.2018.00026
http://archive-ouverte.unige.ch/unige:28951
http://archive-ouverte.unige.ch/unige:28951

BIBLIOGRAPHY

User Development More Natural”. In: New Perspectives in End-User Devel-
opment. Ed. by Fabio Paternò and Volker Wulf. Cham: Springer Interna-
tional Publishing, 2017, pp. 1–22. isbn: 978-3-319-60291-2. doi: 10.1007/
978-3-319-60291-2_1.

[105] Abdallah Namoun, Athanasia Daskalopoulou, Nikolay Mehandjiev, and Zhang
Xun. “Exploring Mobile End User Development: Existing Use and Design
Factors”. In: IEEE Transactions on Software Engineering 42.10 (Oct. 2016),
pp. 960–976. issn: 0098-5589. doi: 10.1109/TSE.2016.2532873.

[106] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen,
Lily Mast, Eli Rademacher, Tien N. Nguyen, and Danny Dig. “API Code
Recommendation Using Statistical Learning from Fine-grained Changes”.
In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. FSE 2016. Seattle, WA, USA:
ACM, 2016, pp. 511–522. isbn: 978-1-4503-4218-6. doi: 10.1145/2950290.
2950333.

[107] Xia Ning and George Karypis. “SLIM: Sparse Linear Methods for Top-N
Recommender Systems”. In: 2011 IEEE 11th International Conference on
Data Mining. Dec. 2011, pp. 497–506. doi: 10.1109/ICDM.2011.134.

[108] Xia Ning and George Karypis. “Sparse Linear Methods with Side Informa-
tion for Top-n Recommendations”. In: Proceedings of the Sixth ACM Con-
ference on Recommender Systems. RecSys ’12. Dublin, Ireland: ACM, 2012,
pp. 155–162. isbn: 978-1-4503-1270-7. doi: 10.1145/2365952.2365983.

[109] Tommaso Di Noia, Vito Claudio Ostuni, Paolo Tomeo, and Eugenio Di Sci-
ascio. “SPrank: Semantic Path-Based Ranking for Top-N Recommendations
Using Linked Open Data”. In: ACM Transactions on Intelligent Systems
and Technology 8.1 (Sept. 2016), 9:1–9:34. issn: 2157-6904. doi: 10.1145/
2899005.

[110] Sergio Oramas, Vito Claudio Ostuni, Tommaso Di Noia, Xavier Serra, and
Eugenio Di Sciascio. “Sound and Music Recommendation with Knowledge
Graphs”. In: ACM Trans. Intell. Syst. Technol. 8.2 (Oct. 2016), 21:1–21:21.
issn: 2157-6904. doi: 10.1145/2926718. url: http://doi.acm.org/10.
1145/2926718.

[111] Vito Claudio Ostuni, Tommaso Di Noia, Eugenio Di Sciascio, and Roberto
Mirizzi. “Top-N Recommendations from Implicit Feedback Leveraging Linked
Open Data”. In: Proceedings of the 7th ACM Conference on Recommender
Systems. RecSys ’13. Hong Kong, China: ACM, 2013, pp. 85–92. isbn: 978-
1-4503-2409-0. doi: 10.1145/2507157.2507172.

[112] Antti Oulasvirta. “User Interface Design with Combinatorial Optimization”.
In: Computer 50.1 (Jan. 2017), pp. 40–47. issn: 0018-9162. doi: 10.1109/
MC.2017.6.

143

https://doi.org/10.1007/978-3-319-60291-2_1
https://doi.org/10.1007/978-3-319-60291-2_1
https://doi.org/10.1109/TSE.2016.2532873
https://doi.org/10.1145/2950290.2950333
https://doi.org/10.1145/2950290.2950333
https://doi.org/10.1109/ICDM.2011.134
https://doi.org/10.1145/2365952.2365983
https://doi.org/10.1145/2899005
https://doi.org/10.1145/2899005
https://doi.org/10.1145/2926718
http://doi.acm.org/10.1145/2926718
http://doi.acm.org/10.1145/2926718
https://doi.org/10.1145/2507157.2507172
https://doi.org/10.1109/MC.2017.6
https://doi.org/10.1109/MC.2017.6

BIBLIOGRAPHY

[113] Antti Oulasvirta, Anna Reichel, Wenbin Li, Yan Zhang, Myroslav Bachyn-
skyi, Keith Vertanen, and Per Ola Kristensson. “Improving Two-thumb Text
Entry on Touchscreen Devices”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’13. Paris, France: ACM,
2013, pp. 2765–2774. isbn: 978-1-4503-1899-0. doi: 10 . 1145 / 2470654 .
2481383.

[114] Raymond R. Panko. “What We Know About Spreadsheet Errors”. In: J.
End User Comput. 10.2 (May 1998), pp. 15–21. issn: 1063-2239. url: http:
//dl.acm.org/citation.cfm?id=287893.287899.

[115] Singiresu S. Rao. Engineering Optimization: Theory and Practice: Fourth
Edition. John Wiley and Sons, June 2009. isbn: 9780470183526. doi: 10.
1002/9780470549124.

[116] Michaela R. Reisinger, Johann Schrammel, and Peter Fröhlich. “Visual end-
user programming in smart homes: Complexity and performance”. In: 2017
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
Oct. 2017, pp. 331–332.

[117] Michaela R. Reisinger, Johann Schrammel, and Peter Fröhlich. “Visual lan-
guages for smart spaces: End-user programming between data-flow and form-
filling”. In: 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). Oct. 2017, pp. 165–169.

[118] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. “BPR: Bayesian Personalized Ranking from Implicit Feedback”. In:
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial In-
telligence. UAI ’09. Montreal, Quebec, Canada: AUAI Press, 2009, pp. 452–
461. isbn: 978-0-9749039-5-8.

[119] Alexander Repenning and Tamara Sumner. “Agentsheets: A Medium for
Creating Domain-Oriented Visual Languages”. In: Computer 28.3 (Mar.
1995), pp. 17–25. issn: 0018-9162.

[120] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk,
Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and Yasmin Kafai. “Scratch: Programming for All”.
In: Commun. ACM 52.11 (Nov. 2009), pp. 60–67. issn: 0001-0782.

[121] Michael Rietzler, Julia Greim, Marcel Walch, Florian Schaub, Björn Wieder-
sheim, and Michael Weber. “homeBLOX: Introducing Process-driven Home
Automation”. In: Proceedings of the 2013 ACM Conference on Pervasive and
Ubiquitous Computing Adjunct Publication. UbiComp ’13 Adjunct. Zurich,
Switzerland: ACM, 2013, pp. 801–808. isbn: 978-1-4503-2215-7.

144

https://doi.org/10.1145/2470654.2481383
https://doi.org/10.1145/2470654.2481383
http://dl.acm.org/citation.cfm?id=287893.287899
http://dl.acm.org/citation.cfm?id=287893.287899
https://doi.org/10.1002/9780470549124
https://doi.org/10.1002/9780470549124

BIBLIOGRAPHY

[122] Jochen Rode and Mary Beth Rosson. “Programming at Runtime: Require-
ments and Paradigms for Nonprogrammer Web Application Development”.
In: Proceedings of the 2003 IEEE Symposium on Human Centric Comput-
ing Languages and Environments. HCC ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 23–30. isbn: 0-7803-8225-0.

[123] Paulo Salem. “User Interface Optimization Using Genetic Programming
with an Application to Landing Pages”. In: Proc. ACM Hum.-Comput. In-
teract. 1.1 (June 2017), 13:1–13:17. issn: 2573-0142. doi: 10.1145/3099583.

[124] Giovanni Semeraro, Pasquale Lops, Pierpaolo Basile, and Marco de Gemmis.
“Knowledge Infusion into Content-based Recommender Systems”. In: Pro-
ceedings of the Third ACM Conference on Recommender Systems. RecSys
’09. New York, New York, USA: ACM, 2009, pp. 301–304. isbn: 978-1-60558-
435-5. doi: 10.1145/1639714.1639773.

[125] Wei Shen, Jianyong Wang, and Jiawei Han. “Entity Linking with a Knowl-
edge Base: Issues, Techniques, and Solutions”. In: IEEE Transactions on
Knowledge and Data Engineering 27.2 (Feb. 2015), pp. 443–460. issn: 1041-
4347. doi: 10.1109/TKDE.2014.2327028.

[126] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Alan
Hanjalic, and Nuria Oliver. “TFMAP: Optimizing MAP for Top-n Context-
aware Recommendation”. In: Proceedings of the 35th International ACM
SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’12. Portland, Oregon, USA: ACM, 2012, pp. 155–164. isbn: 978-1-
4503-1472-5. doi: 10.1145/2348283.2348308.

[127] SmartRules. Accessed: 2019-11-20. 2019. url: http : / / smartrulesapp .
com/.

[128] We are Social. Digital in 2020. https://wearesocial.com/blog/2020/01/
digital-2020-3-8-billion-people-use-social-media. 2020.

[129] Harald Steck. “Evaluation of Recommendations: Rating-prediction and Rank-
ing”. In: Proceedings of the 7th ACM Conference on Recommender Systems.
RecSys ’13. Hong Kong, China: ACM, 2013, pp. 213–220. isbn: 978-1-4503-
2409-0. doi: 10.1145/2507157.2507160.

[130] Kathryn T. Stolee and Sebastian Elbaum. “Identification, Impact, and Refac-
toring of Smells in Pipe-Like Web Mashups”. In: IEEE Transactions on Soft-
ware Engineering 39.12 (Dec. 2013), pp. 1654–1679. issn: 0098-5589. doi:
10.1109/TSE.2013.42.

145

https://doi.org/10.1145/3099583
https://doi.org/10.1145/1639714.1639773
https://doi.org/10.1109/TKDE.2014.2327028
https://doi.org/10.1145/2348283.2348308
http://smartrulesapp.com/
http://smartrulesapp.com/
https://wearesocial.com/blog/2020/01/digital-2020-3-8-billion-people-use-social-media
https://wearesocial.com/blog/2020/01/digital-2020-3-8-billion-people-use-social-media
https://doi.org/10.1145/2507157.2507160
https://doi.org/10.1109/TSE.2013.42

BIBLIOGRAPHY

[131] Neeraja Subrahmaniyan, Cory Kissinger, Kyle Rector, Derek Inman, Jared
Kaplan, Laura Beckwith, and Margaret Burnett. “Explaining Debugging
Strategies to End-User Programmers”. In: Proceedings of the IEEE Sym-
posium on Visual Languages and Human-Centric Computing. VLHCC ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 127–136. isbn:
0-7695-2987-9.

[132] Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Long-Kai Huang, and
Chi Xu. “Recurrent Knowledge Graph Embedding for Effective Recom-
mendation”. In: Proceedings of the 12th ACM Conference on Recommender
Systems. RecSys ’18. Vancouver, British Columbia, Canada: ACM, 2018,
pp. 297–305. isbn: 978-1-4503-5901-6. doi: 10.1145/3240323.3240361.

[133] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and
Limin Jia. “Some Recipes Can Do More Than Spoil Your Appetite: Analyz-
ing the Security and Privacy Risks of IFTTT Recipes”. In: Proceedings of
the 26th International Conference on World Wide Web. WWW ’17. Perth,
Australia: International World Wide Web Conferences Steering Commit-
tee, 2017, pp. 1501–1510. isbn: 9781450349130. doi: 10.1145/3038912.
3052709.

[134] Kashyap Todi, Daryl Weir, and Antti Oulasvirta. “Sketchplore: Sketch and
Explore with a Layout Optimiser”. In: Proceedings of the 2016 ACM Confer-
ence on Designing Interactive Systems. DIS ’16. Brisbane, QLD, Australia:
ACM, 2016, pp. 543–555. isbn: 978-1-4503-4031-1. doi: 10.1145/2901790.
2901817.

[135] Khai Truong, Elaine Huang, and Gregory Abowd. “UbiComp 2004: Ubiqui-
tous Computing: 6th International Conference, Nottingham, UK, Septem-
ber 7-10, 2004. Proceedings”. In: ed. by Nigel Davies, Elizabeth D. My-
natt, and Itiro Siio. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Chap. CAMP: A Magnetic Poetry Interface for End-User Programming of
Capture Applications for the Home, pp. 143–160. isbn: 978-3-540-30119-6.
doi: 10.1007/978-3-540-30119-6_9.

[136] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman.
“Practical Trigger-action Programming in the Smart Home”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI
’14. Toronto, Ontario, Canada: ACM, 2014, pp. 803–812. isbn: 978-1-4503-
2473-1. doi: 10.1145/2556288.2557420. url: http://doi.acm.org/10.
1145/2556288.2557420.

[137] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Men-
nicken, Noah Picard, Diane Schulze, and Michael L. Littman. “Trigger-
Action Programming in the Wild: An Analysis of 200,000 IFTTT Recipes”.
In: Proceedings of the 34rd Annual ACM Conference on Human Factors in

146

https://doi.org/10.1145/3240323.3240361
https://doi.org/10.1145/3038912.3052709
https://doi.org/10.1145/3038912.3052709
https://doi.org/10.1145/2901790.2901817
https://doi.org/10.1145/2901790.2901817
https://doi.org/10.1007/978-3-540-30119-6_9
https://doi.org/10.1145/2556288.2557420
http://doi.acm.org/10.1145/2556288.2557420
http://doi.acm.org/10.1145/2556288.2557420

BIBLIOGRAPHY

Computing Systems. CHI ’16. New York, NY, USA: ACM, 2016, pp. 3227–
3231. doi: 10.1145/2858036.2858556.

[138] UVa User Interface Group. “Alice: Rapid Prototyping for Virtual Reality”.
In: IEEE Computer Graphics and Applications 15.3 (May 1995), pp. 8–11.
issn: 0272-1716. doi: 10.1109/38.376600.

[139] Claudia Vannucchi, Michelangelo Diamanti, Gianmarco Mazzante, Diletta
Cacciagrano, Rosario Culmone, Nikos Gorogiannis, Leonardo Mostarda, and
Franco Raimondi. “Symbolic verification of event–condition–action rules in
intelligent environments”. In: Journal of Reliable Intelligent Environments
3.2 (Aug. 2017), pp. 117–130. issn: 2199-4676. doi: 10.1007/s40860-017-
0036-z.

[140] Wei Wang, Suparna De, Gilbert Cassar, and Klaus Moessner. “Knowledge
Representation in the Internet of Things: Semantic Modelling and its Appli-
cations”. In: Automatika - Journal for Control, Measurement, Electronics,
Computing and Communications 54.4 (Oct. 2013), pp. 388–400. url: http:
//epubs.surrey.ac.uk/794745/.

[141] WebThings Gateway. Accessed: 2019-11-20. 2019. url: https://iot.mozilla.
org/gateway/.

[142] Markus Weimer, Alexandros Karatzoglou, and Alex Smola. “Improving Max-
imum Margin Matrix Factorization”. In: Mach. Learn. 72.3 (Sept. 2008),
pp. 263–276. issn: 0885-6125. doi: 10.1007/s10994-008-5073-7.

[143] Mickey R. Wilhelm and Thomas L. Ward. “Solving Quadratic Assignment
Problems by Simulated Annealing”. In: IIE Transactions 19.1 (1987), pp. 107–
119. doi: 10.1080/07408178708975376.

[144] Qiang Wu, Christopher J. Burges, Krysta M. Svore, and Jianfeng Gao.
“Adapting Boosting for Information Retrieval Measures”. In: Information
Retrieval Journal 13.3 (June 2010), pp. 254–270. issn: 1386-4564. doi: 10.
1007/s10791-009-9112-1.

[145] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. “Collab-
orative Denoising Auto-Encoders for Top-N Recommender Systems”. In:
Proceedings of the Ninth ACM International Conference on Web Search
and Data Mining. WSDM ’16. San Francisco, California, USA: ACM, 2016,
pp. 153–162. isbn: 978-1-4503-3716-8. doi: 10.1145/2835776.2835837.

[146] Stephen Yang, Alex Lee, William Chu, and Hongji Yang. “Rule base veri-
fication using Petri nets”. In: Computer Software and Applications Confer-
ence, 1998. COMPSAC ’98. Proceedings. The Twenty-Second Annual Inter-
national. Aug. 1998, pp. 476–481. doi: 10.1109/CMPSAC.1998.716699.

147

https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1109/38.376600
https://doi.org/10.1007/s40860-017-0036-z
https://doi.org/10.1007/s40860-017-0036-z
http://epubs.surrey.ac.uk/794745/
http://epubs.surrey.ac.uk/794745/
https://iot.mozilla.org/gateway/
https://iot.mozilla.org/gateway/
https://doi.org/10.1007/s10994-008-5073-7
https://doi.org/10.1080/07408178708975376
https://doi.org/10.1007/s10791-009-9112-1
https://doi.org/10.1007/s10791-009-9112-1
https://doi.org/10.1145/2835776.2835837
https://doi.org/10.1109/CMPSAC.1998.716699

BIBLIOGRAPHY

[147] Lina Yao, Quan Z. Sheng, Anne H.H. Ngu, Helen Ashman, and Xue Li.
“Exploring Recommendations in Internet of Things”. In: Proceedings of the
37th International ACM SIGIR Conference on Research & Development
in Information Retrieval. SIGIR ’14. Gold Coast, Queensland, Australia:
ACM, 2014, pp. 855–858. isbn: 978-1-4503-2257-7. doi: 10.1145/2600428.
2609458.

[148] Svetlana Yarosh and Pamela Zave. “Locked or Not? Mental Models of IoT
Feature Interaction”. In: Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. CHI ’17. Denver, Colorado, USA: Associa-
tion for Computing Machinery, 2017, pp. 2993–2997. isbn: 9781450346559.
doi: 10.1145/3025453.3025617.

[149] Yunwen Ye and Gerhard Fischer. “Supporting reuse by delivering task-
relevant and personalized information”. In: Proceedings of the 24th Interna-
tional Conference on Software Engineering. ICSE 2002. May 2002, pp. 513–
523. doi: 10.1109/ICSE.2002.1007995.

[150] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi
Khandelwal, Brandon Norick, and Jiawei Han. “Personalized Entity Rec-
ommendation: A Heterogeneous Information Network Approach”. In: Pro-
ceedings of the 7th ACM International Conference on Web Search and Data
Mining. WSDM ’14. New York, New York, USA: ACM, 2014, pp. 283–292.
isbn: 978-1-4503-2351-2. doi: 10.1145/2556195.2556259.

[151] Zapier. Accessed: 2019-11-20. 2019. url: https://zapier.com/.
[152] Arkady Zaslavsky and Prem Prakash Jayaraman. “Discovery in the Inter-

net of Things: The Internet of Things (Ubiquity Symposium)”. In: Ubiq-
uity 2015.October (Oct. 2015), 2:1–2:10. issn: 1530-2180. doi: 10.1145/
2822529.

[153] Shumin Zhai, Michael Hunter, and Barton A. Smith. “The Metropolis Key-
board - an Exploration of Quantitative Techniques for Virtual Keyboard
Design”. In: Proceedings of the 13th Annual ACM Symposium on User Inter-
face Software and Technology. UIST ’00. San Diego, California, USA: ACM,
2000, pp. 119–128. isbn: 1-58113-212-3. doi: 10.1145/354401.354424.

[154] Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and
Blase Ur. “AutoTap: Synthesizing and Repairing Trigger-Action Programs
Using LTL Properties”. In: Proceedings of the 41st International Conference
on Software Engineering. ICSE ’19. Montreal, Quebec, Canada: IEEE Press,
2019, pp. 281–291. doi: 10.1109/ICSE.2019.00043.

148

https://doi.org/10.1145/2600428.2609458
https://doi.org/10.1145/2600428.2609458
https://doi.org/10.1145/3025453.3025617
https://doi.org/10.1109/ICSE.2002.1007995
https://doi.org/10.1145/2556195.2556259
https://zapier.com/
https://doi.org/10.1145/2822529
https://doi.org/10.1145/2822529
https://doi.org/10.1145/354401.354424
https://doi.org/10.1109/ICSE.2019.00043

BIBLIOGRAPHY

[155] Yuan Cao Zhang, Diarmuid Ó Séaghdha, Daniele Quercia, and Tamas Jam-
bor. “Auralist: Introducing Serendipity into Music Recommendation”. In:
Proceedings of the Fifth ACM International Conference on Web Search and
Data Mining. WSDM ’12. Seattle, Washington, USA: ACM, 2012, pp. 13–
22. isbn: 978-1-4503-0747-5. doi: 10.1145/2124295.2124300.

[156] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen.
“Improving Recommendation Lists Through Topic Diversification”. In: Pro-
ceedings of the 14th International Conference on World Wide Web. WWW
’05. Chiba, Japan: ACM, 2005, pp. 22–32. isbn: 1-59593-046-9. doi: 10.
1145/1060745.1060754.

149

https://doi.org/10.1145/2124295.2124300
https://doi.org/10.1145/1060745.1060754
https://doi.org/10.1145/1060745.1060754

BIBLIOGRAPHY

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

150

	List of Tables
	List of Figures
	Introduction
	Defining IF-THEN Rules
	Rule Definition Process
	Identified Issues

	Thesis Contributions
	Thesis Organization

	End-User Development in the IoT: an Overview
	Moving Towards a Higher Level of Abstraction
	Simplifying Trigger-Action Programming: a High-Level Semantic Approach
	Background
	EUPont Desing and Implementation
	Model Expressiveness
	User Evaluation
	Results

	Discussion and Guidance for Future Research

	Discovering IF-THEN Rules and Functionality
	EUDoptimizer: Defining IF-THEN Rules with an Optimizer in the Loop
	Background
	Optimizing IF-THEN Rule Definition
	SDP-FSM: A Predictive Model for Trigger-Action Programming
	Optimization Problem and Methods
	Implementation and Technical Assessment
	User Evaluation
	Results

	Recommending IF-THEN Rules for End-User Development
	Background
	Recommending By Functionality
	Knowledge Graph Model & Problem Formulation
	The RecRules Algorithm
	Algorithm Evaluation
	Results

	Discussion and Guidance for Future Research

	End-User Debugging in Trigger-Action Programming
	Run-Time Problems in IF-THEN Rules
	Background
	Characterizing Problems
	Modeling and Detecting Problems
	SCPN RESTful Server

	Exploring End-User Debugging in Trigger-Action Programming Platforms
	Background
	The EUDebug Tool
	User Evaluation
	Results

	Debugging IF-THEN Rules Through the Jigsaw Metaphor
	Background & Adopted Technologies
	Extracting Design Guidelines
	The My IoT Puzzle System
	User Evaluation
	Results

	Discussion and Guidance for Future Research

	Conclusions
	Summary of Contributions
	Future Works

	Publications
	International Journals
	Proceedings
	Book Chapters

	Bibliography

