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Abstract

Cesar DIAZ LONDOÑO

A Framework for Flexible Loads Aggregation

Smart Grids are integrating renewable generation in their electrical supplies. As a

consequence, the fluctuations due to solar radiation and wind speed or direction can

produce energy unbalances between supply and demand in the grid. Various Demand

Response (DR) programs have been proposed to reduce energy unbalances. Moreover,

flexible loads management carried out by an aggregator has been proposed to provide

ancillary services in DR by applying optimal methods such as Model Predictive Con-

trol (MPC). In this dissertation, an aggregator framework is proposed, developing

flexible loads models and direct load control structures able to operate in DR plans

and provide ancillary services to the system operator. The aggregator framework is

presented considering a methodology for loads to provide ancillary services. Then,

this methodology is assessed on three flexible loads, Water Booster Pressure Systems

(WBPS), ThermoElectric Refrigeration (TER) units, and Electric Vehicle (EV) charging

stations. First, a dynamic model of a WBPS is estimated and tuned with real data, and

a WBPS aggregator that is capable of offering spinning reserve services is proposed.

Second, a TER unit model is estimated and characterized by experimental data, and

a TER aggregator able to provide balancing services such as frequency containment

reserve is proposed. Third, a dynamic model of an EV charger is developed, and an

EV charger aggregator that looks for minimizing costs while maximizing flexibility is

proposed. The EV aggregator can offer spinning reserve services and participate in

Day-Ahead and Real-Time markets. Moreover, a specific flexibility definition for EV

chargers is formulated. As results, the flexible load aggregators have been validated

by simulations fulfilling the ancillary service’s response time and the power capac-

ity variations requested by the system operator. Finally, a hierarchical architecture

(balancing service provider) able to manage the previous flexible load aggregators is

proposed in order to provide different European balancing services in a frequency

restoration process.
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Chapter 1

Introduction

The world energy consumption has been increasing over the past few decades and

is estimated to increase by 28% between 2015 and 2040, as well as the Renewable

Energy Sources (RES) rising by an average of 2.8%/year (Energy U.S., 2017). The

RES uncertainty has a significant impact on the scheduling of conventional genera-

tion (Nghitevelekwa and Bansal, 2018) and storage (Bakirtzis et al., 2018). The main

effects of the uncertainty appear both on power system operation and on the need for

procuring sufficient reserve capacity to maintain acceptable levels of reliability and

security (Pandurangan et al., 2012). The System Operator (SO) has the responsibility

to ensure the security and reliability of the electrical grid, coordinating the load and

supply of electricity. In this context, generation power systems must provide ancillary

services, i.e., the balancing services that are delivered to the SO, such as frequency

stability and voltage control (Carreiro et al., 2017). However, a new paradigm where

the demand is able to react to different contingencies is raising (Nijhuis et al., 2016).

Indeed, it is needed a transformation to load response instead of generation response

in which the customers reduce their consumption, manually or automatically, for de-

creasing the risk of failure (Deng et al., 2015). These actions are possible on Demand

Response (DR) plans (Vardakas et al., 2015), managing a trade-off between comfort

and reliability. In (Energy U.S., 2006), DR is defined as “Changes in electric usage by

end-use customers from their normal consumption patterns in response to changes in the price

of electricity over time, or to incentive payments designed to induce lower electricity use at

times of high wholesale market prices or when system reliability is jeopardized”.

DR offers several benefits such as the ability to balance RES uncertainties, enhance

the implementation of real-time pricing and curtail the generation capacity require-

ments (Aghaei and Alizadeh, 2013). These DR plans are adopted due to the pre-

dictable and cycling nature of the electricity demand. On this basis, DR can become a
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revenue source for agents that aggregate load flexibility. Aggregators offer the oppor-

tunity to exploit the flexibility potential of small end-users and promoting their access

to the retail electricity market by selling load flexibility and benefiting from rewards

or lower energy bills (Carreiro et al., 2017). Then, the demand can be managed by an

aggregator using indirect or direct control. Then, aggregators that apply an indirect

control structure have limited information, while, on direct control, the communica-

tion is individual with each appliance (O’Connell et al., 2014).

In this dissertation, an aggregator framework is proposed, developing flexible

loads models and direct control structures able to operate in DR plans and provide an-

cillary services. This research is addressed in five parts: (i) an aggregator framework is

presented considering ancillary services definition, and a methodology for modelling

flexible loads and controlling them properly is proposed; then, this methodology is

evaluated on three flexible loads; (ii) a dynamic model of a Water Booster Pressure

System (WBPS) is estimated and tuned with real data, and a WBPS aggregator has

been proposed, capable of offering spinning reserve service; (iii) a ThermoElectric Re-

frigeration (TER) unit model is estimated and characterized with experimental data,

and a TER aggregator able to provide regulation and balancing services is proposed;

(iv) a dynamic model of an Electric Vehicle (EV) charger station is developed, an EV

charger aggregator is proposed based on an optimal decision maker minimizing costs

and maximizing flexibility, it can offer spinning reserve services; (v) day-ahead and

real-time strategies are proposed considering RES forecast. A flexibility measure is

developed for each flexible load, particularly an EV charger flexibility definition is

proposed. Numerical studies and extensive simulations are provided to demonstrate

the properties and advantages of these models and aggregators as solutions and tools

in smart grids.

This chapter reviews some aspects to be considered in the framework for flexible

loads aggregation. A literature review related to flexible loads is presented, oriented

on models, flexibility, and aggregators of the three analysed flexible loads (WBPS,

TER, and EV). Finally, the thesis contributions and organization are exposed.

1.1 Flexible Loads and Aggregators

In recent years, the participation of the demand in operation scheduling and reserve

procurement has increased, also with the definition of demand response programmes

that involve manual or automatic variation of the demand to reduce the grid risk (Deng

et al., 2015). The current deployment of the generation and demand resources to
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improve the power system operation has been represented in the flexibility frame-

work (Ma et al., 2013). There is a vast literature about flexibility definitions and appli-

cations, however according to (Holttinen et al., 2013), there is no uniform definition

of flexibility. Various definitions of flexibility have been proposed for the generation

side and the demand side. In (Ulbig and Andersson, 2015), the operational flexibility

in power systems is defined as the deviation between the nominal power plant out-

put trajectory and the actual power output trajectory. Interactions between flexibility

concepts and the diffusion of RES are discussed in (Holttinen et al., 2013). Various

forms of grid-side flexibility are addressed in (Li et al., 2018). The thermal generation

flexibility is defined in (Ma et al., 2013) by providing a metric to quantify the techni-

cal flexibility for individual generators and for the whole system. On the other hand,

there are various viable options to provide flexibility on the demand side.

In order to provide ancillary services in DR programs, the Demand Side Manage-

ment (DSM) is responsible for the planning, implementation, and monitoring of utility

activities that are designed to influence customer’s use of electricity, i.e., for handling

the flexible loads. The consumers can control their loads by means of DSM policies

and strategies or participation in DR programmes focused on controlling and reduc-

ing the electricity demand (Palensky and Dietrich, 2011). Then, the DR program can

change the time pattern and magnitude of grid load. Usually, the main objective of

DSM is to encourage users to consume less power during peak times or to shift energy

use to off-peak hours to flatten the demand curve (Gelazanskas and Gamage, 2014). In

Figure 1.1, a categorization of the DSM is shown (Gellings, 1985). Note that the load

consumption can be rescheduled by reducing or increasing the consumption (Lund

et al., 2015).

FIGURE 1.1: Categories of Demand Side Management.
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Categories of DSM are possible due to the flexible consumption some loads have.

Considering these loads, the energy that is not consumed in the service time, must be

consumed after or before the service. Then, in this period, the energy consumption

will increase generating a rebound effect or payback (UKERC, 2007; Palensky and Diet-

rich, 2011; Warren, 2014). Therefore, it must be evaluated in the aggregator, with the

purpose of avoiding energy peaks after the service time.

Furthermore, flexible loads can be clustered into two categories: adjustable and

deferrable loads (Hao et al., 2015b).

1.1.1 Adjustable loads

An adjustable load is an electric load whose energy requirement is flexible during

its service time, i.e., it is flexible for all time service. For example, Thermostatically

Controlled Loads (TCLs) are adjusted by modifying the temperature set-point fixed

by the user, or WBPS are adjusted by altering the normal operating pressure set-point.

Thermostatically Controlled Loads

Usually, a hybrid model for TCLs is presented in literature, in which the power input

of each unit has On-Off switching behaviour. Several authors consider a continuous

TCL thermal model (Perfumo et al., 2014; Hao et al., 2015a; Mai et al., 2015; Luo et al.,

2017; Hu et al., 2017a); while, others take into account discrete models (Du and Lu,

2011; Mathieu et al., 2012; Lu et al., 2013; Kara et al., 2015; Liu et al., 2016; Zhou et al.,

2017). These models are expressed as a first-order ordinary differential equation. For

example, continuous models can be written as,

9θkptq � akpθa� θkptqq �mkptqbkPk �wkptq (1.1)

where θkptq is the internal k TCL temperature, αk and bk are constants defined in

Eq. (1.2) and are expressed in terms of the thermal resistance Rk, thermal capacitance

Ck, and coefficient of performance ηk. Additionally, θa is the ambient temperature,

and mkptq is a dimensionless binary variable that indicates the operating state of each

TCL, i.e., 1 when it is On and 0 when it is Off. Pk is the TCL’s rated power, it is pos-

itive for cooling mode and negative for heating mode. However, mkptqPk is generally

considered continuous between 0 and a nominal power Pk, instead of a binary value.

Moreover, wkptq is the external disturbance such as occupancy and solar radiation,
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which is normally disregarded.

ak �
1

RkCk , bk �
ηk

Ck (1.2)

For instance, household appliances such as water boilers/heaters, refrigerators,

Heating, Ventilation and Air-Conditioners (HVAC) are referred to as TCL (Hu et al.,

2017b). The model presented in Eq. 1.1 is a general formulation; however, there is no

specific model for TERs as a flexible load.

The aggregate flexibility of a collection of TCL is defined in (Hao et al., 2015a).

In (Zhao and Zhang, 2017), TCL flexibility is defined considering a geometric ap-

proach. A mathematical definition of flexibility for residential demand aggregation

is presented in (Sajjad et al., 2016), formulated through two demand flexibility indi-

cators by using the binomial probability model.

Regarding the buildings sector, there are several flexible loads that can provide reg-

ulation services, such as lighting, HVAC, computers and other electrical appliances

that can increase or decrease the building consumption, see e.g. (Paschalidis et al.,

2012). In (Bilgin et al., 2016), a smart building operator that is capable of modulating

the aggregated energy consumption is considered with the purpose of providing reg-

ulation services. In (Ogunjuyigbe et al., 2017), a demand side load management tech-

nique is developed in order to maximize the user satisfaction and minimize the cost

through a residential building load control. In (Blum and Norford, 2014), a dynamic

model of a variable air volume system is developed and simulated. It is investigated

the response of the system to four common demand response strategies over a range

of cooling loads and implementation intensities. Also, it is demonstrated the use of

the model to simulate a 10-min spinning reserve provision.

TCLs have been employed to provide regulation services by varying the temper-

ature set point, see e.g. (Hao et al., 2015a; Mai et al., 2015). Model predictive control

(MPC) strategies are developed in (Liu and Shi, 2015; Zhou et al., 2017), while in (Liu

et al., 2016) is analyzed a distributed MPC. In (Hao et al., 2015a) a priority control

is proposed. In addition, in (Yin et al., 2016) commercial and residential TCLs are

modeled to quantify their flexibility. Regulation frequency can be operated by cen-

tralized controllers with a sample time of 4 seconds (Hao et al., 2015a), or with de-

centralized controllers capable of providing short duration services (Tindemans et al.,

2015). Moreover, several TCL applications have been developed with optimal control

systems for providing short duration services. For instance, in (Hao et al., 2012) an

linear-quadratic regulator controller is capable of regulating the consumption every 2
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minutes; or in (Liu and Shi, 2015; Mai et al., 2015) that regulates the power consump-

tion of a heating and cooling system with an MPC strategy.

Regarding the TER unit, it is composed of a thermally insulated cabinet, in which

the temperature has to be lower than the ambient temperature, the ThermoElectric

Cooler (TEC) device, the heat exchangers at each side of the TEC device, and one or

more electric fans powered by the same external power supply that powers the TEC.

Usually, the TEC model is presented in an electro-thermal model that use analogies

between thermal and electrical domains. In (Mitrani et al., 2005; Tsai and Lin, 2010;

Hsiao et al., 2010) the model is expressed as,

Qc � αTc Ip �
1
2

I2
pRp � KppTh � Tcq, (1.3)

Qh � αTh Ip �
1
2

I2
pRp � KppTh � Tcq. (1.4)

where, Qc and Qh are the heat flow absorbed and rejected by the TEC, α is the Seebeck

coefficient, Kp is the TEC thermal conductance, Rp is the TEC electrical resistance, Tc

and Th are the cold side and hot side temperatures of the TEC, and Ip is the TEC elec-

tric current. In (Arjun et al., 2017) and (Moria et al., 2019), the TEC model is used to test

a portable TER feed with solar energy. In (Rahman and Wagner, 2016) a TER is exper-

imentally compared with a vapour compression unit achieving a lower consumption

in the TER unit. Moreover, physical properties such as the thermal conductivity of the

material, the cooling capacity, and the temperature difference are the most sensitive

parameters in the TER (Shen et al., 2020).

The usual marketable TERs contain a on/off temperature controller, which is cheaper

and easier to be installed and sets the interior temperature of the thermoelectric com-

partment. Other control methodologies of a TER unit are Proportional-Integral (PI)

control system, PI-Derivative (PID) control system (Astrain et al., 2012), and idling

voltage control system (Martínez et al., 2013b). In (Rahman and Wagner, 2016), an

amplitude modulation, and a pulse width modulation controller are tested to control

the temperature. Likewise, the PWM controller is used in (Saifizi et al., 2018) to au-

tomatically correct the temperature using a feedback loop. A temperature-controlled

voltage regulated boost converter is presented in (Azad, 2019). Actually, these con-

trollers are for regulating the temperature set-point. However, from the best of the

authors’ knowledge, there is no reported flexibility analysis or aggregator for TER

systems.
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Water Booster Pressure Systems

A Water Booster Pressure System (WBPS) is responsible for supplying water and

maintaining pressure in a building pipeline. The operation of the pump and tank

are directly related to the building water consumption, thereby, a control system is

required to satisfy the variable water demand. When the operating pressure is de-

creased, it generates a reduction in power consumption and in water pressure for the

users, especially on the higher floors of the building.

Water pump systems are mathematically modelled in (Janevska, 2013) and simu-

lated in (García et al., 2013; Ghafouri and Khayatzadeh, 2012). In (Latchooomun et al.,

2019), a WBPS is designed with a modified storage able to control the pressure at the

discharge of the tank. However, as far as the authors know, there are no studies mod-

elling the WBPS as a flexible load. Existing models are based on basic laws of physics

and fluid mechanics. These models develop each system element as,

J
dω

dt
� MMT � pMp � Mζq (1.5)

H � Aw2 � Bwqv � Cq2
v (1.6)

dmptq
dt

� Qm1 �Qm2 (1.7)

where Eq. (1.5) shows the motion for the motor-pump, therein, J is the moment of in-

ertia (in specific cases, J is constant), ω is the angular velocity of the pump, MMT is the

active torque from the asynchronous motor, Mp is the passive/resistive torque of the

pump, and Mζ is the viscous torque. Moreover, Eq. (1.6) describes the characteristic

behaviour of a centrifugal pump, where, A, B, and C are characteristic constants for

the pump, and qv is the pump flow. Eq. (1.7) expresses the change in mass in the tank

mptq, which is equal to the mass flow that enters the tank Qm1 minus the mass flow

that leaves the tank Qm2.

Buildings of considerable height present important challenges in pumping water

to the upper floors (Brickey and Sanchez, 2005). Water Distribution Systems (WDS)

can provide balancing services with demand response through pump scheduling.

In (Menke et al., 2016), a branch and bound algorithm is proposed in order to offer

financial benefits to the system operator. It is clarified that a large amount of water

distribution systems would provide a short-term operational reserve, also a power re-

serve of 3 MW is estimated for the UK. Whereas in (Nguyen et al., 2014), a commercial

building pumping system with a tank on the top is used as an energy storage com-

ponent to respond to the market price and provide demand response services. This
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approach is carried out by dynamic programming methods and a 30.9% saving in the

electricity cost is achieved. Moreover, a WDS framework able to provide frequency

regulation is proposed in (Oikonomou et al., 2018), in which the WDS can participate

in DR by solving a Mixed-Integer Linear Programming (MILP) problem.

Pump systems can also be controlled as flexible loads by an aggregator. Then,

pump system controls are based on two position controllers or variable frequency

drives (Cabrera et al., 2015; Arun Shankar et al., 2016). Different techniques are used

to control the input speed of the pump. For example, in (Ghafouri and Khayatzadeh,

2012; Xu et al., 2016) a PID controller is designed and evaluated in simulation, while

in (Gevorkov et al., 2016) a Hardware-in-the-Loop simulator is carried out, where the

variable speed driver is connected via a programmable logical controller. In (Coccia

et al., 2019), a water loop heat pump of a supermarket is used in a DSM strategy to

minimize the yearly energy cost, by shifting the electricity demand; whereas, in (Arte-

coni and Polonara, 2018), the heat pump flexibility of a building is used in off-peak

hours by DR programs. However, no flexibility evaluation nor aggregator for WBPS

systems is reported.

1.1.2 Deferrable loads

A deferrable load has a fixed energy requirement at the end of the service (Hao and

Chen, 2014). For example, a pool pump must be switched on a determined amount of

time by the end of the day and can provide regulation services by turning it on and

off (Meyn et al., 2015); or an Electric Vehicle (EV) state of charge should be above a

certain level at the departure time (Zhou et al., 2016).

Electric Vehicles

One of the most important flexible loads in terms of emissions reduction, variable

power capacity, and promising useful green transport are the EVs. This technology

is a sustainable alternative for private and public road transport. Therefore, countries

such as Germany, Australia, Canada, U.S.A, among others, offer benefits in terms of

subsidized, finance or facilities constructions to the customers (García-Villalobos et al.,

2014).

The most common model reported in the literature can be applied for charging

and discharging strategies. It can be modelled in continuous time (Diaz et al., 2015) or
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discrete time (Hao et al., 2015b; You et al., 2016). Then, the model in discrete form is,

xi
k�1 � xi

k � Pi
kδ (1.8)

where xi
k is the State of Charge (SoC) of EV i at time slot k, Pi

k is the injected power and

δ is the discretisation step. This model consider an initial condition xi
0 ¥ 0 for each EV

i. Moreover, it must fulfil a final SoC which is selected by the EV owner, i.e.,

xi
di ¥ Ei

� (1.9)

where di is the EV departure time and Ei
� is the minimum SoC at the departure.

In addition, specific models have been developed, for instance, in (Papadaskalopou-

los et al., 2013), charging losses and self-discharging energy losses are considered;

in (Khemakhem et al., 2017), the SoC is based on Coulomb counting, taking into

account a lithium-ion battery; in (González Vayá and Andersson, 2016), an EV fleet

model is considered as a virtual battery. However, to the best of our knowledge, an

EV charger model as a flexible load is not reported in the literature.

EVs are among the most important deferrable loads, in terms of improving the RES

integration in the grid (Borba et al., 2012), smoothing the demand curves (Khemakhem

et al., 2017), providing frequency regulation services (Wenzel et al., 2018; Sortomme

and El-Sharkawi, 2011) and spinning reserve services (Pavić et al., 2015), incrementing

self-consumption (Giordano et al., 2018), reducing emissions, and supporting green

transport (Noel et al., 2018). In the last few years, EVs are becoming more and more a

sustainable alternative for private and public road transport (Cao et al., 2018). Besides,

national governments such as Germany, Australia, Canada, and U.S.A, offer benefits

to the customers, in terms of subsidies, financing, or facilities constructions (García-

Villalobos et al., 2014).

The charging of EVs can be managed in a context where the EVs are not allowed

to inject power in the grid, or in the Vehicle-to-grid (V2G) context, where the EVs

can inject power into the grid to support grid operation needs (Quirós-Tortós et al.,

2018). In both cases, appropriate coordination strategies for EVs charging have to be

defined to avoid that inappropriate EV dispatch gives unfavourable impacts to the

power networks (Haidar et al., 2015), e.g., with over-currents in network branches

or over-voltages at network nodes (Sundström and Binding, 2012). This dissertation

addresses appropriate dispatching strategies for EV charging, excluding V2G opera-

tion. As such, there is no specific discussion on the aspects concerning V2G and its

literature references.
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Moreover, given the huge potential for EVs integration, it becomes necessary to as-

sess not only the strategy to streamline the EVs battery charging process, but also the

possibilities for the electrical grid to take advantage of the charging process. Typically,

an aggregator coordinates EVs battery charging. A review of the EV fleets aggrega-

tor strategies is presented in (Hu et al., 2016), assessing the potential approaches to

provide services to electrical grid operators. The challenge is to define how to man-

age the EV charging profiles with the purpose of fulfilling the users’ requirements

and offering a power flexibility capacity to the system operator for maintaining the

energy balance in the grid. Specifically, the EVs flexibility to reduce the RES power

fluctuations is quantified in (Schuller et al., 2015). The flexibility characterisation of

EVs charging sessions is addressed in (Sadeghianpourhamami et al., 2018), with the

introduction of two measures based on flexibility utilization in terms of energy and

duration. A discussion on how the EV batteries management can unlock the poten-

tial of using Distributed Energy Resources (DER) is presented in (Mills and Macgill,

2018). A definition of EV flexibility is proposed in (Munshi and Mohamed, 2018) by

adapting to case of EVs the framework introduced in (Sajjad et al., 2016) for the flex-

ibility of aggregate residential demand. EV flexibility is described in (Wenzel et al.,

2018) in terms of laxity, that is, the amount of time left until an EV must charge at its

maximum charge rate to reach its minimum scheduled state of charge at the depar-

ture time. In (Grahn et al., 2014) the EV recharging flexibility is included in the EV

utilization model together with the type of trip and the possible use of a secondary

fuel.

For the EVs flexibility assessment, the EV dispatch problem has to be evaluated,

also by considering different charging preferences for the EV owners (Clairand et al.,

2018). For instance, a distributed control strategy is proposed in (Qi et al., 2014) based

on the Lagrangian relaxation method to achieve charging coordination between mul-

tiple EV parking decks. In (Yang et al., 2014), risk-aware day-ahead scheduling and

real-time charging dispatch for EVs are studied. The maximization of the revenues

offering secondary regulation and the maximization of an EV fleet charging station

efficiency are simultaneously addressed in (Janjic et al., 2017). The charging schedul-

ing of a large number of EVs at a charging station is proposed in (Wang et al., 2017).

A time-variant storage model for aggregated EVs has been proposed in (Pertl et al.,

2019).

Other studies, also consider the minimization of the operating energy cost, in com-

bination with the dispatching problem. To this aim, in (Esmaili and Goldoust, 2015), a

multi-objective optimization framework is proposed, where the objectives include the
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minimization of both the energy cost purchased by the aggregator and the grid en-

ergy losses. Conversely, (Škugor and Deur, 2015) focuses on a dynamic programming-

based optimization to provide optimal solutions to charge an EV fleet. In (González

Vayá and Andersson, 2016), it is proposed a co-optimization trade off between the cost

of a day-ahead market and the revenues from providing balancing services.

The identification of energy-flexibility and deadline-flexibility referring to EV co-

ordinated charging is carried out in (Sun et al., 2018) by first formulating a social wel-

fare maximization problem, followed by an on-line auction. The coordination can

include either the EV owner participation to decide adjustable limits for the EV charg-

ing demand (Zhou et al., 2016), or the incorporation of vehicle-originated signals that

incorporate various information into two synthetic variables to make the information

exchange with the aggregator more effective (del Razo et al., 2015).

1.2 Organization and thesis contributions

The dissertation is organized in chapters and each one can be read independently.

Figure 1.2 depicts the organization of the thesis, numbered by the respective chapter

and their roles in the aggregator framework.

SO

Chapter 3 Chapter 4

Chapter 5

Adjustable loads Deferrable loads

WBPS TER EVCS

Spinning
reserve

Frequency
Spinning reserve

Day-ahead
Real-Time PV

Forecast

Hierarchical Architecture Structure

Chapter 6

Chapter 7

Chapter 2
AGGREGATOR Framework

reserve
containment

FIGURE 1.2: Thesis organization.
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First, in Chapter 2, a methodology for loads aggregation is proposed. The aim is to

provide ancillary services to the system operator by controlling the power consump-

tion in the loads. Then, ancillary services are explained by defining the response time

of each service. Moreover, the methodology considers the exchange signals between

the aggregator and flexible loads. Finally, the main contribution of this Chapter is a

framework for loads to provide ancillary services.

In Chapter 3, WBPS dynamics are modelled by first-principles and tuned by exper-

imental data of a 6-floor university building with a single WBPS. Then, it is shown that

the WBPS can provide spinning reserve services to the grid, by evaluating its flexibil-

ity through set point changes. In order to evaluate flexibility, the effect of parameters

such as minimum and maximum consumption levels, the amount of required energy,

limitations in commutation frequency and turn-on time, on power consumption are

evaluated. Finally, an aggregation strategy, which responds when the system operator

requires a power reduction service, is proposed. Thus, the main contributions of this

Chapter are: 1) a model of WBPSs as flexible loads validated with experimental data;

2) the definition of the energy service that the system can provide to the grid; and

3) the design of a control architecture that leads to providing the energy service with a

set of WBPSs. The results of this Chapter were derived in the publications (Diaz et al.,

2017a,b).

In Chapter 4, a TER dynamic model is developed and characterized by experimen-

tal data. Then, it is shown that modifying the TER temperature controller, this sys-

tem can provide balancing services such as frequency containment reserve, through

changing the temperature set-point. A flexibility analysis is carried out in a set of TERs

considering different TER capacities, TER normal operation set-points, and variations

on ambient temperature and thermal disturbances. Finally, an aggregator controller

is proposed. It is able to reduce or increase the power consumption in a set of TERs

when the system operator requires the service. Therefore, the main contributions of

this Chapter are: 1) the TER model as a flexible load characterized by experimental

data; 2) a flexibility analysis based on the modification of a tested PI controller; 3) the

definition of the frequency containment reserve (it can provide more balancing ser-

vices) as the energy services a set of TERs can provide to the electrical grid.; and 4) the

design of an aggregator able to provide the energy services. The results of this Chap-

ter were derived in the publications (Enescu et al., 2018; Diaz-Londono et al., 2019b,

2020a).

Chapter 5 presents the evaluation and the maximization of the EV flexibility degree

to provide flexibility, together with a dispatch that minimizes the operation costs. An
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Electric Vehicle Charging Station (EVCS) and its chargers are modelled and controlled

as flexible loads. Then, it is shown that EV chargers can provide spinning reserve ser-

vices to the grid. The EVCS is entrusted with charging all the incoming EVs, whose

State of Charge (SoC) must reach at least the minimum amount desired by the EV

owners at the departure time. From this perspective, two EV charging strategies are

formulated taking into account the EV users preferences. First, a novel formulation

that minimizes the EVCS operation cost is presented. Second, a strategy that maxi-

mizes the flexibility capacity, while minimizes the EVCS operation cost is proposed.

These strategies are compared with a typical minimum time strategy as a benchmark,

to adjust the trajectories of the charging power delivered to the EVs through the charg-

ers. Thus, the main contributions of this Chapter are: 1) a dynamic model of an EV

charger as a flexible load; 2) a specific flexibility definition for EV chargers; 3) a novel

formulation for minimizing the EVCS operation cost; and 4) a novel optimal strategy

that maximizes the EV charges flexibility capacity while minimizes the EVCS opera-

tion cost that leads to providing spinning reserve services. The results of this Chapter

were derived in the publications (Diaz et al., 2018a,b; Diaz-Londono et al., 2019a).

Chapter 6 presents strategies for an EVCS to participate in Day-Ahead (DA) and

Real-Time (RT) markets considering distributed renewable sources. Thus, the main

contributions of this Chapter are: 1) a Photo-Voltaic (PV) generation model for Bogotá,

Colombia; 2) an EVCS DA strategy that minimizes the operation cost; and 3) a RT con-

troller strategy that aims to follow a DA power schedule. The results of this Chapter

were derived in the publications (Diaz-Londono et al., 2020b; Giordano et al., 2020).

In Chapter 7, a Hierarchical Architecture Structure (HAS) is presented with the

purpose of providing the European Balancing Services with the flexible loads studied

in this dissertation. The structure coordinates the power demand of all the aggrega-

tors and works as a balancing service provider. Then, the main contributions of this

Chapter are: 1) the proposal of a two hierarchical level control, considering the flexi-

ble loads’ aggregators, and 2) a logic coordinator able to manage the sequence of the

balancing services provided.

Finally, it is highlighted that the mathematical notation is independent of the chap-

ters. However, some variables are maintained such as power P.
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Chapter 2

Ancillary Services Provision by

Load Aggregation

In this chapter, a framework for flexible loads aggregation is proposed, developing

aggregators able to provide Demand Response (DR) services in Smart Grids. DR

programs can be classified into two main categories: Incentive-Based Programs (IBP)

and Priced Based Programs (PBP) (Albadi and El-Saadany, 2008). In this aggregation

framework, the IBP is considered, avoiding dynamic pricing rates and the strategic

behavior of the aggregator or the customers (Vuelvas and Ruiz, 2017), which are anal-

ysed in PBP. In IBP, participating customers receive participation payments usually

as a bill credit or discount rate for their participation in the programs, depending on

the amount of load reduction during critical conditions. Direct Load Control (DLC)

programs are included in IBP, where the utilities have the ability to remotely shut

down participant equipment on short notice. Moreover, it is assumed that customers

voluntarily participate in DLC.

Therefore, in this dissertation, DLC strategies are performed by aggregators in or-

der to offer ancillary services and participate in day-ahead and real-time markets. In-

deed, an aggregator faces a two-level challenge, a customer level, and a wholesale

market level (Mahmoudi et al., 2017). At the customer level, the aggregator looks

for performing RD programs with the lowest cost, by modelling technical constraints

in both users preference and the loads’ operation. On the other hand, in the whole-

sale market level, the aggregator aims to determine the optimal trading options in the

market, which is not the aim of this framework. This dissertation seeks for develop-

ing aggregators taking into account the customer level, where the problem is how to

control loads with the purpose of offering different ancillary services to the electrical

grid.

The chapter is organized as follows. Section 2.1 introduces the Smart Grid scheme
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where the aggregators are considered, presenting the hypotheses of this framework.

In Section 2.2, ancillary services are explained based on its time response. Section 2.3

presents the aggregator design criteria that can be applied to flexible loads. Finally,

Section 2.4 formulates the proposed methodology for loads aggregation.

2.1 Smart Grid Approach

A general Smart Grid scheme with power generation and demand is shown in Fig-

ure 2.1. This Smart Grid can be evaluated in three elements: Generation, Demand,

and an Aggregation system. First, on the generation side, conventional and renew-

able energies are included. It is assumed the energy networks and its communications

are ideal, i.e., there are no energy losses in the distribution system nor problems from

latency or distance in the communication. Indeed, these issues can be minimized for

example by considering that generation and demand are close to each other. There-

fore, both sources send their available energy generation to a System Operator (SO),

particularly to a Distribution System Operator (DSO), which tries to maintain the en-

ergy balance in the electrical grid. Moreover, this system is not only in charge of col-

lecting the total generation information but also the inflexible demand requirements.

Second, on the demand side, flexible and inflexible loads are located. Third, the Ag-

gregation system aims to control the demand consumption of the flexible loads, with

the purpose of providing ancillary services and fulfilling the SO requirements. This

system has a Hierarchical Architecture Structure (HAS), in which there is a central

allocator (High Logic Coordinator - HLC) entrusted of assigning energy services to

the different linked aggregators (see Chapter 7). Therefore, the Aggregation system is

located in the middle of generation and demand.

In this dissertation, Photo-Voltaic (PV) integration is taken into account as a re-

newable source, but, with the possibility to extend later the results to wind energy

or another green source. Moreover, several flexible loads studied in section 1.1 such

as Water Booster Pressure Systems (WBPS) (see Chapter 3), ThermoElectric Refriger-

ation (TER) units (see Chapter 4), and Electric Vehicles (EV) chargers (see Chapter 5)

are evaluated. Flexible loads can be controlled by smart meters that are associated

with them (Siano, 2014). This framework considers devices like power, temperature,

pressure and radiation meters, EV chargers, among others. It is assumed that these

monitoring systems have no operating nor communication problems. Then, Aggre-

gators take advantage of these smart meters to control and monitor each flexible load

consumption, according to the SO requirements and the variability reported from the
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FIGURE 2.1: Aggregators for flexible loads.

PV generation. In addition, it is assumed that the operational decisions of the Aggre-

gation system are purely technical. The economic variables, such as energy prices or

market biddings, are given as inputs.

Besides, on account of the particularities on flexible loads such as dynamics, com-

munications protocols, and hardware, the response times scales between them are

different, leading each load to offer a specific energy service. For example, WBPSs are

able to respond in less than 10 min (see subsection 3.2.2), TERs can respond in seconds

(see subsection 4.2.1), and EV chargers have a few-minute response (see Section 5.2).

Therefore, each Aggregator is capable of providing an ancillary service to the grid,

given the possibility to define different consumption schedules in the flexible loads.

The following section explains ancillary services.

2.2 Ancillary Services

Security problems emerge due to the imbalance between load and generation in power

systems, for example, large frequency deviations can make the system collapse. Hence,

in order to avoid system instabilities, DR programs can deliver ancillary services for

the SO (Siano, 2014). SO and regulatory authorities of different countries have defined

diverse specifications and standards for the energy services required in their systems.
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Nevertheless, the aim is always the same: the safe, secure and reliable operation of

the power grid (Pandurangan et al., 2012). These services are provided depending

on the component that unbalances the system (Hao et al., 2015a). In consideration

of the system needs in terms of operating requirements, ancillary services can be di-

vided into four main categories: stability control, voltage control, system restart, and

frequency control. However, load flexibility is only suitable for providing frequency

control (Carreiro et al., 2017). In (Lund et al., 2015), grid ancillary services are divided

into four categories based on their response time, as,

- Very short duration: milliseconds to 5 min.

- Short duration: 5 min to 1 h.

- Intermediate duration: 1 h to 3 days.

- Long duration: several months.

2.2.1 North America

Ancillary services are usually classified according to the time-scale in which they re-

spond, controlling mechanisms that rule their coordination, and type of event they

must respond to. According to (González et al., 2014), the Federal Energy Regulatory

Commission (FERC) definitions of reserves applied in North America are:

• Regulation: This service can be provided by units that respond, varying their

power production, within 15 - 30 seconds for fast changes in frequency (Baccino

et al., 2014). Regulation services can be provided only by on-line units (Kirschen

and Strbac, 2004). They are controlled by an Automatic Generation Control

(AGC). In North America, markets like PJM (Forward Market Operations, 2017)

and New-England (ISO New England Inc, 2006) call this service Frequency Reg-

ulation. Power delivery in this service should last between 10 and 15 min-

utes (Kirby, 2004).

• Spinning reserve: This service is any backup energy production capacity, syn-

chronized to the grid, that can be made available to a transmission system im-

mediately in order to restore the generation and load balance in the event of a

contingency, and once on-line, can operate continuously for a period of time es-

tablished by the local system operator (Kirby et al., 2008). Units must be fully

on-line within 10 minutes to provide this service. Besides, this service should be

maintained for at least 105 minutes.
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• Non-spinning reserve: It is any backup energy production capacity that can be

made available to a transmission system in the event of a contingency, similar to

spinning reserve. The difference is that non-spinning reserve does not require

the permanent synchronization of the unit to the grid, but rapid start up and

total availability must be guaranteed within 10 min. Moreover, spinning reserve

is more valuable economically for the SO, because it is usually worth 2 to 8 times

as much as a non-spinning reserve on an annual average basis (Kirby et al., 2008).

Besides, this service should be maintained for at least 105 minutes (Kirby, 2004).

• Replacement reserve: This service is used to substitute the faster and more expen-

sive reserves so as to reduce regulating cost, it must be supplied within 30 min at

the latest. Besides, this service should be maintained for four hours (Kara et al.,

2014).

Balance problems can be handled by DR initiatives in the energy consuming sec-

tors. In (Haeri et al., 2014), winter DR achievable potential is estimated for each sector

during peak periods, obtaining 130 MW for the residential, 78 MW for the commercial

and 4 MW for the industrial sector in the Puget Sound region of the Northwest United

States. Moreover, in order to solve balance problems, these sectors take advantage of

several flexible loads that can provide energy services to the grid.

2.2.2 Europe

The SOs in Europe use different processes and products to balance the system and

restore the frequency. In this sense, the Commission Regulation (EU) 2017/2195 of

23 November 2017 (The European Commission, 2017) sets up the requirements for

the technical parameters of standard products in order to facilitate the exchange of

balancing energy across borders.

The standard structure is presented in Figure 2.2. The preparation period is the

time required to receive the signal and activate the service. Then, there is a ramp-up

period, followed by the delivery period, and finally the ramp-down period. The re-

quest for the ramp-down period is not specified in the current versions of the rules.

Indicatively, the ramp-down period can be similar to the full activation time. The tech-

nical parameters of the standard structure are aligned with operational flexibility indi-

cators presented in studies such as (Makarov et al., 2009) and (Ulbig and Andersson,

2015), where the defined metrics are the power provision capacity, power ramp-rate

capacity, and ramp duration. Notice that these indicators can be obtained with the

information in Figure 2.2.
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FIGURE 2.2: Standard structure of balancing services provision.

Considering the guideline on electricity balancing, presented by the Commission

Regulation (The European Commission, 2017), the balancing energy services in Eu-

rope are organised as:

• Frequency Containment Reserves (FCR): The active power reserves available to

contain system frequency after the occurrence of an imbalance. During the ramp-

up period, it requires the delivery of 50% of the reserve within 15 s, and 100%

within 30 s. The FCR rules also specify that this delivery should be sustained for

15 min. In addition, the FCR must have automatic activation (European Com-

mission, 2017).

• Frequency Restoration Reserves (FRR): The active power reserves available to re-

store system frequency to the set point and, for a synchronous area consist-

ing of more than one load-frequency control area, to restore power balance to

the scheduled value. The standard FRR can by activated manually (ENTSO-E,

2018a)1 or automatically (ENTSO-E, 2018b)1; the full activation time for the first

one shall be 12.5 min, while for the second is 5 min. Moreover, for both FRR

services, the delivery should be for 15 min.

• Replacement Reserves (RR): The active power reserves available to restore or sup-

port the required level of FRR to be prepared for possible additional system im-

balances. The full activation time of the RR service is 30 min, considering the

preparation and the ramp-up periods from 0 to 30 min. Moreover, the duration

of the delivery period is between 15 min and 60 min; whereas, the activation of

the service is scheduled with manual activation (ENTSO-E, 2018c)1.
1At the current stage, the specifications referring to FRR and RR are still under development. Techni-

cal characteristics have to be considered as the ones currently available on the official ENTSO-E website.
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Figure 2.3 depicts how the balancing services are deployed in case of a grid imbal-

ance. Then, the use of these services is divided into four steps, i.e., the services FCR,

aFRR, mFRR, and RR. The figure presents the idealized case, where all the services are

synchronized for providing a constant energy consumption. Besides, it is shown the

timings of the services after a disturbance in the frequency. Then, the first response

is given automatically by the FCR; to release the FCR, aFRR is activated (when neces-

sary). Later, to release the aFRR, mFRR is activated; finally, RR activation is performed.
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12.5 min
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FIGURE 2.3: Balancing market processes for frequency restoration.

These balancing services are actions that the SO continuously takes to ensure the

system frequency as well as the compliance with the reserve amount needed. There-

fore, the SO function is to ensure that demand and supply remain balanced by operat-

ing the system close to real-time. Figure 2.4 presents the electricity market sequence.

Then, the balancing market considers three main actors, i) the SO, ii) the Balancing Ser-

vice Provider (BSP), and iii) the Balancing Responsible Party (BRP). The BRP submit

the energy schedule to the SO, reporting the planned generation and consumption,

as well as the computation of the Imbalance Settlement Period (ISP). Moreover, the

BSP (i.e., the aggregator), submits the balancing service to the SO; whereas, the SO is

responsible for resolving the power imbalances within the ISP by activating the BSP

service. The ISP time frame is generally 15 min.
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FIGURE 2.4: Electricity markets sequence and its participants.
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2.2.3 Colombia

According to (CREG, 2018) the current Colombian ancillary services are:

• Primary regulation reserve: It is provided by the generators capable to have an

immediate response; then, the full activation time is up to 10 s, and the duration

of the delivery period should be at least 30 s.

• Secondary regulation reserve: It is provided by the spinning reserve of generators

able to respond in 30 s (full activation time). The duration of the delivery period

should be at least 30 min. This reserve is used by the Automatic Generation Con-

trol (AGC) for injecting or reducing power to arrive at the nominal frequency.

• Additional reserves: In normal conditions, they are used to restore the secondary

reserve. These reserves can be classified in sub-reserves such as hot reserve,

operative reserve, or cold reserve.

Moreover, the energy Colombian market is moving into a more international ap-

proach, considering the following categories in the ancillary services:

• Primary regulation reserve: The full activation time is 10 s and must start before

5 s. The duration of the delivery period should be 5 min. The service activation

is automatic.

• Secondary regulation reserve: The full activation time is 5 min and should start

before 10 s. The duration of the delivery period is 15 min. The service activation

could be automatic or manual.

• Tertiary regulation reserve: The full activation time is 5 min. The duration of the

delivery period is 2 h. The service activation could be automatic or manual.

Moreover, the Additional reserves such as spinning reserve, operative reserves,

and cold reserves (activation time is 15 min) are managed in the tertiary regula-

tion reserve.

2.3 Aggregator Design

The Aggregation system (i.e, the HAS) in Figure 2.1 is in constant communication with

the SO through a Central Allocator that receives the generated power information BT.

Additionally, this Aggregation system gets information on the PV generation uncer-

tainty PVv. The Aggregation system includes the aggregators, i.e., the flexible load ag-

gregators. They are designed to manage the consumption of each flexible load (cases
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of study). Then, the Central Allocator seeks to distribute the ancillary services into

the flexible loads’ aggregators, depending on each response time scale of the loads.

For instance, the allocator assigns the frequency containment reserve and frequency

restoration reserve (very short duration) as well as replacement reserves (intermedi-

ate duration) services to the TERs aggregator (see subsection 4.2.2), and the spinning

reserve service (short duration) to the WBPSs (see Section 3.3) and EV chargers (see

subsections 5.3.2 and 5.3.3) aggregators. Thus, depending on the SO request, the cen-

tral allocator sends the request to the suitable flexible load aggregator. Furthermore,

the Aggregation system can participate in Day-Ahead (DA) (see Section 6.3) and Real-

Time (RT) (see Section 6.4) markets.

Aggregator plays fundamental role in taking advantage of the end-consumption,

by creating customized, automated controls for consumer loads and appliances that

enable remote access, while taking into consideration preferences and behavioural

patterns. In (Ikäheimo et al., 2010), an aggregator is defined as ”a company who acts

as an intermediator between electricity end-users, who provide distributed energy resources,

and those power system participants who wish to exploit these services”. There are other

definitions that can be restricted or expanded depending on regulations that define

the roles and activities that aggregators can perform.

In order to develop the Aggregation system, each flexible load aggregator is car-

ried out independently. Note that each one is built in a centralized structure, but,

the loads are distributed. Moreover, aggregators look to guarantee the service time,

avoiding the rebound effect, minimize the exchangeable information with the loads,

among others. Then, the Aggregator design process considers:

Signal to be controlled. It depends on the model dynamics. Then, a control signal

identification in the flexible load that allows manipulating the power consump-

tion is necessary, without affecting significantly the load operation.

Service to be provided. The aim is to provide an ancillary service to the SO. The ser-

vice type is determined by the load response time and is delivered when the SO

requires it.

Bilateral communication with the SO. The Aggregator not only offers the flexibility

capacity the load has over a period of time, but also the required demand power

prediction. Then, the SO informs on generation capacity limits, and guidelines

to perform the ancillary service.
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Bilateral communication with the flexible load. The Aggregator is entrusted with loads

consumption management, i.e., each load consumes at every time slot as the

controller decides. Therefore, each load provides its state information to the Ag-

gregator with the purpose of delivering the correct control action.

Market Information. For example, the time-variant energy prices.

This aggregator design process can be applied to several flexible loads and can be

developed through classical and optimal control strategies. For instance, first, a WBPS

aggregator that modifies the amount of energy consumed by a set of WBPSs is studied

in order to follow a SO reference power signal. It can be developed by modifying the

pressure set-point, which is performed in each system with a binary signal (see Chap-

ter 3). Second, a TER aggregator able to reduce and increase the power consumption

of a set of TERs is assessed. The power consumption can be managed by changing the

temperature set-point state, which considers three-states (see Chapter 4). Third, an EV

charger controller is evaluated by considering different charging power trajectories for

the EVs connected to the station. It can be carried out with an optimal control strategy

that maximizes the flexibility capacity and minimizes the station operating costs (see

chapters 5 and 6).

2.4 Load Aggregation Methodology

The proposed methodology is developed in four phases, going from an individual

load analysis to a complex system of aggregators assessment.

2.4.1 Flexible load modelling

In order to develop models of flexible loads, some general characteristics should be

evaluated:

1. A state of the art review of the currently proposed load models.

2. An identification of a manipulable variable that has the possibility to modify the

power consumption of the load is required.

3. A setup of the modification limits that the variable can reach, with the aim of not

modifying significantly the load operation.

4. An evaluation for understanding if the load can increase and decrease its elec-

trical demand.
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Therefore, case studies of flexible loads are evaluated. First, WBPSs are mod-

elled considering the pressure in the tank and the centrifugal pump switching (see

the model in Section 3.1). Second, the TER model takes into account the internal

temperature (see the model in subsection 4.1.1). Third, taking into consideration an

EV charging station, EV chargers dynamics are modelled (see the model in subsec-

tion 5.1.2).

2.4.2 Flexibility analysis

Once the flexible load model is developed, the following features should be analysed

for defining the ancillary service.

1. The load response time in front of modifications in the variable parameter.

2. The time the load can keep the modification of power consumption.

3. The power capacity and periods of time the load can modify its consumption.

Therefore, WBPSs and EV chargers are able to provide the spinning reserve service,

and TERs can offer the frequency containment reserve and balancing services.

2.4.3 Flexible load aggregator design

Note that, due to the different types of flexible loads dynamics, different control strate-

gies are needed. They are developed considering classical and optimal controller tech-

niques. Then, with the purpose of designing each aggregator, considerations of Sec-

tion 2.3 are followed.

Regarding the case study, several flexible load aggregators are taken into account.

For example, the WBPS power consumption can be controlled by changing the normal

operating tank pressure set-point. Therefore, a Gain-scheduled Proportional Integral

(PI) controller is developed for following a reference signal provided by the SO (see

subsection 3.3.2). Moreover, TER power consumption can be controlled by modifying

the operating internal temperature set-point. Hence, a PI and sequential controller are

proposed for fulfilling the power SO requirements (see subsection 4.2.2). Another in-

stance, EV chargers can be controlled by applying optimal control techniques. Then,

an Model Predictive Control (MPC) strategy can handle the power delivered by charg-

ers of a station to the connected EVs, compensating uncertainties originating from

PV generation fluctuations (see Section 6.4) and price variations (see subsections 5.3.2

and 5.3.3).
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2.4.4 Evaluation of the proposed aggregator by simulation

With the purpose of assessing and validating the flexible loads controllers, simulations

of each one are developed in MATLAB® software and Simulink tool.

The application of this methodology is aimed at the Bogotá, Colombia conditions.

Then, the EV taxis, buildings and weather characteristics of Bogotá are considered,

analysing the solar variability based on historical data (see section 6.2).

In addition, the WBPSs aggregator considers water flow measures as an input ac-

quired in a Bogotá university building (see subsection 3.1.1). The aggregator simu-

lation is carried out by considering a set of WBPSs with different parameters of tank

volume, pump capacity and water flow demanded. Moreover, the TERs aggregator

considers disturbances that were characterized by an experimental test. The simu-

lated PI controller used for managing the temperature in each TER is validated in a

real TER (see subsection 4.1.5). The TER aggregator simulation is developed by taking

into account a set of TERs with different thermal resistances and capacities, ambient

temperature, and disturbances. Besides, in the EV chargers aggregator, the EV arrival

state of charge uncertainty is analysed (see subsection 5.4.1), and a Monte Carlo anal-

ysis is performed to evaluate operation costs and savings (see subsection 5.4.3).

Finally, aggregators are validated by simulations fulfilling the response time and

the power capacity variation requested by the SO.

2.5 Remarks

In this Chapter, a framework for flexible loads has been proposed, allowing to develop

aggregators for diverse types of loads. Then, the aggregator design parameters are

presented.

Moreover, a load aggregation methodology is proposed, assessing the load charac-

teristics and the load flexibility for defining the ancillary service, the flexible load can

provide. The application of this methodology is presented in the following chapters.

Notice that the Aggregation system or hierarchical architecture structure can add

flexible load aggregators without affecting the operation of the other aggregators. As

future work, this structure can be improved by developing strategies not only for bid-

ding in the ancillary services market but also for defining the services remuneration.

This approach leads to a new perspective for aggregating loads with a clearly de-

fined structure, as well as the research in aggregating aggregators with low communi-

cation parameters.
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Chapter 3

Modelling and Control of Water

Booster Pressure Systems

In this chapter, a Water Booster Pressure System (WBPS) is modelled and controlled as

a flexible load. This system is responsible of supplying water and maintaining pres-

sure in a building pipeline. The operation of the pump and tank are directly related

to the building water consumption, thereby, a control system is required to satisfy the

variable water demand. When the operating pressure is decreased, it generates a re-

duction in power consumption and in water pressure for the users, especially on the

higher floors of the building. This work aims at modifying the system operating pres-

sure, not cutting the water supply in the building or stopping the WBPS operation,

limiting the discomfort caused to the consumers.

The chapter is organized as follows. Section 3.1 describes the model of the system,

taking into account the centrifugal pump and the pressure tank, for later being imple-

mented in a simulation. Section 3.2 explains the flexibility that a WBPS can have in

power consumption and also defines the energy service that the system can provide.

Section 3.3 shows the proposed aggregation architecture, its aim is to respond to a

request of power consumption reduction, sent by the SO. The results of this Chapter

were derived in the publications (Diaz et al., 2017a,b).

3.1 System model

In order to determine the potential of a Water Booster Pressure System (WBPS) for use

as flexible load, a model that can reproduce its dynamics is built. This section presents

a model of a WBPS settled and validated with experimental data. It begins explaining

the general operation of the system, then the model is proposed and compared with
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experimental data. Table 3.1 summarizes the nomenclature and units of the system

variables.

Figure 3.1 shows a WBPS. The system stores energy in the tank as compressed air

with the purpose of guaranteeing a minimal pressure in all the pipelines and taps of

the building. The system acts supplying water from the reservoir to the tank by the

centrifugal pump, compressing the air and increasing the pressure. Then, water with

high pressure flows to the hydraulic network.

The model of a WBPS can be split into two sub-systems. These elements are the

pressure tank and the centrifugal pump, the actuator driving the pump is an asyn-

chronous motor. In the model development, electric transients generated during the

motor start and stop are not considered due to their reduced duration and energy

consumption.

Reservoir

Centrifugal
pump

Pressure
switch

pmax

pmin

Qin

QTa

Net
Qout

Pressure
tank

Air

Water

FIGURE 3.1: Water Booster Pressure System (WBPS).

The following equations describe the dynamics of the WBPS:

9Vf ptq � QTaptq � Qinptq �Qoutptq (3.1)

pairptq � pppr � paq
VT

VT �Vf ptq
� pa (3.2)

PCpptq �
ppairptq � paq �Qinptq

cuη
(3.3)
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TABLE 3.1: Nomenclature and units of the WBPS system variables.

Symbol Variable Units
VT Tank volume l
Vf Water volume in the tank l
pair Tank air pressure bar
pmin Lower pressure limit bar
pmax Upper pressure limit bar
ppr Pre-load pressure in the tank bar
pa Atmospheric pressure bar
ptap Minimum pressure in the tap bar
Qin Centrifugal pump actual flow l/s
QCp Centrifugal pump nominal flow l/s
QTa Pressure tank flow l/s
Qout Hydraulic network flow l/s
PCp Power consumed by the pump kW
η Electric pump efficiency %
cu Scaling factor -
∆t Controller sampling time s
Ts Registered sample time s
T Controller sample time min
AQCp Activates the water flow rate -
ρ Water density kg/m3

g Gravity m/s2

h Building height m
r Reference signal kW
e Error signal kWh
β Number of systems that should enable the flexibility -
ET Total energy demand kWh
PT Total power kW
Pai Power in the WBPS i kW
y Power reduction of the set of WBPSs kW
n Amount of systems -
CPI Control action -
kp Proportional controller constant -
ki Integral controller constant -
α0, α1 First-order constants -
γ0, γ1 First-order constants -
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Eq. (3.1) follows from water mass conservation in the tank. Eq. (3.2) is given by

the Ideal Gas Law, assuming constant air temperature and mass. Eq. (3.3) is the power

delivered by the pump, assuming zero head and no pressure drop in the pipes. cu is a

scaling factor for obtaining PCpptq in kW.

Flow Qin depends on the system state and, in most existing systems, it is regu-

lated by an ON/OFF control law with hysteresis, following Eq. (3.4), where ∆t is the

controller sampling time and k P Z is the discrete time variable.

Qinpk∆tq �

$''''''&''''''%

QCp i f pairpk∆tq ¤ pmin

Qinppk� 1q∆tq i f pmin   pairpk∆tq   pmax

0 i f pairpk∆tq ¥ pmax

(3.4)

The upper limit pmax is bounded by the safe operating conditions of the piping

system, while pmin must allow to serve the highest points in the building, i.e.,

pmin ¡ ρgh� ptap (3.5)

where ptap is the minimum pressure in the tap, h is the height of the building, g is the

gravitational constant and ρ is the water density.

3.1.1 Experimental data acquisition

In order to adjust and validate the WBPS model described in the previous subsection,

experimental measurements were recorded in a 6-floor building with a single WBPS,

with a tank of 200 l fed by a 1.5 kW centrifugal pump. This is a university building of

labs and offices that is open to the public twenty-four hours a day. There are around

200 people staying in it at working hours, i.e., arriving between 7:00 and 9:00, and

departing between 16:00 and 18:00. Additionally, there is a variable number of stu-

dents (around 600 people at any moment) going in and out through a day. The main

end-uses of water are toilets, kitchens, and laboratories.

With the purpose of knowing the WBPS behaviour on a normal day, PCp was mea-

sured as the electric power absorbed by the centrifugal pump, Qout was registered by

an ultrasonic flow sensor, pmin and pmax were extracted from the ON/OFF controller.

The sample time is Ts�10 s. Table 3.2 shows the parameters of the system. Figure 3.2

shows equipments installation for the data acquisition, in which the red boxes exhibit
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how PCp was measured, and in the yellow ones Qout. Experimental data were mea-

sured on February 26 of 2015.

TABLE 3.2: Parameters of the WBPS employed in the experiments.

Symbol Value Units
VT 200 l

pmin 1.52 bar
pmax 2.90 bar
pa 0.75 bar

FIGURE 3.2: Power and Flow Measurement in the pump room.

In Figure 3.3a, the measured water flow Qout is shown. It is noted that the highest

water consumption occurs between 9:00 and 12:30, and between 15:30 and 21:00. Be-

sides, the total daily water consumption was 4.812 l. Figure 3.3b, shows the measured

PCp, where the energy consumed during the day was 1,086 kWh. Note that power con-

sumption is synchronized with water demand. For this system, the potential energy

service could be performed in those periods of high consumption, being particularly

useful between hours 15:30 and 21:00, where the electric system has the peak demand.

3.1.2 Simulation and experimental validation

The model parameters η and ppr are estimated by minimizing the mean squared er-

ror between measured and simulated power consumption. The system simulation is

performed in MATLAB® R2019a using Simulink on a computer with a Intel® Core i7-

7700HQ, CPU 2.80 GHz, 16 GB of RAM, and running Windows® 10 64-bit operating
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FIGURE 3.3: Experimental measurements in a WBPS.

system. In Figure 3.4, it is shown the general block diagram of the WBPS. The Cen-

trifugal Pump block is simulated by using the SimHydraulics toolbox. Water is sup-

plied by a reservoir. It has a Pressurized Tank that fulfils Eq. (3.2), simulated with

a Gas-Charged Accumulator model. The power demanded by the pump is computed

in the olive-coloured block following Eq. (3.3). It has an ON/OFF controller that

fulfils Eq. (3.4). The Flow Supply block is in charge of activating the water flow rate

(AQCp). In the diagram, blue signals refer to water flow and black signals refer to elec-

tric signals. In the simulation PCp is the output, Qout is the input, and pmin and pmax

are parameters. The experimental data measured from hours 15:30 to 17:00 are used

for parameter tuning. This time interval is selected because it shows high activity in

power consumption. The water consumption in this interval is 1.197 l, that is 26% of

the daily demand.

The power consumed by the actual pump and by the simulated model are com-

pared as validation criterion. Figure 3.5 shows the tank pressure behaviour. It is ob-

served that the pressure keeps under pmax. However, there are some intervals where

the pressure drops below pmin. This results from the fact that at some points the water

feed is not enough to supply both the demand and the pressurized tank. Figure 3.6

shows the power consumed by the actual pump in blue and power predicted by the

simulated model in red. In the figure, it can be seen that in the actual data, the pump

switches 19 times while in the model it commutes 20 times. Likewise, it can be seen
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FIGURE 3.4: General block diagram of the WBPS.

that there is a match in many switching moments between the model and the experi-

mental data. The shift between the signals can be caused by differences in the initial

conditions in the pressurized tank. Moreover, energy consumption on the interval is

148.6 Wh, in which the pump is ON 29 minutes 20 seconds, while in the simulation the

consumption is 145 Wh, with the pump ON during 30 minutes. In this case, energy

error is 2.42%. The difference in the power consumption can be explained by consider-

ing that the model does not take into account losses on pipes, electric transients, wear

of equipment, among other factors.
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FIGURE 3.5: Simulated WBPS tank pressure.

Finally, the WBPS is simulated for a twenty-four hours interval, obtaining an en-

ergy demand of 1.072 kWh, in which the pump is ON 2 hours 13 minutes 40 seconds,

while the actual system presented a requirement of 1.086 kWh consumed in 2 hours 18

minutes 10 seconds. Thus, the energy consumption error is 1.11%. It can be concluded

that the model is suitable to represent the system.
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FIGURE 3.6: Power consumed by the actual and simulated pump.

3.2 Flexibility of the Water Booster Pressure System

In this section the flexibility of WBPSs is evaluated. The aim is to reduce power con-

sumption while keeping the system running all the time. Water pressure is reduced,

affecting the users comfort, but it is guaranteed that the flow is never stopped. Given

that water consumption is variable, different levels of water demand are analysed.

The next questions explore the flexibility problem.

• How would the power consumption be altered by varying pressure limits pmin

and pmax?

• How much time does the system require to achieve equilibrium after a pressure

set point change?

• According to the energy services usually employed by power systems operators,

which service can a WBPS provide?

In order to address these questions, the average stored energy in the tank is altered

by changing the pressure set point. Two sets of simulations are performed. The first

one seeks to evaluate the model performance and flexibility in terms of power con-

sumption. The second one seeks to define the kind of ancillary service that the WBPS

can provide, analysing distinct energy services and their characteristics.

3.2.1 Evaluating the model

In the first set of simulations, power consumption and commutation frequency are

evaluated for different combinations of the parameters pmin and pmax. Table 3.3 shows

the evaluated pressure limits, where normal and max values are the most common

typical pressure ranges used in the tanks (IHM S.A., 2002), the min values are the
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minimum supported in commercial systems, and medium A and B are medium val-

ues. Then, twenty-five conditions are evaluated considering all the possible combi-

nations between the values of pmin and pmax presented in Table 3.3. For each com-

bination, scenarios with constant consumption flow Qout are analysed. Then, high

(1.8 l/s), medium (0.7 l/s) or low (0.2 l/s) consumption is considered for residential

buildings (Bastidas, 2009).

TABLE 3.3: Pressure limits evaluated in the flexibility analysis.

Pressure (bar)
Variable Min Medium A Normal Medium B Max
pmin 1.31 1.41 1.52 1.85 2.21
pmax 2.41 2.65 2.90 3.25 3.59

Figure 3.7 shows three surfaces of average power consumption for constant output

flow, corresponding to the considered values of Qout (high, medium and low), these

are seen from top to bottom, respectively. The different operating points are obtained

combining the pressure limits shown in Table 3.3. It is concluded that if both pmin and

pmax are reduced, the power consumption also reduces. Furthermore, it can be seen

that the system is more sensitive to pmin variations. Likewise, slopes are greater for

the curves between pmin�1.31 bar and pmin�1.52 bar. On the other hand, slopes are

higher for the curve between pmax�3.25 bar and pmax�3.59 bar when Qout is high.
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FIGURE 3.7: Power consumption for different pressure limits and out-
put flow.

Figure 3.8 shows the centrifugal pump switching frequency. It is noted that when

the difference between the limits is higher than 1 bar, the changes in switching fre-

quency are negligible. Otherwise, when the gap is lower than 1 bar the switching
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frequency rises abruptly. This observation sets a limit to the possible set point varia-

tions. High switching frequencies reduce lifetime and can damage the system.
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FIGURE 3.8: Switching frequency for different pressure limits and out-
put flow.

3.2.2 Settling time

The second set of simulations seeks to evaluate the response time to a change in the

pressure set point. A total of 125 simulations are performed for different values of

the parameters VT, QCp and Qout, selected randomly within the intervals shown in

Table 3.4. Those intervals for VT and QCp have been defined based on a review of ex-

isting system specifications; while, Qout values are taken according to (Bastidas, 2009),

the selected values are for medium and high water consumption demands. Notice

that the selected values for VT, QCp and Qout remain constant in each simulation. The

difference between pmin and pmax is kept fixed at 1 bar and the pressure set point is

reduced from 2.7 bar (i.e., pmin�2.2 bar and pmax�3.2 bar) to 1.8 bar (i.e., pmin�1.3 bar

and pmax�2.3 bar). The simulation evaluates the time taken for each WBPS to start

cycling again after the set point change.

TABLE 3.4: Intervals of model parameters for the settling time evalua-
tion.

Variable Minimum Maximum Units
VT 200 500 l

QCp 2.52 5.68 l/s
Qout 0.7 1.8 l/s



3.2. Flexibility of the Water Booster Pressure System 37

Results are summarized in Figure 3.9. It shows a histogram of the number of sys-

tems that start cycling again when a given time interval after the set point change

has elapsed. It can be observed that approximately 70% of the systems are delayed

less than 540 seconds (9 minutes) for cycling again, while a 20% lasts more than 1500

seconds (25 minutes).

FIGURE 3.9: Histogram of the time elapsed for cycling again after a set
point change.

3.2.3 Energy services

In Subsection 2.2, demand response and ancillary services are presented. This sub-

section shows that WBPSs can provide spinning reserve services, given the flexibility

evaluation exposed in the previous subsection. Likewise, regarding Colombian ancil-

lary services, the WBPS can provide a tertiary regulation reserve.

Taking into account the WBPSs response time in Figure 3.9, it is not possible to

locate the WBPSs in a fast regulation service, due to the impossibility to change power

consumption within seconds. However, WBPSs can provide Spinning reserve ser-

vices, considering that, in front of a set-point change, 70% of the systems stabilize in

less than 10 minutes and the power consumption is reduced while the set-point is kept

low, see Figure 3.9. Moreover, WBPSs might provide Non-spinning reserve services;

nevertheless, spinning reserve is more valuable economically for the SO, because it is

usually worth 2 to 8 times as much as a non-spinning reserve on an annual average

basis (Kirby et al., 2008). Then, in this work spinning reserve is selected for the remain-

ing results. Finally, WBPSs might provide replacement reserve services; nevertheless,

spinning reserve is more valuable economically for the SO, because it is usually worth
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2 to 20 times as much as a replacement reserve on an annual average basis (Kirby et al.,

2008). Then, in this work Spinning reserve is selected for the remaining results.

3.2.4 Capacity and operation conditions

After selecting Spinning Reserve as the service to be provided by the WBPSs, it is

shown how the operating conditions of the WBPSs are managed to offer the selected

energy service, guaranteeing a minimum quality of service and avoiding system dam-

age. Also, the average reduction in power consumption is evaluated.

It is required to define adequate pressure limits (pmin,CP and pmax,CP) for the set

point change applied to the system when the SO calls for a reserve service. Normal

operation pressures pmin,ON and pmax,ON are standard levels for a 6-floor building, as

shown in Table 3.5.

The lower limit pmin,CP is selected satisfying Eq. (3.5), where the height of the build-

ing is h�18 m, and considering ptap�0.55 bar, according to (International Code Coun-

cil, 2008), thus pmin,CP ¡ 2.32 bar. A pressure limit pmin,CP�2.52 bar is selected, guar-

anteeing ptap,CP�0.75 bar in static conditions, i.e., a reduction of 25% with respect to

the normal operation pressure ptap,ON�0.99 bar. This pressure reduction impacts the

users comfort in the higher floors. However, the water supply does not stop in any

moment. The selection of pmax,CP is done by limiting the pump switching frequency

to 52 cycles per hour, i.e., doubling the normal operation frequency when the highest

water flow demand remains constant in an hour. Higher frequencies can cause heating

and deterioration of the insulation of the motor, reducing its lifespan (Venkataraman

et al., 2005). Moreover, the time the centrifugal pump motor will stay on will be lower

after the set-point change; and, the time the motor will stay off will be higher than the

time staying on. Then, it is supposed there will be no overheating in the motor. No-

tice that the set-point change will last 1 hour maximum (spinning reserve full delivery

period). Table 3.5 summarizes the selected pressure limits.

TABLE 3.5: Defined pressure variables for offering spinning reserve ser-
vices.

Parameter Value [bar]
pmin,ON 2.76
pmin,CP 2.52
pmax,ON 4.14
pmax,CP 3.02
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Finally, the average reduction in power consumption when the pressure limits are

modified according to Table 3.5 is evaluated. It is calculated the average power con-

sumption during one hour with the standard limits (pmin,ON and pmax,ON). Then, it is

calculated the average power for the next hour, when the set point changes to pmin,CP

and pmax,CP. Finally, the difference is calculated. In this test, the average power reduc-

tion is 27%.

3.3 Control system for power reduction

This section proposes an architecture to offer Spinning Reserve services with a set

of WBPS, through an aggregator that synchronizes the pressure set-point variations

among the systems.

In order to reduce the power consumption in a set of WBPSs, taking advantage of

the flexibility found in the previous section, an automatic control strategy is proposed.

The aggregator (Controller) is designed to respond to a SO requirement, assuming

there is a signed contract with defined prices between the SO and the aggregator in

order to provide spinning reserve service. Also, the amount and characteristics of the

WBPS enrolled in the demand response program are fixed and known in advance.

Figure 3.10 shows the block diagram of the system.
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FIGURE 3.10: Block diagram of the aggregator control system.

For this strategy, the SO sends a reduction signal r in kW to the aggregator. Also,

the time to carry out the reduction and the time to restore the system to normal opera-

tion are informed, i.e., the schedule of the DR plan is notified. The aggregator follows

a feedback control action every sampling time, that allows to follow the SO command

and handle the uncertainty caused by the random behaviour of each system, e.g., con-

sumption level or model parameters. The blocks of Figure 3.10 are explained below.

The PLANT block models the power reduction achieved by all the systems par-

ticipating in the DR plan. The CONTROL block decides how many systems should



40 Chapter 3. Modelling and Control of Water Booster Pressure Systems

perform a pressure set-point reduction to accomplish the power curtailment requested

by the SO. The control signal β represents the number of systems whose flexibility is

activated and is determined by the CONTROL block, according to the evolution of

the error e between the SO command r and the measured power reduction y. For this

control loop, the variables are:

• Controlled variable: y, power reduction of the set of WBPSs.

• Manipulated variable: β, number of systems that should enable or disable the

flexibility to maintain power reduction. It is a number between 0 and N, where

N is the number of systems participating in the DR program.

• Reference signal: r, power reduction sent by the system operator.

The CONTROL block is formed by two control actions. The first one is a discrete-

time Proportional-Integral (PI) Controller with a low-pass filter. It is operated when

the DR plan is active. It is responsible for enabling and maintaining flexibility to meet

the requested power reduction. It is designed to respond in an appropriate time for

spinning reserve services. This discrete control action has a sampling time of T�3

minutes because a faster control is unnecessary given the response characteristics of

the WBPS. The second control action, Recovery, is responsible for disabling flexibil-

ity at the time when the DR plan finishes. This control action is designed to avoid

overshoots when the pressure set-points are restored to the original settings.

In the PLANT block each WBPS ai is commanded by a binary input signal that

enables or disables the DR plan. Furthermore, each subsystem delivers as output the

power Pai that is being consumed. Hence, the total power PT is given by:

PT �
Ņ

i�1

Pai (3.6)

which is used to calculate the energy demand ET for each interval of length T. The

average power PT in the interval is:

PT �
ET

T
(3.7)

Thus, PT goes into the sub-block Power reduction calculation and, if the DR plan is

active, the average power of the last 3 minutes is subtracted from the average power

consumed before activating the DR plan. The resulting power reduction is the con-

trolled variable y.



3.3. Control system for power reduction 41

3.3.1 Controller Tuning

In this subsection, a simulation is performed with a set of N�100 WBPSs representing

100 buildings. This amount of WBPSs is selected considering a trade-off between the

computational effort and a reasonable systems aggregation, i.e., a feasible simulation

with a number of systems that are able to reduce the individual effect in the complete

aggregation performance. In these buildings, VT, QCp and Qout are variables generated

randomly within the intervals shown in Table 3.4; furthermore, these generated values

remain constant at each building along the entire simulation horizon. The sample time

is 1 s. Then, plant models are estimated and a controllers are derived. In order to assess

the automatic control behaviour, two simulations are performed for different r.

In order to tune the controller parameters, it is analysed how the plant reacts to an

open loop step command, activating 100 or 50 WBPSs. Simulations are performed for

a 3-hour interval. β is formed as a pulse signal. First, it remains at β�0 for one hour (it

allows to establish the power consumption before activating the DR plan), then it rises

to βmax�100 or βmax�50 (here the power reduction is carried out). Finally, during the

last hour, the DR plan is deactivated (β�0) and the WBPSs return to normal operation.

Figure 3.11 and Figure 3.12 shows in blue the power reduction response with

βmax�100 or βmax�50, respectively. Recall that this simulation is performed in open

loop, without control. Two transfer functions are estimated to model the dynamics of

the plant, i.e., to explain the behaviour of PT. These are first-order, minimum phase

systems are considered as:

G100psq �
10.21s� 0.039

45s� 1
(3.8)

G50psq �
24.8s� 0.039

18.3s� 1
(3.9)

Their response are shown as red lines in Figure 3.11 and Figure 3.12. It is ob-

served that the estimated models share the same DC gain, while the transient be-

haviour changes, the response for βmax�50 is faster than for βmax�100.

A controller is designed to eliminate the overshoot effect of the plant and to sta-

bilize the system in less than 9 minutes. A PI controller is selected as a common but

effective solution. The controller is designed with the criteria of eliminating the over-

shoot and guaranteeing an settling time of less than 8 minutes. The controllers are

discretised with a sample rate of 3 minutes. Eq. (3.10) and Eq. (3.11) show the transfer
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FIGURE 3.12: Plant and Model response to a pulse input with βmax�50.

function of the designed controllers.

C100pzq � 1.948� 0.224 �
2
T

z� 1
z� 1

(3.10)

C50pzq � 14.341� 0.085 �
2
T

z� 1
z� 1

(3.11)

The closed-loop behaviour of the system is evaluated with the following experi-

ment: a reduction schedule is sent to the controller with a DR plan defined by a start

time after one hour of operation, finish time after two hours and a reduction signal r .

Figure 3.13a shows the power reduction response with r�3.90 kW. It is shown that

the controlled variable y reaches the set-point in three sample times (9 minutes) and

oscillates around r, between 3.41 kW and 4.44 kW, with standard deviation σ�0.304

kW. Note that the signal does not exhibit overshoot either at the beginning or finishing

the service. However, fluctuations are inevitable because WBPSs are regulated by

ON/OFF controllers. Finally, the average consumed power is 3.93 kW, quite similar

to r.

Figure 3.13b shows the number of systems that are called to active flexibility in

the DR plan. It is shown that the controller enables the flexibility of 85 WBPSs in 9

minutes and disables the flexibility of all WBPSs 15 minutes after ending the service
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time. Additionally, the aggregator does not enable all WBPSs in the first sample time,

but it increases the number of active systems smoothly, in order to avoid an overshoot

in power reduction. Note also that the aggregator knows in advance the beginning of

the service period one sample time before it starts. Then, the time elapsed between the

call of the SO and the stabilization of the power reduction is 12 minutes, complying

with the requirements of a spinning reserve service.
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(A) Power reduction achieved by the WBPSs.
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FIGURE 3.13: Response of the PI aggregator in 3 hours tes for
r�3.90 kW.

In Figure 3.14a, it is shown the power reduction response with r � 1.95 kW. It

is shown that the controlled signal y reaches the set-point in two sample times and

shows a standard deviation of σ � 0.305 kW that varies between 2.58 kW and 1.43 kW.

In Figure 3.14b, it is shown the number of systems that are called to activate flexibility

in the DR plan, and those who are disabled after the plan. It is shown that the con-

troller enables the flexibility of 38 WBPSs in 6 minutes and varies between 46 and 54

active systems.

Figure 3.15 and Figure 3.16 show the power consumption of the set of WBPSs

throughout the test with r � 3.90 kW and r � 1.95 kW, respectively. In both figures,

it is observed that the power reduction meets the spinning reserve service require-

ments. Besides, for r � 3.90 kW it is shown that in 3 minutes the power consumption
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FIGURE 3.14: Response of the PI aggregator in 3 hours test for
r�1.95 kW.

is reduced to 4.44 kW, while for r � 1.95 kW in 6 minutes the power consumption is

reduced to 1.88 kW. Table 3.6 reports the average power consumption per hour. The

tracking error of the aggregator strategy is adequate to offer spinning reserve services.

Table 3.7 shows the standard deviation of the consumption around the average power.

Note that the variability is lower during the second hour when the DR service is ac-

tive. Finally, it can be seen that the time taken in the recuperation, i.e., at the beginning

of the third hour, is 9 minutes for r � 3.90 kW and 3 minutes for r � 1.95 kW.

TABLE 3.6: Average power reductions

r First hour average Second hour average Error
3.90 kW 15.47 kW 11.54 kW 0.77 %
1.95 kW 15.47 kW 13.54 kW 1.03 %

TABLE 3.7: Power standard deviation.

r First hour σ Second hour σ Third hour σ

3.90 kW 0.559 kW 0.294 kW 0.777 kW
1.95 kW 0.581 kW 0.304 kW 0.408 kW
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FIGURE 3.15: Power consumption during the three hours test for
r�3.90 kW.
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FIGURE 3.16: Power consumption during the three hours test for
r�1.95 kW.

3.3.2 Gain-Scheduled Aggregator

In this Subsection, a Gain-Scheduled (GS) controller is proposed allowing the aggre-

gator to follow time-varying reduction signals requested by the SO. Simulations are

performed with the same setting and parameters of the previous subsection 3.3.1.

The controllers obtained in the previous subsection were tuned to maintain a re-

duction of r�3.90 kW or r�1.95 kW. However, when the reduction signal has different

amplitudes, the response of the plant varies. Then, for each power reduction level, it

is required to estimate a new process model (see Eq. (3.8) and Eq. (3.9)) and a new PI

controller (see Eq. (3.10) and Eq. (3.11)). Therefore, a GS PI controller is designed with

the purpose of obtaining time-varying controller parameters. A GS control strategy

is formed by multiple locally tuned generalized PI algorithms (Veselý and Ilka, 2013;

Rodriguez Martinez et al., 2011). In this case, r�1, 0 kW, r�2, 0 kW, r�3.0 kW and

r�3.9 kW were used, obtaining the parameters shown in Table 3.8.
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TABLE 3.8: Gain-scheduled PI Controller parameters.

r kp ki

1.0 kW 19.002 0.071

2.0 kW 14.041 0.085

3.0 kW 11.978 0.092

3.9 kW 1.948 0.224

The GS aggregator is evaluated in a 10 hours test, with a reduction signal changing

every hour as reported in the first column of Table 3.9. The simulation run time is 1 h

25 min per tested hour, this is owing to the dynamics of all WBPSs (the GS aggregator

solution for each tested hour is developed in few run time seconds). Figure 3.17a

shows in red the requested reduction send by the SO and the consumed power in blue.

Figure 3.17b shows the number of systems that are called to active flexibility in the DR

plan. It is shown how the GS controller responds to the SO request, sending a proper

enabling signal to a subset of WBPSs and reaching the power reduction in less than 9

minutes for all the set-point changes, meeting the spinning reserve requirements.

Table 3.9 summarizes the results. Note that the average power consumption de-

viates less than 1% for any reduction level. The standard deviation σ of the reduced

power is lower than the oscillation exhibited by the set of WBPSs in normal opera-

tion, reported in Table 3.7. The last column of Table 3.9 shows the ratio between σ and

the requested reduction. It can be concluded that when enabling a higher number of

buildings in the DR plan the tracking error decreases. Moreover, for a small r the ratio

is higher than 40%. Therefore, if more buildings join in the DR plan, the variability in

the tracking would be reduced.

Finally, notice that this WBPS aggregator can operate with any number of WBPSs

(with any centrifugal pump and tank configuration). The pressure set-point change

in the tank can be different among the systems, because the aggregator only consid-

ers a flexibility activation/deactivation parameter. Moreover, the GS controller only

needs a recalculation of the PI controller parameters. Then, a technical resource such

as smart meters is needed in order to acquire the aggregated power behaviour. This

information will lead to identifying the new WBPS set response for computing the

new parameter of the PI controller (with a step response). The identification and pa-

rameters computation can be developed by an adaptive controller. The number of

systems N in the service is needed for knowing the controller saturation.



3.3. Control system for power reduction 47

1 2 3 4 5 6 7 8 9 10
Time [h]

10

12

14

16

18

P
ow

er
 [k

W
]

(A) Power reduction achieved by the WBPSs.
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FIGURE 3.17: Gain-scheduled aggregator tracking test.

TABLE 3.9: Performance of the GS aggregator during the tracking test.

r Power set-point Average Power Error σ σ/r

0.0 kW 15.48 kW 15.48 kW 0.00 % 0.591 kW -

1.0 kW 14.48 kW 14.47 kW 0.08 % 0.435 kW 43.5%

2.0 kW 13.48 kW 13.44 kW 0.29 % 0.352 kW 17.6 %

3.9 kW 11.58 kW 11.67 kW -0.78 % 0.382 kW 9.8 %

3.0 kW 12.48 kW 12.52 kW -0.28 % 0.468 kW 9.3 %

2.0 kW 13.48 kW 13.55 kW -0.51 % 0.499 kW 25.0 %

1.0 kW 14.48 kW 14.50 kW 0.11 % 0.451 kW 45.1 %

3.9 kW 11.58 kW 11.68 kW -0.86 % 0.498 kW 12.7 %

3.0 kW 12.48 kW 12.43 kW 0.46 % 0.330 kW 11.0 %

0.0 kW 15.48 kW 15.48 kW 0.00 % 0.388 kW -
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3.4 Findings

In this chapter, an aggregator for WBPSs has been proposed, capable of offering spin-

ning reserve services in a demand response plan. An automatic control system per-

forms the demand response decisions with the aim of tracking a reduction signal sent

by the system operator. The strategy showed an error lower than 1% in the average

power reduction.

A dynamic model of the WBPS was estimated. The model was developed from

first-principle laws and tuned with real data. The energy consumption error between

the experimental data and the model was 1.11% for a twenty-four hours data set.

The system flexibility in power consumption was evaluated by changing the op-

eration pressure set-point. The analysis evidenced that a pressure set point change

can reduce a 27% of the normal power consumption of the system. Besides, from the

evaluation of the response time, it was found that a set of WBPS can provide spinning

reserve services.

The WBPSs are low energy consumption systems able to provide a slight power

reduction in an electrical grid. However, this power deviation is useful for a balancing

service provider that can apply reserves from different aggregators.

Future work will be addressed in the experimental implementation evaluation

considering synchronization and communication requirements. Besides, quantifying

the discomfort caused to the users could improve the aggregator performance. Last

but not least collect real data for understanding the energy needed over a day and de-

sign a strategy to bid in the ancillary service market, as well as the creation of proper

contracts to motivate customers to participate in the balancing service.

This WBPS research leads to assess different water pumping systems as flexible

loads, e.g., by considering hot water in the systems. In addition, the viability of the real

power deviation that a smart city can provide can be analysed considering different

WBPS settings.
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Chapter 4

Control System for a

ThermoElectric Refrigeration Unit

This chapter addresses the ThermoElectric Refrigerator (TER) unit, as a very flexible

load included in an electrical demand management system. The TER is a solid-state

energy conversion technology that exploits the Peltier effect to convert electricity into

thermal energy for heating or cooling, commonly used in commercial and residen-

tial sectors (Ponds et al., 2018). This chapter proposes an aggregation strategy for

TER loads that could provide balancing services such as frequency containment re-

serve, frequency restoration reserve or replacement reserve to the electrical grid. First,

a detailed model of the energy consumption dynamics of a TER is presented. The

model is able to reproduce experimental temperature data with an error lower than

1�C also in transient conditions. Then, based on the evaluation of the power demand

response of a set of heterogeneous TERs under temperature set-point changes, a mod-

ified PID temperature controller is proposed and it is determined that the TERs can

offer balancing services to the grid, responding in less than 30 seconds to any power

deviation command and sustaining the modified consumption for up to 15 minutes in

the frequency containment and restoration reserves services, and up to 1 hour in the

replacement reserve service, without overshoots, rebounds, or synchronization prob-

lems. Finally, an aggregation strategy with reduced communication requirements is

formulated and the capability of following power requests from the system operator

is verified by extensive simulations.

The sections of this chapter are organized as follows. Section 4.1 presents the struc-

ture, the proposed model and its validation through experimental data as well as an

experimental evaluation of classical control strategies applied to a small size TER is

analysed. In Section 4.2, a TERs aggregator is proposed, considering the flexibility
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a set of TERs can provide. The results of this Chapter were derived in the publica-

tions (Enescu et al., 2018; Diaz-Londono et al., 2019b, 2020a).

4.1 ThermoElectric Refrigeration Unit

A TER unit is composed of the ThermoElectric Cooler (TEC) device (an insulated cab-

inet with temperature lower than the ambient temperature), the heat exchangers at

each side of the TEC device, and one or more electric fans. The fans force the air-flow

over the dissipator inside and outside the cabinet, as shown in Figure 4.1.

The TEC module is composed of the union of some
thermoelectric elements of N- and P- type. The thermoelectric
elements are connected thermally in parallel, to ensure that
one side of the TEC is hot while the other is cold when the
TEC is supplied. The thermoelectric elements are electrically
connected in series through copper strips, to enable the electric
current flowing through their legs. Furthermore, the thermo-
electric elements are sandwiched between two ceramic plates
of aluminium oxide, which isolate the TEC electrically from
both heat exchangers.
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Figure 1. Schematic of the TER unit.

The cold side of the TEC is located within the interior
compartment, while the hot side is located on the outer part of
the TER. The thermoelectric compartment is insulated, with
insulation having a variable thickness which depends on the
TER capacity. The interior heat exchanger, made of aluminium
finned heat sink, is attached to the cold side of the TEC. This
heat exchanger is useful to transfer the cooling effect from the
cold side of the TEC to the thermoelectric compartment [16].
The electric fan installed on the cold heat sink is useful
to provide forced convection for circulating cold air inside
the compartment. This fan makes the temperature decreasing
within the selected range [14].

The heat exchanger outside the TER is installed on the hot
side of the TEC module being useful to dissipate the heat from
the hot side of TEC into the environment. The finned heat sink
is the most conventional heat exchanger, but sometimes it is
not powerful enough to obtain the desired performance. Other
types of heat exchangers used at the hot side of TEC are heat
pipe and water–air [17]. A fan is installed at the hot side, is
useful to control the air flowing through the fins of this heat
dissipator. During the TER operation, an external DC power
source supplies the TEC system. Heat is pumped from one

side of the TEC to the side through charge carriers (electrons
or holes) when a DC electric current supplies the TEC. In
this time, the hot heat exchanger warms up, and the cold heat
exchanger cools down, and the heat is transferred against the
temperature gradient with consumption of electrical energy.

A. TER model

In order to determine the potential of a TER for use it
as flexible load, a model that can reproduce its dynamics
is built. This subsection presents a model of a TER and
the characterization methodology for calculating the TER
parameters through experimental data. Table I summarizes the
nomenclature and units of the system variables.

Table I
NOTATION OF THE TER VARIABLES.

Name Symbol Units
Electric power consumed by the TER P W
Peltier electric current Ip A
Seebeck coefficient α V/◦C
Peltier thermal conductance Kp W/◦C
Peltier electrical resistance Rp Ω
Outer thermal resistance Rout W/◦C
Thermal TER resistance RTR W/◦C
Thermal disturbance resistance Rdis W/◦C

Heat flow rate rejected by the TEC Q̇h W

Heat flow rate absorbed by the TEC Q̇c W
Hot side temperature of TEC Th

◦C
Cold side temperature of TEC Tc ◦C
Outer thermal capacity Cout J/◦C
Thermal TER capacitance CTR J/◦C
Thermal capacity at the cold side Cc J/◦C
Thermal capacity at the hot side Ch J/◦C
Ambient temperature Tamb

◦C
Voltage supply Vin V
Downward time constant τc s
Upward time constant τh s

The thermal scheme of a Peltier device is shown in Figure 2.

−

+

Th

+

−

Tc

Qh Qc
1/Kp

αThIp I2pRp αTcIp

Ch Cc

Figure 2. Thermal Peltier scheme.

The heat flow absorbed by the TEC, i.e., Qc is :

Qc = αTcIp −
1

2
I2pRp +Kp(Tc − Th) (1)

The heat flow rejected by the TEC, i.e., Qh is:

Qh = −αThIp −
1

2
I2pRp +Kp(Th − Tc) (2)

The electrical scheme of a Peltier device is shown in
Figure 3.

FIGURE 4.1: Schematic of the TER unit.

The TEC module is composed of the union of some thermoelectric elements of N-

and P-type. The thermoelectric elements are thermally connected in parallel, to ensure

that one side of the TEC is hot while the other is cold when the TEC is supplied. The

thermoelectric elements are electrically connected in series through copper strips, to

enable the electric current flowing through their legs. Furthermore, the thermoelec-

tric elements are sandwiched between two ceramic plates of aluminium oxide, which

isolate the TEC electrically from both heat exchangers.

The cold side of the TEC is located within the interior compartment, while the hot

side is located on the outer part of the TER. The thermoelectric compartment is in-

sulated, with insulation having a variable thickness depending on the TER capacity.

The interior heat exchanger, made of aluminium finned heat sink, is attached to the

cold side of the TEC. This heat exchanger is useful to transfer the cooling effect from
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the cold side of the TEC to the thermoelectric compartment (Astrain et al., 2012). The

electric fan installed on the cold heat sink is useful to provide forced convection for cir-

culating cold air inside the compartment. This fan makes the temperature decreasing

within the selected range (Söylemez et al., 2018).

The heat exchanger outside the TER is installed on the hot side of the TEC mod-

ule being useful to dissipate the heat from the hot side of TEC into the environment.

The finned heat sink is the most conventional heat exchanger, but sometimes it is not

powerful enough to obtain the desired performance. Other types of heat exchangers

used at the hot side of TEC are heat pipe and water–air (Astrain et al., 2016). A fan

is installed at the hot side, it is useful to control the air flowing through the fins of

this heat dissipator. During the TER operation, an external DC power source supplies

the TEC system. Heat is pumped from one side of the TEC to the other side through

charge carriers (electrons or holes) when a DC electric current supplies the TEC. In this

time, the hot heat exchanger warms up, and the cold heat exchanger cools down, and

the heat is transferred against the temperature gradient with consumption of electrical

energy.

4.1.1 TER model

In order to determine the TER potential as a flexible load, a model that can reproduce

its dynamics is built. This subsection presents a model of a TER which afterwards is

used in the characterization methodology for evaluating the TER parameters through

experimental data. Table 5.1 summarizes the nomenclature and units of the system

variables.

Regarding the TEC module, the thermal operation model considered is presented

in Eq. (4.1) and Eq. (4.2). This model has been used previously in (Jugsujinda et al.,

2011; Zhao and Tan, 2014; He et al., 2017). A heat flow rate 9Qc is absorbed by the TEC,

as shown in Eq. (4.1), whereas a heat flow rate 9Qh is delivered from the TEC module

to the hot side sink, with magnitude given by Eq. (4.2).

9Qc � αTc Ip �
1
2

I2
pRp � Kp∆T, (4.1)

9Qh � αTh Ip �
1
2

I2
pRp � Kp∆T, (4.2)

where ∆T�Th � Tc.

Note that the heat flows depend on the electric current Ip, flowing through the

module and the temperature of both plates, Tc and Th.
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TABLE 4.1: Notation of the TER variables.

Variable Symbol Units
Electric power of the TER P W
TEC module electric current Ip A
Seebeck coefficient α V{K
TEC module thermal conductance Kp W{K
TEC module electrical resistance Rp Ω
Outer thermal resistance Rout W{K
Thermal TER resistance RTR W{K
Thermal disturbance resistance Rd W{K
Heat flow rate rejected by the TEC 9Qh W
Heat flow rate absorbed by the TEC 9Qc W
Hot side temperature of TEC Th

�C
Cold side temperature of TEC Tc

�C
Ambient temperature Tamb

�C
Outer thermal capacity Cout J{K
Thermal TER capacitance CTR J{K
Voltage supply Vin V
Downward time constant τc s
Upward time constant τh s

Figure 4.2 shows a scheme of the electrical behaviour of the TEC module. Note

that the consumed electric power is:

P � Vin Ip, (4.3)

while the current Ip is determined by the difference between the input voltage Vin and

the Seebeck effect voltage Vα by considering the Peltier electrical resistance Rp:

Vin �Vα � IpRp. (4.4)

��Vin

Rp

�
� Vα�α∆T

Ip

FIGURE 4.2: Electrical TEC module scheme.

The equivalent scheme of a TER is shown in Figure 4.3. In the scheme, the am-

bient temperature Tamb is a (possibly time-variant) parameter. The TER considers the
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internal compartment as a volume with temperature Tc and capacitance CTR, isolated

from the ambient temperature through a resistance RTR, which represents the equiva-

lent quantities for the internal parts of the TER (e.g. cold heat sink, cold extender, and

insulated walls). The TEC module extracts heat from it at a rate 9Qc. Capacitance Cd

and resistance Rd model the loads inside the TER (e.g. bottles of water or food stored),

which are controlled by the switch s. The outer environment of the TER, formed by

the external plate and the heat sink is modelled as a mass with temperature Th and ca-

pacitance Cout. It receives a heat flow 9Qh from the TEC module while dissipates heat

to the the ambient through a thermal resistance Rout.

��Tamb

Rout

Cout CTR

s

Rd

Cd

RTR

�� Tamb

�

�

Th

9Qh

�

�

Tc

9Qc

TEC
module

Ip ThermoElectric Refrigerator

FIGURE 4.3: Equivalent scheme of a TER unit.

The dynamics of the cold Tcpkq and hot Thpkq temperatures of the TER are given by

Eq. (4.5) and Eq. (4.6), respectively, where k is the discrete time slot. Notice that the

switch s is assumed open in these energy balances.

Tcpkq �
Tambpk�1q � Tcpk�1q

CTRRTR
�

9Qcpk�1q
CTR

(4.5)

Thpkq �
Tambpk�1q � Thpk�1q

CoutRout
�

9Qhpk�1q
Cout

(4.6)

4.1.2 Experimental data

In order to estimate the parameters of the TER model described previously (see Fig-

ure 4.3), experimental measures were recorded in a commercial TER. Figure 4.4 presents

the actual TER unit used in this work.

A TER, originally supplied by the AC grid, has been tested. The TER has a width

of 0.42 m, a length of 0.42 m, and a height of 0.50 m. The internal capacity of the

device is 42 l, and contains an insulation compartment with the bottom and upper

thickness of 0.06 m, while the lateral thickness is 0.04 m. The device has two air fans:
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FIGURE 4.4: Actual TER used in the study.

the first is inside, while the external one is mounted on the rear side of the appliance

on the heat sink. The unit has a rated power of 50 W at a rated voltage of 230 V

(50 Hz) (Enescu et al., 2017). The original internal electronic board, containing the

AC/DC converter and the control system is disconnected and the TER is supplied by

a controllable AC/DC supply.

In Figure 4.5, the current-voltage characteristic of the TER load is shown. The

curve is obtained varying the supply voltage and measuring by using two calibrated

Fluke 189 multimeter (red line) for voltage and current, respectively; and also by the

data acquisition system (dashed-blue line) inside the control system. Current and volt-

age measurements obtained from the data acquisition system are validated by com-

paring them with measurements delivered by the commercial multimeters. The Fluke

has a 0.025% accuracy in the voltage measurement, while it has 1.5% for the current.
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FIGURE 4.5: Current - Voltage curve of the TEC

In Figure 4.6, both voltage and current measures are shown with the multimeter

and the sensors implemented. Then, it is calculated the Mean-Squared Error (MSE)

for the current (MSEc) and voltage (MSEv) measures, obtaining MSEc=0.0073 and

MSEv=0.0477, which are acceptable errors for our purpose.

Figure 4.7 shows the block diagram of the hardware implementation and its com-

ponents for measuring and controlling the TER. In the block diagram, it is shown that
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FIGURE 4.6: Current and voltage sensors validation

the electrical grid delivers power to an AC/DC converter, which is implemented by

an adjustable DC power supply that can deliver 5 A and 30 V. However, it is fixed

in 12 V and feeds an adjustable analog DC/DC converter. The DC/DC converter is

the actuator capable of regulating the voltage delivered to the TER. The converter can

operate maximum at 5 A and regulate the output voltage between 0 V and 32 V. More-

over, a current sensor SC is installed to measure the TER power consumption. The SC

is a Hall-effect current sensor ACS714, its maximum current flow is 5 A which corre-

sponds to 5 V in the output, and has a sensitivity of 185 mV/A. Furthermore, a resistor

divider SV is used for measuring the voltage delivered to the TER. Both measures SC

and SV are sent to Analog Digital Converters (ADC) of a Data logger. In addition, Tc

and Th temperatures of the TER are measured with DHT22 sensors, STc and STh , respec-

tively. Both measures are sent to Digital inputs of the controller. All the information

arriving at the controller is sent to a computer with Simulink by serial communication.

Depending on the measures and on the control action implemented in Simulink, a dif-

ferent Pulse-Width Modulation (PWM) signal is delivered to the PWM driver. Finally,

the driver delivers an analog voltage to the DC/DC converter.

Figure 4.8 shows the implementation. It can be seen the back side of the TER, the

computer with Simulink, and two power supplies, one as the AC/DC converter and

the other for supplying the fans (internal and external).

Moreover, the letters in the figure depict the elements as:

A. DC/DC converter.

B. Current sensor SC.

C. Data logger.

D. PWM Driver.

E. Resistor divider SV .
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FIGURE 4.7: Block diagram of the implementation.

F. External temperature sensor STh .

G. Internal temperature sensor STc .

With the purpose to characterize the TER response, Vin and Ip were measured for

computing the electric power P absorbed by the TER. Moreover, temperatures Tc, Th

and Tamb were registered with thermistor-type temperature sensors. The sample time

is 1 s. It is highlighted that the measurements were carried out in a temperature con-

trolled chamber. Then, Tamb is the same in all measurement time. There were acquired

three different measurements with different input conditions i.e., three experiments,

where:

• Experiment 1: by applying 10.68 V;

• Experiment 2, by applying 8.64 V;

• Experiment 3, by applying 6.56 V.

For each experiment, the test started when Tc�Th�Tamb, and Vin�0 (hence, Ip�0).

Then, after one minute, Vin was set to the voltage defined in the experiment (1, 2, or 3).

This voltage was kept for 4 h, that is the time required for Tc to reach equilibrium; after

that, the voltage supply is turned off and the data acquisition continued for 5 more

hours, enough time for achieving Tc�Tamb again. Figure 4.9a shows the behaviour of

Tc, Th, and Tamb for the three experiments. In Figure 4.9b, current Ip and voltage Vin

are reported.
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FIGURE 4.8: Hardware implementation.
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FIGURE 4.9: Measurements for Experiment 1, 2 and 3.
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4.1.3 TER parameters characterization

This subsection shows the methodology employed to obtain the TER parameters α, Kp,

Rp, RTR, CTR, Rout, and Cout (see Figures 4.2 and 4.3). It is worth noting that the values

of the parameters change depending on the TER under test; however, the procedure

presented below can be applied as it is to any other TER. The parameters are calculated

in three steps, as detailed in the following.

Step 1. Electrical parameters

The first step aims to obtain α and Rp from the experimental data of the three ex-

periments. The Seebeck voltage can be obtained by cutting off the current Ip and

measuring instantaneously the residual voltage, i.e.:

Vα � Vin |Ip�0 . (4.7)

Then, the Seebeck parameter α is determined as:

α �
Vα

∆T
. (4.8)

Finally, considering only the electrical part of the TEC module, the module electri-

cal resistance can be computed as:

Rp �
Vin � α∆T

Ip
(4.9)

Figure 4.10 shows the Seebeck voltages Vα for the experiments when Vin is turned

off (after 4 h in Figure 4.9b). The purple asterisks (*) plotted on the curves represent

the TEC voltage measurements one step after switching Vin off.
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FIGURE 4.10: Experimental Vα.
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Table 4.2 presents the resulting values for Vα and ∆T, aiming to compute α in each

experiment; while the computed Rp takes into account Vin, Ip, and ∆T and is obtained

as a mean value. It is noticed that Rp and α are consistent for the three experiments.

TABLE 4.2: Experimental values of Vα and ∆T, and computed values
for α and Rp.

Experiment Vα [V] ∆T [�C] α [V{K] Rp [Ω]
1 1.98 25.8 0.0766 2.55
2 1.76 22.8 0.0773 2.54
3 1.46 18.3 0.0798 2.50

Mean value 0.0779 2.53

Step 2. Interior compartment thermal parameters

The second step aims to calculate the parameter Kp, CTR, and RTR through an op-

timization problem minimizing the Root Mean Squared Error (RMSE) between the

measured temperature T̃c and the temperature Tc predicted by the model for the given

voltage Vin and external plate temperature Th.

The following equation reports the proposed optimization problem formulated to

estimate the set of parameters:

min
Kp,CTR,RTR

J̧

j�1

Ņ

k�1

�
Tc,jpkq � T̃c,jpkq

�2 (4.10a)

s.t. Tc,jpkq � f
�

Tc,jpk�1q, Tambpk�1q, 9Qc,jpk�1q; Kp, CTR, RTR

	
(4.10b)

τc,min ¤ CTRRTR ¤ τc,max (4.10c)

0   Kp, CTR, RTR (4.10d)

where J�3 is the number of the experiments, j refers to the considered experiment (i.e.,

j�t1, 2, 3u), and N refers to the experiment data length (i.e., N�32, 400 s equivalent to

9 h, as shown in Figure 4.9).

The dynamic constraint in Eq. (4.10b) corresponds to the dynamic behaviour of

Tc, where fp�q is defined as the right hand side of Eq. (4.5), evaluated using the mea-

surements of Ip, Th and Tamb for each experiment, while Rp and α are the mean values

of the estimates for the 3 experiments in Table 4.2. The lower and upper bounds of

the non-linear constraint (Eq. (4.10c)) are the minimum and maximum expected time

constants of Tc when the system is cooling down, i.e., τc,min�1179 s and τc,max�2506 s.

The optimization problem is solved in MATLAB®, by using the Sequential Quadratic
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Programming solver fmincon function. The optimal parameters are shown in Table 4.3.

Note that the non-linear constraint is fulfilled, obtaining τc�CTRRTR�2282 s.

TABLE 4.3: Optimal values for the TER parameters.

Parameter Value Units
Kp 0.134 W{K

CTR 6300 J{K
RTR 0.362 W{K
Cout 4500 J{K
Rout 0.072 W{K

Step 3. External equivalent model parameters

In order to calculate the outer plate thermal parameters Cout and Rout, the following

optimization problem is formulated:

min
Cout,Rout

J̧

j�1

Ņ

k�1

�
Th,jpkq � T̃h,jpkq

�2 (4.11a)

s.t. Th,jpkq � f
�

Th,jpk�1q, Tambpk�1q, 9Qh,jpk�1q; Cout, Rout

	
(4.11b)

τh,min ¤ CoutRout ¤ τh,max (4.11c)

0   Cout, Rout (4.11d)

The aim is to obtain the values of Cout and Rout that minimize the RMSE between

the modelled Th and the experimental T̃h temperatures. This problem is developed

with the same structure of the problem in Eq. (4.10). Constraint Eq. (4.11b) corre-

sponds to the dynamic behaviour of Th, where fp�q is defined as the right hand side

of Eq. (4.6). However, Kp is a known parameter and Tc is taken from the TER ex-

perimental measurements. Moreover, τh,min�267 s and τh,max�564 s. the resulting

parameters are shown in Table 4.3. The non-linear constraint is fulfilled, obtaining

τh�CoutRout�323 s.

4.1.4 Model validation

In order to validate the proposed model, simulations with all the obtained parameters

are developed and compared with the experimental data. Figure 4.11 shows the Tc

and Th responses of the model for the three experiments.
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FIGURE 4.11: Temperature validation for the experiments.

Table 4.4 reports the characterization of the error of the estimated model for Tc and

Th. The RMSE and Maximum Absolute Error (MAXAE) are reported. Notice that the

RMSE is lower than 1�C, also considering transient conditions for the inner temper-

ature and lower than 0.4�C for the external temperature. The maximum deviation is

observed for Tc at the beginning of the tests, when Tc is above 10�C, out of the op-

eration range. It can be seen from Figure 4.11 that there is no systematic bias in the

model output along all the experiments. It can be concluded that the model is suitable

to properly represent the system for consumption analysis and control design.

TABLE 4.4: Error measures for the TER model.

Exp
Tc Th

RMSE [�C] MAXAE [�C] RMSE [�C] MAXAE [�C]

1 0.92 3.3 0.38 0.8

2 0.86 3.4 0.33 0.7

3 0.94 2.9 0.36 0.7

Mean 0.91 - 0.35 -

4.1.5 Experimental TER controller

This subsection presents an experimental evaluation of a Proportional-Integral (PI)

and Proportional-Integral-Derivative (PID) control strategies applied to the TER pre-

sented in the previous section. In these control strategies, the power consumption is

continuous, offering the possibility to have the flexibility for increasing or reducing

the energy consumption, which is an aim of flexible loads in DR plans. Results in this

section are compared with benchmark On/Off strategy and have been published in

(Enescu et al., 2018).
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Experimental controller

To determine the PI and PID controllers, the TEC model is readjusted with tempera-

ture updated data. First, it is analysed how the plant reacts to an open-loop (without

control) input signal by applying a constant voltage of 10 V by 2 hours and 20 minutes

(equivalent to 8400 s). This is the time required for achieving the 6�C stabilization tem-

perature after an initial temperature of 26�C (as shown in Figure 4.12). However, the

settling time is 6290 s. Therefore, with the purpose of identifying the model, the Sys-

tem Identification Toolbox of MATLAB® is used. The internal temperature Tc is treated

as the system output and the injected voltage as the input. In particular, the data is

pre-processed by removing means, and taking into account the Polynomial Models tool,

an ARX (autoregressive exogenous) model is obtained. A first-order model with delay

characterizes the TER as following:

Gpsq �
�1.881

1045.4s� 1
e�12s (4.12)

Figure 4.12 depicts the internal temperature of the TER obtained by the experimen-

tal data (red line) and the identified model (dashed blue line). The model is validated

with a FIT�79.23%, which represents the similitude of the model regarding the real

data. This fit is accurate enough to design the controllers. The parameter FIT is de-

fined as,

FIT � 100�
}x� xre f }

Ns
100p%q (4.13)

where x is the test data (i.e., the identified model), xre f is the reference data (i.e., the

experimental data), and Ns is the number of samples.

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [s]

0

6

12

18

24

30
Identified model
Experimental data

FIGURE 4.12: Experimental data and Model response in open loop.

Considering the identified model, the next step is to calculate the PI and PID con-

troller that satisfy the following requirements:
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• An overshoot effect must be lower than 5%, i.e., Mp ¤ 5%, because the idea is to

keep the internal temperature inside a ±1°C hysteresis gap.

• A settling time of 3145 s, i.e., ts ¤ 3145 s, which is the 50% of the open-loop

settling time. It is calculated with an acceptable error of 2%.

• The control signal dynamic range must not exceed 2 V with a temperature change

of 1�C.

Hence, using the Control System Toolbox of MATLAB®, the PI and PID controllers

obtained for the identified model are:

CPIpsq � �1.804�
�0.00173

s
(4.14)

CPIDpsq � �0.841�
�0.01498

s
� 32.62s (4.15)

Finally, the expected closed-loop behaviour with the controller is simulated, ob-

taining for the PI controller the following parameters: Mp�0%, ts � 1210 s, and a con-

trol effort of 1.8 V; while in the PID controller the parameters are Mp�4.5%, ts�1290 s,

and a control effort of 1.2 V.

Experimental control results

In this subsection, the experimental results of the control strategies are assessed and

compared with a traditional On/Off controller. The aim is to maintain the internal

temperature set-point of the TER at 10°C.

A test of 10 hours (36000 s) per each control strategy is developed. The initial inter-

nal and external temperatures are almost the same Tc � Th � Tamb �24°C, besides, the

TER door is closed. The AC/DC supply is turned on when the test begins, likewise,

the control action starts working. The system conditions do not change for 3 hours to

achieve temperature and power stability. Then, the system is perturbed by introduc-

ing a 500 ml bottle of water at ambient temperature (24°C) inside the TER. The process

is evaluated also for the next 7 hours. The sample time of the controllers is 10 s. It is

worth highlighting that in this test the ambient temperature Tamb is not controlled but

the actual one, i.e., Tamb varies in time.

In this test, energy consumption, power P, and, Tc and Th temperatures are mea-

sured. Figure 4.13a shows the power consumed by the TER with the three strategies.

Notice that the On/Off controller is constantly switching, but, after the perturbation,

the following switchings remains longer, it means a longer power settling time. In this
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strategy the maximum power slew rate is 39.61 W achieved with current and voltage

changes of 3.88 A and 10.26 V, respectively. However, this slew rate is almost the same

in all the switching moments. In spite of the switching power of the On/Off controller,

the PI and PID controllers are significantly smoother; where the maximum power slew

rates are 4.30 W and 2.51 W, respectively, and occurs at 10830 s (3 h and 30 s), i.e., 30

s after the perturbation. This result fulfils the design voltage control effort. According

to the closed-loop simulation, it is expected to have a higher slew rate in the PI. Ta-

ble 4.5 summarizes the results, comparing energy consumption, energy savings of the

PI and PID strategies with regard to the On/Off strategy, and the maximum slew rate

of power, current and voltage.

In this test, both controllers PI and PID present a smooth and constant power

consumption, leading to a suitable performance when following renewable sources

or system operator request, given that the power profile can be modified (upper or

lower) without affecting significantly the internal temperature Tc, i.e., it can be treated

as a flexible load. Note that, with the On/Off controller this is not possible because it

can only offer upper or lower flexibility at each step, depending on the switching be-

haviour. Moreover, the PI and PID strategies save energy regarding the On/Off strat-

egy. In addition, the TER with the PI controller consumes lower energy and achieves

the highest savings.

TABLE 4.5: Consumption comparison between the PI, PID and On/Off
strategies.

Control Energy Energy Maximum slew rate
Action consumed savings ∆P ∆V ∆I
On/Off 263 Wh - 39.6 W 10.3 V 3.88 A
PI 148 Wh 43% 4.30 W 0.92 V 0.36 A
PID 161 Wh 38% 2.51 W 0.55 V 0.20 A

On the other hand, Figure 4.13b shows the Tc and Th temperatures of the TEC

during the test for each controller. As in case of power, it is shown that the On/Off

controller leads to oscillations in the temperature, achieving the lower limit 9°C but

exceeding the upper limit 11°C. To analyse the transient in the strategies, it is required

to evaluate when is achieved a constant switching frequency. Furthermore, the PI con-

troller, before achieving temperature stability has a lower overshoot than the PID; it

happens for both initial transient and disturbance response. While, the PID controller,

for both periods, achieves lowers settling times; this is due to the derivative action

in the controller. Likewise, for both controllers, overshoots are fulfilled considering



4.1. ThermoElectric Refrigeration Unit 65

0 1 2 3 4 5 6 7 8 9 10
Time [h]

0

10

20

30

40

Po
w

er
 [

W
] On/Off

PI
PID

(A) Power consumed in the test by the controllers.

0 1 2 3 4 5 6 7 8 9 10
Time [h]

7

14

21

28

35

T
em

pe
ra

tu
re

 [°
C

]

On/Off
PI
PID

(B) Internal Tc and external Th TER temperatures.

FIGURE 4.13: TER controllers responses.

the design parameter. Table 4.6 summarizes the temperature settling times and the

overshoot of the controllers.

TABLE 4.6: Temperature comparison between the strategies.

Control Temperature settling time Overshoot

Action Initial Disturbance Initial Disturbance

On/Off 4360 s 7380 s (18180 s) Not defined Not defined

PI 4210 s 2020 s (12820 s) 2.19% (9.7°C) 1.46% (9.8°C)

PID 2720 s 770 s (1157 s) 4.38% (9.4°C) 2.92% (9.6°C)

Finally, the PI and PID controllers allow modifying the power upward and down-

ward for controlling it as a flexible load. However, the PI presents lower energy con-

sumption, higher energy savings, and lower overshoot for initial transient and distur-

bance response. Therefore, the PI controller is considered for the flexibility analysis

presented in the next section.
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4.2 Flexibility and TER aggregator

Once the TER has been characterized and the PI controller has been tested in the real

device, it is shown the potential of TERs to provide ancillary services to the grid.

In this section, the flexibility in energy consumption of a set of TERs is evaluated.

Then, an aggregation strategy is proposed in order to provide balance services to the

electrical grid. It is shown that power demand of TERs can deviate from nominal

values while keeping the system in normal working conditions, by modifying the in-

ternal set-point temperature (the set-point temperature is the target value of the con-

trolled temperature that has to be maintained by the control strategy). Moreover, it

is proposed an aggregator that manipulates the set-points of a set of TERs to follow

up/down power requirements from the System Operator (SO).

4.2.1 Flexibility analysis

The analysis of the flexibility in energy consumption of a set of TERs set is performed

evaluating the following characteristics:

1. The power modification when there is a temperature set-point change.

2. The time required for the TER to achieve equilibrium after a temperature set-

point change.

3. The service that a set of TERs can provide to the electrical grid.

Hence, a set of simulations have been developed with the purpose of evaluating

these three characteristics. Power demand P, cold temperature Tc and stabilization

times are thus assessed. The simulation is performed in MATLAB® R2019a using

Simulink on a computer with a Intel® Core i7-7700HQ, CPU 2.80 GHz, 16 GB of RAM,

and running Windows® 10 64-bit operating system.

Considering the TER controlled temperature, the standard temperature set-point

used for domestic thermoelectric refrigerators is 5�C (Bansal and Martin, 2000; Min

and Rowe, 2006; Saidur et al., 2008). It must not fall below 0�C to avoid the presence

of frost inside the cabinet (Martínez et al., 2013a); and according to common standards

such as the EC Regulation 852/2004 (The European Parliament and the Council of

the European Union, 2004), the regulation of the Food Standards Agency (FSA) in

the UK (Food Standards Agency (FSA), 2016), and the Essential food safety practices

of the Food Standards Australia New Zealand (FSANZ) (Food Standards Australia

New Zealand (FSANZ), 2017), the chilled food storage inside the cabinet must not
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exceed 8�C; therefore, the TER set-point is modified to Tsp,down�2�C when a power

demand increment is required, and to Tsp,up�8�C when a power demand reduction is

requested, in order to evaluate the power modification when there is a temperature

set-point change.

The behaviour of 50 TERs is evaluated for different conditions of cold temper-

ature set-point Tc,sp, capacitance CTR, ambient temperature Tamb, and disturbances

(parametrized by s, Cd and Rd, see Figure 4.3). Each test lasts 5 h and starts with

the TER controlled in equilibrium, i.e., Tc�Tsp. In particular, Tc,sp is randomly selected

from the set t3, 4, 5, 6, 7u�C with uniform probability. Tamb is selected randomly for

each TER and for each Tamb a random walk strategy is performed by varying it within

�1�C each hour. For CTR, three TER sizes are analysed, 42 l (which was previously

assessed), 30 l and 60 l; with associated thermal capacitance of 6300 J{K, 4600 J{K, and

9300 J{K, respectively.

Regarding the disturbances, during the test each TER is perturbed with masses

(representing food) at ambient temperature. Cd and Rd are tuned to represent bottles

of water containing 0.5-1 l that can be introduced/removed from the TER up to 10

times during the simulation. Table 4.7 summarizes the range of variation for each

parameter.

TABLE 4.7: Intervals of model parameters for setting the simulations

Parameter Minimum Maximum Units
Tc,sp 3 7 �C
Tamb 18 26 �C
Cd 8000 58400 J{K
Rd 0.35 0.75 W{K

PI-controlled TER flexibility evaluation

In the first set of simulations, a temperature set-point change is executed for the 50

TERs considering the PI controller presented in the subsection 4.1.5. For example, one

TER temperature response is shown in Figure 4.15. This simulation is run two times:

• the first time it is made by changing the set-point to Tsp,down (see Figure 4.15a

green line).

• the second time it is made by changing the set-point to Tsp,up (see Figure 4.15a

blue line).
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Figure 4.15b depicts the TER power demand, for the set point changes Tsp,up and

Tsp,down. Before a set-point variation, this TER is consuming on average 16.86 W. Then,

when Tsp,up is applied, the power (blue line) reduces to 1.10 W instantaneously (i.e.,

93.5% reduction); further on, the power stabilizes after 2580 s (43 min) consuming on

average 9.89 W (i.e., 58.7% reduction). Likewise, when Tsp,down is applied, the power

(green line) increases to Pmax�38.90 W instantaneously (i.e., 230.7% increment) and

remains there for a few seconds; further on, the power stabilizes after 2640 s (44 min)

consuming on average 26.40 W (i.e., 156.6% increment). Small oscillations are ob-

served when perturbations increase/decrease the thermal capacitance of the system.

Therefore, it is noticed that changing the temperature set-point, the system can ei-

ther reduce or increase its demand instantaneously and could provide balancing ser-

vices such as FCR, FRR and RR. Likewise, regarding Colombian ancillary services, the

TER can provide primary, secondary and tertiary regulation reserves (see Section 2.2).

However, considering the results with PI controller, the duration for which the TER

maintains the power at zero or Pmax is not enough to comply with the required deliv-

ery time. Then, a modified controller is proposed to provide a reliable energy service.

Modified PI controller

The PI controller has been thus modified with the purpose of increasing the interval

length when P�0 or P�Pmax after a set-point change. Figure 4.14 shows the block

diagram of the proposed modified control strategy. A new variable β is defined to

change the set-point. It only considers three possible states for each TER:

• 0: Nominal operating set-point, i.e., Tsp,nor which is defined from the set t3, 4, 5, 6, 7u�C;

• 1: High set-point, i.e., Tsp,up�8�C;

• -1: Low set-point, i.e., Tsp,down�2�C.

Modified control
Switch

e
L & S

Alg P

f

TER Tc

Tsp

Tsp,down

Tsp,up

Tsp,nor

β

PI Controller
VinêtchAlgt

FIGURE 4.14: Modified TER control strategy.
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The Modified control block aims to saturate the controller action when a set-point

change command arrives. This modification allows the TER to achieve the new set-

point faster than with the PI controller and also maintains the power at zero or maxi-

mum power for a longer interval.

The algorithm (Algt block) identifies when a set-point change is requested, either

to reduce (β goes from 0 to 1) or increase (β goes from 0 to -1) the demand, and sat-

urates the controller output (Vin�0 to increase temperature or Vin�Vmax to reduce it)

while the TER reaches the new temperature set-point. The algorithm (L & S Alg block)

also reports if the TER already achieved the new temperature. The variable f indicates

the TER flexibility; f�1 signals to the aggregator that the system is not saturated and

has the possibility to vary power demand, while f�0 signals a saturated controller

without capacity to vary power demand. In fact, the aggregator needs f in order to

select which TERs are able to modify their temperature set-points.

A second set of simulations evaluates the flexibility of TERs with the modified

controller. The same conditions of the simulation campaign in subsection 4.2.1 are

maintained, using the modified controller architecture instead of the PI controller.

Figure 4.15a depicts the TER temperature when high (see red dashed lines) and low

(see purple dashed lines) set-point changes are applied, while Figure 4.15b shows the

power demand (see red and purple dashed lines).
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Response time analysis

The modified PI controller allows achieving P�0, as well as P�Pmax for a longer time

interval than the one related to the PI controller. By considering the power reduction

to P�0, the system can instantaneously reduce the demand by 100% and keeps this

condition for 7 min; after that, the power stabilizes at the same value obtained when

using the PI controller. This time does not fulfil the requirements for FCR provision.

Considering a power rise to P�Pmax, the system increases its demand instantaneously

by 230.7%, and keeps it for 21 min. It is worth noting that this time matches with

the requirements related to FCR and FRR service provision but not the RR service. In

order to guarantee a proper compliance of the technical requirements of the balancing

services, an aggregation strategy is introduced in section 4.2.2.

Recall that the TERs evaluated in the simulation campaigns have different param-

eters (see Table 4.7), then, their time response to a set-point change varies. The his-

tograms in Figure 4.16 illustrate this fact by reporting the number of TERs staying

at maximum/zero power for given time intervals, for both control strategies. Note

that even the same TER subject to different perturbations can stay different periods in

saturated condition.

Figure 4.16a depicts the number of TERs that remain in P�0. It is noted that with

the nominal PI controller, most of the TERs (92%) come back to consume power after 5

min or less and 8% after 5 � 10 min, whereas with the modified controller, on average

they stay longer at P � 0 but they show more dispersion, 20% of the TERs resume

their power after 0 � 5 min, 52% after 5 � 10 min, 24% after 10 � 15 min, and 4%

remain more than 15 min. In the same way, Figure 4.16b shows that with the nominal

PI controller just 18% of the TERs remains at P�Pmax for more than 15 min, whereas

with the modified controller this number increases to 68%. Notice that not all TERs

are reported in Figure 4.16b, because they remain longer than 1800 s (7 TERs for the PI

and 17 TERs for the modified PI).

Summarizing, the considered TER systems equipped with the nominal PI con-

troller cannot maintain their power at zero or Pmax for a time long enough to provide

FCR services. While, with the modified PI controller, the systems improve their abil-

ity to respond within the time frame specified for the regulation service. However,

to properly exploit the above mentioned characteristics, an aggregator is required to

synchronize the power deviations of the set by managing the temperature set-point of

each TER, providing energy services to the SO.
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(A) P � 0. (B) P � Pmax.

FIGURE 4.16: Histogram of the time elapsed consuming zero or maxi-
mum power after a set point change.

4.2.2 TER Aggregator

This subsection proposes an architecture to offer balancing services, such as FCR, FRR

and RR, with a set of TERs, through an aggregator that synchronizes the temperature

set-point changes of the TERs. An automatic control strategy is proposed in order to

reduce or increase the power demand of the set, taking advantage of the flexibility

found in the previous sections.

The aggregator is designed to respond to a SO requirement, assuming there is a

signed contract with defined prices between the SO and the aggregator in order to

provide the service. The number of TERs involved in the demand response program

is known in advance. Figure 4.17 shows the block diagram of the system, whereas

Table 4.8 presents the information exchange between the aggregator and each TER.
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FIGURE 4.17: Block diagram of the TER aggregator.
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TABLE 4.8: Information exchange between the aggregator and the TER
units.

Message
Aggregator TER unit

Variable Data type Variable Data type

Send β state 2 bits
Power P Integer

f state Boolean

When the SO makes a power deviation request (signal r), the aggregator must de-

cide how many and which TERs must activate their flexibility to achieve the requested

service and it must be performed within the established times. As the power demand

and flexibility state of each TER vary with time, it is not a trivial task to select the

subset that will offer the service. Then a feedback strategy is proposed.

The AGGREGATOR operates through two control actions, i.e., a PI controller (PIAGG)

and a TER selector. Both actions operate when a SO request arrives. The controller has

a 1 s sampling time, enough for accomplishing the system time response when pro-

viding the energy service (30 s in FCR service).

The output of the PIAGG, signal γ, is the number of TERs that must change the

set-point. A positive value indicates increasing the set-point, and a negative number

the opposite. Thus, the output is saturated between �n and n, where n is the number

of TERs participating in the service provision.

The TER selector block is developed for deciding which TERs must change set-

point to comply with the PIAGG command. This selector follows the flow chart se-

quence presented in Figure 4.18. This sequence has two main logics, one for the power

reduction request and another for the power increase. In both cases, the sequence

looks for the TERs subset that has flexibility i.e., f�1, and can change the set-point

to the value desired by the PIAGG. The output βsys contains the temperature set-point

state of all the TERs, i.e., βsys�tβ1, β2, . . . βnu.

The FLEXIBLE LOADS block represents the set of TERs and provides as output

the total electric power PT of the set. It also collects the flexibility information f of

all systems and reports the signal Flex�t f1, f2, . . . fnu to the AGGREGATOR. Notice

that the TERi blocks presented in Figure 4.17 are considering not only the TER unit

but also the modified PI controller and the switch, as depicted in Figure 4.14.

In order to calculate the PIAGG parameters, a simulation with a set of n�100 TERs

is developed. The 100 TERs are selected considering a trade-off between the compu-

tational effort and a reasonable systems aggregation, i.e., a feasible simulation with

a number of systems that are able to reduce the individual effect in the aggregation

performance. In this case, cold temperature set-point Tsp, capacitance CTR, ambient
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Input:

Ouput:

β̂sys, SOin f , γ, Flex

βsys

Variable definition:
βsys � β̂sys, c � 0

SOin f Ñ Reduce SOin f Ñ Increase

Compute c:
c � γ�

°n
i rβsyspiq � 1s

Compute c:
c � �γ�

°n
i rβsyspiq � �1s

Select c TERs with:
Flexpiq � 1 ^ βsyspiq � 1 Flexpiq � 1 ^ βsyspiq � �1

Select c TERs with:

Change the selected TERs state:
βsyspiq � β̂syspiq � 1

Change the selected TERs state:
βsyspiq � β̂syspiq � 1

FIGURE 4.18: TER Selector sequence.

temperature Tamb, and disturbances Cd and Rd are randomly generated as in the pre-

vious section.

First, the power demand of the aggregated set is analysed by modifying simultane-

ously the 100 TER temperature set-points to 1, i.e., βsys�t1, 1, . . . 1u (activating down-

ward flexibility). Secondly, it has been studied the plant (FLEXIBLE LOADS block) be-

haviour by modifying the 100 TER temperature set-points to -1, i.e., βsys�t�1, �1, . . . �1u

(activating upward flexibility). Figure 4.19 shows the plant response for both set-point

modifications.

Then, two dynamic models of the plant behaviour are estimated to represent the

upward and downward dynamics of the systems and a controller is derived. The

models are linear and time-invariant in transfer function form, Guppsq and Gdownpsq,

expressed as:

Guppsq �
25.95s2 � 0.017s� 9.3e�6

s2 � 1.1e�3s� 6.8e�7 , (4.16)

Gdownpsq �
�17.35s2 � 0.018s� 3.6e�6

s2 � 2.3e�3s� 3.7e�7 . (4.17)
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FIGURE 4.19: Models validation.

The quality of the models is measured evaluating the similitude of the models

output with the aggregated power obtained in the simulation, i.e., the FIT, defined as,

FIT � 100�
}x� xre f }

Ns
100p%q (4.18)

where x is the test data (i.e., the estimated model output), xre f is the target data (i.e.,

the simulation response), and Ns is the number of samples.

The estimated models have FITup�93% and FITdown�94%, respectively. This is

accurate enough to design the controllers.

Considering the MATLAB Control System toolbox, a PI controller that works for

both models (Guppsq and Gdownpsq) is designed to stabilize the power in less than 25 s.

The controller parameters are kpr�0 and ki�� 0.012.

The system is evaluated in several Demand Side Flexibility (DSF) plans for provid-

ing FCR, FRR and RR services, following the sequence: the SO sends to the aggregator

the power that the set of TERs must consume for the following 15 min (FCR and FRR)

or 1 hours (RR), this power can be lower or higher than the one in normal operation.

Therefore, two sets of experiments are developed for evaluating these energy services.

For all experiments, cold temperature set-point Tsp, capacitance CTR, ambient temper-

ature Tamb, and disturbances Cd and Rd are generated randomly within the intervals

in Table 4.7. The simulation run time is 1 h 21 min per experiment hour, this is ow-

ing to the dynamics of all TER models (the PI/selector aggregator solution for each

experiment hour is developed in few run time seconds).

First, in the FCR service experiments, 8 different power levels (SO requests) are

assessed. Moreover, following the FCR service specifications, the requested power

must be delivered within 30 s after the SO request, and 50% of the requested power

must be delivered within 15 s of the request arrival; while the ramp-down period must

be lower than 5 min.
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In Figure 4.20, the aggregator response for different power levels is presented. Fig-

ure 4.20a shows the deviations in the power demand following the SO requests. These

power modifications are based on the nominal operation power i.e., the set of TERs

has an average power of P�1540 W in nominal operation then, at the hour 1:00, the

SO request arrives. This power request is supposed to be 37%, 50%, 75%, 125%, 150%,

175%, 200%, and 223% of the nominal power (i.e.,1540 W being 100%). The minimum

and the maximum power requests, i.e., 37% and 223%, are found through repetitive

simulations and they are related to the condition where the entire set of TERs has been

involved in the FCR service provision (no more devices are available for further regu-

lation). Therefore, the flexibility of the set of TERs allows the SO to request any power

demand between 575 W and 3500 W for the next 15 min, i.e., the flexibility band for

offering the FCR service is 2925 W. Besides, when the FCR service has finished, the

aggregator recovers the power to the nominal one in 4 min avoiding any rebound ef-

fect, that is, there is no (positive or negative) peak in power demand at the end of the

service, during the ramp-down period or later, see e.g. (Cui et al., 2018). Notice that

this aggregator response satisfies also the delivery period of the FRR service, and the

activation period can be regulated to a longer ramp-up time in order to fit the specified

time of this service.

Figure 4.20b depicts the number of systems that are called to modify their tem-

perature set-point, either upward (βi�1) or downward (βi�� 1), i.e., the variable βsys

in each experiment. Then, at each time step, it is reported the number of TERs with

temperature state in 1 for the SO requests higher that the nominal power, and in -1 for

requests lower than the nominal power. It is shown how the aggregator responds to

the SO request, modifying properly the temperature set-points of some TERs, reach-

ing the requested power in less than 30 s and maintaining it during 15 min for all the

different power levels, meeting the FCR service requirements.

Table 4.9 summarizes the results. For each SO request (r) are reported the aver-

age power effectively consumed during the delivery period (P̄), the resulting percent

error (Ē), the standard deviation of the power demand (σ), the ramp-up times to the

50% (tru,50%) and 100% (tru) of the capacity, the recovery time required by the 95% of

the TERs for returning to the normal temperature set-point after the service (tr,95%),

the recovery time required by the complete set of TERs (tr) and finally the resulting

ramp-up (ρu) and ramp-down (ρdw) rates. Note that the worst-case power deviation

is 0.53%, all the power requests are achieved in less than 20 s, and half of the requests

are fulfilled in less than 10 s. The standard deviation of the service is lower than 1% of

the delivered power. The recovery time indicates the interval required to offer again
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(A) Power consumed by all the TERs.

(B) Number of TERs changing the set-points.

FIGURE 4.20: Aggregator response for the Frequency Containment Re-
serve (FCR) service.

the service. It can be seen that tr is much longer than the delivery period and it varies

widely with the offered power level. However, most of the capacity (i.e., 95%) is avail-

able after a shorter time tr,95%. This characteristic can be exploited by the aggregator

to modulate its offer in successive time periods.

TABLE 4.9: Aggregator characteristics during the Frequency Contain-
ment Reserve (FCR) service.

r [W] P̄ [W] Ē [%] σ [W] tru,50% tru tr,95% tr ρu [W/s] ρdw [W/s]

3500 3498.0 0.06 23.8 5” 9” 39’44” 1h6’5” 217.8 -2.3

3080 3078.7 0.04 13.3 5” 9” 36’55” 58’48” 171.1 -1.8

2695 2694.0 0.04 17.5 5” 9” 32’57” 49’53” 128.3 -1.4

2310 2309.7 0.02 9.4 5” 9” 24’39” 55’57” 85.6 -0.9

1925 1926.9 -0.10 9.4 5” 8” 3’42” 39’29” 48.1 -0.5

1155 1156.6 -0.13 5.2 7” 18” 1h17’ 2h5’ -21.4 0.5

770 772.6 -0.34 5.5 7” 15” 1h22’ 2h51’ -51.3 0.9

575 578.1 -0.53 9.5 7” 17” 1h37’ 3h24’ -56.8 1.2
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Second, in the RR service experiments, 7 different power levels (SO requests) are

assessed. Following the RR service specifications, the requested power must be deliv-

ered within 30 min after the SO request and must be maintained for 1 h.

In Figure 4.21a, the aggregator response for different power levels is presented.

Figure 4.21a shows the deviations in the power demand following the SO requests.

The power modifications are based on the nominal operation power. This experiment

is carried out for 47%, 50%, 75%, 125%, 150%, 175%, and 185% of the nominal power.

Therefore, the flexibility of the set of TERs allows to offer reserve capacities between

730 W and 2850 W for delivery periods of 1 hour, i.e., the flexibility band for offering

the RR service is 2120 W. Notice that the capacity for this service is 805 W lower than

for the the FCR one. Finally, no rebounds are generated at the end of the service.

(A) Power consumed by all the TERs.
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(B) Number of TERs changing the set-points.

FIGURE 4.21: Aggregator response for the Replacement Reserve (RR)
service.

Figure 4.21b depicts the number of systems that are called to modify their tem-

perature set-point, either upward or downward, for each experiment. It is shown

how the aggregator responds to the SO request, modifying properly the temperature

set-points of some TERs, maintaining the power deviation during 1 hour for all the
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different power levels, meeting the RR service requirements.

Table 4.10 summarizes the results. The same characteristics evaluated in Table 4.9

for the FCR service are considered. It can be seen that the precision in power tracking

is similar for both services. Also the ramp-up and recovery times are comparable. In

this case, the ramp-up time to the 50% (tru,50%) is not reported as the full ramp-up time

tru is much lower that the limit of 30 min, defined for the RR service.

Thanks to the proposed control strategy, the aggregation of TERs is able to offer

this service according to the specifications. The set of TERs considered in this work

covers partially the minimum reserve capacity required by the SO but the strategy

can be scaled to manage a larger set of TERs. Thanks to the appropriate control ac-

tions, this chapter demonstrates the possibility for the TERs to be compliant with real

services defined in existing network code.

TABLE 4.10: Aggregator characteristics during the Replacement Re-
serve (RR) service.

r [W] P̄ [W] Ē [%] σ [W] tru tr,95% tr ρu [W/s] ρdw [W/s]

2850 2849.7 0.01 10.1 10” 37’2” 3h32’39” 131.0 -1.6

2695 2694.8 0.01 11.1 9” 35’6” 3h19’49” 128.3 -1.4

2310 2310.0 0.00 9.9 9” 22’38’ 2h37’45” 85.6 -0.9

1925 1925.4 -0.02 10.5 8” 8’48” 1h33’37” 48.1 -0.5

1155 1155.2 -0.02 5.7 19” 1h5’25” 3h7’1” -20.3 0.5

770 771.9 -0.24 7.8 15” 1h50’24” 5h54’28” -51.3 0.9

730 736.5 -0.90 13.2 19” 1h52’23” 5h55’23” -42.6 1.0

Finally, notice that as in the WBPS aggregator (see Section 3.3), the TER aggrega-

tor can operate with any number of TERs. The aggregator only considers if the TER

has flexibility on not and defines the temperature set-point state. Moreover, the PIAGG

controller only needs a recalculation of the PI controller parameters. Then, a techni-

cal resource such as smart meters is needed in order to acquire the aggregated power

behaviour. This information will lead to identifying the new TER set response for

computing the new parameter of the PI controller (with a step response). The identifi-

cation and parameters computation can be developed by an adaptive controller. The

number of systems n in the service is needed for knowing the controller saturation.
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4.3 Remarks

In this chapter, an aggregator for TERs has been proposed. It is capable to offer bal-

ancing services such as frequency containment reserve, frequency restoration reserve,

or replacement reserve, by reducing and increasing the power of a set of TERs. Based

on a three-state signal (0,1, or -1), the aggregator decides the temperature set-point of

each TER for following the signal sent by the system operator.

A dynamic model of a TER unit has been estimated from experimental data. The

model error is less than 1�C. Then, the system can be treated as a flexible load by

changing the temperature set-point.

A modified PI controller strategy is proposed based on a tested PI controller, achiev-

ing a longer time interval when the TER power is zero or maximum power after a

set-point change, improving the regulation service offer.

The proposed aggregator can follow a requested power trajectory in less than 30 s,

arriving at the 50% of the power in less than 15 s. Moreover, the information exchange

between each TER and the aggregator is reduced to i) a three-state signal, ii) the power

demand, and iii) the flexibility state. This is desired in a fast ancillary service as the

frequency containment reserve service, due to it is achieved faster and simple com-

munications between the stakeholders.

By knowing the upward and downward capacity (which depend on the current

and predicted usage of the TERs in the aggregation and on the temperature pref-

erences) and the aggregated TER baseline, the quantity offered can be established.

However, the determination of the offers implies to establish not only the quantity,

but also the price. These aspects, together with additional experimental evaluations

considering spatially distributed TERs, will be addressed in future works.
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Chapter 5

Optimal Strategy to Manage an

Electric Vehicle Charging Station

This Chapter presents a framework to take advantage of EVs flexibility, maximising

demand response capacity and minimizing operation costs. An Electric Vehicle Charg-

ing Station (EVCS) and its chargers are modelled and controlled as flexible loads. The

EVCS is entrusted with charging all the incoming EVs, whose State of Charge (SoC)

must reach at least a minimum level desired by the EV owners at the departure time.

An cost-minimisation operation strategy and a novel EV charging strategy based on

the maximisation of the flexibility for EV chargers are presented, taking into account

the preferences of the EV users. These strategies are compared with a typical mini-

mum time strategy as a benchmark, to adjust the trajectories of the charging power

delivered to the EVs through the chargers. Meanwhile, a specific definition of flex-

ibility for EV chargers is provided by adapting the operational flexibility in power

systems concept used in (Ulbig and Andersson, 2015). This flexibility definition, dif-

ferent from (Ulbig and Andersson, 2015), leverages the ramp rate in kW to describe

the variations. Furthermore, considering an analysis with time steps of the order of

minutes for the EV chargers it is possible to adjust the power from maximum power

to 0 (and vice versa) in one time step. Subsequently, EVs do not require a ramp rate

constraint for varying the required amount of power.

The EV charging strategies are based on different optimization criteria of the charg-

ing power trajectories, namely:

• minimize the EVCS operation cost, by varying the charging power depending

on the energy prices and the charging duration;

• maximise the flexibility capacity (based on Definition 1, section 5.2), while min-

imizing the EVCS operation cost.



82 Chapter 5. Optimal Strategy to Manage an Electric Vehicle Charging Station

In order to compensate for the uncertainties on the EV initial state of charge and

the power generation, a Model Predictive Control (MPC) strategy is adopted within

the two proposed solutions. Furthermore, the EV charger flexibility is analysed and

tested related to the EV charging time, the specific time slot, and the power delivered

by the charger.

The rest of the Chapter is organized as follows: Section 5.1 describes the prob-

lem faced by an ECVS, how it operates, the charger dynamics model, how to take

into account the uncertainties, and introduces the proposed EV flexibility analysis. In

Section 5.3, the charging strategies are illustrated and thoroughly described. In Sec-

tion 5.4, case study is shown, along with the related numerical results. The results

of this Chapter were derived in the publications (Diaz et al., 2018a,b; Diaz-Londono

et al., 2019a).

5.1 Electric Vehicle Charging Station Operations

An Electric Vehicle Charging Station (EVCS) is composed of various chargers, to which

EVs connect with the aim of getting charge. The problem faced by a typical EVCS for

managing the charge of the connected EVs, is twofold:

1. chargers scheduling, also taking into account the uncertainty of the EV arrival

time and initial state of charge of the EV battery; and,

2. EV load profile management.

The first problem refers to the assignment of a charger to each EV approaching the

charging station, as well as their charging time. Secondly, the EV load profile, namely,

the charging power delivered by each charger at each time slot defined for the analysis,

must also be considered.

In this study, the EVCS works with a centralised infrastructure to collect EV in-

formation and to deliver power to each vehicle, i.e., EV battery chargers can be con-

sidered as flexible loads in the energy consumption. Consequently, an EVCS can be

modelled as an aggregator that is capable of modulating the energy delivered by the

chargers. The EV owner willing to recharge the EV battery goes to the charging sta-

tion and takes part in the program managed by the aggregator. At the departure time

specified by the EV owner, the battery will be charged according to the agreement

between the aggregator and the EV owner. In the time period in which the EV is man-

aged by the aggregator, the aggregator provides flexibility to the system without the

direct action of the EV owner.
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In this section, the station operation process and then the EVCS problem formula-

tion are presented. Then, a flexibility evaluation is presented, leading to a novel EV

battery charger flexibility definition. For the sake of completeness, Table 5.1 summa-

rizes the notation adopted for the system variables.

TABLE 5.1: Notation of the EVCS variables.

Symbol Variable Units
k Time slot -
xi,k State of Charge in charger i kWh
SoCj,k State of Charge in EVj kWh
PT,k Power delivered by the station kW
Fk Flexibility capacity of the station kW
Fi,k Flexibility capacity in charger i kW
Pi,k Power delivered to charger i kW
UF

i,k Upward flexibility capacity in charger i kW
LF

i,k Downward flexibility capacity in charger i kW
I Amount of chargers -
H Prediction horizon h
β Operation time of the station h
EVj Electric vehicle j -
Cj Battery capacity in EVj kWh
χj Information provided by the EVj {set}
χT Information provided by all EV {set}
ξi,k Schedule of chargers i [0,1]
ξT,k Schedule of all chargers in the station {set}
ck Energy Price ${kWh
πU

k Remuneration Price of the upward flexibility capacity ${kWh
πL

k Remuneration Price of the downward flexibility capacity ${kWh
aj EVj arrival time h
dj EVj departure time h
rj EVj charger request time h
dm Time for charging EVj with maximum power h}SoCj,dj Minimum State of Charge in EVj (at departure) kWh
γ SoC information by all EVs {set}
∆t Sampling time min

5.1.1 Charging Station Operations

The EVCS goal is to charge all the EVs connected to the battery chargers, within their

own charging time, achieving a SoC between the minimum SoC desired by the owners

at the departure time and full charge (100%). To this aim, an aggregator is responsible

for scheduling the charging patterns of an EV group (see Figure 5.1).
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Given a typical EVCS, let us assume that there are I chargers, whose load patterns

have been programmed through the aggregator for the next H hours. Notice that

these load patterns are affected by uncertainty in the arrival time and the initial SoC

of each EV. Furthermore, the operation time of the station is divided into K discrete

time intervals with equal length, each of them being a discrete time slot k� 1, . . . , K,

lasting a sampling time ∆t in minutes. Finally, for each day, it is expected to serve

J EVs, where for each EV j, its charging time spans from the arrival time aj to the

departure time dj.
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FIGURE 5.1: Electric Vehicle Charging Station operation.

A typical EVCS work-flow starts with the users, i.e., the EV owners, requesting an

available charger, possibly through a mobile application (let us say, EVApp), at least

one hour before arriving at the station. This recharge request includes the EVj relevant

information, collected in χj,

χj � tãj, dj, ŜoCj,rj , }SoCj,dju, @j � 1, 2, . . . , J; (5.1)

}SoCj,dj being the minimum SoC desired by the EVj owner at the departure instant dj,

ŜoCj,rj the EVj SoC at the request time rj, and ãj the reported arrival time. Then, the EV

owner looks for booking an EV charger from ãj to dj. Finally, all the EV information to

be sent to the charger scheduling algorithm is collected in χT:

χT � tχ1, χ2, . . . , χJu. (5.2)
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For the purpose of this study, it is assumed that the actual arrival SoC is higher than

zero, i.e., SoCj,aj ¡ 0. In Figure 5.2, the request time rj, the expected arrival time ãj, the

actual arrival time aj, and the actual departure time dj of an EV are presented consid-

ering the SoC at the request ŜoCj,rj , the expected SoC at the arrival S̃oCj,aj , the actual

SoC at the arrival SoCj,aj , the minimum SoC desired by the owner at the departure}SoCj,dj , and the actual SoC at the departure SoCj,dj . Then, notice that the actual arrival

SoC and the reported SoC at the request are generally different, i.e., SoCj,aj � ŜoCj,rj

(see Figure 5.2a).

rj ãj aj
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Time

SoC
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Output
SoCj,dj

(B) Departure

FIGURE 5.2: Expected and actual time and state of charge for the jth
electric vehicle.

Then, the EV arrival SoC and the EV arrival time are uncertain variables that must

be managed by the aggregator. Then, the mobile app collects and sends the informa-

tion γ�tSoC1,r1 , SoC2,r2 , � � � , SoCJ,rJu to the aggregator. The timings are considered

by introducing practical assumption for serving the EV:

• in case of early arrival, nothing changes with respect to the scheduled charging

starting instant (ãj); the EV will wait until the scheduled time slot;

• in case of late arrival, up to a given delay δ, the charging procedure can be per-

formed guaranteeing a departure SoC within the requested limits (see feasible

condition Equation (5.16), presented in Section 5.3.2);

• in case of late arrival, greater than a given delay δ, the vehicle is still accepted,

but the requested final SoC cannot be guaranteed; and

• the departure time dj is fixed by the EV owner request, and is considered as a

deterministic variable (see Figure 5.2b).

In this context, the arrival time is considered as a random variable uniformly dis-

tributed within a given time range around the scheduled time. The arrival SoC is
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taken into account as a random variable uniformly distributed between zero and the

SoC at the request SOCj,rj . This distribution is applied not only due to the lack of real

data (for feeding the model), but also because it ensures the random value between

the defined range.

The aim is to dispatch the J requests to the I chargers, via an allocation algorithm.

This algorithm provides two output data sets: (i) the IDi of the assigned charger (if

any), sent to the user, and (ii) a binary state signal ξi,k, sent to the aggregator. This

signal indicates the schedule of the ith charger, i.e., if at the kth time slot, an EV is

plugged into it. Hence, at time slot k, it holds:

ξi,k �

#
1, if the charger i has a plugged-in EV,

0, if the charger i does not have a plugged-in EV.
(5.3)

The decision variables used for the energy dispatch design are the power signals

Pi,k describing the power delivered by each charger i to the EV connected to it at the

time step k. This power can be adjusted for each time slot, in a way consistent with

the “Smart charging" concept defined in (Colmenar-Santos et al., 2019) as charge speed

changes in order to match with a control signal or frequency regulation and vehicle parame-

ters. In a smart grid environment, smart charging provides flexibility to the grid, allowing

demand response services. Smart charging strategies have been used in (Wenzel et al.,

2018) by comparing different strategies with the aim of providing frequency regula-

tion services, in (del Razo et al., 2015) in conjunction with the provision of vehicle-

originating signals to minimise the variability of the aggregate power pattern with

respect to a predefined reference, in (Naharudinsyah and Limmer, 2018) to minimise

the cost of the charging schedule by taking into account the trading on the intraday

electricity market. From a technical point of view, the implementation of dynamic

EV charging is discussed in (Mouli et al., 2016) considering different solutions for AC

charging, Chademo and Combined Charging System (CCS)/COMBO. Moreover, the

Open Charge Alliance has issued the Open Charge Point Protocol (Open Charge Al-

liance, 2015), in which, while charging is in progress, the connector will continuously adapt

the maximum current or power according to the charging profile. Further recent develop-

ments on EV charging have been presented in (Amjad et al., 2018).

Therefore, the instant power extracted from the grid, at each time slot k, is:

PT,k �
I̧

i�1

Pi,k @k � 1, 2, . . . , K. (5.4)



5.1. Electric Vehicle Charging Station Operations 87

As a matter of fact, the aim of the aggregator is to define the load profiles Pi,k

by maximising the operation benefits. To this aim, the EV chargers are considered

as flexible loads, in terms of power consumption, which can provide some ancillary

services to the electrical grid.

5.1.2 The Charger Dynamics Model

The SoC dynamics of a vehicle j connected to the charger i, namely, the evolution of

the energy stored in the EV battery, can be modeled as:

SoCj,k�1 � SoCj,k � ∆tPi,k, (5.5)

where ∆t is the sampling time, and SoCj,k is the accumulated energy in the EV bat-

tery through the integration of the charging power Pi,k. No efficiency losses or non-

linearities are considered. Likewise, battery degradation estimation (Hoke et al., 2014)

is not considered because the time steps used in the analysis are relatively short (i.e.,

tens of minutes, for a period of analysis of one day).

Letting xi,k be the state variable representing the SoC of the EV connected to the

ith charger, it holds:

xi,k�1 � ξi,kxi,k � ξi,k∆tPi,k. (5.6)

Hence, when a vehicle is plugged in, namely ξi,k � 1, the charger dynamics matches

Equation (5.5), i.e., xi,k � SoCj,k. Note that, over the course of a day, a charger can

charge several EVs. Thus, it is convenient to use the charger SoC as the state vari-

able in the model. As a result, xi,k has a switching behaviour, depending on ξi,k, and

characterised by jumps either from 0 to S̃oCj,aj , at each EV arrival, or from SoCj,dj to 0,

at the EV departure. Therefore, the chargers dynamics xi,k�1 can have three different

conditions:

xi,k�1 �

$''&''%
xi,k � ∆tPi,k if ãj   k   dj,

S̃oCj,aj if k � ãj,

0 if ξi,k � 0 _ k � dj.

(5.7)

The first condition in Equation (5.7) must hold until the vehicle SoC reaches a value

between the minimum SoC desired by the owner and the maximum allowed one.

Moreover, considering the third condition in Equation (5.7), the duration ∆t of the

time slot k is assumed to be consistent with the time required for an EV finishing the

charging process to go away and for another EV to arrive to the same charger.
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5.2 Flexibility Evaluation

Considering smart grids, it is possible to provide a service within the energy system

by varying the power consumption at the demand side, without affecting significantly

the overall service provided by the load. This is known as flexibility (Ottesen et al.,

2018). As a matter of fact, a certain degree of flexibility is allowed because there are

different ways to charge EV batteries, fulfilling the departure state of charge }SoCj,dj

constraint and maximum power limits.

Generally speaking, flexibility enhances electrical grid security. For example, when

a renewable energy source is connected to the grid, fluctuations can imbalance the grid

itself. In these cases, a flexible load management system can favourably counteract

these effects. Provided that a certain degree of flexibility is available, the system oper-

ator can adopt different ancillary services to avoid system instabilities, depending on

the component that unbalances the system (Hao et al., 2015a)

In Subsection 2.2, demand response and ancillary services are presented. From

this perspective, the current EV charger technology allows adjusting the power sup-

ply within a second, then, EV chargers could provide both frequency regulation and

reserve services to the grid. However, given that a centralized infrastructure is con-

sidered, the communication between the system operator and the EVCS is limited by

a few-minute response (Quinn et al., 2010; Kirby and Hirst, 2000). This implies that,

among the many North American ancillary services, an EVCS can provide spinning

or non-spinning reserve, and replacement reserve. Likewise, regarding Colombian

ancillary services, an EVCS can provide secondary and tertiary regulation reserves.

In turn, this work will focus on spinning reserve, being the most economically valu-

able one (Kirby et al., 2008). With the spinning reserve service, a charging station

restores the generation and load balance, in the event of a contingency, in a matter of

minutes (González et al., 2014). Then, in order to provide spinning reserve services

through an aggregator that takes advantage of the EV flexibility, the concept of flexi-

bility must be evaluated.

Availability of a specific definition of the flexibility of EV battery chargers may help

improving the EV schedule and the ancillary services an EVCS can offer. Therefore, a

novel definition of flexibility for EV battery chargers is provided as follows.
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Definition 1. Given a nominal charging profile Pi,k for k � 1, . . . , K, the flexibility Fk of an

EVCS, for each time slot k, is defined as:

Fk �
I̧

i�1

Fi,k �
I̧

i�1

�
UF

i,k � LF
i,k

	
, @ k�1, 2, . . . , K, (5.8)

where

UF
i,k �

#
Pi,max � Pi,k if ξi,k � 1 ^ k   dm,

0 if xi,k � xi,max _ xi,k � 0 _ k ¥ dm,
(5.9a)

LF
i,k �

#
Pi,k if ξi,k � 1 ^ k   dm,

0 if xi,k � xi,max _ xi,k � 0 _ k ¥ dm.
(5.9b)

Note that the flexibility is the maximum power deviation that the profile can reach

either upward or downward.

Therefore, a charger is said to be upward-flexible (UF
i,k ¡ 0), when it can increase

the power injected to the connected EV. It happens whenever the power delivered by

the charger is lower than Pi,max, and the SoCj,k   xi,max. On the other hand, a charger is

downward-flexible (LF
i,k ¡ 0) if it can decrease the power injected to the connected EV

(see Equation (5.9b)). Since the V2G concept is not considered, the charging station

problem works only in a unidirectional system, thus Pi,k ¥ 0.

A detailed view of EV battery charger flexibility is presented in Figure 5.3. The

structure of the figure is consistent with the framework presented in (Mills and Macgill,

2018) for EVs, which considers SoC on the vertical axis, while the operational flexibil-

ity framework introduced in (Ulbig and Andersson, 2015) (not referring to EVs) has

a similar representation, but the vertical axis is expressed in MW for power system

studies. In particular, Figure 5.3a shows the EV SoC behaviour during the charging

time. The continuous green line is an example of an EV Generic Charging (GC) profile,

and the dashed-blue and the dash-dotted red lines represent the limits of the SoC area.

These limits are described by two charging profiles. First, of all, the Minimum Time

(MT) strategy (dashed blue line), obtained by injecting the maximum power Pi,max,

immediately at the EV arrival time, until the full charge.

Secondly, the Most Delayed (MD) strategy (dash-dot red line) suggests that, start-

ing from time dm, only the maximum allowed power Pi,max lets the SoC reach the

(minimum) desired departure value }SoCj,dj (in this case, no flexibility is possible from

dm to dj). Figure 5.3b depicts the power injected by strategies GC, MT, and MD for

creating the SoC area. Note that there are no idle losses due to the short time horizon,
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and no negative power flows are considered as this work does not take into account

V2G applications.

(A) SoC area with an example of a SoC profile (continuous green line).
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(B) Charging power profile.

FIGURE 5.3: SoC area in an EV charger.

In short, the upward flexibility is the capacity of increasing the charging power up

to Pi,max, while the downward flexibility is the capacity of charging with lower power

or renounce to charge. Finally, the EV should depart with a charge level xi,dj P r
}SoCj,dj , xi,maxs,

where xi,max corresponds to the full charge condition.

In addition, in Figure 5.4, the flexibility areas for the three strategies are shown,

highlighting the upward (U) and the downward (L) flexibility. Although the down-

ward (L) flexibility is positive, for better representation, it is plotted as a negative value

to indicate a power reduction, i.e., –L is depicted. In the MT case (Figure 5.4a), it is

possible to achieve downward flexibility (�LMT) only, due to the possibility of reduc-

ing power (up to Pi,max). However, after fully charging the EV, no flexibility is allowed.

In the MD case (Figure 5.4b), it is possible to achieve upward flexibility (UMD) only,

due to the possibility of increasing power to Pi,max. However, after dm, charging at

maximum power Pi,max is needed to reach }SoCj,dj . Consequently, no charging flexibil-

ity is allowed after that instant. In the GC case (Figure 5.4c), the upward (UGC) and

the downward (�LGC) flexibilities are shown. The filled parts indicate the area where

the power charging profiles can be adjusted, following profiles of Pi,k P r0, Pi,maxs that

guarantee not to violate the constraints. It is noteworthy that the SoC might also re-

main constant for a certain period, e.g., when the EV is not charged, according to the
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aggregator needs.

(A) Flexibility area for MT

(B) Flexibility area for MD

(C) Flexibility area for GC

FIGURE 5.4: Flexibility in an EV charger.

As a result, the flexibility assessment turns out to be crucial to maintaining the

electrical grid balance. Consequently, the aggregator can provide a balancing service,

restricted by the defined GC profiles, admitting the possibility of having zero flexibil-

ity capacity in some time slots. Note that, with the defined GC power exemplified in

Figure 5.3b, it is possible to achieve a flexibility Fi,k�Pi,k at all plugged-in time, i.e., all

time steps (see Figure 5.4c).

Therefore, the charging station problem, given the power design variables (namely,

the power supply sequence Pi,k and the flexibility capacities UF
i,k and LF

i,k), consists of

selecting the optimal power load profile P�i,k, for each charger i, for all the time slots

up to the total operation time of the charging station β. Interestingly, the aggregation

decision might also be based on the electricity price ck and reserve prices, assumed

to be known from bilateral contracts (with the aggregator that manages the charging
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station) and variable hourly. As such, no uncertainty is considered for these prices.

In this framework, the optimisation problem formulation will aim at guaranteeing a

flexibility capacity, while minimising operational costs, and ensuring a departure SoC

within the requested limits for each EV.

5.3 Solution Strategies

In this section, three strategies to attack the EVs charging station problem are dis-

cussed:

1. Minimum Time (MT), as a standard approach, here adopted as a benchmark;

2. economic Model Predictive Control (eMPC), a novel formulation whose basics have

been published in (Diaz et al., 2018a,b);

3. Optimal Control with minimum Cost and maximum Flexibility (OCCF), a novel strat-

egy based on the Definition 1 presented in subsection 5.2, and published in (Diaz-

Londono et al., 2019a)

In the eMPC and OCCF strategies, uncertain parameters such as EVs’ initial SoC

at the arrival and their arrival times are considered. Both strategies are based on MPC

formulations. The MPC strategy (also known as Receding Horizon Control) makes

explicit use of a plant model to obtain the optimal control signal by minimising an

objective function. MPC exploits forecast values together with new information to

establish the future evolution of the system, handling the constraints in an efficient

way. The main advantages of the MPC strategy are: (i) it introduces feed-forward

control implicitly, to compensate disturbances and measurement noise rejection; (ii)

it is not conceptually complex to treat the constraints over inputs, states, outputs and

slew-rate variables; (iii) single-variable and multi-variable cases are easily treated; and

(iv) it is appropriate to address single-objective and multi-objective control, and signal

following.

5.3.1 Minimum Time as a Benchmark

A straightforward strategy to charge EVs in an EVCS is based on the charging time

minimisation. In short, each vehicle is charged at the maximum allowed power Pi,max,

until it reaches its full capacity SoCi,max. However, this strategy does not take into

account the time-varying energy price, nor the possibility to provide ancillary services
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to the electrical grid. To sum up, the charging power Pi,k is determined as:

Pi,k �

#
Pi,max if 0   xi,k   xi,max

0 otherwise
, (5.10)

where xi,max is the maximum admissible SoC in the EVj. For example, by considering

an EVCS with charging power levels 2 (semi-fast) and 3 (fast), and an EV with a battery

capacity of 50 kWh, the charging time is expected to be around six hours for level 2

and one hour for level 3 (Yilmaz and Krein, 2013), depending on the SoC at the arrival.

Note that, for achieving the minimum SoC }SoCj,dj (full SoC capacity with this strategy)

at the departure time, only the EVj charging feasibility in a time-span from aj to dj is

required. This is clarified below.

5.3.2 Economic Model Predictive Control

A novel formulation for the cost minimisation strategy is presented in this section and

it is based on a Model Predictive Control (MPC) strategy.

The MPC strategy emerged in the late seventies (Richalet et al., 1976, 1978). It is

also known as Model-based Predictive Control (MBPC) or Receding Horizon Control

(RHC). MPC is not a specific control technique, but a family of time-domain strategies.

These strategies make explicit use of a plant model to obtain the control signal by

minimizing an objective function. MPC exploits forecast values together with new

information to establish the future evolution of the system, handling the constraints

in an efficient way (Camacho and Bordons, 2007).

The main advantages of the MPC strategy are:

• it is applicable to a wide variety of processes, from very simple to complex dy-

namics;

• it can be developed with linear and non-linear models.

• single-variable and multi-variable cases are easily treated;

• it is appropriate to address single-objective and multi-objective control, and sig-

nal following;

• it has inherent compensation of dead-time and time-delay phenomena;

• it introduces feed-forward control implicitly, to compensate disturbances and

measurement noise rejection;
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• it is not conceptually complex to treat the constraints over inputs, states, outputs

and slew-rate variables; and,

• it is very useful for processes where future patterns are known, e.g., with refer-

ence trajectory available.

However, some disadvantages of the MPC strategy are:

– the dependency on an appropriate model of the process;

– the control law derivation is more complex than in classical controllers; and,

– the process dynamics must be considered at each step.

Therefore, the MPC path to the solution of the charging station problem looks for

adjustments in the injected power Pi,k, at every time slot k, in each charger i, consider-

ing the time-variant energy prices ck, the uncertainty in the EV arrival time and SoC

at the arrival time, i.e., aj and SoCj,aj . Hence, the optimality here refers to a charging

profile that minimises the EVCS operation costs, while guaranteeing for all EVj the

minimum }SoCj,dj at the departure time dj. Thus, by recalling Equation (5.3), Equa-

tion (5.4) and Equation (5.7), it holds:

min
Pi,k

∆t
H�1̧

k�0

�
ck

I̧

i�1

Pi,k

�
(5.11a)

s.t. xi,k�1 �

$''&''%
xi,k � ∆tPi,k if ãj   k   dj,

S̃oCj,aj if k � ãj,

0 if ξi,k � 0 _ k � dj,

(5.11b)

}SoCj,dj ¤ xi,dj ¤ ŜoCj,dj ,

0 ¤ Pi,k ¤ Pi,max,

0 ¤ xi,k ¤ xi,max,

@ k � 1, 2, . . . , H, i � 1, 2, . . . , I, j � 1, 2, . . . , J.

Notice that the dynamic constraint considers the reported arrival time ãj in the

request, and a random initial state S̃oCj,aj given with a uniform distribution between

the minimum }SoCj,rj and the SoC at the request time ŜoCj,rj . Therefore, the actual

arrival SoC is lower than the one at the request, i.e., SoCj,aj ŜoCj,rj . In addition, the

actual arrival time aj is known within the time interval previous to the connection of

the EV to the charger.
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In Equation (5.11), the aggregator problem is an optimal control strategy in open

loop. Specifically, for the kth time slot, xi,k is the state variable corresponding to the

ith charger SoC, while Pi,k is the commanded variable corresponding to the deliv-

ered power profile. It is worthwhile to notice that the problem parameters in Equa-

tion (5.11) are affected by uncertainties on arrival time and SoC of the EVs. An open

loop strategy cannot consider the future unknown behaviours, leading to possible un-

feasibilities in the optimal solution. Therefore, the solution strategy should take these

uncertain behaviours into account, and possibly recompute the control signal, even

at each time step if needed. For this reason, a model predictive control strategy is

proposed, following the receding horizon principle. In a nutshell, the idea is to com-

pute, at time k, an optimal control sequence, over the complete time-interval, e.g.,

rk, k�H� 1s, taking into account the current and future constraints. Nevertheless,

only the first step in the resulting optimal control sequence is applied. Then, in the

next time slot k� 1, once the chargers’ information is updated with the new measures,

the aggregator recomputes the sequences, thus iterating the process.

Thereupon, in the eMPC problem framework, finding the problem solution re-

quires to analyse, at each time slot, the system dynamics, and the future energy prices,

while taking into account the current SoC and the arrival and departure times for each

vehicle, as per Equation (5.11). Notice that both uncertain parameters (the arrival time

and the initial SoC) are revealed when the EV arrives at EVCS and is plugged in. Af-

ter this, there is no more uncertainty in the EV state, leading to an appropriate power

profile schedule. Then, using time slots of the order of minutes, the possible variations

with respect to the scheduled values are compensated in the first time slot of the MPC

algorithm.

The parameters (price sequence ck, reported arrival time ãj, and SoC at the request

ŜoCj,rj ) are assumed to be known, while Pi,max depends on the maximum power that

either the charger can deliver, or the EV can accept. Moreover, the actual SoCaj is

known when the EV connects to the charger; then, the prediction model is developed

considering the expected value ãj for each EV (see Figure 5.2a). Regarding ξi,k, it is

determined by using the requested times ãj and dj. Notice that both the arrival time

and arrival SoC of each EV can be different at the actual connection time step.

The eMPC strategy looks for input sequences minimising the total cost of the

EVCS, as per Equation (5.11), in a time window of H hours, for each EV. To this aim,

the dynamic constraint Equation (5.11b), i.e., when ξi,k � 1 while ãj   k  dj, can be
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expressed in an extended form as:

x̂k�1 � diagpξi,kqloooomoooon
Ak

x̂k � diagpξi,k∆tqloooooomoooooon
Bk

P̂k, (5.12)

where

x̂k � rx1,k x2,k . . . xI,ks
T, P̂k � rP1,k P2,k . . . PI,ks

T. (5.13)

Hence, the evolution of all xi, throughout the prediction horizon H, reads:

x � Ax̂k �GP, (5.14)

where

x �

�������
x̂k�1

x̂k�2
...

x̂k�H

������� , P �

�������
P̂k

P̂k�1
...

P̂k�H�1

������� , A �

�������
Ak

Ak Ak�1
...

Ak � � � Ak�H�1

������� ,

G �

�������
Bk 0 0 0

Ak�1Bk Bk�1 0 0
...

...
. . . 0

Ak�1 � � � Ak�H�1Bk Ak�2 � � � Ak�H�1Bk�1 � � � Bk�H�1

������� .

(5.15)

Notably, the system in Equation (5.14) is time variant, since xi,k�1 in the prediction

horizon has a switching behaviour. In addition, x̂k is the initial condition, it contains

the current EV SoC when ξi,k�1 and zero when ξi,k�0. Moreover, the cost function

in Equation (5.11a) is linear in Pi,k, and the dynamic equation Equation (5.14) is a lin-

ear equality constraint in Pi,k. Furthermore, the other constraints in Equation (5.11)

are linear inequalities that bind the feasible region described as a polytope. Then,

the aggregator deals with a Linear Programming (LP) convex problem, which can be

efficiently solved by Simplex or interior point methods.

Furthermore, it is noteworthy that the devised eMPC strategy might be affected by

feasibility issues related to the charging time. As a matter of fact, it is assumed that the

resulting charging time, when the eMPC formulation is employed, must be greater or

equal than in the Minimum Time charging case. Thereby, the optimal control problem

Equation (5.11) is said to be feasible if and only if:

pdj � ajqPi,max ¡ }SoCj,dj � SoCj,aj . (5.16)
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In short, Equation (5.16) implies that the time an EV spends plugged-in (from aj

to dj) is at least enough to charge it with maximum power Pi,max. From the feasibility

condition Equation (5.16), how the economic MPC strategy will generally increase the

time spent at the charging station premises appears, although a certain reduction of

the recharge operating costs is guaranteed. Regarding the uncertain parameters, they

must be inside the feasible region; otherwise, the problem is not feasible and the EV

cannot be charged up to the minimum state }SoCj,dj . However, an EV that arrives too

late with respect to the request is still allowed to be charged, without guaranteeing

that the minimum }SoCj,dj will be reached.

In order to assess the complexity of the problem, it can be noticed that:

• the size of the decision and the state variables, Pi,k and xi,k respectively, is I �H;

• the number of constraints in Pi,k is 2 � I �H, for each time slot, half for the lower

bounds, and half for the upper bounds;

• the number of constraints in xi,k is 3 � I �H, for each time slot; equally allocated

among the lower and the upper bounds, and the charger dynamics;

• the number of constraints in xi,dj , related to the minimum SoC requirement }SoCj,dj

at the departure, is I.

It is evident that the problem complexity grows linearly with H. This implies that, by

scaling up the number of chargers, the number of constraints and decision variables

would also increase accordingly, possibly impinging on the optimisation solution effi-

ciency.

5.3.3 Optimal Control with Minimum Cost and Maximum Flexibility

In this subsection, a novel strategy for the charging station problem solution, based

on flexibility maximisation, is proposed. The aim of this novel strategy is to offer a

power flexibility capacity to the electrical grid, while guaranteeing the minimum SoC

requirement }SoCj,dj at the departure time. The uncertainty in the EV arrival time and

SoC at the arrival time are considered as in Section 5.3.2.

According to Definition 1, the concept of (upward or downward) flexibility Fk is

determined with respect to a nominal charging profile Pi,k, whereas Fk � 0 implies that

no ancillary service may be offered to the grid. Hence, it could be crucial to set-up a

charging strategy that always guarantees a certain amount of flexibility capacity. To

pursue such an objective, two parallel paths can be developed, involving the flexibility

as either an optimisation constraint or part of the cost function.
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In fact, on the one hand, the optimisation constraints in Equation (5.11b) can be

properly rephrased, in order to impose a minimum flexibility capacity to the chargers.

Specifically, such an approach envisages two possible strategies for the constraint re-

formulation. In the first strategy, Equation (5.11b) binding the vehicle charging power

Pi,k is adapted to guarantee a certain degree of flexibility Fi,k,

Fi,k ¤ Pi,k ¤ Pi,max � Fi,k, where Fi,k �
Fk°I

i�1 ξi,k
, (5.17)

Fi,k being a parameter defining the flexibility requested to charger i at time slot k, while

Fk is the overall flexibility offered by the EVCS, at the k time slot. It is worth noting

that the constraint Equation (5.17) implies the same upward and downward flexibility,

achievable for
°I

i�1 ξi,k ¥ 1. Moreover, all the I chargers provide the same flexibility

level at each time slot.

The second strategy for the constraints reformulation mainly consists of adding

a new constraint to Equation (5.11b), binding the aggregated power PT,k, yet leaving

unmodified the single-vehicle power limits. Such a further constraint reads:

Fk ¤ PT,k ¤
I̧

i�1

pξi,k � Pi,maxq � Fk, @ k�1, 2, . . . , K. (5.18)

Note that, by introducing Equation (5.18), the flexibility of each charger can be differ-

ent. Indeed, the idea is to impose a gap in the power requested to the grid.

Finally, in spite of its capability to grant some level of flexibility, and, in turn, some

extra energy service to the grid, a solution of the EVCS optimisation problem includ-

ing the constraints Equation (5.17) or Equation (5.18) might result in being infeasible.

In fact, the maximum flexibility FCT,k achievable by the EVCS is not known in advance.

Indeed, this capacity depends on the state behaviour.

On the other hand, in a second path to approach the charging problem improving

the flexibility capacity, the optimisation problem formulation is re-framed according

to an optimal control strategy, aimed to simultaneously maximise the charging flexi-

bility and minimise the operational cost of the EVCS. This formulation assumes that

remuneration factors πU
k (upward) and πL

k (downward) for the flexibility offered by

the station are driven by prices.
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To sum up, the aggregator deals with an optimal control problem, i.e.:

min
Pi,k ,UF

i,k ,LF
i,k

∆t
H�1̧

k�0

�
ck

I̧

i�1

Pi,k � πU
k

I̧

i�1

UF
i,k � πL

k

I̧

i�1

LF
i,k

�
(5.19a)

s.t. xi,k�1 �

$''&''%
xi,k � ∆tPi,k if ãj   k   dj,

S̃oCj,aj if k � ãj,

0 if ξi,k � 0 _ k � dj,

(5.19b)

}SoCj,dj ¤ xi,dj ¤ ŜoCj,dj , (5.19c)

LF
i,k ¤ Pi,k ¤ ξi,kpPi,max �UF

i,kq, (5.19d)

0 ¤ UF
i,k ¤ Pi,max, (5.19e)

0 ¤ LF
i,k ¤ Pi,max, (5.19f)

0 ¤ xi,k ¤ xi,max, (5.19g)

@ k � 1, 2, . . . , H, i � 1, 2, . . . , I j � 1, 2, . . . , J.

In this case, the aggregator decision variables are the optimal profile Pi,k and the

flexibilities UF
i,k and LF

i,k of the ith charger. Concerning UF
i,k and LF

i,k, in Equation (5.19),

two new constraints are introduced. Indeed, UF
i,k and LF

i,k are considered as lower-

bounded by zero and upper-bounded by Pi,max. Then, the charging power Pi,k is al-

ways positive.

This formulation allows for finding solutions that maximise both upward UF
i,k and

downward LF
i,k flexibilities. Furthermore, the resulting charging strategy may lead to

non-symmetric flexibility capacities, consistently with Definition 1.

Finally, the dynamic constraint for the SoC in xi,k being in line with Equation (5.11b),

its evolution can be again consistently expressed as per Equation (5.14). Taking into ac-

count the discussion after Equation (5.15) about linearity in the problem Equation (5.11),

note also that the cost function in Equation (5.19a) is a linear function of Pi,k as Equa-

tion (5.11a) and the new constraints are linear as well. Then, like for the eMPC case, the

aggregator faces an LP convex problem. Similarly, the feasibility condition presented

in Equation (5.16) also holds for the problem formulation Equation (5.19). From this

perspective, it can be noticed how the approach Equation (5.19), in the worst-case sce-

nario, would not allow any flexibility, thus reducing to the same outcome of the eMPC

model in Equation (5.11).

To conclude, it is expected that this innovative OCCF strategy, with flexibility max-

imisation, generates higher expenses for the EVCS with respect to the eMPC one be-

cause the energy value is not the only element of the cost function. Nonetheless, it
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can provide to the grid a significant flexibility capacity. In turn, such additional flexi-

bility would allow the generation of relevant extra revenues for the EVCS, due to the

aggregator service in maintaining the electrical grid balance.

5.4 Case Study and Results

In this section, a case study with several simulation results is presented, with the aim

of evaluating the performance of the three charging strategies:

1. Minimum time (MT).

2. Economic MPC (eMPC).

3. MPC with minimum cost and flexibility maximisation (OCCF).

For this purpose, the EV charging profiles Pi,k, the charger SoC xi,k, the flexibility

capacities LF
T,k and UF

T,k, and the resulting operation costs for each strategy are com-

pared. An EVCS sampling time of ∆t� 10 minutes is employed in order to provide

spinning reserve service. The solution of the resulting optimization problems is ob-

tained with the CVX package (Grant and Boyd, 2014)—specifically, the convex LPs in

Equation (5.11) and Equation (5.19), with a one-day simulation length, thus β� 24 h

(144 time steps).

The EVs considered in the case study are the electric taxis that circulate in Bogotá,

Colombia. In fact, all the EVs have the same characteristics, namely, they are BYD e6

cars with a battery capacity of 80 kWh and a nominal charging rate of 8 kW. They can

also support a fast charging rate of 50 kW (Yilmaz and Krein, 2013). Concerning the

minimum desired SoC at the departure, a full charge condition is requested in all the

simulations (}SoCj,dj�ŜoCj,dj ), in order to make a meaningful comparison with the MT

strategy, in which the EVs are fully charged at the end of the period. Regarding the

uncertain parameters, the actual arrival time aj for each EV is generated as a sample

of a random variable with uniform distribution, mean value given by the declared

arrival time ãj, and support between ãj � δ, with δ�20 min. This variability leads to

a feasible problem, considering that the minimum interval an EV owner can book a

charger is 2 h (see Equation (5.16)). Then, in the worst case, a charging time of 1 h and

40 min is enough time for charging an EV with the given characteristics, by injecting

the maximum feasible power. Moreover, the actual EVj arrival state of charge SoCj,aj

is generated as a sample of a uniform distribution with support between the reported

SoC at the request ŜoCj,rj and }SoCj,rj , where, without loss of generality, ŜoCj,rj is a
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random number between 15% and 40% of the EV capacity, and }SoCj,rj¡0. In addition,

for the MPC algorithm, the expected value S̃oCj,aj is considered as a random value

lower than ŜoCj,rj and higher than zero.

The adopted simulation parameters, characterising the optimisation models, are

reported in Table 5.2. Concerning the optimisation scenario configuration, a predic-

tion horizon of H� 6 h (36 time steps) is assumed as the maximum time an EV can

spend at the charging station premises. Furthermore, in these tests, two different en-

ergy price sequences are considered. They are hourly sampled time-variable prices,

named c1,k (Figure 5.5a) and c2,k (Figure 5.11), corresponding to real data taken from

the Colombian stock market. They allow for assessing the potential diversity in the

aggregator responses. Moreover, in line with the Colombian energy market regulation

and without loss of generality, the benefit price granted to the EVCS for its flexibility

capacity is assumed to have the same price as the traded energy (CREG, 2015), i.e.,

πU
k �πL

k � ck. The simulation is performed in MATLAB® R2019a on a computer with

a Intel® Core i7-7700HQ, CPU 2.80 GHz, 16 GB of RAM, and running Windows® 10

64-bit operating system.

TABLE 5.2: Case study simulation parameters.

Name Symbol Value Notes
EVCS sample time ∆t 10 min -
Operation time of the station β 24 h (144 iterations)
Maximum arrival delay δ 20 min -
Prediction horizon H 6 h (36 iterations)
Battery capacity in EVj Cj 80 kWh -
Charging power (time slot k) Pi,k 8 kW Semi-fast (Level 2)
Charging power (time slot k) Pi,k 50 kW Fast (Level 3)
Minimum SoC in EVj (at departure) }SoCj,dj 80 kWh xi,dj �Cj

Energy price 1 (time slot k) c1,k
0.0577 ${kWh Mean value
0.0252 ${kWh Std dev.

Energy price 2 (time slot k) c2,k
0.0614 ${kWh Mean value
0.0115 ${kWh Std dev.

Remuneration price (time slot k) πU
k , πL

k c1,k or c2,k -

5.4.1 Charger Flexibility Analysis

In order to perform a worthwhile analysis of the proposed charging strategies, a simu-

lation campaign is set up, considering first a deterministic scenario and then a setting

with uncertainty. The simulated charging station considers three chargers, and 11 EV

re-charge requests, with the energy price sequence c1,k, as per Table 5.2. Specifically,



102 Chapter 5. Optimal Strategy to Manage an Electric Vehicle Charging Station

Table 5.3 lists the 11 electric taxis requests, with their request arrival time ãj and de-

parture time dj, their SoC at the request ŜoCr,j, and the identification number IDi of

the charger assigned by the scheduler. The actual information on the arrival time aj

and arrival state of charge SoCa,j is also reported.

Let us notice that the taxi EV8 could not be served (i.e., its request was not ac-

cepted), all the three chargers already being in use at the EV8 requested time; for that

reason, the charger ID of the taxi EV8 is marked as not available (n/a), and the vari-

ables corresponding to its arrival are marked as not defined (n/d).

TABLE 5.3: EV charger schedule.

EVj EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10 EV11

ŜoCj,r,j 28.0 23.0 32.0 13.0 23.0 17.0 22.0 26.0 24.0 18.0 30.0
SoCj,a,j 8.4 21.7 17.1 7.6 6.9 3.2 3.4 n/d 6.6 16.3 21.5
ãj 3:30 5:30 5:30 7:30 10:30 10:30 11:30 13:30 15:30 16:30 20:30
aj 3:40 5:20 5:40 7:20 10:10 10:20 11:20 n/d 15:30 16:30 20:20
dj 5:30 8:30 9:30 10:30 15:30 15:30 14:50 n/d 19:30 19:30 23:30
IDi 1 2 3 1 2 3 1 n/a 1 2 1

In the following subsection, the behaviour of charger number 1 is analysed to

benchmark the tested solution strategies, due to its high activity in this simulation

(five electric vehicles served: EV1, EV4, EV7, EV9, and EV11).

Deterministic Performance

In order to perform a deterministic analysis of the proposed charging strategies, the

first simulation campaign takes into account a full information approach. It is as-

sumed that: (i) an Oracle informs the aggregator about the actual arrival SoC of each

EV, i.e., it knows the information since the moment when a request is performed, that

is, at least H hours in advance; and (ii) the EV arrival time is the one reported in the

request.

In Figure 5.5, the most relevant aspects of the three charging strategies are shown

and compared. Figure 5.5a depicts the simulated time-variable energy price sequence

c1,k adopted in this simulation, as reported in Table 5.2. Figure 5.5b shows the power

profile delivered by charger 1, namely P1,k, to the 5 EVs it serves. As expected, the

P1,k profiles are always positive or equal to zero. By definition, the MT strategy (red

line) charges the vehicles with a constant power Pmax � 50 kW, until the battery SoC

reaches a full condition, i.e., x1,dj � 80 kWh (100%). Conversely, the eMPC solution

(dashed-green line) envisages different power levels taking into account the energy

prices, while ensuring the 100% SoC target at the departure time. Finally, in the OCCF
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strategy (dash-dot blue line), the charging power is continuously adjusted while the

algorithm tries to achieve the same upward and downward flexibility, by keeping P1,k

close to a medium level, roughly 25 kW. Nevertheless, for EV1, in Figure 5.5b, between

the arrival time a1 � 3:30 a.m. and the departure time d1 � 5:30 a.m., a medium power

level cannot be maintained, due to the shorter charging time (2 h) given by the EV

owner request. In the last 30 min, the energy price increases, and the OCCF strategy

takes into account this fact to schedule lower power in that period. Figure 5.5c shows

the resulting SoC evolution, x1,k, of the EVs served by the charger. As expected, the

MT strategy reaches a full charge condition faster. On the other side, by comparing

Figure 5.5a and Figure 5.5c, it is worthwhile to notice how the eMPC strategy strives to

limit as much as possible its charging level at high price hours. Conversely, the OCCF

solution, which depends on both flexibility and economic aspects, achieves a trade-off

between energy cost reduction and flexibility generation.
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(C) Charger SoC x1,k with the different strategies.

FIGURE 5.5: The behaviour of the three charging strategies in charger
1, considering only request parameters.

Figure 5.6 depicts the charger 1 flexibility level, referring to the three strategies.
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The MT strategy cannot offer any upward flexibility capacity (UMT), but it can offer

a downward one (-LMT). Conversely, the eMPC strategy has the possibility to offer

an amount of upward (UeMPC) and downward (-LeMPC) flexibility, but it cannot pro-

vide both flexibilities at the same time for the majority of the time slots. However, the

OCCF strategy according to the problem formulation (see Equation (5.19a) and Equa-

tion (5.19b)), which includes the flexibility in the cost function, offers both upward

(UOCCF) and downward (-LOCCF) flexibilities at almost all the time steps when there is

a connected EV.
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FIGURE 5.6: Flexibility capacity provided by charger 1.

From the results shown in Figure 5.6, it is clear that charger 1 can provide ancillary

services to the grid, e.g., a spinning reserve service, for a relevant amount of time. The

best option to offer this service is with the OCCF charging strategy. For example, by

comparing the trends in Figure 5.6 and Figure 5.5b, let us notice that, between hours

13:10 and 14:20, the charger can offer its maximum flexibility capacity (F1,k � 25 kW).

Indeed, in that interval, the delivered charging power is roughly in the middle of the

maximum one P1,max � 50 kW. In different time intervals, no flexibility might exist (see

Definition 1), for instance between hours 5:20 and 5:30 or 23:20 and 23:30.

To conclude, the overall results of this simulation campaign are summarised in

Table 5.4—specifically, the total aggregator cost, the savings of the two MPC strategies

with respect to the MT solution and both upper and downward flexibilities capacities.

It can be seen how the OCCF solution, maximising the flexibility levels, is an attractive

solution for the aggregator.

TABLE 5.4: Three strategies’ overall simulation results (three chargers,
11 EV requests)

Strategy
Charging Cost UF

T,k Capacity LF
T,k Capacity

Cost [$] Savings [%] [kWh] [kWh]

MT 272.55 � 0.00 4, 300.00

eMPC 216.98 20.39 3, 226.06 4, 073.94

OCCF 257.34 5.55 6, 097.77 3, 902.23
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Results with Uncertainty in Arrival SoC and Arrival Time

In the second set of simulations, the same conditions of the previous subsection are

maintained, considering the set up presented in Table 5.2. There is no oracle provid-

ing the exact EV information about arrival time aj, departure time dj, and initial SoC

SoCj,aj . These parameters are generated randomly as described at the beginning of the

section. Then, the eMPC and OCCF strategies can, in the prediction step, over or un-

derestimate the time required to fully charge an EV. However, the feedback structure

of the MPC solution is able to overcome the uncertainty as shown in the following.

Figure 5.7 shows the performance of the three charging strategies. Figure 5.7a

shows the power trajectories P1,k. Figure 5.7b shows the SoC x1,k of charger 1, where

the purple asterisks (*) indicate the reported arrival time ãj and EV SoC (ŜoCj,rjq at the

request time, i.e., the expected arrival time with the maximum expected SoC at the

arrival.
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(C) Flexibility capacity provided by charger 1.

FIGURE 5.7: The behaviour of the three charging strategies in charger
1, with arrival SoC and time uncertainties.
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Comparing the power consumptions in Figure 5.5b with the ones presented in Fig-

ure 5.7a, for strategies eMPC and OCCF, it can be seen that they have similar be-

haviours, especially when the prediction error is small, as for EVs 4, 7 and 11. How-

ever, for EVs 1 and 9, the prediction is far from the actual arrival SoC and the arrival

time is also different. Note that the aggregator assumes that EV1 (a1�3:40, d1�5:30)

and EV9 (a9�15:30, d9�19:30) were arriving with a high SoC. Then, the power curves

show a peak during the first sample times, while the MPC strategies correct the mis-

match; then, they follow an optimal charging profile, similar to the exact information

case. Interestingly, the flexibility offered by charger 1, shown in Figure 5.7c, is just

marginally affected by the prediction error. There is always a symmetric capacity,

with a small deviation during the first sample times.

The results of the complete simulation (EVCS with all its chargers) are summarised

in Table 5.5. The aggregator operation cost with different strategies is shown. In ad-

dition, the savings of the eMPC and OCCF strategies are calculated in comparison

with the MT strategy. As expected, the OCCF strategy maximises the flexibility capac-

ities. Furthermore, there is no relevant difference for the eMPC and OCCF strategies

between knowing or not in advance the EV arrival SoC. Indeed, for this case, the

charging cost for the eMPC strategy increases by just 0.17%, while, for the OCCF, it

increases by 0.06%. Therefore, this suggests that the MPC strategies are robust in front

of the EV arrival time and initial SoC information.

TABLE 5.5: Strategies’ overall simulation results, with uncertainty in
the arrival time and initial SoC (three chargers, 11 EV requests).

Strategy
Charging Cost UF

T Capacity LF
T Capacity

Cost [$] Savings [%] [kWh] [kWh]
MT 272.63 � 0.00 4, 300.00
eMPC 217.34 20.27 3, 241.46 4, 058.54
OCCF 257.50 5.54 5, 997.95 3, 902.05

5.4.2 Savings, Benefits, and Flexibility in the EVCS

Now that the main characteristics of the proposed strategies have been highlighted

in a small example, an extensive simulation campaign is presented, reproducing an

EVCS with 25 chargers and 110 EV re-charge requests to be fulfilled in one day. These

simulations are developed considering uncertainty in the arrival SoC and arrival time.

The simulation run time for the MT solution is 10 ms, for the eMPC and the OCCF

strategies is 3 s per station operation hour. The main results are shown in Figure 5.8.
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In Figure 5.8a, the number of EVs arriving at the station (red line) and the number of

EVs connected (dashed-blue line) at each time slot are shown. In Figure 5.8b, the time

history of the delivered charging power is shown for the three solution strategies.

Consistently with the preliminary case, the OCCF solution generates the smoothest

behaviour. Then, Figure 5.8c focuses on the overall station operational cost at each

time slot. Specifically, it provides further evidence that, although the eMPC strategy

might be the more expensive one at certain time intervals, by considering the overall

daily operations, it is the cheapest solution. This is in line with the preliminary results

listed in Table 5.5.

2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0

5

10

15

20

25

N
u

m
b

er
 o

f 
E

V
s

Arriving

Connected

(A) EV arrival and EVs connected in the operational time.

2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0

250

500

750

1000

P
o

w
e
r 

[k
W

]

MT

eMPC

OCCF

(B) Power delivered.

2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0

30

60

90

C
o
st

 [
$
]

MT

eMPC

OCCF

(C) EVCS cost.

FIGURE 5.8: The behaviour of the three charging strategies in the EVCS.

Figure 5.9 shows the flexibility capacity that the EVCS can offer to the system op-

erator at each time slot k, with the three strategies, along the operation time of the sta-

tion. As already mentioned, the upward and the downward flexibilities in the OCCF

strategy are maximised, according to the optimal problem formulation. Interestingly,

by comparing this simulated result with the outcome in Figure 5.7c, the OCCF strategy
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offers a certain level of flexibility at every time interval, allowing for providing spin-

ning reserve service to the grid all day long. This evidence suggests that the more EVs

are connected, the higher is the algorithm capability to achieve charging flexibility.
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FIGURE 5.9: EVCS flexibility capacity.

To sum up, Table 5.6 lists the overall results of this second simulation scenario.

Once again, it is shown that the higher flexibility capacity levels are achieved by the

OCCF solution. Concerning the savings of the MPC solutions with respect to the

MT strategy, the values are of the same order of magnitude of the preliminary case

in Table 5.4. This might imply that those savings are independent of the amount of

plugged-in EVs, yet dictated by the chosen solution strategy and energy price evolu-

tion.

TABLE 5.6: Three strategies’ overall simulation results, considering un-
certainties (25 chargers, 110 EV requests)

Strategy
Charging Cost UF

T,k Capacity LF
T,k Capacity

Cost [$] Savings [%] [kWh] [kWh]

MT 2, 913.13 � 0.0 47, 600.00

eMPC 2, 322.36 20.28 40, 979.68 42, 620.32

OCCF 2, 706.40 7.10 61, 059.26 42, 240.74

5.4.3 Monte Carlo Analysis

The performance of the proposed EVCS operation strategies is evaluated through a

Monte Carlo simulation, where the EVs SoC, arrival and departure times are ran-

domised, and the resulting overall savings with respect to the outcomes of the MT

strategy are analysed. To this aim, the optimal decision problem for an EVCS with 25

chargers and 110 EV requests is solved for 500 realisations of random EV arrival and

departure times, aj and dj. In more detail, the EV arrival flow is assumed to be a ran-

dom variable with uniform distribution during the day, considering that electric taxis
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operate 24 hours and can be charged at any time. Then, in the simulation, ãj is gener-

ated as a random variable, with uniform distribution between hour 1:30 a.m. and hour

20:30. Note that, for another type of user, it would be possible to identify the distribu-

tion that better represents it (Flammini et al., 2019), for example, analysing historical

data (Bascetta et al., 2018). Moreover, dj is also randomly generated, constrained to

guarantee a charging time between 2� 6 h; 2 h is the minimum interval guaranteeing

a feasible charging procedure, and 6 h as a reasonable time for resting between work

shifts. Two price sequences, c1,k and c2,k as per Table 5.2, are considered, allowing for

evaluating the sensitivity of the strategies to the energy cost.

In the MT and eMPC strategies, no remuneration factor is considered. In particular,

the results of the eMPC strategy are to avoid or reduce the consumption at high energy

prices, thus increasing the upward capacity available and reducing the downward ca-

pacity available. This available capacity is calculated from a purely technical point of

view. Conversely, the OCCF algorithm, as per the formulation Equation (5.19), finds

a trade-off between energy cost and flexibility capacity, thus distributing the energy

consumption throughout all the time-slots. In turn, this leads to a schedule with the

EV charging station operating during high-cost hours, thus making the overall charg-

ing process more expensive but guaranteeing an almost symmetrical flexibility at all

times.

In the OCCF strategy, the remuneration is given to provide flexibility. The remu-

neration factor is assumed to be higher when the energy price is high because, without

an appropriate incentive, nobody would provide flexibility in the higher energy price

periods. Thereby, it is reasonable that the trend of the remuneration factor follows the

energy price sequence.

A comparison is introduced here in the form of parametric analysis, in which the

remuneration factor is chosen at different percentages of the energy prices. In this

way, the overall cost savings of providing flexibility with respect to the MT strategy

are quantified. When the price sequence c1,k (see Figure 5.5a) is considered in the

Monte Carlo simulation, the probability density function (PDF) of the overall savings

is shown in Figure 5.10. The other cases for the OCCF strategy are formulated with

remuneration factors of 10%, 20%, and 30% of the energy price (the further case with

100% is not shown but is included in Table 5.7). By definition, with null remuneration

factor, the solution is the same as in the eMPC. By introducing remuneration, the en-

ergy costs of the different solutions increase, but the benefits due to remuneration are

higher, and the solutions become more profitable. Indeed, when the remuneration is

equal to the energy price, the overall savings are very high (even though these savings
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refer to the MT strategy, such values higher than 100% are conceptually feasible).

FIGURE 5.10: Overall savings for different strategies and remuneration
factors based on c1.

When the energy price sequence c2,k is used (Figure 5.11), the most relevant out-

comes of the Monte Carlo trials are shown in Figure 5.12.
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FIGURE 5.11: Energy price sequence c2,k.

FIGURE 5.12: Overall savings for different strategies and remuneration
factors based on c2.

The results summarised in Table 5.7 show that the average savings for the set-up

with price c1,k are higher than for the price c2,k. This can be explained by the difference

in the ratio between the standard deviation and the mean value of the energy prices,

0.44 for c1,k and 0.19 for c2,k (see Table 5.2). Hence, the higher the variability of the

energy cost profile, the higher the capability of the MPC strategies to achieve more

convenient schedules on a daily basis, charging the vehicles principally at the cheapest
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time slots. When the remuneration factor increases, the mean overall savings increase,

and the standard deviation of the overall savings also increases. Furthermore, the

overall savings found starting from the two different energy price sequences tend to

be similar when the remuneration factor increases. This is due to the fact that, with

high remuneration factors, the power profiles tend to be more constant (see Figure 5.7a

and Figure 5.8b). This happens already when the remuneration factor is 30% of the

energy price for the two energy price sequences, and, for this reason, the results shown

in Figure 5.10 and Figure 5.12 are shown up to 30%.

TABLE 5.7: Mean value and standard deviation of the overall savings
with respect to the MT strategy.

Strategy and Overall Savings Strategy and Overall Savings

Remuneration Factor Mean [%] Std [%] Remuneration Factor mean [%] std [%]

eMPC, π � 0 19.8 1.6 eMPC, π � 0 10.6 0.8

OCCF, π � 0.1 � c1 44.5 2.1 OCCF, π � 0.1 � c2 35.3 1.3

OCCF, π � 0.2 � c1 59.5 2.4 OCCF, π � 0.2 � c2 53.9 2.2

OCCF, π � 0.3 � c1 81.6 3.4 OCCF, π � 0.3 � c2 80.6 3.0

OCCF, π � c1 257.9 10.2 OCCF, π � c2 257.9 10.1

5.5 Findings

In this Chapter two novel strategies that can be used by the aggregators for Electric

Vehicle Charging Station (EVCS) have been proposed. The first strategy looks for min-

imizing the EVCS operation costs, via an economic Model Predictive Control (eMPC).

The second strategy starts from a formal definition of EV charger flexibility and de-

velops an Optimal Control with minimum Cost and maximum Flexibility (OCCF) for-

mulation. In both strategies, the effect of uncertainty on the arrival time and on the

EV state of charge at the arrival are taken into account. Interestingly, this charging

strategy was found not only to reduce the station operating costs but also to maximise

the possibility of offering ancillary services to the grid, like spinning reserve, through

the power flexibility capacity given at each time slot.

A dynamic model of an EVCS charger as a flexible load was developed. The model

has a switching behaviour, according to whether there is an EV plugged-in to the

charger or not. Also, the charger flexibility capacity was defined, with respect to a
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given nominal charging trajectory, considering the power deviations attainable by the

trajectory itself.

The two proposed charging strategies were benchmarked against the simple Mini-

mum Time (MT) charging strategy. Specifically, a wide range of numerical simulations

based on the electric taxi service used in Bogotá, Colombia is performed, assuming two

real electric energy price sequences. In addition, the two strategies are evaluated with

and without knowledge of the EVs arrival SoC, achieving a difference in average sav-

ings lower than 0.6%. Therefore, this suggests that the MPC strategy is robust in front

of the EV arrival SoC information.

As future work, the response of the aggregators with uncertainty in the price se-

quences will be explored. The strategies used by the aggregator will be improved by

considering the use of real data on EV usage. In addition, the EV battery degradation

cost will be included in the optimization cost function. However, these future features

do not modify the proposed formulation of the flexibility.
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Chapter 6

Strategy for EVCS participation in

RT and DA Markets

In this Chapter, Day-Ahead (DA) and Real-Time (RT) strategies are developed for the

EVCS considering the availability of a local renewable generation source. First, the

DA controller is based on a renewable source forecast and on an EVs schedule. This

approach aims to define the electrical grid energy to be purchased for the next day.

Second, the RT controller aims to manage the DA forecast grid energy, taking into

account the fluctuations of the actual renewable generation and EVs behaviour. Then,

for both approaches, the aggregator is responsible for deciding the injected power

of the electrical grid and renewable source, considering the EV owners preferences.

Moreover, these strategies consider a Photo-Voltaic (PV) generation source.

In order to assess the PV generation forecast, the DA and RT controllers, this chap-

ter is divided into three main topics:

• PV generation model, a solar radiation forecast, based on real data of Bogotá,

Colombia;

• DA controller, a formulation based on the eMPC strategy that considers the PV

generation forecast;

• RT controller, a strategy whose aim is to follow the power purchased to the elec-

trical grid in the DA strategy.

The rest of the Chapter is organized as follows: Section 6.1 describes how the EVCS

operates taking into account the participation of a local renewable generation source.

In Section 6.2, a Photo-Voltaic (PV) generation model is presented, considering Bogotá

whether conditions. In Section 6.3, the DA formulation is proposed. Section 6.4 in-

troduces the RT strategy. Finally, in Section 6.5 case study is shown, along with the
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related numerical results. The results of this Chapter were derived in the publica-

tions (Giordano et al., 2020; Diaz-Londono et al., 2020b).

6.1 EVCS Operation with RES generation

In this section, two controllers are proposed, one for an EVCS Day-Ahead (DA) and

another for an EVCS Real-Time (RT). In these strategies, a solar radiation forecast is

considered for calculating the Renewable Energy Source (RES) production. The EVCS

goal and operation is the same as the one presented in Subsection 5.1. However, in

this case study, the total power delivered by the station PT is composed of a traditional

generation Pp and a RES Pw one, as,

PT,k � Pp,k � Pw,k. (6.1)

Therefore, some additional variables are used in this chapter. Table 6.1 shows the

additional variables notation.

TABLE 6.1: Additional variables notation of the EVCS with PV genera-
tion.

Symbol Variable Units
Pp Power delivered by the power grid kW
Pw Power delivered by the PV generator kW
w PV information {set}
GPV Solar radiation W{m2

Tamb Ambient Temperature �C
GSTC Radiation standard test conditions W{m2

Pnom Nominal power of a PV plant kW
γp Power thermal coefficient A{K
∆T Temperature difference �C

Figure 6.1 shows the EVCS operation. This station is as the one presented in Fig-

ure 5.1. However, in this case, a Photo-Voltaic (PV) generation and bilateral commu-

nication with the System Operator (SO) are considered. It is assumed that the PV

generator has a smart meter that informs the aggregator about the solar radiation GPV

and the ambient temperature Tamb, this information is collected as w�tGPV , Tambu. In

addition, the communication between the aggregator and SO aims to report the en-

ergy for consuming the next day by the EVCS, this is the DA controller output. The

RT controller looks for minimizing the error between the DA purchased power and

the actual EVCS consumption, taking into account the solar radiation fluctuations.
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FIGURE 6.1: EVCS operation with Photo-Voltaic generation.

6.2 Bogotá, Colombia Photo-Voltaic generation model

In this subsection, a renewable generation model is developed for the solar radiation

in Bogotá, Colombia. Considering 5 years of hourly registered solar radiation data,

the model is estimated. Both, the data pre-processing and the model are carried out in

MATLAB® software. The model comprises three elements:

1. an expected value;

2. a Non-linear AutoRegressive eXogenous (NARX) model;

3. an error Gaussian model.

First, due to the fact that data are acquired from real measurements, there are out-

liers across the measures. These data holes are detected and replaced by applying

quadratic polynomial curves. Then, three profiles based on the Colombian seasons

are generated from the expected values, as:

• Profile 1: the same hourly values in a day for all years;

• Profile 2: four different hourly values, one per each season (2 dry and 2 rainy);

• Profile 3: two different hourly values, one for dry seasons and one the rainy ones.
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Profile 2 is selected to develop the model because of its lower standard deviation and

mean value.

Second, the residue between the original data and the expected values are analysed

through the autocorrelation, obtaining one day of correlation. Hence, an Artificial

Neural Network (ANN) is used for identifying the residue dynamics. It is carried out

a NARX with sigmoidal neurons.

Finally, the residue between the original data and estimated model, i.e., the ex-

pected values and the NARX model is assessed, detecting a Gaussian behaviour.

Pre-processing data

In this work, the hourly solar radiation measurements of Centro de alto rendimiento in

Bogotá, Colombia are evaluated. It is analysed for 5 years, from 2011 to 2015. Then,

the length of the data is 43,824 (2012, leap year) in 1826 days, or 8,760 data per year

(24 hours in 365 days). Considering that Bogotá has almost the same sunlight time in

a whole year, this is from 6:00 to 18:00, data are evaluated for these 13 hours.

Given that data are acquired from a real sensor, some information becomes out-

liers or does not exist, probably because of particular damage or maintenance of the

equipment. Therefore, to fill data outliers, two processes are developed. First, when

a complete day data is missed, the average of the nearest days is generated to com-

plete that day; then, this is developed for each missing day. Otherwise, when there

are missed few data during a day, a quadratic polynomial curve is calculated with the

available information of the specific day and is evaluated in the missing points; this is

developed for each day with missing data. Table 6.2 shows the total amount of miss-

ing data per year and the number of days where there is no solar radiation information

through a whole day.

TABLE 6.2: Lack of data in the solar radiation information.

Year
Lack of data

total whole day
2011 308 (3.52%) 6
2012 280 (3.19%) 3
2013 75 (0.85%) 2
2014 389 (4.44%) 12
2015 32 (0.37%) 1

Therefore, it can be seen that 2014 is the year with the highest lack of data. How-

ever, the percentage is lower than the 10% required for analysing the radiation data (Huang

et al., 2014).
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6.2.1 Profiles based on expected values

Taking into account 5 years data, this is without holes, the first element of the model

is calculated. Then, three profiles based on the expected value are generated and com-

pared.

The profiles are calculated for the 13 hours of sunlight between 6:00 and 18:00; be-

tween 19:00 and 5:00 the radiation is zero for the whole year. Figure 6.2 shows the

estimated profiles. Profile 1 is the expected value of each hour considering the mean

value of the 5 years data (one sequence). This profile achieves the highest radiation

at 545 W/m2 at 12:00. Moreover, to estimate the Profile 2, it is considered the Colom-

bian seasons, there are: a first dry season (Dry 1), from December to February; a first

rainy season (Rainy 1), from March to May; a second dry season (Dry 2), from June to

August; and a second rainy season (Rainy 2), from September to November. Hence,

Profile 2 has 4 sequences calculated as the expected value of each hour at each season.

It is noticed that the dry seasons 1 and 2 achieve higher peak radiation that rainy ones,

obtaining 614 W/m2 for Dry 1 and 547 W/m2 for Dry 2 at 12:00, while in the rainy

ones, the peak is reached at 11:00. Finally, Profile 3 is the expected value of each sea-

son, i.e., one for dry and other for rainy (two sequences). As in Profile 2, it is shown

that dry season achieves a higher radiation at 12:00 while the rainy one at 11:00. More-

over, in the dry season, the radiation remains slightly more time, and also its area is

greater than the rainy season.

6 8 10 12 14 16 18
Time [h]

0

100

200

300

400

500

600

700

S
ol

ar
 r

ad
ia

tio
n 

[W
/m

2
]

Profile 1

6 8 10 12 14 16 18
Time [h]

0

100

200

300

400

500

600

700

S
ol

ar
 r

ad
ia

tio
n 

[W
/m

2
]

Profile 2

Dry 1
Rainy 2
Dry 2
Rainy 1

6 8 10 12 14 16 18
Time [h]

0

100

200

300

400

500

600

700

S
ol

ar
 r

ad
ia

tio
n 

[W
/m

2
]

Profile 3

Dry
Rainy

FIGURE 6.2: Solar radiation Profiles 1, 2 and 3, based on the expected
values.

Figure 6.3, 6.4 and 6.5 depict the Profiles 1, 2 and 3, respectively. In these figures, the

mean value (blue line), the standard deviation (error blue line), the minimum value
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(purple asterisk), and the maximum value (green asterisk) are calculated for each pro-

file. It is noticeable that there are few changes among them.

6 8 10 12 14 16 18
Time [h]

0

400

800

1200

S
ol

ar
 r

ad
ia

tio
n 

[W
/m

2
]

Profile 1

FIGURE 6.3: Profile 1.
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FIGURE 6.4: Profile 2.

The profiles are compared considering the percentage of the output variations that

are reproduced by the model, this is called the FIT (see Eq. 4.18). Then, in Table 6.3, the

FIT of each profile compared with the complete real data is obtained. It is observed

that Profile 2 achieve the best FIT, which is the expected result due to the 4 sequences

that illustrate the solar radiation data. However, Profile 1 and 3 are not that bad, it
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FIGURE 6.5: Profile 3.

is shown that the greater percentage difference is 0.67%, between Profile 1 and 2, i.e.,

taking into account 1 or 4 sequences.

TABLE 6.3: Similitude of the profiles with the real data

Profile FIT [%]
1 58.69
2 59.36
3 59.00

Therefore, for the second elements of the model, the Profile 2 is considered. Fig-

ure 6.6 shows the real data in a blue line and the model with the Profile 2 in a red line.

It is shown the radiation between the day 1512 (20/2/2015) and 1527 (7/03/2015).

Note that, there is a season change in 1520 (1/03/2015), from Dry 1 to Rainy 1.
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FIGURE 6.6: Real data and Profile 2 behaviour.

6.2.2 Non-linear auto-regressive model

For the purpose of acquiring the second element of the model, the residues between

the original data and each profile are assessed. Table 6.4 depicts the mean value (which
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can be assumed as zero), the variance, and the standard deviation of the residue with

each profile. As expected the best result is with Profile 2.

TABLE 6.4: Residues between the original data and each profile statis-
tics.

Profile Mean [W/m2] Variance Standard deviation [W/m2]
1 2.63� 10�13 2.76 � 104 166.07
2 2.68� 10�13 2.70 � 104 163.40
3 1.58� 10�13 2.72 � 104 164.85

To develop an ANN it is required to determine the residue autocorrelation, which

is present in Figure 6.7. It is noticed that this residual is 19.2% autocorrelated for the

previous 13 hours (one day in this case).
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FIGURE 6.7: Residue autocorrelation.

In this work, an ANN is developed considering synchronous and discrete net-

works in which the dynamics are non-linear. It is developed by estimating the pa-

rameters of a non-linear ARX model. Then, 70% of the residue data is used for the

estimation, while the last 30% is used for validation. The order of the model, i.e., the

number of steps for performing the prediction, and the number of the predicted steps

(prediction horizon) are assessed in Table 6.5. It can be seen that the best order of the

model is 13, as found in the autocorrelation (see Figure 6.7); while in the prediction

horizon, the best solution is 1 step. Therefore, for predicting the one value (next value),

it is needed the 13 nearest past values. Notice that it is considered only 13 values of the

sunlight in a day, then, the actual order of the model is one day i.e., 24 hours. Hence,

it is possible to predict the radiation of the next hour with a FIT of 21.59%. However,

comparing the FIT of predicting one step ahead when considering a model order of

one and another of 13, it can be seen that the difference is 1.34%, which is not quite

significant; by contrast, increasing the prediction horizon (steps) considering the same
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model order, the FIT reduces notably. In addition, the estimator is carried out with a

sigmoid network.

TABLE 6.5: Similitude of the residue validation with different model
orders and prediction steps.

Model orders
FIT [%]

Prediction steps
1 2 13

1 20.25 6.79 1.05
13 21.59 8.77 2.57
26 21.57 8.92 3.42
39 21.58 8.80 3.17

Hence, the performance of the NARX model is shown in Figure 6.8. The validation

is analysed in the same time interval of Figure 6.6.
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FIGURE 6.8: Validation between real data and NARX model.

In order to analyse the estimated model with the two elements, the expected value

of Profile 2 and NARX model, a validation is carried out. Then, both models are added

and compared with the real data, obtaining a FIT equal to 68.97%. This represents an

increase of 9.61% in comparison with the first model element, see Table 6.3. Figure 6.9

shows in a blue line the real data and in a red line the estimated model.
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FIGURE 6.9: Validation of the estimated model (expected value and
NARX model).

6.2.3 Residue analysis

In order to determine the third element of the model, the residue between the original

radiation and the model estimated in the previews section (with the first and second

elements) are evaluated.

Then, the autocorrelation of this second residue is shown in Figure 6.10. It is shown

that there is no correlation between the samples.
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FIGURE 6.10: Second residue autocorrelation.

Therefore, the second residue is plotted in a histogram with the purpose of know-

ing its distribution, achieving a Gaussian behaviour as shown in Figure 6.11. There

are shown both histograms the one for the estimation set and one for validation set.

Moreover, statistical parameters are calculated, obtaining,

• Mean value: -1.77 W/m2

• Standard deviation: 126.27 W/m2
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FIGURE 6.11: Histogram. Gaussian distribution

6.2.4 Solar Power Forecast

Considering the solar radiation model previously developed and the ambient temper-

ature data of the same analysed period, the generated solar power can be expressed

as (Tascikaraoglu et al., 2016),

Pw �
GPV

GSTC
Pnomp1� γp∆Tq (6.2)

where, GPV is the solar radiation either real or predicted, this variable is the output of

the solar radiation model, GSTC is the solar radiation at Standard Test Conditions (STC)

given by GSTC�1000W/m2, Pnom is the nominal power of the PV plant, γp is the short

circuit current thermal coefficient, usually γp�0.004A K�1, and ∆T is a temperature

difference defined as,

∆T �

�
Tamb �

NOCT � 20
800

GPV



� 25, (6.3)

where, Tamb is the ambient temperature, and the parameter NOCT is defined between

42�C and 50�C and depends on how is the PV array physically installed. Typically,

NOCT�45�C corresponding to a cell temperature of 25�C, an ambient temperature of

20�C, and a STC solar radiance of 800W{m2.

6.3 Day-Ahead Formulation

A formulation for the Day-Ahead (DA) strategy for planning the energy purchase an

EVCS needs for the next day is presented in this subsection. This solution looks for
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minimizing the operation costs as in the eMPC strategy (see subsection 5.3.2). How-

ever, in this DA strategy, a PV plant is involved, therefore, a PV generation forecast

is considered. Likewise, the optimality here refers to a charging profile planning that

minimizes the EVCS operation costs, while guaranteeing for all EVj the minimum

S̃oCj,dj at the departure time dj. Thus, the optimal problem is defined as,

min
Pp,i,k , Pw,i,k

∆t
β�1̧

k�0

�
ck

I̧

i�1

Pp,i,k

�
(6.4a)

s.t. xi,k�1 �

$''&''%
xi,k � ∆t

�
Pp,i,k � Pw,i,k

�
if aj   k   dj

SoCj,aj if k � aj

0 if ξi,k � 0_ k � dj

(6.4b)

S̃oCj,dj ¤ xi,dj ¤ xi,max (6.4c)
∆k�1¸
k�0

I̧

i�1

Pw,i,k ¤ P̃w,δk (6.4d)

Pp,i,k � Pw,i,k ¤ Pi,max (6.4e)

0 ¤ Pp,i,k ¤ Pi,max (6.4f)

0 ¤ Pw,i,k ¤ Pi,max (6.4g)

0 ¤ xi,k ¤ xi,max (6.4h)

@ k � 1, 2, . . . , β, i � 1, 2, . . . , I, j � 1, 2, . . . , J.

In this strategy, each charger has two decision variable at each time step i.e., the

optimal trajectories Pp,i,k and Pw,i,k that create the power injected by the charger, ex-

pressed as,

Pi,k � Pp,i,k � Pw,i,k. (6.5)

Therefore, this aggregator has two decision variables sets. On one hand, the power

that will be purchased to the electrical grid Pp,k at each time step, defined as the sum

of the optimal grid power Pp,i,k in each charger. On the other hand, the locally RES

power that can be dispatched at each time step, which is based on the PV generation

prediction (see Section 6.2) and is defined as the sum of the optimal Pw,i,k power in

each charger.

Notice that the cost function considers only the energy price for the grid power

Pp,i,k, while, the renewable power Pw,i,k is dispatched with zero energy cost. Con-

cerning the constraints, the same of the eMPC strategy are considered and three new

constraints are introduced. First, Eq. (6.4d) bounds the dispatch of the predicted RES
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power P̃w,δk that is distributed into all chargers that have an EV connected. Besides,

the RES predicted power data is given by a discrete time slot δk� 1, . . . , δK, lasting ∆k

hours. Second, in Eq. (6.4e) the maximum injected power Pi,max is considered with

the summation of the grid power and RES. Third, in Eq. (6.4g) the lower and upper

bounds for Pw,i,k are considered.

Taking into account the discussion after Eq. (5.15) about linearity in the problem

Eq. (5.11), this new aggregator faces an LP convex problem. Similarly, also the feasi-

bility condition presented in Eq. (5.16) holds for the problem formulation Eq. (6.4).

In order to solve the DA strategy, the controller assumes the PV generation model

P̃w,δk as an input for the EV chargers (see Eq. (6.4b)). Then, one simulation of the PV

generation model is developed for the next day (24 hours).

Finally, this formulation is an open-loop optimal control problem that allows find-

ing the power grid trajectory to purchase in a DA market. Then, this power is calcu-

lated considering all P�p,i,k defined as,

Pp,DA,k �
I̧

i�1

P�p,i,k. (6.6)

To sum up, it is expected that this strategy minimize the EVCS operating costs

considering a PV generation forecast.

6.4 Real-Time Formulation

In this subsection, a Real-Time (RT) controller is proposed. The aim of the RT dispatch

is to deliver a proper grid power Pp,i,k at each time slot to each charger, by following

the DA power scheduling sequence Pp,DA,k. Then, an MPC strategy is adopted to

achieve this goal, adjusting the injected power to compensate fluctuations of the RES

power Pw,i,k, while guaranteeing for all EVj the minimum S̃oCj,dj at the departure time

dj. Then, the EVCS deals with the following optimal control problem,

min
Pp,i,k , Pw,i,k

∆t
H�1̧

k�0

��φk

�
I̧

i�1

Pp,i,k � Pp�DA,k

�2
� (6.7a)

s.t. Eq. (6.4b), Eq. (6.4c), Eq. (6.4d), Eq. (6.4e),

Eq. (6.4f), Eq. (6.4g) and Eq. (6.4h)
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The cost function in Eq. (6.7a) looks to minimize the error between the schedule

DA grid power Pp,DA,k and the power decided by the MPC strategy to be delivered to

all chargers at each time slot. Note that in the cost function, the error is penalized by

an energy price sequence φk. This MPC formulation has the advantage of recalculating

the optimal injected power considering the RES fluctuations every δk.

In this strategy, the aggregator has the same two decision variables Pp,i,k and Pw,i,k

than in the DA aggregator. Likewise, the constraints are the same as in problem

Eq. (6.4). However, the cost function is different.

Regarding the PV generation forecast P̃w,δk, it is calculated every δk sample and

predicts the next H hours. Then, the real PV measured power Pw,δk is updated every

∆k hour and used in the following predictions. Indeed, it is assumed that the RT

aggregator knows with high accuracy the PV generation at the current time step.

6.5 Case study and Day-Ahead and Real-Time strategy results

In this case study, the simulation results are presented considering the parameters

in Table 5.2. However, the prediction horizon and the battery capacity in EVs are

changed as H�7 h (42-time steps) and C�30 kWh, respectively (these changes are con-

sidered with the purpose of carrying out a scenario where the PV production and the

EVCS consumption are comparable). In fact, this battery capacity belongs to a Kia

Soul EV® car, which is one of the EVs circulating in Bogotá, Colombia. The level 2

(semi-fast) charging power is selected for the station chargers, i.e., Pmax�8 kW. Fur-

thermore, hourly solar radiation data of Centro de alto rendimiento in Bogotá are used

for forecasting the PV production. To assess the PV generation forecast and the DA

and RT controllers, a simulation campaign is set up considering the EVCS El Salitre

located in Bogotá. It has 13 chargers (n�13) and it is possible to implement a PV plant

of 50 kW (Pnom�50 kW). Besides, ∆k�1 h (6-time steps), taking into account that the

solar radiation data are given hourly. The penalization energy price φk is assumed the

same as the second time-variant energy cost, i.e., φk�c2,k. The rest of the simulation is

set as in the first case study presented in Subsection 5.4.

Furthermore, the hourly PV generation data used in the DA controller are pre-

dicted with the PV generation model developed in Section 6.2, by feeding it with the

solar radiation data of the day before (24 hours). In order to solve the problem of

Eq. (6.7), the predicted hourly data for the next H hours are computed in the PV gen-

eration model considering the previous 24 hours of solar radiation. Notice that the
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data entering the model is updated every hour with the actual generation informa-

tion. Moreover, for simulating the actual EVCS, a PV generation model with high-

frequency variations is employed. Therefore, the real hourly solar radiation data are

preprocessed with a linear polynomial model for obtaining data every 10 min. How-

ever, these new data do not consider the solar radiation variability in a 10 min sample

time. Then, real solar radiation data acquired between June 5 and June 10 of 2014 at

the Pontificia Universidad Javeriana are used for adding variability to the 10 min data.

This Javeriana solar radiation data has 6 days of information with a 2 s sample time

(518400 data) and is presented in Figure 6.12. The variability is calculated with the dif-

ference between the hourly mean values and the 10 min mean values of the Javeriana

data. The results show that the variability can be generated randomly with normal

distribution considering the mean value as 2.14 � 10�14 � 0W{m2 and the standard

deviation as 90.29W{m2. Therefore, the RT 10 min solar generation is computed as the

sum of the linear polynomial model and a random variable generated as white noise

with Gaussian distribution, zero mean and standard deviation 90.29 W{m2.
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FIGURE 6.12: Solar radiation data at Pontificia Universidad Javeriana.

In order to analyse the DA and RT controllers, a simulation campaign is set up,

considering 13 chargers, 34 EVs re-charge request (all EVs are scheduled for been

charged), and energy price sequence c2,k. All chargers are scheduled for charging

two, three or four EVs in the day, however, charger number 3 is selected for assess-

ing the controllers, due to the high activity by charging four EVs in the simulation,

let us say EV1, EV2, EV3, and EV4. Table 6.6 presents the EV schedule for charger 3,

with their arrival and departure times, and the minimum battery state at the departure

S̃oCj,dj . This SoC is generated randomly with a uniformly distributed pseudo-random

between 24 kWh (80%) and 30 kWh (100%).

In the following analysis, only charger 3 is considered. In Figure 6.13, the be-

haviour of the DA and RT controllers are presented. Indeed, Figure 6.13a shows the



128 Chapter 6. Strategy for EVCS participation in RT and DA Markets

TABLE 6.6: EV Schedule for Charger 3.

EVj EV1 EV2 EV3 EV4
aj 2:00 7:00 13:00 18:00
dj 6:00 12:00 17:00 23:00

S̃oCj,dj 29kWh (97%) 25 kWh (83%) 24 kWh (80%) 25 kWh (83%)

trajectories of the predicted DA and the actual RT power P3,k to charge the 4 EVs, con-

sidering the grid and solar power sources. These trajectories are always positive or

equal to zero and ensure the state S̃oCj,dj at the departure. Notice that trajectories in

some periods are not the same neither when there is no PV generation, for example

for EV1. This is due to the global optimal solution in each charger; however, the total

power demanded in RT by the EVCS follows the DA schedule (as presented later).

In Figure 6.13b the trajectories of the EV SoC are reported. It can be seen that the

S̃oCj,dj constraint in the 4 EVs is fulfilled in both controllers DA and RT. The DA con-

troller charges the EVs up to the minimum possible value (S̃oCj,dj ) due to the aim of

minimizing cost. In particular, the EV1 in RT departures with a slightly different value

(29.8 kWh) of the DA scheduled, but the constraint is respected.
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FIGURE 6.13: The behavior of the Day-Ahead and Real-Time con-
trollers in charger 3.

The overall results of this EVCS simulation campaign are presented below and

summarized in Figure 6.14. Figure 6.14a depicts the amount of EVs arriving at the sta-

tion (red line) and the number of EVs connected (dashed-blue line) at each time slot,
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for example, at 8:00 all chargers have an EV connected. In Figure 6.14b, the predicted

solar power in DA is shown in the red line, the dispatched solar power in RT is de-

picted in the blue dashed line, and the power produced by the PV plan is presented

in green dashed dot line. Notice that not always the PV production was injected to

the EVs, for example, at 12:00 the injected PV power is lower than the available PV

power. This is due to the RT cost function, which is to follow the DA power sched-

uled. Then, in Figure 6.14c, the station delivered grid power is shown, for the DA and

RT controllers. In contrast to the individual charger power that has significant devia-

tions between the DA and RT controllers (see Figure 6.13b), the grid power consumed

by the EVCS has small variations between the controllers.
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FIGURE 6.14: EVCS behavior in the Day-Ahead and Real-Time con-
trollers.

To sum up, the RMSE between the purchased power Pp in DA and the consumed

power in RT is 7.37 kW, obtaining a maximum error of 17.9 kW at 16:50. In fact,
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514.26 kWh is the purchased energy in DA, which has a cost of US$152.18. This is only

considering the grid power due to solar power dispatched at zero cost. On the other

hand, the consumed grid energy in RT deviates 5.9% (32.23 kWh) from the DA. This

produces consumption of 546.49 kWh, generating a penalization cost to the EVCS of

US$15.37. Regarding the solar power Pw, the RMSE between the DA and RT strategies

is 10.17 kW, the maximum positive error is 8.6 kW at 13:30, while the maximum neg-

ative error is -11.67 kW at 9:20. Indeed, the DA forecasts solar production of 192.41

kWh, however, in RT it is consumed 173.48 kWh, 11.1% (18.93 kWh) less. Finally,

it is highlighted that the real PV production is not dispatched completely, missing

5.88 kWh. In Table 6.7, the energy and cost of the DA and RT are reported.

TABLE 6.7: Energy and cost for the Day-Ahead schedule and Real-Time
controller.

Step Energy [kWh] Cost [US$]

DA
514.26 (Grid purchased) 152.18

192.41 (PV estimated) N.A.
546.49 (Grid consumed) 15.37 (Penalization)

RT 173.48 (PV consumed) N.A.
179.36 (PV available) N.A.

6.6 Remarks

In this chapter two novel strategies were proposed, a Day-Ahead schedule (DA) and a

Real-Time (RT) dispatch. The DA strategy aims to minimize the operation cost, while

the RT strategy looks for minimizing the error on following the DA schedule. In these

strategies, the EVCS considers power from the electrical grid and a Photo-Voltaic (PV)

plant. Therefore, a PV generation model is proposed based on five-years data of solar

radiation in Bogotá, achieving a prediction model explaining 69% of the signal. Then,

the RT strategy is able to follow the DA schedule with a similitude of 91%, considering

the real-time fluctuations of the solar radiation.

There are several future directions of interest. The use of a range of renewable

energy sources, such as wind power will be assessed, considering the weather features

of different countries. Moreover, strategies to bid in the electricity markets will be

evaluated.
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Chapter 7

Hierarchical Architecture Structure

for European Balancing Services

In this chapter, a unified Hierarchical Architecture Structure (HAS) is presented for

a Balancing Service Provider (BSP) able to provide European balancing services (see

Section 2.2). The HAS is presented as a centralized algorithm capable of aggregat-

ing and coordinating distributed flexible loads, considering not only adjustable but

also deferrable loads. As shown in previous chapters, flexibility from WBPS, TER,

and EVCS has an enormous potential to provide various balancing services to a smart

grid. The challenge of the HAS is how to integrate various aggregators (AGGs) with

different loads and response times. Therefore, a two-hierarchy structure is proposed,

i) a coordinator level (high level), and ii) an AGGs level (low level). The coordina-

tion logic is developed considering the SO requirements and the availability of the

AGGs; while, AGGs level considers the WBPS-AGG (see Section 3.3), the TER-AGG

(see Section 4.2.2), and the EVCS with minimum cost and maximum flexibility (see

Section 5.3.3). The simulation results evidence that the HAS can provide FCR, aFRR,

mFRR, and RR services to the electrical grid operator by guiding the AGGs consump-

tion.

The sections of this chapter are organized as follows. Section 7.1 presents the con-

siderations of a unified structure for providing European Balancing services with dif-

ferent aggregators. In Section 7.2, the hierarchical structure operation is illustrated

through several simulations results.

7.1 Unified Aggregation Framework

In this section, the balancing services considerations are presented. Then, the flexible

loads’ aggregator (low level) with its set of equivalent load models is considered in
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order to propose the coordinator logic (high level).

The balancing services are managed by the SO of the electrical grid with the pur-

pose of ensuring that demand equals the supply in the real time dispatch. The bal-

ancing market normally considers the SO, the BSP, and the Balance Responsible Party

(BRP) (see Figure 2.3), and consist of two phases:

1. Balancing planning phase: performed in a Day-Ahead (DA) market. The main

actions are:

• The BRP reports the scheduled demand and generation per step time (not

analysed in this work). In addition, the BRP computes the energy imbal-

ances and sends them to the SO.

• The BSP informs the SO about the power demand baseline, which is de-

fined as the sum of all the AGGs power demand. This could be based on a

forecast or on historical data.

• The BSP offers to the SO an upward and downward flexibility. This is based

on the sum of all the AGGs flexibility.

* Notice that each AGG is responsible for its own flexibility forecast and base-

line.

2. Balance settlement phase: performed in a Real-Time (RT) market. The main actions

are:

• The SO guides the BSP for activating the balancing service based on the

BRP imbalances information.

• The High Logic Coordinator (HLC) allocates the SO energy request among

its AGGs.

• Each AGG manages its loads with the purpose to providing upward or

downward power variations for following the HLC request.

7.1.1 Hierarchical Coordination

In this subsection, the HAS is presented considering the two levels. Figure 7.1 de-

picts the interaction between the levels. Notice that the communication between the

HAS and the SO considers few parameters as well as the internally HAS interaction

between the HLC and the AGGs. In fact, the exchanged information is the power, the

flexibility of the AGGs, and the balancing services requests. The dispatching is guided

by the HLC and carried out by the AGGs.
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FIGURE 7.1: Hierarchical Architecture Structure.

Notice that the HAS is scalable in the AGGs, i.e., the number of AGGs could be

higher; in fact, if more AGGs participate in the HAS, better performance of the balanc-

ing service can be reached.

The main responsibilities of the HLC are:

• Understand the capacity and the time response of the AGGs.

• Assign the balancing services that each AGG can provide.

• Offer the complete flexibility of the HAS to the SO.

• Manage the SO requests, i.e., if some AGG has variations following its requested

power, the HLC can compensate the overall power with another AGG.

The HLC manages the European balancing services (FCR, aFRR, and mFRR) pro-

vision by assigning them among the AGGs considering the time response of each one,

as,

• the TER-AGG can provide FCR as presented in Section 4.2.2;

• the EVCS-AGG due to the response time (few-minutes, see Section 5.2) can pro-

vide aFRR (5 min activation time);

• the WBPS-AGG due to the response time (power stabilization of 12 min after the

SO call, see Section 3.3.1) can provide mFRR (12.5 min activation time); and,

• the RR service can be provided by all the AGGs.
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7.1.2 Flexible Loads Aggregators

In this subsection, the flexible load aggregators considered in the low level are pre-

sented. In fact, the aggregators presented in the previous chapters are used for this

integration assessing continuous and discrete systems. Therefore, the estimated dy-

namic responses of the WBPS-AGG and TER-AGG are considered, this is because of

the lower computational time. Whereas, the EVCS is taken into account with the origi-

nal MPC strategy. Moreover, modifications on the originals aggregators are taken into

account for integrating it in the HAS.

TER-AGG

The TER-AGG can offer upward and downward flexibility. In the present approach,

the estimated models presented in Eq. (4.16) and Eq. (4.17) of a TER set in transfer

function are used. The models are:

GTER�uppsq �
25.95s2 � 0.017s� 9.3e�6

s2 � 1.1e�3s� 6.8e�7 , (7.1)

GTER�downpsq �
�17.35s2 � 0.018s� 3.6e�6

s2 � 2.3e�3s� 3.7e�7 . (7.2)

Moreover, the TER-AGG presented in 4.2.2, follows a PI controller structure as,

CTER�AGGpsq �
�0.012

s
(7.3)

The TER-AGG controller is improved for achieving faster changes when providing

different services. This is possible considering the instantaneous response of the TERs.

The new controller has the opportunity of changing the kp and ki parameters; the aim

is to synchronize the power in one second when interacting with other AGGs.

WBPS-AGG

The WBPS-AGG can only offer downward flexibility. Then, as in the TER-AGG, the

estimated model presented in Eq. (3.8) of a WBPS set in transfer function is used. The

model is:

GWBPSpsq �
10.21s� 0.039

45s� 1
. (7.4)

However, considering that the AGG sample time is 3 min, the model is discretized

as,

GWBPSpzq �
0.2269z� 0.1886

z� 0.01832
. (7.5)
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As presented in Eq. (3.10) and Eq. (3.11) the WBPS-AGG is based on a PI Gain-

Scheduling controller (see Section 3.3.2), where the controllers are represented as,

CWBPS�AGGpzq � kp � ki �
2
T

z� 1
z� 1

(7.6)

The values for kp and ki depend on the HLC request and are defined in the Ta-

ble 3.8. Notice that the parameter of the controller varies with the model.

EVCS-AGG

The EVCS-AGG can provide upward and downward flexibility to the SO. This AGG

has the opportunity to schedule a DA power demand based on the EV charger request.

Then, the DA is considered following the problem presented in Eq. (5.19); however, in

this market is assessed as an optimal controller. The problem is,

min
Pi,k ,UF

i,k ,LF
i,k

∆t
β̧

k�0

�
ck

I̧

i�1

Pi,k � πU
k

I̧

i�1

UF
i,k � πL

k

I̧

i�1

LF
i,k

�
(7.7a)

s.t. xi,k�1 �

$''&''%
xi,k � ∆tPi,k if ãj   k   dj,

S̃oCj,aj if k � ãj,

0 if ξi,k � 0 _ k � dj,

(7.7b)

}SoCj,dj ¤ xi,dj ¤ ŜoCj,dj , (7.7c)

LF
i,k ¤ Pi,k ¤ ξi,kpPi,max �UF

i,kq, (7.7d)

0 ¤ UF
i,k ¤ Pi,max, (7.7e)

0 ¤ LF
i,k ¤ Pi,max, (7.7f)

0 ¤ xi,k ¤ xi,max, (7.7g)

@ k � 1, 2, . . . , β, i � 1, 2, . . . , I j � 1, 2, . . . , J.

Therefore, the DA power is,

Pp,DA,k �
I̧

i�1

P�p,i,k (7.8)

The reported Pp,DA,k is computed as the hourly mean value.
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In RT dispatch, the MPC strategy is adopted in order to follow the DA power

scheduled. Then, the optimal control problem is,

min
Pp,i,k , Pw,i,k

∆t
H�1̧

k�0

��φk

�
I̧

i�1

Pp,i,k � Pp�DA,k

�2
� (7.9a)

s.t. Eq. (7.7b), Eq. (7.7c), Eq. (7.7d), Eq. (7.7e), Eq. (7.7f), and Eq. (7.7g)

7.2 Balancing Service Provider Operation

In this subsection, the operation of the HAS as BSP is proposed. Therefore, simulation

campaigns are perform in order to evaluate the HAS provision of FCR, aFRR, mFRR,

and RR services.

The AGGs DA power are defined as: i) in the TER-AGG and in the WBPS-AGG

is considered as the nominal power presented in sections 3.3.2 and 4.2.2, respectively;

and ii) in the EVCS is the day-ahead scheduling as presented in Subsection 7.1.2.

In order to evaluate the HAS performance, two different service provisions are

evaluated:

• Case 1: Each AGG provides a specific service, except the RR service that can be

provided by all the AGG.

• Case 2: The services are provided by overlapping the AGG power demand in the

services by following the idealized provision case of Figure 2.3.

Both cases are evaluated in Simulink simulations. These cases provide different

power capacity due to the maximum power the TER (fast service) can provide to the

grid in each case. The HLC defines and reports to the AGGs the power deviation they

should follow. Moreover, in the simulations, only reduction power requests by the SO

are analysed due to the WBPS response that only considers reduction flexibility.

In Figure 7.2 the HAS operation is depicted, presenting the HLC (low level) and the

flexible loads AGGs with their loads (low level). The TER and WBPS sets are imple-

mented as transfer functions, continuous and discrete, respectively. These functions

allow the simulation to be computationally lightweight. Besides, the EVCS-AGG runs

the MPC in a MATLAB function as well as the EV chargers.
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FIGURE 7.2: Balancing service provider operation.

Case 1

The case study evaluates a frequency restoration process where all the aggregators

participate in providing balancing services. In this case, the FCR, the aFRR, and the

mFRR services are provided by a single AGG considering the time response of each

one.

Figure 7.3 depicts how the HAS performs the services when the SO requests a

power reduction of r�40 kW. The DA power is 305.82 kW, the ideal RT power is

265.82 kW, while the HAS RT power is 265.88 kW, achieving an error of 22.6 W and

standard deviation of 0.78 kW.
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FIGURE 7.3: Hierarchical Architecture Structure perform in balancing
services.

In Figure 7.4 the TER-AGG power response is presented, while in Figure 7.5, the

percentage of systems changing the set-point to follow the required power is depicted.
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Notice that the maximum power deviation of the HAS is computed as the maximum

power the TER-AGG can provide, in this case for 15 min.
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FIGURE 7.4: TER Aggregator power demand.
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The WBPS-AGG response is presented in Figure 7.6, while in Figure 7.7 the per-

centage of systems changing the set-point to follow the required power is depicted. In

addition, the ramp-down is considered to avoid a rebound effect of the HAS.
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FIGURE 7.6: WBPS Aggregator power demand.

In Figure 7.8 the power demanded by the EVCS-AGG is shown. It can be seen that

between the minutes 45 and 60, the power is not constant, this is due to the fact that the
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HLC modifies the EVCS consumption depending on the others AGG consumption. In

particular, the WBPS-AGG has small variations when following its request; then, the

EVCS is able to maintain the balance. Notice that at each hour the DA power varies.
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FIGURE 7.8: EVCS Aggregator power demand.

Case 2.

In this case, the aim is that the HCL coordinates the aggregators in a similar perfor-

mance of the one presented by ENTSO-E (see Figure 2.3), considering ramps rates and

times per service.

Figure 7.9 presents the power response of the HAS when aggregating the AGGs

power. The SO requests a power reduction of r�57 kW, 17 kW higher than in case 1.

The DA power is 305.82 kW (the same as Case 1), the ideal RT power is 248.82 kW,

while the HAS RT power is 249.00 kW achieving an error of 71.5 W and standard

deviation of 0.10 kW (lower than in Case 1).

The TER-AGG is the first AGG to modify its consumption, it is the only one that
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FIGURE 7.9: Aggregation system power in balancing services

can provide this energy service; therefore, the maximum power is defined by the max-

imum capacity of this AGG in a specific time window (3 min in this case). The TER-

AGG performance is shown in Figure 7.10 and the percentage of systems changing the

temperature set-point is depicted in Figure 7.11.
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FIGURE 7.10: TER Aggregator power.
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FIGURE 7.11: TER systems.

The WBPS-AGG response is presented in Figure 7.12, while in Figure 7.13 the per-

centage of systems changing the pressure set-point is depicted. In addition, the ramp-

down is considered to avoid a rebound effect at the end of the HAS energy provision.
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FIGURE 7.12: WBPS Aggregator power.
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FIGURE 7.13: WBPS systems.

Finally, in Figure 7.14 the power demanded by the EVCS-AGG is shown. It can be

seen that the HCL is constantly changing the requested power due to the variations of

the WBPS-AGG.
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Chapter 8

Conclusions

In this dissertation, flexible loads aggregators have been proposed to provide different

ancillary services to the system operator of a smart grid. This research has covered the

topics related to direct load control in Demand Response (DR) services, specifically

at the customer level, controlling the power consumption. The achieved contribution

can be applied for the implementation of innovative balance strategies that improve

the DR programs for contributing to enhancing the operation of a smart grid through

the participation of flexible demand in regulation and reserve services.

In the literature, flexible load models and aggregation strategies have been re-

ported. Selected loads that are potentially useful for providing ancillary services have

been considered. Therefore, the first part of this work presents a framework defin-

ing an aggregator design process and a methodology for the load aggregation. In the

framework, the main steps are the flexible load modeling, the flexibility analysis for

defining the energy service the load can offer, the aggregation control strategy design,

and the solution evaluation. Hence, the framework can be applied to any flexible load.

The aggregator framework is applied to three flexible loads for offering different

ancillary services. First, an aggregator for Water Booster Pressure System (WBPS)

has been proposed, capable of offering spinning reserve services. A gain-scheduled

control system performs the demand response decisions with the aim of tracking a

reduction signal sent by the system operator. A dynamic model of the WBPS was

estimated and tuned with real data. The system flexibility in power consumption was

evaluated by changing the operation pressure set-point.

Second, an aggregator for ThermoElectric Refrigeration (TER) units has been pro-

posed to offer both frequency containment reserve and balancing services by reducing

and increasing the power of a set of TERs. Based on a three-state signal (0,1, or-1), the

aggregator decides the temperature set-point of each TER for following a signal sent
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by the system operator. A dynamic model of a TER unit has been estimated from ex-

perimental data and a modified PI controller strategy has been proposed based on a

PI controller that is tested in a real TER.

Third, two novel aggregators for Electric Vehicle Charging Station (EVCS) have

been proposed. The first strategy looks for minimizing the EVCS operation costs, via

an economic Model Predictive Control (MPC). The second strategy develops an Opti-

mal Control with minimum Cost and maximum Flexibility formulation. This charging

strategy has the possibility of offering spinning reserve services to the grid. A dynamic

model of an EVCS charger as a flexible load is developed. In addition, an evaluation

of the sensitivity of the control strategy in front of state of charge uncertainty suggests

that the MPC strategy is robust in front of the EV arrival state of charge information.

A specific definition of flexibility for EV chargers has been provided with respect

to a given nominal charging trajectory, considering the power deviations attainable by

the trajectory itself.

Another two strategies were proposed, a Day-Ahead (DA) schedule and a Real-

Time (RT) dispatch. The DA strategy aims to minimize the operation cost, while the

RT strategy looks for minimizing the error on following the DA schedule. In these

strategies, the EVCS considers power from the electrical grid and a local photo-voltaic

plant.

A Hierarchical Architecture Structure (HAS) is proposed in order to integrate the

TER, the WBPS, and the EVCS aggregators. The HAS is capable of providing Eu-

ropean balancing services to the electrical grid considering a logic coordinator that

allocates the system operator energy request among the aggregators.

This research has provided aggregation strategies for improving smart grids man-

agement when a high penetration of renewable energy sources is considered, help-

ing to reduce carbon emissions. Economic benefits can obtained by the stakeholders,

reducing operating costs and obtaining profits from the ancillary service provision.

Detailed technical solutions have been developed for the implementation of demand

response services through direct load control.

Finally, there are still many aspects to be explored for these aggregation strategies.

For instance, carry out an experimental evaluation of the flexible loads controllers

considering the communication requirements between the aggregator and the loads.

Technical requirements of smart meters should be assessed for the large scale imple-

mentation. Also, proper contracts should be designed to promote the participation of

customers in the demand response programs.
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Appendix A

Model Predictive Control

In this Appendix, the Model Predictive Control (MPC) formulation is presented based

on (Camacho and Bordons, 2007). It is explained the strategy and structure of an MPC

controller, particularly for linear systems. Besides, the unconstrained and constrained

cases are analyzed.

A.1 MPC strategy

The methodology of the MPC is characterized by the strategy shown in Fig. A.1. It

can be described as follows:

1. A prediction horizon Hp is defined with the purpose of calculating the plant

outputs xk�r for the future times r�1, 2, ..., Hp, which depends on the known

past and present system behavior (inputs and outputs) and on the future control

signals uk�r.

2. The set of future inputs or control signals is obtained by optimizing a certain cri-

terion of a cost function. For example, this can be to follow a reference trajectory.

Besides, the set of free variables uk�r is solved for a control horizon Hc, hence,

u�k�r is evaluated for r�1, 2, ..., Hc. Note that, Hc must be Hp¥Hc and ûk�r�0 for

r¥Hc.

3. The first control signal uk (r�0) is applied to the process.

Then, in the next step k the process is repeated, thus, the control sequence ûk�r is

recalculated using the receding horizon concept, i.e., updating the process with the

information available, e.g. real disturbances in r�0 that cannot be measured in the

prediction horizon. Moreover, the MPC strategy can handle constraints not only in

the plant output (xmin and xmax) but also in the control signal (umin and umax).
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FIGURE A.1: MPC Strategy.

A basic structure to implement the MPC strategy is shown in Fig. A.2. An explicit

model is used to predict the future plant outputs, which are based on past, current

information and on the optimizer proposed control actions. Therefore, the suitable

system model must be accurate enough to capture significant dynamics behaviors,

and simple enough for allowing online optimization.

Reference
Future
errors

function Constraints

Past inputs
and outputs

Future
inputsOptimizer

Model
Predicted

outputs

Cost

FIGURE A.2: MPC Structure.

Several types of models can be used for the formulation, consequently, there are

various types of MPC developments. The State Space Model is one of the most useful

as the derivation of the controller is clearer even for a multi-variable case.
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Regarding the optimizer, it is in charge of delivering the calculation of a control se-

quence that minimizes a cost function J that penalizes the evolution of the inputs and

system variables. A minimization criterion for the function can be to keep the pro-

cess as close as possible to a reference trajectory. J usually is expressed by a quadratic

function of the errors between the predicted output signal and the predicted reference

trajectory, and a quadratic term of the input effort. Then, considering a linear model

and no constraints, an explicit solution can be obtained. Otherwise, in the presence of

inequality constraints, an iterative optimization method has to be used, and in order to

achieve the solution, more computationally demanding algorithms must be applied.

In addition, the size of the optimization problem depends on the number of variables,

the prediction and control horizon (Hp and Hc) used.

A.2 MPC for linear systems

In this subsection, a prediction model, a cost function and an unconstrained and a

constrained case are analyzed. Therefore, with the purpose of developing an under-

standable formulation, the following assumptions are considered:

1. The plant model is linear and time-invariant.

2. The constraints are linear inequalities.

3. The state measurements and the disturbances are known.

The third assumption allows the knowledge of the states in each step. However,

when this information is not available it is required to implement a state estimator,

such as an observer. According to the first assumption, a state space model is used in

the present work as:

xk�1 � Axk � Buk (A.1a)

yk � Cxk (A.1b)

where, xPRn is the state vector whose components are as xk�rx1,k, � � � , xn,ks
T, uPRm

is the input vector whose components are uk�ru1,k, � � � , um,ks
T, and yPRp are the mea-

sured outputs whose components are yk�ry1,k, � � � , yp,ks
T. In addition, APRn�n, BPRn�m

and CPRp�n are the system, input and output matrices respectively. To generate the

prediction model, it is assumed C�I an identity matrix. Then, the future outputs cal-

culation is developed by the following model,

x̂ � Axk0 �Gu, (A.2)
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ûk�1
...
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where, x̂k�r and ûk�r are the predicted output and input vectors, respectively; xk0 is

the initial condition of the model. This prediction model allows fulfilling the first step

of the MPC methodology.

On the other hand, different cost functions formulation can be used for obtaining

the control law. Let us define the reference trajectory as,

z � rz1,k�1, � � � , zn,k�1, � � � , z1,k�Hp , � � � , zn,k�Hps
T. (A.4)

For the second step of the MPC methodology, it is used a quadratic cost function

of the form:

Jpuq � px̂� zqTQpx̂� zq � uTRu (A.5)

where, Q is the output error penalty diagonal matrix, whose components must sat-

isfy Qr¥0, for r�1, � � � , Hp�n, and R is the control move penalty diagonal matrix,

whose components must satisfy Rr¥0, for r�1, � � � , Hp�m. Moreover, the superscript

T denotes transposition. Taking into account the matrix and transpose properties, the

quadratic cost function of Eq. (A.5) can be written as (Lewis et al., 2012),

Jpuq � x̂TQx̂� x̂TQz� zTQz� zTQx̂� uTRu. (A.6)

Considering that Q is symmetrical, the two terms underlined in Eq.(A.6) became

the same, and using Eq. (A.2):

Jpuq � pAxk0 �GuqTQpAxk0 �Guq � 2zTQpAxk0 �Guq � zTQz� uTRu (A.7)
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that is,

Jpuq � xT
k0

ATQAxk0loooooomoooooon
Cons

�xT
k0

ATQGu� uTGTQAxk0 �

uTGTQGu� 2zTQAxk0looooomooooon
Cons

�2zTQGu� zTQzloomoon
Cons

�uTRu. (A.8)

The constant terms can be removed because they do not depend on u, and the two

terms underlined in Eq.(A.8) became the same, obtaining the formulation that leads

to:

Jpuq � 2Fu� uTHu (A.9)

where,

F � xT
k0

ATQG� zTQG (A.10)

H � GTQG�R (A.11)

The next step is to find the optimal solution u�k by minimizing the quadratic objec-

tive function. Then, an unconstrained and a constrained case are assessed.

A.2.1 Unconstrained case

The optimization problem of an unconstrained MPC, also know as Generalized Pre-

dictive Control (GPC) is:

min
u

Jpuq � 2Fu� uTHu (A.12)

Therefore, to calculate the optimal solution, it is applied the gradient of J, which

leads the following optimal control signal:

u� � �
1
2

H�1F (A.13)

A.2.2 Constrained case

The majority of the processes are subject to constraints which are related to the actu-

ators physical limits, i.e., safety limits (see Fig.A.1), also, technical and environmental

requirements, or saturation in control actions. In any case, constraints are expressed

in terms of the optimization variables, i.e., control signals. Therefore, fulfilling these

constraints can cause higher values of the cost or the solution can become unfeasible

due to the fact that some constraints can be violated over the Hp. The most common
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constraints acting on a process are presented as,

1uumin ¤ uk ¤ 1uumax (A.14a)

1uδumin ¤ uk � uk�1 ¤ 1uδumax (A.14b)

1xxmin ¤ xk ¤ 1xxmax (A.14c)

where, 1u is a vector with Hc�m components equal to unity and 1x is a vector with

Hp�n components equal to unity. Eq. (A.14a) represents the limits of the output,

Eq. (A.14b) are the limits of the slew rate, and Eq. (A.14c) are the bounds of the states.

Moreover, umin, umax, δumin, δumax, xmin and xmax are scalar values that limits the out-

put and states. Taking into account Hp and Hc, the constraints can be expressed in

condensed form as:

Φu ¤ γ. (A.15)

Then, considering the constraints of Eq. (A.14a) and Eq. (A.14c), Φ and γ are:

Φ �

�������
I

�I

G

�G

������� , γ �

�������
1uumax

�1uumin

1xxmax �Axk0

�1xxmin �Axk0

������� (A.16)

where, I is an identity matrix of size Hc�m. With the purpose of calculating the opti-

mal output, it is needed to solve the Open-loop Optimization Problem (OOP) in each

step k. The OOP can be stated as,

min
u

Jpuq � 2Fu� uTHu

s.t. Φu ¤ γ
(A.17)

In order to find the u that minimizes Jpuq and fulfill the third step of the method-

ology, the next pseudo algorithm is presented: this algorithm allows to calculate the

optimal u� for each step k. Note that, this algorithm generates a closed loop control

on account of the state xk measured that is used for obtaining the next solution of the

OOP.

On the other hand, the cost function J is convex, and the constraints form a convex

set. Therefore, computationally, it is possible to find efficiently the global minimum of

the OOP.
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Algorithm 1 Constrained MPC controller

Generate A, G^Φ
k � 0
x̄k � xk0 initial condition
for k Ð 1, β do

xk ð x̄k
Calculate γ depending on xk
u� ð solve OOP
Apply only u�k to obtain x̄k�1

end for

Moreover, the problem can become unfeasible due to modeling errors, distur-

bances or improper MPC tuning. One option to avoid unfeasibilities is by relaxing

constraints as soft constraints (Zeilinger et al., 2014). The idea is to relax the con-

straints limits as Φu ¤ γ � ε, then the cost function J must include a new term as

εTTε, where T is a proper weighting matrix. In this case, the optimization problem

considers a new decision variable ε, i.e., Jpu, εq.
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