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Abstract. The rising interest in collaborative robotics leads to research solutions 
in order to increase robot interaction with the environment. The development of 
methods that permit robots to recognize and track human motion is relevant for 
safety and collaboration matters. A large quantity of data can be measured in real 
time by Microsoft Kinect®, a well-known low-cost depth sensor, able to recog-
nize human presence and to provide postural information by extrapolating a skel-
eton. However, the Kinect sensor tracks motion with relatively low accuracy and 
jerky behavior. For this reason, the effective use in industrial applications in 
which the measurement of arm velocity is required can be unsuitable. The present 
work proposes a filtering method that allows the measurement of more accurate 
velocity values of human arm, based on row data provided by the Kinect sensor. 
The estimation of arm motion is achieved by a Kalman filter based on a kinematic 
model and by the imposition of fixed lengths for the skeleton links detected by 
the sensor. The development of the method is supported by experimental tests. 
The achieved results suggest the practical applicability of the developed algo-
rithms. 

Keywords: Kalman filter, collaborative robotics, Microsoft Kinect, human mo-
tion. 

1 Introduction 

Collaborative robotics is a topic of rising interest in industrial applications. The human-
robot interaction (HRI) combines the advantages of traditional industrial robots such as 
speed, strength and accuracy with human dexterity, flexibility and intelligence. In a 
HRI system, robots and humans jointly work on the same tasks improving on efficiency 
and productivity and reducing the human workload [1]. Since humans and robots can 
share the same workspace, a special attention must be paid on safety [2]. 

Different kinds of sensors are suitable to track human motion for HRI. Wearable 
sensors, e.g. inertial measurement units, have low computational workload, but they are 
uncomfortable for the user. On the other hand, non-wearable sensors, e.g. depth sensors, 
avoid contact with human body, but have low accuracy [3]. Microsoft Kinect is a low-
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cost-device with widespread use in computer vision [4]. It is a depth camera equipped 
with RGB sensor and microphone. In HRI systems, it can be used to perform gesture 
recognition for robot motion control [5] or to monitor the environment and detect hu-
mans [6], for instance, allowing robots to execute flexible and free collision trajectories 
for safer operation on dynamic workspaces [7]. 

By using Kinect and its Software Development Kit (SDK) [8], it is possible to track 
the 3D human posture. The main outputs are a point cloud, representing a 3D view of 
the surrounding environment including people, and a skeleton representation of people 
in the view field, with 3D joint position information, in a reference frame fixed with 
the camera. Kinect version 2 can work with a frequency up to 30 Hz and can detect 25 
skeleton joints with a maximum of 6 skeletons, corresponding to 6 people, at the same 
time.  

However, the skeleton raw signal provided by Kinect is not always suitable for in-
dustrial collaborative robotics, due to low accuracy, movement discontinuity and vari-
ation in the link length [9]. In order to overcome this limitation, the point cloud can be 
used as reference of the human position [10]. Nevertheless, the point cloud is harder to 
manage due to the larger amount of data and it requires longer computational time. An 
alternative approach is about the enhancement of the skeleton signal through a Kalman 
filter. The use of a Kalman filter can produce data that tend to be closer to the true 
spatial measurements, starting from signals, with noises and uncertainties, captured by 
one or more sensors. For these reasons, it has become a popular approach in robot vision 
applications [11]. Studies have shown that the Kalman filter has a best overall perfor-
mance compared to other filter-based approaches for Kinect skeleton noise reduction 
[12].  

In this paper a new method is proposed to achieve more suitable data for human arm 
tracking by the Kinect skeleton. A Kalman filter is applied to joint variables, calculated 
through a human arm model that considers kinematic constraints of body movements. 
Moreover, a fixed link length approach is defined to reduce the noises of the skeleton 
joints. The proposed methods have been developed to increase the performance of col-
lision avoidance and hand over algorithms described in [13-15]. They have the poten-
tiality to be applied using different models and extended to wider human body regions. 

2 Methodology 

The method hereby described intends to process data measured by Kinect in order to 
filter the effect of noise, temporary occlusions and measurement errors. Among the 
skeleton joints provided by Kinect, five joints have been used in this work, as shown in 
Fig.1 (a).  

The human arm posture is described by the position vectors of the joints shoulder 
𝒑",$, elbow 𝒑",% and wrist 𝒑",&. In order to complete the algorithm, two joints that be-
long to the chest have been selected: a point between the left and right shoulder 𝒑',%	and 
a point in the middle of the spine 𝒑',&.  

The present dissertation focuses on the analysis of the left arm motion, nonetheless 
it is valid for both the arms. 
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2.1 Human Arm Model 

The human arm is modeled with two links, arm and forearm, with four degrees of free-
dom, three for the shoulder and one for the elbow, as schematized in Fig. 1 (b). Then, 
four revolute joint variables have been identified and collected in the vector of joint 
variables 𝒒. The configuration with all the joint variables at zero value corresponds to 
the posture with arm extended and raised above the shoulder. 

Through the forward kinematics (fkine) it is possible to obtain the position vectors 
from the joint variables and the link lengths 𝑙% and 𝑙&. A closed-form solution for the 
inverse kinematics (ikine) problem is found considering the constraints −𝜋 ≤ 𝑞& ≤ 0 
and 0 ≤ 𝑞0 ≤ 𝜋, related to a natural human arm motion. 

 

 (a)   (b)  

Fig. 1. Kinect v2 upper body skeleton joints (a) and human arm kinematic model (b) 

2.2 Kalman filter 

A Kalman filter [16] is used to reduce signal noises referred to the joint space variables. 
A space-state model for the process is required:  

 𝒙23% = 𝑮2𝒙2 + 𝒘2 (1) 

 𝒛2 = 𝑯2𝒙2 + 𝒗2 (2) 

where 𝒙 is the state vector, 𝑮 is the state transition matrix, 𝒘 is the process noise, 𝒛 is 
a measurement vector, 𝑯 is the measurement matrix, and v is the measurement noise at 
the instant k. The algorithm for a Kalman filter consists of an iterative prediction-update 
process. At each iteration, the state and its covariance are predicted from the previous 
state with the use of a model by the state transition matrix. Then, the measurement is 
used to calculate a more accurate state and covariance, updating the predicted values. 
The algorithm is described by the following equations: 

 𝑲2 = 𝑷2=𝑯2
>(𝑯2𝑷2=𝑯2

> + 𝑹A)=% (3) 

 𝒙23 = 𝒙2= + 𝑲2(𝒛2 − 𝑯2𝒙2=) (4) 

 𝑷23 = 𝑷2= + 𝑲2𝑯2𝑷2= (5) 

 𝒙23%= = 𝑮2𝒙23 (6) 
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 𝑷23%= = 𝑮2𝑷23𝑮2> + 𝑸2 (7) 

where 𝑲 is the Kalman gain, 𝒙− is the a priori state estimate, 𝑷− is the a priori estimate 
error covariance, 𝒙+is the a posteriori state estimate, 𝑷+ is the a posteriori estimate 
error covariance,	𝑸 is the covariance matrix of the process noise and 𝑹 is the covariance 
matrix of the measurement noise.  

A Wiener Process Acceleration (WPA) state model [17] is applied to the Kalman 
Filter. It is a null jerk model that describes the system by the following expressions: 

 𝒙	 = 	[𝒒E 𝒒̇G 𝒒̈G]> (8) 

 𝑮 = J
𝑰 𝑰 ∙ ∆𝑡 𝑰 ∙ ∆𝑡&/2
𝟎 𝑰 𝑰 ∙ ∆𝑡
𝟎 𝟎 𝑰

R (9) 

 𝑸 = S
𝑰 ∙ ∆𝑡T/20 𝑰 ∙ ∆𝑡0/8 𝑰 ∙ ∆𝑡V/6
𝑰 ∙ ∆𝑡0/8 𝑰 ∙ ∆𝑡V/3 𝑰 ∙ ∆𝑡&/2
𝑰 ∙ ∆𝑡V/6 𝑰 ∙ ∆𝑡&/2 𝑰 ∙ ∆𝑡

Y 𝜎[\ (10) 

where 𝒒] is the joint variables vector estimation, 𝑰 is a square identity matrix having the 
number of joint variables as dimension, ∆𝑡 is the sample time (for the Kinect sensor 
∆𝑡	= 1/30 s) and 𝜎[𝑞 is the process noise density. To be thorough it is specified: 

 𝒛 = 𝒒 (11) 

 𝑯 = [𝑰 𝟎 𝟎] (12) 

 𝑹 = 	𝑰 ∙ 𝜎^& (13) 

where 𝒒 is the raw joint variables vector and 𝜎𝑟2 is the variance of the measured noise. 

2.3 Shoulder frame 

The human arm model has been built considering the shoulder frame, but the position 
vectors are initially expressed in a fixed frame. The shoulder frame origin is situated in 
the shoulder joint position and its orientation expresses the chest orientation for each 
instant. It is calculated using the shoulder joint position 𝒑",$ and two additional points 
𝒑',% and 𝒑',&. A position vector, expressed in the shoulder frame, is written as 𝒑",`a . 

A low pass single pole IIR filter [18] is applied to the indicated points to cut high 
frequency displacement, due to the unprocessed raw data noise. The actual motion of 
these joints typically shows low frequency. Experimental tests show that filtering at 0.2 
Hz allows a good tracking. 

2.4 Process architecture and link length 

The main inputs for the developed algorithm are the arm joints position vectors ex-
pressed in a world frame, indicated with 𝒑",`b . It is a fixed frame defined during a start-
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up calibration phase. Fig. 2 shows the block diagram of the algorithm, that processes 
the signal for each instant k. 

 
Fig. 2. System block diagram 

At first, the low pass filter is applied to obtain the shoulder frame and the filtered 
shoulder position vector 𝒑E",$b . Then, the elbow and wrist position vectors are expressed 
in the shoulder frame, respectively 𝒑",%a and 𝒑",&a . The inverse kinematics is applied and 
the joint variables vector 𝒒 and the current link lengths can be calculated. The Kalman 
filter processes the joint variables using a kinematic model providing a better estimation 
of them. The position vectors of elbow and wrist, respectively 𝒑E",%a and 𝒑E",&a , are esti-
mated applying the forward kinematics algorithm. To achieve better results, the links 
lengths 𝑙% and 𝑙& are assumed constant and equal to values measured or estimated before 
starting the measurement process. Finally, the estimated position vectors are expressed 
in the world frame.  

3 Experimental Set-up 

The experimental set-up consists in a Kinect version 2 sensor and three markers, as 
shown in Fig. 3 (a). The joint positions provided by Kinect are referred to its own ref-
erence frame, called Kinect frame. A set of 3D-printed markers are used to locate a 
fixed frame, that is assumed as world frame. It is identified in a calibration phase, during 
which three points are extrapolated from the point cloud using the markers as reference. 
Finally, the transformation between Kinect and world frame is performed. 

In order to evaluate the result of the developed algorithm, a comparison with a vision 
sensor with better performance is accomplished. The chosen sensor is OptiTrack Trio, 
a marker-based sensor. It consists of three cameras with 640 x 480 resolution, frame 
rate up to 120 fps, sub-millimeter accuracy and 8.3 ms latency [19].  

Two markers are collocated with the wrist and shoulder of the user. As shown in Fig. 
3 (b), it exists an off-set between the joint positions measured by OptiTrack and Kinect 
because OptiTrack measures the position of the markers, which are close to the arm but 
external to it, while Kinect measures the position of a virtual joint identified by the 
analysis of point cloud data. The relative position of the markers detected by OptiTrack 
and the points detected by Kinect is not constant. This involves that a comparison of 
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the measured position of the corresponding points detected by the two measurement 
instruments cannot lead to any conclusion. On the contrary, a meaningful comparison 
can be carried out between the measured speeds of the corresponding points. 

 

 (a)   (b) 

Fig. 3. Experimental set-up. Kinect and markers for world frame identification (a) and 
OptiTrack markers compared to skeleton joints (b) 

4 Results 

The outputs of the algorithm are the position vectors of the arm joints. The most inter-
esting joint to analyze is the wrist due to its wider workspace. The results depend on 
the Kalman filter parameters 𝜎[\ and 𝜎^&, whose optimal values are a-priori unknown. 
Their values have been chosen by a tuning operation on experimental data with differ-
ent dynamic behaviors. These parameters regulate smoothing action and consequently 
the delay of the output signal. 

Processing the raw joint positions with the developed algorithm, a better signal is 
achieved in term of smoothness. For example, in Fig. 4, the y-coordinates of the wrist 
position vector for raw and processed data, related to random arm movements, are 
shown. The raw data exhibit jumps and discontinuities of the signal, while the pro-
cessed data are free from these aspects.  

 
Fig. 4. y-coordinates of the wrist position vector for Kinect raw and processed data. Test with 

random movements 
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A velocity analysis is accomplished by a comparison between velocities measured 
with Kinect and OptiTrack. The velocity module values are calculated by numerical 
differentiation of the position vector. The OptiTrack signal is previously down-sampled 
to 30 Hz, that is the Kinect signal frequency. To ensure repeatability in the test, a con-
straint is provided to drive the trajectory of the hand. Fig. 5 shows the wrist velocity 
module measured during a motion along a straight track. The velocity measured by 
Kinect and processed with the proposed algorithm shows a good fitting with respect to 
data measured by Optitrack. The noise of the velocity raw data is correctly filtered. The 
delay between processed and raw Kinect data is evaluated considering relative mini-
mum and maximum points, as displayed, in the example in Fig. 5, with the delay 𝑑. In 
the reported test this delay is always below 140 ms. In addition, the delay between 
processed Kinect data and OptiTrack data, evaluated in the same way, is always below 
210 ms. 

 

 
Fig. 5. Wrist absolute velocity module. A comparison between OptiTrack down-sampled data 
with raw and processed Kinect data. Test with linear-trajectory movements. 

5 Conclusions 

The presented method allows to achieve a better measurement of the human arm posi-
tion and velocity using skeleton joint position raw data obtained with a Kinect sensor. 
The result was achieved, through a model-based algorithm, considering natural human 
motion constraints and using a Kalman filter on joint variables combined to the impo-
sition of fixed distance between the joints, which is not a constraint for the Kinect native 
data processing algorithm. The algorithm can be easily adapted to other solutions and 
applications, where the human motion tracking is achieved by the extrapolation of skel-
etons. In order to optimize the performance, the tuning of Kalman filter parameters is a 
critical aspect. Future works forecast the use in coordination with wearable inertial sen-
sors to increase the accuracy of the signal and reduce the delay in measurement. Finally, 
results can be further improved, through sensor fusion techniques, using more Kinect 
sensors at the same time. 
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