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ABSTRACT Eddy currents are central to several industrial applications and there is a strong need for their
efficient modeling. Existing eddy current solution strategies are based on a quasi-static approximation
of Maxwell’s equations for lossy conducting objects and thus their applicability is restricted to low
frequencies. On the other hand, available full-wave solvers such as the Poggio-Miller-Chang-Harrington-
Wu-Tsai (PMCHWT) equation become highly ill-conditioned and inaccurate in eddy current settings. This
work presents a new well-conditioned and stable full-wave formulation which encompasses the simulation
of eddy currents. Our method is built upon the PMCHWT equation and thus remains valid over the entire
frequency range. Moreover, our scheme is also compatible with structures containing holes and handles
(multiply connected geometries). The effectiveness of quasi-Helmholtz projectors is leveraged to obtain a
versatile solver, which is computationally efficient and allows for a seamless transition between low and
high frequencies. The stability and accuracy of the new method are demonstrated both theoretically and
through numerical experiments on canonical and realistic structures.

INDEX TERMS Eddy currents, preconditioning, full-wave, multiply connected, quasi-Helmholtz
decomposition.

I. INTRODUCTION

THEBOUNDARY Element Method (BEM) is among the
most widespread techniques to simulate scattering and

radiation phenomena in electromagnetics. Its main benefit
is the necessity to discretize only the surfaces separating
the different media, as opposed to the entire volume, thus
greatly reducing the size of the problem. Integral equation
approaches have been used to create a wide family of for-
mulations to accommodate different scenarios. For instance
the Electric Field Integral Equation (EFIE) [1] is com-
monly used to simulate perfect electric conductors, while
the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT)

equation [2]–[4] has been used to handle dielectric and
conducting bodies.
The simulation of eddy currents, which are generated

inside conductors in the vicinity of a time-varying magnetic
field, is of major interest for many industrial applications [5].
In particular, induced eddy currents are widely employed
for non destructive testing in various manufacturing areas
to detect the presence of material defects [6]. As of now,
the modeling of this type of scenarios requires ad hoc
solvers built on the quasi-static approximation of Maxwell’s
equations after neglecting displacement currents [7], [8].
Unfortunately, this simplification greatly reduces their range
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of validity. Since the quasi-static approximation is only
valid at low frequencies, these solvers are particularly ill-
suited for electrically large conductors [9], [10]. In addition,
the simulation of multiply connected geometries usually
requires further preprocessing such as the introduction of
cutting surfaces or structural loops detection to guarantee
the uniqueness of the solution [11], [12].
On the other hand, the PMCHWT formulation is valid

to model lossy conductors for moderate conductivities, but
for high conductivities the discretization density must be
increased to maintain the accuracy of the integrals [13] and
numerical instabilities may occur. Lamentably, in fact, the
PMCHWT formulation suffers from a severe breakdown at
low frequencies including in the eddy current regime. More
precisely, the finite electrical conductivity of the material
simulated at low frequencies causes a critical ill-conditioning
of the equation [14], which in turn impacts the performance
of iterative solvers typically used in fast methods by slow-
ing down or even preventing altogether their convergence. In
addition, at very low frequencies, a detrimental loss of accu-
racy in the solution also occurs. This is the counterpart, for
frequency dependent material parameters, of the well-known
low frequency breakdown of perfect conductors or purely
dielectric objects, which has been treated thoroughly in the
literature using a variety of strategies [15]–[17]. Solutions
to the low frequency breakdown in lossy materials have also
been proposed, often leveraging loop-star/loop-tree decom-
positions [18] that however have a significant computation
overhead caused by their conditioning and the detection of
global cycles. In addition, the augmented EFIE [19] has
successfully been extended to lossy conductors [20] and
inhomogeneous media [21] but these extensions require addi-
tional matrices to be computed and stored, thus increasing
their computational cost. Among the different approaches,
the use of quasi-Helmholtz projectors [22]–[24] offers many
benefits over previous techniques, including an improved
stability, an implicit handling of multiply connected geome-
tries, and a compatibility with fast solvers operating with
quasi-linear computational complexity [25], [26]. However,
the approaches developed in [22], [24] are only available
for perfectly conducting objects. Similarly, the formulation
introduced in [23] has been derived for purely dielectric
(lossless) materials but the proposed low frequency regu-
larizer is not applicable to the lossy case because it cannot
rescale separately the upper and lower diagonal blocks of the
PMCHWT which do not follow the same frequency behavior
under eddy current conditions. This work extends the use
of quasi-Helmholtz projectors to the eddy current regime,
which requires an ad hoc analysis and preconditioning strat-
egy due to the peculiar low frequency behavior associated to
the complex permittivity of the material. Separate rescaling
strategies need to be established leveraging both standard and
dual operators to overcome the difference in scaling of the
upper and lower diagonal blocks in such a way that: (i) both
diagonal blocks are cured, (ii) the off-diagonal blocks are
not corrupted by a new source of breakdown, (iii) no null

FIGURE 1. Definition of relevant quantities and parameters. An exciting
electromagnetic field impinges on the conductor immersed in the air medium.

space is introduced by the rescaling, and (iv) the accuracy
is preserved at very low frequencies.
The proposed full-wave solver is capable of handling eddy

current modeling while effectively attaining (i) to (iv). In fact
it shows a stable conditioning, is free from the loss of signif-
icant digits at very low frequencies, steadily shifts between
low and high frequencies, and is compatible with both sim-
ply and multiply connected geometries, while maintaining a
low computational complexity. Very preliminary results have
been presented in the conference contribution [27].
The paper is organized as follows. The background and

notation are set in Section II. A thorough analysis of the
PMCHWT equation low frequency behavior in our setting
is detailed in Section III, and is followed in Section IV by
the presentation of the new strategy employed to obtain a
robust full-wave formulation. Section V contains additional
details related to the implementation. The development is
then supported by several numerical results in Section VI,
after which Section VII concludes the paper.

II. BACKGROUND AND NOTATION
Let Ω1 ⊂ R

3 be a lossy conductor with boundary Γ = ∂Ω1
and outward pointing normal n̂, residing in the outside
medium Ω0 = R

3 \ Ω1. Throughout this article, the indices
{0, 1} represent the exterior air medium of conductivity
σ0 = 0 and the interior medium, respectively, as illus-
trated in Figure 1. The boundary Γ can be either simply
or multiply connected, i.e., it can contain holes and handles.
The conductor is characterized by its constant permeability
μ1 = μ0μr, constant conductivity σ1, and complex permit-
tivity ε1 = ε0ε

′
r − j σ1/ω, where ε′

r is the real-valued relative
permittivity and ω is the angular frequency. The Electric
Field Integral Operator (EFIO) is defined as

T k = − j kT A,k + 1

j k
T Φ,k (1)

(
T A,kf

)
(r) = n̂×

∫

Γ

Gk
(
r, r′

)
f
(
r′
)

d r′ (2)

(
T Φ,kf

)
(r) = n̂× ∇

∫

Γ

Gk
(
r, r′

)∇′ · f(r′) d r′ (3)

and the Magnetic Field Integral Operator (MFIO) is defined
as

(Kkf )(r) = n̂×
∫

Γ

∇Gk
(
r, r′

) × f
(
r′
)

d r′ (4)
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FIGURE 2. Notation used for the definition of RWG functions and Loop-Star
transformation matrices.

where k = ω
√

με is the wave number, and

Gk(r, r′) = e− j kR

4πR
(5)

is the Green’s function with R = ||r− r′||. The eddy current
regime is characterized by the following conditions [10], [28]

{
ωε0 � σ1
Lω

√
μ0ε0 � 1,

(6)

where L is the characteristic size of the conductor. In such
conditions, the wave number inside the object is

k1 ≈ √− j ωσ1μ1 ≈ 1 − j

δ
(7)

where δ = √
2/(ωσ1μ1) represents the skin depth and influ-

ences the concentration of current densities near the surface
of the conductor [10].
The PMCHWT integral equation reads [2]–[4]

(
η0T k0 + η1T k1 −(

Kk0 + Kk1

)

Kk0 + Kk1
1
η0

T k0 + 1
η1

T k1

)(
js
ms

)

=
(−n̂× Ei

−n̂×Hi

)
(8)

where the unknowns are the electric and magnetic surface
current densities js = n̂×H and ms = −n̂× E, and where
η0,1 = √

μ0,1/ε0,1 is the characteristic impedance of the
exterior or interior medium.
The next step towards obtaining a boundary element

matrix system is to discretize (8) by approximating the sur-
face Γ with a mesh of planar triangular elements on which
the divergence-conforming Rao-Wilton-Glisson (RWG) basis
functions [1] are defined between pairs of adjacent triangles
c±n as

fn(r) =
⎧
⎨

⎩

r−r+n
2A+

n
, r ∈ c+n

r−n −r
2A−

n
, r ∈ c−n ,

(9)

where A±
n is the area of the triangle c±n and r±n is the position

vector of the vertex that does not belong to the common
edge (Figure 2). The functions are normalized so that the
flux integral through their defining edges equals one [22].
These functions are then used to expand the unknown

current densities as

js ≈
Ne∑

n=1

jnfn (10)

ms ≈
Ne∑

n=1

mnfn (11)

where Ne is the number of internal edges in the mesh.
The equations are finally tested with curl-conforming rotated
RWG functions {n̂× fn} to produce the linear system

(
Tupper −K
K Tlower

)(
j
m

)
=

(
e
h

)
, (12)

where

K = Kk0 +Kk1 (13)

Tupper = η0Tk0 + η1Tk1

= − j k0η0TA,k0 − j k1η1TA,k1

+ η0

j k0
TΦ,k0 + η1

j k1
TΦ,k1 (14)

Tlower = 1

η0
Tk0 + 1

η1
Tk1

= − j
k0

η0
TA,k0 − j

k1

η1
TA,k1

+ 1

j k0η0
TΦ,k0 + 1

j k1η1
TΦ,k1 (15)

and

(Kk)mn = 〈
n̂× fm,Kk

(
fn

)〉
(16)

(Tk)mn = 〈
n̂× fm,T k

(
fn

)〉
(17)

(
TA,k

)
mn = 〈

n̂× fm,T A,k
(
fn

)〉
(18)

(
TΦ,k

)
mn = 〈

n̂× fm,T Φ,k
(
fn

)〉
(19)

(j)n = jn (20)

(m)n = mn (21)

(e)m =
〈
n̂× fm,−n̂× Ei

〉
(22)

(h)m =
〈
n̂× fm,−n̂×Hi

〉
(23)

in which 〈u, v〉 = ∫
Γ
u · v d Γ .

In the next sections, we will also have to use the Loop-
Star transformation matrices. For the sake of completeness
and to set the notation we define these matrices below very
briefly, but the reader interested in more details should refer
to [22] and references therein. We denote with Λ, H, and
Σ the transformation matrices from the Loop, global Loop,
and Star subspaces, respectively, to the RWG space. We
will also denote with A = (

Λ H Σ
)
the matrix used to

perform the complete decomposition. The matrices Λ and Σ
are defined as

(Λ)ij =
⎧
⎨

⎩

1 if node j equals v+i−1 if node j equals v−i
0 otherwise

(24)

(Σ)ij =
⎧
⎨

⎩

1 if cell j equals c+i−1 if cell j equals c−i
0 otherwise

(25)

where we have used the notation from Figure 2. To ensure
linear independence for both matrices, columns should be
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appropriately eliminated: for each connected component of
the geometry, one corresponding column must always be
removed from Σ, and when the component is closed, another
one must be eliminated from Λ.
The matrix H corresponds to the harmonic subspace [22],

of dimension Nholes+2Nhandles, and it cannot be described as
simply as Λ and Σ; the reader is referred to [15], [22], [29]
for further details on its construction. An explicit definition
of H will not be given here, since the retrieval of the global
loops is a costly operation that would compromise the overall
complexity of the solver, and therefore will be avoided in the
scheme we present here. In fact in this work we will stabilize
the PMCHWT in the eddy current regime by using quasi-
Helmholtz projectors as defined in [22] which are capable of
bypassing the explicit definition of H, making the expensive
building of the harmonic subspace unnecessary. The quasi-
Helmholtz projectors are defined as

PΣ = Σ(
ΣTΣ

)+
ΣT (26)

PΛH = I − PΣ (27)

where I is the identity matrix and the superscript + denotes
the Moore-Penrose pseudo inverse. The range of the PΣ

projector corresponds to the RWG non-solenoidal subspace,
so that by complementarity, PΛH projects on the entire
solenoidal subspace, which includes the harmonic functions.
Additionally, we will use the following dual quasi-Helmholtz
projectors, defined as [22]

P
Λ = Λ(ΛTΛ

)+
ΛT (28)

P
ΣH = I − P

Λ. (29)

These projectors are the counterparts of the previous ones
for the Buffa-Christiansen (BC) basis functions which are
defined on the dual barycentric mesh [30]. In this case P

Λ

projects on the non-solenoidal subspace of the dual mesh,
meaning that by complementarity, the harmonic subspace is
implicitly contained in P

ΣH which projects on the solenoidal
subspace. These dual projectors also require the use of a
mixed RWG/BC Gram matrix with elements defined as

(G)mn =
〈
n̂× fRWG

m , fBCn
〉
. (30)

The inverse of this Gram matrix bridges the operators
discretized with primal RWG functions to the projectors
acting on the dual BC functions. The reader should note
that the above Gram matrix is the only instance in this
work where the barycentric refinement is required. For this
reason, the method presented here will not suffer from
the computational burden of handling dense matrices on
the barycentric refinement since this Gram matrix can be
obtained analytically without expensive computations [22].
Moreover the projectors can be built with a quasi-linear
complexity [31], making them perfectly compatible with
fast solvers.

III. STUDY OF THE PMCHWT IN THE EDDY CURRENT
REGIME
A. LOW FREQUENCY ASYMPTOTIC ANALYSIS
In this section we present an in depth analysis for the behav-
ior of the PMCHWT matrix in the context of eddy current
modeling at low frequencies, as characterized by (6). The
reader, however, should note that the regime we consider,
ω → 0 with σ constant, is not the only possible regime for
low frequency lossy materials. An alternative could be the
one in which ω → 0 with σω equals to a constant (i.e.,
constant skin depth). The reader interested in this regime
should refer to the detailed analysis of Bonnet and Demaldent
in [14]. In this work we have chosen to limit our solution
strategies to the above regime for the sake of brevity and its
particular relevancy for applications [5]. The use of quasi-
Helmholtz projectors we will propose here, however, can
also be extended to other low frequency regimes.
To investigate the conditioning behavior of the system

matrix, the latter is decomposed using the Loop-Star trans-
formation matrix A as

ZΛHΣ =
(
AT

AT

)(
Tupper −K
K Tlower

)(
A

A

)
. (31)

This procedure is only done here for the sake of the analysis
and it should not be employed in practice due to a discretiza-
tion related ill-conditioning introduced by the Loop and Star
matrices [31]. Applying this technique effectively highlights
the asymptotic scalings for the Loop, harmonic and Star
components of each operator block to better understand the
origin of the instability of the formulation in eddy current
conditions.
Let us start our analysis from the K block (13), for

which the key property to determine its asymptotic scal-
ings is that the static part of the operator actually cancels
out when solenoidal functions are used simultaneously as
testing and source functions, unless both are harmonic (par-
tial cancellations occur in this last case) [32], [33]. In other
words,

ΛTK0Λ = HTK0Λ = ΛTK0H = 0. (32)

The reader familiar with these relationships should keep in
mind that in our definition the matrix K0 results from a
testing of the MFIO with curl-conforming functions (rotated
RWGs, see definition (16)). These properties warrant a closer
inspection of the MFIO kernel. The gradient of the Green’s
function (5) can be expanded using the Taylor series as

∇Gk
(
r, r′

) ≈ 1

4π
∇

(
1

R
− j k − k2R

2
+ · · ·

)

≈ 1

4π

(
∇

(
1

R

)
− k2

2
∇R+ · · ·

)
. (33)

In the general case, the first term of the expansion constitutes
the static part of the operator and dominates as O(1) (here
and in the following we will always assume and omit “for
ω → 0”). However, every time one of the cases in (32)
occurs, the O(1) term will be canceled and the leading term
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becomes the one containing the O(k2) factor. For the exterior
and interior wave numbers, we have

O
(
k2

0

)
= O

(
ω2μ0ε0

)
= O

(
ω2

)
(34)

O
(
k2

1

)
= O(− j ωσ1μ1) = O(ω). (35)

Using the definition of K in (13), when the static part is
canceled, the remaining dynamic part scales as O(k2

0) +
O(k2

1) = O(ω2) + O(ω) = O(ω).
For the T blocks, the expansions for Tupper and Tlower

in (14) and (15) are used to emphasize the different behav-
iors of the vector and scalar potentials TA,k and TΦ,k. This
becomes clear by rewriting the accompanying factors using
the definitions of k and η to obtain

k0η0 = ωμ0 = O(ω) (36)

k1η1 = ωμ1 = O(ω) (37)

k0/η0 = ωε0 = O(ω) (38)

k1/η1 = ωε1 = ωε0ε
′
r − j σ1 = O(1) (39)

where the frequency term in (39) is dominated by the conduc-
tivity term, differing from the case of regular dielectrics [23].
From the expressions (14) and (15), the electric operators
blocks can be shown to scale as

TA,upper = O(ω) + O(ω) = O(ω) (40)

TΦ,upper = O
(
ω−1

)
+ O(1) = O

(
ω−1

)
(41)

TA,lower = O(ω) + O(1) = O(1) (42)

TΦ,lower = O
(
ω−1

)
+ O

(
ω−1

)
= O

(
ω−1

)
. (43)

The inverse scalings between TA,k and TΦ,k in the upper
and lower blocks become evident and in particular, both TΦ

blocks constitute the main reason behind the matrix condi-
tioning breakdown, since they diverge at the limit. Recalling
that [22]

ΛTTΦ,k = 0, TΦ,kΛ = 0, HTTΦ,k = 0, TΦ,kH = 0

(44)

the Loop-Star decomposed PMCHWT matrix scalings can
be written in block form as

ZΛHΣ

= O

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Λ H Σ Λ H Σ

Λ j ωμ0 j ωμ0 j ωμ0 j ω j ω 1

H j ωμ0 j ωμ0 j ωμ0 j ω 1 1

Σ j ωμ0 j ωμ0 j(ωε0)
−1 1 1 1

Λ j ω j ω 1 σ σ σ

H j ω 1 1 σ σ σ

Σ 1 1 1 σ σ j(ωμ0)
−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(45)

The pathological behavior of the matrix is caused by the
presence of scalings of different orders in ω. Specifically,
the application of the Gershgorin circle theorem shows that

the singular value spectrum of the matrix has a branch
which asymptotically diverges as O(ω−1) and at least
another which is centered around zero, resulting in a clear
degeneration of the matrix condition number.

B. LOSS OF SOLUTION ACCURACY
While it is necessary to address the conditioning issue of the
PMCHWT formulation, it is not sufficient to guarantee an
accurate solution. The loss of significant digits that occurs at
low frequencies needs to be taken into careful consideration
to prevent the corruption of the desired quantities of interest.
The rescaling process based on a quasi-Helmholtz decompo-
sition, whether using transformation matrices or projectors,
does not solely serve to cure conditioning breakdowns, but
also to preserve the needed components that would normally
be lost in finite precision arithmetic. Nevertheless, it is not
always possible to preserve every single component of the
solution, which is why an additional study is necessary to
determine which components actually affect the accuracy of
the quantities of interest. This stability is targeted for several
classes of excitations, for instance the plane wave, inductive,
and capacitive excitations [19], [22]. The scattered far field
is usually the desired quantity in the case of the plane wave,
and thus should be preserved and computed accurately, while
circuit simulations with inductive and capacitive excitations
require the volumic current inside the conductor, derived
from the electric near field.
First, the scalings of the quasi-Helmholtz decomposition

of the excitations need to be obtained. For the plane wave,
both electric and magnetic fields behave identically [23],
whereas they must be examined separately for the inductive
and capacitive excitations. These are frequently modeled with
a voltage delta gap, for which a magnetic frill around the
feed point is a more realistic equivalent [34] that creates the
following fields [35]

Ei(r) = −
∫

frill
∇Gk

(
r, r′

) ×m
(
r′
)

d r′ (46)

Hi(r) = 1

j ωη2
0

∇∇ ·
∫

frill
Gk

(
r, r′

)
m

(
r′
)

d r′

+ k2
0

j ωη2
0

∫

frill
Gk

(
r, r′

)
m

(
r′
)

d r′ (47)

where m is the given magnetic current forming the frill.
These expressions show that the electric and magnetic fields
are determined, respectively, by the MFIO and the EFIO,
for which the reasoning to derive the scalings has already
been described in Section III-A. On a multiply connected
structure, the magnetic frill corresponds to a poloidal loop
around the feed point. Depending on whether there exists or
not a toroidal loop that passes through the frill, the problem
becomes either inductive or capacitive [19], and the behavior
for the electric field changes accordingly [33]. Thus, the
asymptotic scalings for each type of right hand side are
gathered in Table 1 (a), separated into real and imaginary
parts.
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TABLE 1. Scalings of the real and imaginary parts of quantities of interest when ω → 0.

The next step, given the decomposition of the system
matrix ZΛHΣ from (45), is to derive the scalings of the
inverse matrix Z−1

ΛHΣ , for instance by using the Woodbury
formula [36]

�
(
Z−1
ΛHΣ

)

= O

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

Λ H Σ Λ H Σ

Λ ω−1/2 1 ω3/2 1 1 1

H 1 1 ω2 1 1 ω3/2

Σ ω3/2 ω2 ω2 ω2 ω2 ω2

Λ 1 1 ω2 1 ω3/2 ω3/2

Λ 1 1 ω2 ω3/2 ω3/2 ω3/2

Σ 1 ω3/2 ω2 ω3/2 ω3/2 ω3/2

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

(48)


(
Z−1
ΛHΣ

)

= O

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

Λ H Σ Λ H Σ

Λ ω−1 ω1/2 ω ω1/2 ω1/2 ω1/2

H ω1/2 ω ω ω ω ω

Σ ω ω ω ω ω5/2 ω5/2

Λ ω1/2 ω ω ω ω ω

Λ ω1/2 ω ω5/2 ω ω ω

Λ ω1/2 ω ω5/2 ω ω ω

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

. (49)

This inverse is then multiplied by the right hand side fol-
lowing the relation x = Z−1

ΛHΣb, where x is the solution
coefficients vector and b is the right hand side vector. Taking
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the dominant terms of each block of x leads to the asymp-
totic scalings of the electric and magnetic surface current
densities, presented in Table 1 (b). As an example, the scal-
ing of the loop part of the electric current density induced
by a plane wave excitation is obtained by multiplying the
first line of (48) and (49) by the corresponding scalings in
Table 1 (a):

⎛

⎜
⎜⎜⎜⎜⎜
⎝

ω−1/2 + j ω−1

1 + j ω1/2

ω3/2 + j ω
1 + j ω1/2

1 + j ω1/2

1 + j ω1/2

⎞

⎟
⎟⎟⎟⎟⎟
⎠

T

·

⎛

⎜
⎜⎜⎜⎜⎜
⎝

ω2 + j ω
ω2 + j ω
1 + j ω
ω2 + j ω
ω2 + j ω
1 + j ω

⎞

⎟
⎟⎟⎟⎟⎟
⎠

= O
(

1 + j ω1/2
)
. (50)

The distinction between real and imaginary parts of the
different elements is made to determine precisely which
are the dominant components, listed in the last column of
Table 1, that should be preserved to correctly retrieve the
corresponding quantities.
The electric far and near fields computed from the electric

and magnetic surface current densities can now be derived.
The far field is obtained from the following expression [37]

E(r) ≈ − j ωμ0

4π

e− j k0r

r

∫

Γ

ej k0r′·r̂js(r′) d r′

+ r̂× η0

(
j ωε0

4π

e− j k0r

r

∫

Γ

ej k0r′·r̂ms(r′) d r′
)

. (51)

Note that the solenoidal parts (loop and harmonic) of the
currents cancel the static term of the exponential inside the
integrals above, which is why the solenoidal scalings of
the physical currents are multiplied by j ω compared to the
non-solenoidal part.
The electric near field inside the conductor is instead

calculated with the EFIO and MFIO [37]

E(r) = μ1

σ1
∇∇ ·

∫

Γ

Gk
(
r, r′

)
js
(
r′
)

d r′

− j ωμ2
1

∫

Γ

Gk
(
r, r′

)
js
(
r′
)

d r′

−
∫

Γ

∇Gk
(
r, r′

) ×ms
(
r′
)

d r′. (52)

The contribution from the solenoidal part of js induces a
complete cancellation of the first term and a partial cancel-
lation in the second term similarly to the far field above.
Performing a Taylor series expansion of the Green function
in (51) and (52) when ω → 0 and keeping the dominant real
and dominant imaginary terms will yield the low frequency
behavior of the near and far field scattering operators. To
obtain the correct behavior, however, the aforementioned
cancellations should be explicitly enforced in the expansion
when considering the solenoidal components (as is custom-
arily done at very low frequency [24]). Once the six scalings
per operator have been obtained, they can be multiplied with
those of the physical solutions (Table 1 (b)) to derive the
far and near fields asymptotic scalings that are presented in
Table 1 (c) and (d).

To illustrate the relevancy of this analysis, we take the
example of the plane wave excitation. Table 1 (c) indicates
that �(jΛ) and (jΣ) are required to compute the far field
from the electric current density, while Table 1 (b) shows that
the dominant component of the electric part of the solution
is �(jΛ) only. Therefore, the electric scattered field cannot
be computed accurately at low frequencies since (jΣ) is
lost from the electric current density when no specific cure is
employed. Consequently, the preconditioned equation must
produce a solution with leading components that include all
dominant parts of the quantities of interest, so that they can
be calculated with satisfying accuracy.

IV. STABILIZATION SCHEME BASED ON
QUASI-HELMHOLTZ PROJECTORS
Based on the analysis of the previous section, the require-
ments to achieve a stable formulation consist in pre-
conditioning the system matrix as well as preventing
undesired loss of significant digits in the solution. For
this purpose, rescaling coefficients are selected through
a Loop-Star decomposition study, by defining diago-
nal matrices L = diag

(
aL bL cL dL eL fL

)
and

R = diag
(
aR bR cR dR eR fR

)
, applied as follows

LZΛHΣR

= O

⎛

⎜⎜⎜⎜
⎝

aLaRωμ0 aLbRωμ0 · · · aLfR

bLaRωμ0
. . .

...
...

. . .
...

fLaR · · · · · · fLfR(ωμ0)
−1

⎞

⎟⎟⎟⎟
⎠

. (53)

The first condition to fulfill is the prevention of a matrix
breakdown. For that, the coefficients must be chosen so as
to remove diverging elements and without introducing new
ones nor creating null spaces caused by vanishing rows or
columns.
As explained in Section III-B, the coefficients also need to

account for the loss of accuracy in the solution. When using
the Loop-Star method, the base equation Zx = b becomes
LZΛHΣRy = Ldiag(AT AT

)
b, with x = diag

(
A A

)
Ry .

The asymptotic scalings of the rescaled solution y obtained
with the preconditioned equation are determined by the right
rescaling matrix R as

y = R−1diag
(
A−1 A−1

)
x =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

O
(
a−1
R jΛ

)

O
(
b−1
R jH

)

O
(
c−1
R jΣ

)

O
(
d−1
R mΛ

)

O
(
e−1
R mH

)

O
(
f−1
R mΣ

)

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

. (54)

For each type of excitation, the dominant components of
y must comprise at least the elements necessary to accu-
rately compute the far (for the plane wave) or near field (for
inductive and capacitive problems), as indicated by the last
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columns of Table 1 (c) and (d). In other words, the choice
of rescaling coefficients must simultaneously cure the matrix
breakdown shown in (45) and allow an adequate retrieval of
the solution.
We first start with eliminating the diverging blocks of the

matrix that scale as O(ω−1) by setting cL = cR = (ωε0)
1/2

and fL = fR = (ωμ0)
1/2. Doing this, however, provokes

the loss of the Loop and harmonic parts of the magnetic
current density for the plane wave excitation (mΛ and mH).
Therefore, we choose to adjust them by selecting dR = eR =
(ω/σ1)

1/2. Omitting the factors μ0, ε0, and σ1 for increased
readability, the system matrix now scales as

O

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

Λ H Σ Λ H Σ

Λ ω ω ω3/2 ω3/2 ω3/2 ω1/2

H ω ω ω3/2 ω3/2 ω1/2 ω1/2

Σ ω3/2 ω3/2 1 ω ω ω

Λ ω ω ω1/2 ω1/2 ω1/2 ω1/2

H ω 1 ω1/2 ω1/2 ω1/2 ω1/2

Σ ω1/2 ω1/2 ω ω ω 1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

. (55)

Since several rows and columns vanish as the frequency
decreases, the following step is to fix rows 1, 2 and 4,
choosing aL = bL = (ωμ0)

−1/2 and dL = (ωσ1)
−1/2, which

results in

O

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

Λ H Σ Λ H Σ

Λ ω1/2 ω1/2 ω ω ω 1

H ω1/2 ω1/2 ω ω 1 1

Σ ω3/2 ω3/2 1 ω ω ω

Λ ω1/2 ω1/2 1 1 1 1

H ω 1 ω1/2 ω1/2 ω1/2 ω1/2

Σ ω1/2 ω1/2 ω ω ω 1

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

. (56)

We then select aR = (ωμ0)
−1/2 to adjust the vanishing

first column. At this point, all requirements are fulfilled
and two coefficients are left to choose. Both pertain to the
harmonic functions, which in the context of quasi-Helmholtz
projectors, should always share the same rescaling coefficient
as either the adjacent Loop or Star component. Therefore,
two possibilities arise that do not compromise the already
stable matrix,

{
bR = (ωμ0)

−1/2

eL = (ωμ0)
1/2

{
bR = (ωε0)

1/2

eL = (ωσ1)
−1/2.

(57)

Choosing the second set results in the second column
of the matrix exhibiting a single non vanishing scal-
ing which is unfortunately excessively small (coefficient
(5, 2) = O((ε0/σ1)

1/2)), thus worsening the condition num-
ber. Additionally, the first set allows the retrieval of the
surface current densities for the inductive excitation as well.
Consequently, after retaining the first pair of coefficients,
the complete set of left and right coefficients reads

⎛

⎜⎜⎜
⎜⎜⎜
⎝

aL
bL
cL
dL
eL
fL

⎞

⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

(ωμ0)
−1/2

(ωμ0)
−1/2

(ωε0)
1/2

(ωσ1)
−1/2

(ωμ0)
1/2

(ωμ0)
1/2

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎜⎜⎜
⎝

aR
bR
cR
dR
eR
fR

⎞

⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

(ωμ0)
−1/2

(ωμ0)
−1/2

(ωε0)
1/2

(ω/σ1)
1/2

(ω/σ1)
1/2

(ωμ0)
1/2

⎞

⎟⎟⎟
⎟⎟⎟
⎠

(58)

which gives the preconditioned system matrix in (59), shown
at the bottom of the page. Using the Gershgorin circle theo-
rem shows that it is effectively freed from any conditioning
breakdown. Moreover, Table 1 (f) contains the scalings for
the rescaled solution and, as expected, the last column of the
table includes all dominant elements needed for the far and
near fields for each type of excitation, confirming the valid-
ity of the selected rescaling coefficients. In addition, the
current densities are also correctly retrieved for the plane
wave and inductive excitations. The reader should notice
that, as mentioned above in the coefficient selection pro-
cess, each coefficient pertaining to the harmonic subspace
in (58) has been chosen to always be shared by either the
Loop or Star adjacent coefficient. Depending on whether the
harmonic coefficient matches with the former or the latter,
the corresponding projector will be PΛH or P

ΣH , respec-
tively. Therefore, the rescaling of the projectors, which is
compliant with our analysis above, reads

M1 = (ωμ0)
−1/2PΛH + (ωε0)

1/2PΣ (60)

M2 = (ωσ1)
−1/2

P
Λ + (ωμ0)

1/2
P
ΣH (61)

for the left side, and

M3 = (ωμ0)
−1/2PΛH + (ωε0)

1/2PΣ (62)

M4 = (ω/σ1)
1/2PΛH + (ωμ0)

1/2PΣ (63)

for the right side. As described in Section II, the inverse of
the Gram matrix (30) is needed to apply the dual projector,

LZΛHΣR = O

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

Λ H Σ Λ H Σ

Λ 1 1 ω(μ0ε0)
1/2 ω(μ0σ1)

−1/2 ω(μ0σ1)
−1/2 1

H 1 1 ω(μ0ε0)
1/2 ω(μ0σ1)

−1/2 (μ0σ1)
−1/2 1

Σ ω(μ0ε0)
1/2 ω(μ0ε0)

1/2 1 ω(ε0/σ1)
1/2 ω(ε0/σ1)

1/2 ω(μ0ε0)
1/2

Λ (μ0σ1)
−1/2 (μ0σ1)

−1/2 (ε0/σ1)
1/2 1 1 (μ0σ1)

1/2

H ω 1 ω(μ0ε0)
1/2 ω(μ0σ1)

1/2 ω(μ0σ1)
1/2 ωμ0σ1

Σ 1 1 ω(μ0ε0)
1/2 ω(μ0σ1)

1/2 ω(μ0σ1)
1/2 1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

(59)
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which results in the final formulation
(
M1 0
0 M2G

−1

)
Z

(
M3 0
0 M4

)
y =

(
M1 0
0 M2G

−1

)
b (64)

where y is the rescaled solution, from which we derive the
current density solution

x =
(
M3 0
0 M4

)
y . (65)

V. IMPLEMENTATION DETAILS
When dealing with quasi-Helmholtz decompositions and
related projectors, careful attention is also required on the
implementation side to ensure an accurate computation of
the operator matrices and right hand sides. Specifically, sev-
eral terms fail to cancel out exactly in limited precision,
leaving residual errors which can be amplified at very low
frequencies. Such cancellations should therefore be imple-
mented manually to guarantee the stability and correctness
of the formulation.
In particular, the relations PΛHTΦ,k = 0 and TΦ,kP

ΛH =
0 must be explicitly enforced, as well as P

ΛG−1TΦ,k =
0 [22], which results for the diagonal blocks in

M1TupperM3 = M1TA,upperM3 + ωε0P
ΣTΦ,upperP

Σ (66)

M2TlowerM4 = M2TA,lowerM4 + ωμ0P
ΣHG−1TΦ,lowerP

Σ .

(67)

Likewise, the static component of Kk needs to be canceled
out since P

ΛG−1K0P
ΛH = 0 [23], which leads to

M2KM3 = M2KdM3 + ω(σ1ε0)
1/2

P
ΛG−1K0P

Σ

+ ω(μ0ε0)
1/2

P
ΣHG−1K0P

Σ

+ P
ΣHG−1K0P

ΛH (68)

for the lower off-diagonal block of the system matrix, where
Kd is the dynamic part of the discretized operator. In (68),
Kd should be computed by explicitly omitting the static
term of the kernel (33), instead of calculating Kk −K0, to
avoid numerical cancellation. Note that in the case of the
upper off-diagonal block, no cancellation is enforced since
HTK0H �= 0, and so PΛHK0P

ΛH �= 0.
The plane wave right hand side must also be computed

with the kernel extraction technique, by removing the static
term of the exponential in the integral (e−jkk̂·r − 1). In fact,
the static part disappears with PΛH and P

ΛG−1 [22], which
results in
(
M1e

M2G
−1h

)
=

(
(ωμ0)

−1/2PΛH 0
0 (ωσ1)

−1/2
P
ΛG−1

)(
eext
hext

)

+
(

(ωε0)
1/2PΣ 0
0 (ωμ0)

1/2
P
ΣHG−1

)(
e

h

)

(69)

where the subscript ext refers to the extracted kernel right
hand side.
The new quasi-Helmholtz projector-based formulation,

and its discretization, can be accelerated using fast

solvers [25], [26] to reach a quasi-linear complexity
O(N logN). Indeed, the projector-based preconditioner is
applicable in quasi-linear complexity by leveraging multigrid
preconditioners [38]. The stabilization and the framework
presented here are designed for the low-frequency limit. The
scheme however is fully compatible with high frequency
simulations for frequencies where a loop-star decomposition
should not be used. In this case, it is sufficient to set to 1 all
coefficients multiplying the projectors as is customary done
in similar frameworks (see [24] and references therein). A
smooth and automatic transition between the two regimes is
possible and will be the topic of a future communication.
At moderately low frequencies for which the PMCHWT
can still be used, albeit with a high condition number, the
overhead caused by the computation and application of the
preconditioner is rapidly offset by the lower number of itera-
tions required for the convergence of the employed iterative
solver, as will be illustrated in the numerical results. At
lower frequencies, the spread of the condition number would
become even more severe and the standard PMCHWT would
fail to provide the correct solution.
Finally, the complex wave number k1 (7) present in the

Green’s function exponential gives rise to a real exponential
which decays excessively fast as the skin depth becomes
smaller, typically due to a high conductivity and/or high
frequency. Therefore, the computation of the integral oper-
ators becomes increasingly inaccurate when using schemes
such as the Gaussian integration. This is an issue charac-
teristic of lossy conducting media which requires specific
treatment such as the one found in [39]. After the fast decay
of the exponential has been handled, the near-singularity
of the right hand side and matrix self- or near-elements
require special treatment as they cannot be obtained accu-
rately using standard Gaussian quadrature. In this work, we
have opted for singularity extraction approaches [40], [41]
but other schemes such as singularity cancellation [42] can
be employed.

VI. NUMERICAL RESULTS
Several tests have been conducted to validate the stability
and accuracy of our scheme. For all experiments of this sec-
tion, we have used ε′

r = 1. The first experiment involves
a simply connected sphere of radius 1 m and conductiv-
ity σ1 = 103 Sm−1. The geometry is discretized with 1048
triangular elements, which corresponds to 3144 unknowns.
The condition numbers computed at different frequencies for
the PMCHWT equation, the Loop-Star PMCHWT method
and the new formulation are illustrated in Figure 3. It is
clear that the original PMCHWT matrix displays a rapid
degeneration of its conditioning, while both the Loop-Star
PMCHWT and our new method remain stable until very
low frequencies. However, the condition number achieved
with the formulation we propose is significantly lower than
that of the Loop-Star scheme, thanks to the well-conditioned
nature of the quasi-Helmholtz projectors.
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FIGURE 3. Sphere of radius 1 m with 1048 elements and σ1 = 103 Sm−1: Condition
number as a function of the frequency.

FIGURE 4. Sphere of radius 1 m with 1048 elements and σ1 = 103 Sm−1: Electric
current density amplitude on elements of constant longitude given an exciting plane
wave of frequency f = 10−40 Hz along −x̂ and with B0 = 1 T.

We then compared the amplitude of the electric and
magnetic current densities against an eddy current specific
formulation [7], obtained with a plane wave excitation and
computed at the centroids of a subset of elements, shown
in Figure 4 and 5. Analytical solutions are available for the
magnetic current density [43]–[45], out of which we have
implemented the latter. The Loop-Star PMCHWT method
and our formulation are in good agreement with both the
analytical and eddy current solutions, whereas the PMCHWT
equation fails to return correct results. This shows the capac-
ity of the new strategy to maintain accuracy until arbitrarily
low frequencies.
The scattered far field is then verified against the Mie

solution in Figure 6. Like before, the PMCHWT method
delivers a wrong result while the Loop-Star and new methods
both result in a good match, as predicted by the theory.

FIGURE 5. Sphere of radius 1 m with 1048 elements and σ1 = 103 Sm−1: Magnetic
current density amplitude on elements of constant longitude given an exciting plane
wave of frequency f = 10−40 Hz along −x̂ and with B0 = 1 T.

FIGURE 6. Sphere of radius 1 m with 1048 elements and σ1 = 103 Sm−1: Radar
cross section given an exciting plane wave of frequency f = 10−40 Hz along −ẑ and
with E0 = 1 Vm−1.

To confirm the applicability of our new method to multiply
connected structures, we simulated a torus with circular cross
section, of major radius 1.5m, minor radius 0.5m and con-
ductivity σ1 = 103 Sm−1. The geometry is discretized with
1620 triangular elements, which leads to 4860 unknowns,
and the harmonic subspace contains 2 global loops. The con-
dition numbers are computed as before and are illustrated
in Figure 7. The same behavior observed in the case of
the sphere occurs for the torus, corroborating the theoretical
development in the presence of global loops.
The electric and magnetic current densities (Figure 8

and 9) were validated with an exciting plane wave, demon-
strating matching results between our new method, the
Loop-Star PMCHWT strategy and an eddy current formula-
tion, while the original PMCHWT gives erroneous results.
The scattered field (Figure 10) was computed as well, with
a similar outcome.
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FIGURE 7. Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements and
σ1 = 103 Sm−1: Condition number as a function of the frequency.

FIGURE 8. Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements and
σ1 = 103 Sm−1: Electric current density amplitude on elements around the handle
given an exciting plane wave of frequency f = 10−5 Hz along −x̂ and with B0 = 1 T.

To demonstrate the full-wave capabilities of the new for-
mulation, i.e., that it is stable and accurate beyond the eddy
current regime, we have compared the electric and magnetic
(Figure 11 and 12, respectively) current densities obtained
with the new formulation, the standard PMCHWT, and an
eddy current solver to an analytical solution obtained from
vector spherical harmonics (VSH) at 10MHz. As expected
the standard PMCHWT and the new solver provide the cor-
rect solution, while the eddy current solver does not. This
illustrates the versatility of the new formulation that performs
accurately at low and higher frequencies.
The conditioning effect of the different formulations is

directly reflected in the convergence rate of the solu-
tion obtained via iterative solvers. Figure 13 illustrates the
decaying speed of the residual error from the Generalized
Minimal Residual (GMRES) iterative method, using a plane
wave excitation. Our formulation successfully converged to

FIGURE 9. Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements and
σ1 = 103 Sm−1: Magnetic current density amplitude on elements around the handle
given an exciting plane wave of frequency f = 10−5 Hz along −x̂ and with B0 = 1 T.

FIGURE 10. Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements and
σ1 = 103 Sm−1: Radar cross section given an exciting plane wave of frequency
f = 10−40 Hz along −ẑ and with E0 = 1 Vm−1.

the correct solution in 255 iterations, and the Loop-Star
PMCHWT required 3410 iterations, whereas the original
PMCHWT converged to a completely incorrect solution.
We then injected a voltage of 1mV in a circular ring

of major radius 1.0m, minor radius 0.2m and conductivity
σ1 = 103 Sm−1 at 50Hz. The object is discretized with
1750 triangular elements and 5250 unknowns. Using circuit
theory, we first obtain a resistance of R = 0.05 Ω from the
conductivity and dimensions of the conductor, which gives a
predicted current of I = V/R = 20 mA after applying Ohm’s
law. This corresponds to an average eddy current density
of I/A = 0.159 Am−2, where A is the area of the cross
section. The eddy currents obtained with the new formulation
(Figure 15) are constant along the axis of the ring and vary
linearly on the cross section, with an average amplitude
matching the above value, as shown in Figure 14.
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FIGURE 11. Sphere of radius 1 m with 1048 elements and σ1 = 1 mSm−1: Electric
current density amplitude on elements of constant longitude given an exciting plane
wave of frequency f = 10 MHz along −ẑ and with E0 = 1 Vm−1.

FIGURE 12. Sphere of radius 1 m with 1048 elements and σ1 = 1 mSm−1: Magnetic
current density amplitude on elements of constant longitude given an exciting plane
wave of frequency f = 10 MHz along −ẑ and with E0 = 1 Vm−1.

To illustrate that the computational overhead caused by
the preconditioning is alleviated by the significantly lower
number of iterations required for the new formulation, we
have performed a comparative run-time study between the
standard and preconditioned PMCHWT. In Table 2 we sum-
marize the setup time, overall computation time, and number
of iterations required for the simulation of a homogeneous
sphere of conductivity σ1 = 10−3 Sm−1, discretized with
2792 triangles and excited by a plane wave oscillating
at 5MHz for both the new formulation and the stan-
dard PMCHWT. The timings presented have been obtained
without a fast matrix vector product algorithm.
Lastly, we simulated a plane wave illuminating the outer

shell of a jet engine with an average aluminum conductivity
of 2×107 Sm−1 to verify the applicability of our scheme to a

FIGURE 13. Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements and
σ1 = 103 Sm−1: Convergence of the residual error for the Generalized Minimal
Residual algorithm with relative tolerance 10−4 given an exciting plane wave of
frequency f = 10−40 Hz along −ẑ and with E0 = 1 Vm−1.

FIGURE 14. Torus of major and minor radii 1.0 m and 0.2 m with 1750 elements and
σ1 = 103 Sm−1: Eddy current along the x axis given a voltage excitation of value
V = 1 mV at frequency f = 50 Hz (the torus is symmetrical about the z axis).

FIGURE 15. Torus of major and minor radii 1.0 m and 0.2 m with 1750 elements and
σ1 = 103 Sm−1: Eddy current density given a voltage excitation of value V = 1 mV at
frequency f = 50 Hz.

realistic example. The electric current density was computed
on the surface of the object, as shown in Figure 16. The
same solution was obtained through the GMRES method in
3241 iterations with the new formulation, against 18317 with
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TABLE 2. Setup and computation time comparison between the new formulation
and the PMCHWT.

FIGURE 16. Jet engine outer shell of length 0.9 m with 9196 elements and
σ1 = 2 × 107 Sm−1: Electric current density norm given an exciting plane wave of
frequency f = 10−40 Hz along −ẑ and with E0 = 1 Vm−1.

the Loop-Star PMCHWT, confirming again the improved
performance of our scheme.

VII. CONCLUSION
In this work we presented a novel boundary element method
for the simulation of eddy current scenarios which relies on
the quasi-Helmholtz projectors. The scheme is free from any
approximation of the Maxwell’s equations, and contrary to
existing eddy current models, it can handle frequencies in
the eddy current regime (which standard full-wave solvers
cannot do) but also beyond it (which standard eddy current
solvers cannot do). Furthermore, the formulation is valid
for both simply and multiply connected conductors and has
a stable conditioning and accurate solution until arbitrarily
low frequencies. Lastly, this scheme is compatible with fast
solvers, making it a versatile and attractive scheme. The
precision and reliability of the new technique have been
confirmed through canonical and realistic examples.
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