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ABSTRACT 
 

The design of electro-hydraulic servomechanisms characterized by high precision 
requirements generally needs adequate knowledge of its characteristics, and, in particular, of 
nonlinear phenomena. Among these, Coulomb's frictional forces acting on the mechanical 
elements in relative motion are critical to guarantee an implementation capable of respecting 
the accuracy requirements. The correct evaluation of this phenomenon allows understanding 
the behaviour of the physical system considered, to estimate its performance by 
implementing it in a simulation environment, and to design new devices taking into account 
the relative constraints. Accurate modelling and simulation of the considered system 
generally imply the use of high order dynamic models (typically, of second-order nonlinear or 
higher). However, under certain conditions, it is possible (and advisable) to simplify the 
mathematical structure of the numerical model, degrading it to a simple first-order, reducing 
its complexity and computational cost and, nevertheless, still obtaining results comparable 
with higher-order models. In this paper, the authors propose a new computational model 
capable of being implemented within these degraded numerical models, allowing them to 
simulate the main effects due to dry frictions (Coulomb's model). This first-order dynamic 
model is compared with the corresponding second-order ones to evaluate their performances 
in different scenarios. 
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1 INTRODUCTION 

The design of hydraulically powered flight controls for aerospace, typical high position accuracy servomechanisms, 
involves the deep knowledge of their behaviours, markedly affected by the Coulomb friction. The proper evaluation of the 
friction forces and torques is usually necessary when an accurate simulation of the servomechanisms' dynamic behaviour 
is requested, i.e. to perform a suitable design or reliable monitoring of the system itself.  
As reported in [1], the simulation of the dynamic behaviours of these systems may require mathematical models capable 
of taking into account the usually unwanted effects of dry friction forces (or torques), which affect more or less all 
working conditions.  
Besides, if the system is equipped with mechanical end-of-strokes, their effect must be adequately taken into account by 
the model itself, without compromising the correct simulation of dry friction. Generally, whichever actuators types are, 
the motion transmission consists of a certain number of shafts, gears, screws, ballscrews, epicyclical gears, and so on, 
neglecting driving belts and pulleys. 
The motion transmission elements are generally affected by dry friction, which may give rise to reversible or irreversible 
behaviour of the whole system [2-3]. So, the potentially relevant effect of the dry friction on the dynamic behaviour of 
the mechanical system requires proper simulation models able to provide, at the same time, high computational 
accuracy, compactness, and efficiency. To this purpose, numerous numerical models are available in the literature [4] 
which, although with different fields of use and levels of detail, allows simulating frictional effects (e.g. Karnopp [5], Quinn 
[6], Borello [1], Dahl [7], LuGre [8], elasto-plastic [9-10], Leuven [11] or GMS friction models [12]).  
It should be noted that, in general, these friction algorithms are integrated within larger numerical models able to provide 
a suitably detailed simulation of the dynamic response of the mechanical systems in question [13].  
Usually, these models describe the main characteristics of the simulated on-board devices (e.g. electrohydraulic [14] or 
electromechanical actuators [15-16]) with a wealth of details, adopting non-linear mathematical models of a sufficiently 
high order and with a suitable number of degrees of freedom [17]. Therefore, accurate modelling of a considered 
mechatronic system generally implies the use of high order dynamic models (typically, of second-order nonlinear or 
higher). However, under certain conditions (widely explained in the following of this work), it is possible (and advisable) 
to simplify the mathematical structure of the numerical model, degrading it to a simple first-order. When the necessary 
conditions exist (i.e. one or more higher-order terms of the mathematical model are negligible), the degradation of the 
model allows reducing the complexity and computational cost of the entire algorithm. At the same time, it still 
guarantees comparable results with those provided by the higher-order models. 

2 AIMS OF THE WORK 

The main objective of this paper is to propose a novel numerical friction algorithm, derived from the one proposed by 
Prof. Borello in [1], but properly conceived to be applied to dynamic models degraded to a first-order mathematical 
formulation. For instance, referring to the electrohydraulic actuator (EHA) considered in this paper, a second-order non-
linear dynamic model generally represents it [13]. However, if the inertial effects are negligible with respect to viscous 
and elastic ones, it is possible to eliminate inertial contribution, degrading the model to a more straightforward first 
order.  
In this context, Coulomb friction has an essential effect on the real dynamic performances of highly accurate position 
servomechanisms. To carry out a correct design of the same, it is necessary to implement a new friction model capable of 
complying with the physical properties of the real phenomenon and, at the same time, able to be integrated into this 
first-order degraded model. 

3 CONSIDERED EHA NUMERICAL TEST-BENCH 

To test the new friction simulation algorithm for degraded dynamic systems, the authors developed a dedicated 
numerical test-bench representative of an electro-hydraulic actuator [13]. In this way, it was possible to test the actuation 
system in different operating conditions, compare the "nominal" EHA model with the corresponding first-order degraded 
one and, finally, evaluate the performance (and the applicability field) of the different models of friction considered 
therein (i.e. the classic algorithm that can be implemented in the complete dynamic system [1] and the proposed new 
friction model suitable for first-order degraded dynamic system). 



 

 

 
Figure 1  Block diagram of an electro-hydraulic 

position servo mechanism (EHA) [15]. 

3.1 REFERENCE SERVOMECHANISM DESCRIPTION 
The servomechanism under exam is a typical position electrohydraulic servo control, used in primary and secondary 
aircraft’s flight controls [15]. From a conceptual point of view, as shown in Figure 1, it can be schematically divided by the 
following subsystems:  
• the controller subsystem made of control electronics and a servoamplifier; the control law implemented is PID 

(proportional-integrative-derivative); 
• an electrohydraulic two stages servovalve; 
• a hydraulic jack made of a symmetrical double acting linear cylinder affected by Coulomb friction; 
• a position transducer (considered ideal, instantaneous and free to noise or errors) closing the control loop. 
The full description of the EHA employed in the present work and its mathematical model are reported in [18]. 
The servomechanism considered belongs to the Fly-by-wire controls, excluding any type of mechanical interconnection 
between the control bar and the controlled aerodynamic surfaces [19]. The mechanical connections are replaced by a 
chain of transducers and sensors (potentiometers or encoders) which, by means of electric signals, send the position of 
the same to one or more computers that, after suitable processing, generate electrical impulses.  
The signals produced are algebraically added to those deriving from the control ring, which instantaneously provides the 
position assumed by the moving surface, generating a signal proportional to the instantaneous position error of it. The 
implemented logic allows, using the error pulse, to actuate a control current which, thanks to the electrohydraulic 
servovalve (SVs), allows carrying out the actuation until the position assumed by the surface is the one originally sought 
by the pilot (tracking). 

3.2 COMPLETE MODEL OF SERVOMECHANISM 
As shown in Figure 2, the position error (Err) determined by the difference between the command (Com) generated by 
the pilot and the actual position (XJ) of the flight command, is converted by means of the PID control logic into a current 
input (Cor). This allows the first valve stage to be activated, resulting in a torque by the electric torque motor (expressed 
as a function of Cor and of the gain in torque GM). The generated torque allows the movement of the flapper (XF), 
explaining the dynamics of the valve second stage (modelled as a first-order system). As a consequence of the said 
torque, a displacement of the spool (XS) limited by a saturation block (hard stops) is generated.  

 
Figure 2  Simulink block diagram of the EHA equipped with the second-order dynamic model of the linear actuator. 

 



 

 

 
Figure 3  Simulink block diagram of the EHA equipped with the first-order dynamic model of the linear actuator. 

 

 
The displacement XS allows to determine the differential pressure P12 acting on the hydraulic piston suitably saturated. 
The two gains fluid dynamic valve model is implemented, by means that the differential pressure P12 is determined as 
the difference between XS and the flows through the hydraulic jack QJ divided by GQ (flow gain), multiplied by GP 
(pressure gain). The differential pressure P12 acting on the piston area (AJ) determines the pressure force F12. The net 
active force (Act) is determined by the comparison between F12 and the other acting forces, considering the dry friction 
force (FF), the viscous force determined by the viscous coefficient (CJ), and the total load (FR) acting on the flight surface. 
The acceleration (D2XJ) is finally calculated as the ratio between the active force (Act) and the mass of the hydraulic jack 
(MJ). Its integration gives the velocity (DXJ), determining the viscous term and the working flow QJ above discussed. The 
integration of the velocity gives the instantaneous jack position (XJ) that allows closing the feedback ring (considering the 
position transducer as ideal).  

4 DEGRADATION OF THE EHA DYNAMIC MODEL 

The dynamics of the linear actuator (i.e. the hydraulic jack) that equips the EHA adopted as a numerical test-bench in this 
article, in a nutshell, can be associated with a typical mechanical mass-spring-damper system. In other words, referring to 
the coefficients introduced in the previous chapter, it is possible to obtain the mathematical model of the actuator 
through the equation of equilibrium at the linear translation (in direction XJ) of the forces acting on the jack: 

𝑀𝐽 ∙ 𝐷2𝑋𝐽 + 𝐶𝐽 ∙ 𝐷𝑋𝐽 = 𝐹12 − 𝐹𝑅 − 𝐹𝐹 (1) 

where, in linearity conditions (i.e. when the differential pressure P12 is, in modulus, lower than its saturation value 
P12M), the pressure force F12 can be expressed as: 

𝐹12 = (𝐷𝑒𝑃𝐶 − 𝐷𝑒𝑃𝑄) ∙ 𝐴𝐽 (2) 

𝐷𝑒𝑃𝐶 = 𝑋𝑆 ∙ 𝐺𝑃 (3) 

𝐷𝑒𝑃𝑄 = 𝐺𝑃/𝐺𝑄 ∙ 𝐴𝐽 ∙ 𝐷𝑋𝐽 (4) 

If the inertial term 𝑀𝐽 ∙ 𝐷2𝑋𝐽 is negligible when compared with the other forces shown in Eq. (1), the degradation of the 
system is possible. In case of small masses of the hydraulic jack (or, in general, when the inertial term 𝑀𝐽 ∙ 𝐷2𝑋𝐽 is 
globally negligible), the simulation model can be modified as shown in Figure 3. It is computed an equivalent damping 
coefficient (𝐶𝑒𝑞), calculated as the sum of the damping coefficient (CJ) and the term bound to the fluid dynamic valve 

model (𝐺𝑃 𝐺𝑄⁄ ∙ 𝐴𝐽2). In this case, given that the overall inertia of the system is neglected, the actual value of the 
actuation speed DXJ is directly proportional to the net force acting on the jack.  
So, in the case of a dynamic model degraded to first-order, DXJ changes instantaneously with the net acting force (Act) 
The instantaneous value of DXJ is obtained as the ratio between the net force Act acting on the piston (that, referring to 
Figure 3, is expressed as Act=F12–FR–FF) and the equivalent damping coefficient 𝐶𝑒𝑞. As already for the second-order 

model, the instantaneous value of the position of the jack XJ can be obtained by the temporal integration of the 
corresponding value of the DXJ actuation speed. 

4.1 ADVANTAGES, DISADVANTAGES, AND LIMITS OF APPLICABILITY OF DEGRADED MODELS 
Matlab-Simulink calculates the dynamic response of the simulated system using an approximate numerical resolution 
[20]. In this specific case, to integrate the differential equations of the mathematical model of the system (and, therefore, 
calculate the dynamic response), a fixed-step solver based on the Euler method was adopted [21].  



 

 

The definition of the integration step DT used in Euler’s method is carried out taking into account the vibrational behavior 
of the analyzed mechanical system. Considering the analysis of the dynamic response of mechanical systems with mass, it 
is important to examine mechanical vibrations, that is the oscillation of the structure around the equilibrium position. The 
mechanical oscillations of a second order system (such as the one in question) are characterized by some parameters 
including the natural frequency of the non-damped system, the critical dumping and the not dimensional dumping (the 
formulation of which is shown below). If the mass of the hydraulic jack is reduced, the natural frequency of the second 
order system increases. This entails the need to reduce the integration step, with an increase in the computational cost, 
in order to obtain a reliable simulation analysis from the point of view of the results. However, as the mass decreases, the 
critical damping of the system increases. Overall, the system increases the number of oscillations in the time unit but is 
more dampened. This turns out to be a paradox given that a model whose simulation response is over-damped requires a 
smaller integration step than the same model with higher critical damping. Hence the possibility of neglecting the inertial 
term and consequently approximating the response of a second order system to a first order. This allows to overcome the 
numerical problems (limit cycle) that arise in the application of an integration step less than a certain threshold. However, 
considering the application of an oscillatory forcing such that the natural frequency of the system increases considerably, 
the pulsation of the system will increase and consequently the acceleration of the system will increase. This makes it 
impossible to neglect the inertial term 𝑀𝐽 ∙ 𝐷2𝑋𝐽 even in the presence of a contained mass. The necessary requirements 
to be able to degrade the model are summarized as follows: 

 Hydraulic jack mass defined below a certain threshold which will depend on the characteristics of the servomechanism in 
question. 

 Operating frequency range included within a suitable band defined by the vibrational characteristics of the mechanical 
system in question. 

5 CLASSICAL COULOMB FRICTION MODELS 

In general, dry friction is generated between two moving mechanical elements. It can be considered as a force opposed to 
motion whose direction of application depends on the direction of the velocity vector. This concept is represented by the 
Coulomb friction model [22], which can be summarized in the following points: 
• in static conditions, when the velocity vector is zero, the frictional force (FF) is an equal and opposite vector to the 

applied moving force (Act Th) until this assumes the value of the limit static frictional force value (FSJ) (incipient 
motion condition); 

• in dynamic conditions, when the velocity is not zero, the friction force assumes a modulus equal to the dynamic 
friction force (FDJ) and the vector opposes the motion. 

The classical Coulomb friction model can be generally represented by the following relationships, taking into account the 
difference between sticking and slipping conditions: 

𝐹𝐹 = {

𝐴𝑐𝑡 𝑇ℎ                      
𝐹𝑆𝐽 ∙ 𝑠𝑖𝑔𝑛(𝐴𝑐𝑡 𝑇ℎ)

𝐹𝐷𝐽 ∙ 𝑠𝑖𝑔𝑛(𝑣)          
     

𝐼𝐹  𝑣 = 0 ∧ |𝐴𝑐𝑡 𝑇ℎ| ≤ 𝐹𝑆𝐽

𝐼𝐹  𝑣 = 0 ∧ |𝐴𝑐𝑡 𝑇ℎ| > 𝐹𝑆𝐽
𝐼𝐹  𝑣 ≠ 0                                 

 (5) 

where FSJ and FDJ represent the friction force in sticking and slipping conditions respectively, Act Th is the active force 
and v represents the relative slipping velocity. 
This strongly non-linear relationship (discontinuous and undefined in null velocity conditions) entails a difficulty in the 
numerical implementation of the same in order to describe the system in a simulation environment. 
It should be noted that the model proposed in this article is characterized by a discontinuous friction algorithm, so that 
the discontinuous friction force in sticking regime is considered and presents an action aimed to balancing the other 
forces in order to keep the speed null (until the friction force does not reach the maximum value equal to the static 
friction force). The algorithm allows a distinction to be made in four behaviours of a mechanical element in the presence 
of dry friction: 
• An initially stopped mechanical element must remain in a stick condition. 
• An initially stopped mechanical element must break away. 
• An initially moving mechanical element that must remain in motion. 
• An initially moving mechanical element that must stop. 
The model, therefore, allows correctly evaluate the sign of the friction force as a function of the actuation rate sense, to 
distinguish the static conditions from the dynamic ones, to evaluate the possible stop of a mechanical element initially in 
motion, to keep it correctly in conditions of grip or considering restarting the movement. The analysis of the behaviour of 
a servomechanism requires its description by means of a higher order model.  



 

 

The authors, as shown in Chapter 3, consider a second order model representative of the servomechanism in which the 
previously discussed friction algorithm is implemented [13-14].  
However, since high accuracy and reduced computational costs (CPU, RAM) are required in preliminary design and 
monitoring phase, fast models which are able to highlight the peculiar aspects of the system by reducing calculation times 
are needed. This is sometimes incompatible with models with high descriptive accuracy (higher order).  
The authors aim is to examine the possibility of degrading the model to a first order, in the hypothesis that the mass-
dependent inertial term was negligible, and to demonstrate the ability to evaluate the key aspects of the system by 
reducing computational costs associated with the accurate simulation of the same. 

5.1 BORELLO’S DRY FRICTION MODEL AND RELATED ALGORITHM 

 

Figure 4  Block diagram of the Matlab- Simulink discrete friction force algorithm proposed by Borello [1]. 

Borello's dry friction computational algorithm, from which the authors developed the new method applied to dynamic 
systems degraded to first-order numerical models, was initially implemented in the FORTRAN environment (according to 
Eqs. 6-12), and, subsequently, it has also been developed in Matlab-Simulink language, as shown in Figure 4, and widely 
described in [23]. 

𝐴𝑐𝑡 𝑇ℎ = 𝐹12 − 𝐹𝑅 − 𝐹𝑉 (6) 

𝐹𝐹 = SIGN (𝐹𝐷𝐽, 𝐷𝑋𝐽) (7) 

𝐼𝐹(𝐷𝑋𝐽. 𝐸𝑄. 0)   𝐹𝐹 = MIN (MAX(−𝐹𝑆𝐽, 𝐴𝑐𝑡 𝑇ℎ) , 𝐹𝑆𝐽) (8) 

𝐷2𝑋𝐽 = (𝐴𝑐𝑡𝑇ℎ − 𝐹𝐹)/𝑀𝐽 (9) 

𝑂𝑙𝑑 = 𝐷𝑋𝐽 (10) 

𝐷𝑋𝐽 = 𝐷𝑋𝐽 + 𝐷2𝑋𝐽 ∙ 𝐷𝑇 (11) 

𝐼𝐹(𝑂𝑙𝑑 ∙ 𝐷𝑋𝐽. 𝐿𝑇. 0)   𝐷𝑋𝐽 = 0 (12) 

5.2 NEW DRY FRICTION ALGORITHM APPLIED TO SECOND-ORDER DYNAMIC MODELS 
The proposed dry friction algorithm, implemented starting from the Borello’s model, has been developed in Matlab-
Simulink language (one of the most commonly used languages in engineering applications) and its logic is schematically 
shown in the block diagram of Figure 5. 
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Figure 5  Block diagram of the proposed friction algorithm applied to second-order dynamic models. 

The proposed friction model was implemented in the Simulink block diagram of the EHA (Figure 2) within the subsystem 
called "Dry Friction". Its block diagram can be summarized by the following computational routine: 

𝑟𝑒𝑠𝑒𝑡 𝐷𝑋𝐽 = 𝑝𝑎𝑠𝑠(𝐷𝑋𝐽 𝑆𝑃) (13) 

𝐼𝐹 𝑃𝑎𝑠𝑠(𝐷𝑋𝐽 𝑆𝑃) = 1 (14) 

       𝑇𝐻𝐸𝑁 𝐹𝐹 = 𝑠𝑖𝑔𝑛(𝐴𝑐𝑡 𝑇ℎ) ∙ 𝑚𝑖𝑛 (|𝐴𝑐𝑡 𝑇ℎ|, 𝐹𝑆𝐽) (15) 

       𝐸𝐿𝑆𝐸 𝑠𝑖𝑔𝑛(𝐷𝑋𝐽) ∙ 𝐹𝐷𝐽 (16) 

𝐸𝑁𝐷 𝐼𝐹 (17) 

The actuation speed DXJ of the hydraulic jack is computed starting from the Boolean signal coming from the “Hit-
Crossing” block defined by the function pass (DXJ SP), where DXJ SP is the instantaneous speed output from the integrator 
state port. The next rows of the meta code reported in Eqs. (13-17) describe the discrimination of the adhesion or slipping 
condition by means of an IF and ELSE algorithm. The distinction between the two regimes is defined by the balance 
between the resultant of the active forces and the frictional force. When the resultant applied exceeds the adhesion 
force, the transition from static to dynamic occurs. If the Boolean signal is equal to the unit (Eq. 14), then the friction 
force is computed in the static condition. FF is equal to the minimum between the modulus of active forces and the static 
friction force value multiplied by the sign of the friction forces (Eq. 15). Vice versa, FF is computed as the product of the 
dynamic friction force and the sign of speed in slipping condition (Eq. 16). The friction force thus calculated is subtracted 
from the resultant of the active forces allowing the determination the jack acceleration. 
I analogy with [1], the proposed model is capable of: providing the sign of the frictional force in relation to the sign of the 
speed; to distinguish the conditions of adhesion from those of motion; evaluate the starting and stopping of the 
considered mechanical element; keep the mechanical element considered in the stop or motion state. 
The peculiarity of the model resides in the fact that the stop is imposed if the speed value goes through zero. Stopping in 
the event of a speed reversal can be expressed as: 

𝑣(𝑡_(𝑖 + 1) ) = 0 𝑖𝑓 𝑣(𝑡_(𝑖 + 1) ) ∙ 𝑣(𝑡_𝑖 ) ≤ 0 (18) 

At the next step, if the value of the external force exceeds the static frictional force, the system would still be able to 
restart. In conditions of adherence, the friction force is considered equal and opposite to the sum of the active forces; 
however the frictional force cannot exceed the static frictional force FSJ value as specified in Eq. (15) of the computational 
routine and in Subroutine A of the simulink scheme of Figure 5. The result is an FF equal to FSJ in the opposite direction of 
Act Th.  



 

 

When the condition for which Act Th is greater than FSJ occurs, the slipping condition is determined in accordance with 
Eqs. (15-16); the DXJ value is different from zero and will be the input of the next computational step. On the other hand, 
if the adhesion condition persists, that is Act Th minor than FSJ, the DXJ value will be kept null. In slipping condition, the 
frictional force assumes a value equal to FDJ in accordance with Eq. (16) and Subroutine C. The result is an FF equal to the 
FDJ in the opposite direction as Act Th. The authors’ Simulink algorithm implements the aforesaid breakaway detection by 
means of a “Switch” block. The switching condition is given, as shown in Subroutine B, by the instantaneous value of DXJ 
coming from the integrator state port, allowing the selection between sticking and slipping condition by means of a hit 
crossing block and the correct computation of FF.  
The dynamic response of the system is simulated by numerical integration performed with the Euler method: 

𝐷𝑋𝐽 = 𝐷𝑋𝐽 + 𝐷2𝑋𝐽 ∙ 𝐷𝑇 (19) 

The value assumed by DXJ at each integration step represents the input of the Simulink model just discussed; when there 
is an inversion of the sign of speed in the current computational step, that is a passage in the zero speed condition, the 
speed must be imposed null.  
In the following integration step, the condition of adherence will be imposed and, if Act Th is lower than FSJ, it will be 
maintained; vice versa, if |Act Th| is higher than FSJ, the slipping condition will be determined. 

6 PROPOSED DRY ALGORITHM APPLIED TO DEGRADED FIRST-ORDER DYNAMIC MODELS 

In case of degraded EHA model, as shown in Figure 6, the authors’ friction algorithm is modified as follows: 

 as indicated in the previous paragraph, it is possible to determine from the balance of forces (considering negligible 
the inertial term 𝑀𝐽 ∙ 𝐷2𝑋) the actuation speed (DX Th) which constitutes the input of the friction algorithm together 
with Act Th. 

 The speed computation at the current integration step (DX) is carried out by means of a memory block  
(as shown in Figure 7), which allows to break the algebraic loop which otherwise would occur with a simple feedback. 

 The reset signal (named Reset DX), which determines the switch condition between adhesion and slipping, is 
calculated starting from the aforesaid speed DX Th. 

Act Th and the actuation speed DX Th are in input to the friction block. The switch block activation condition is defined by 
the Reset DX signal. As shown in Figure 7, the instantaneous value of the actuation speed DX Th is calculated by 
comparing it with the real speed DX, calculated in the previous simulated instant. If the product of the two speeds is 
positive (i.e. when they are both non-zero and with concordant sign), the logic bloc gives an output equal to 1 and, then, 
DX = DX Th. Vice versa, if one of the two speeds is null or they have opposite sign, the instantaneous DX speed provided 
downstream of the "Multiplier" block is set to zero. In this way, if the speed shows a sign inversion, a null DX output 
speed is selected. 
The "Memory" block positioned on the DX feedback branch, supplying the speed value received as input at the previous 
instant as output, introduces a delay equal to an integration step DT in the ring mentioned above. This solution allows 
breaking the algebraic loop related to the DX counteraction ring and, so, to avoid numerical issues. 
 

 
Figure 6  Block diagram of the proposed friction algorithm applied to degrader first-order dynamic models. 



 

 

 
Figure 7  Detail of the “Reset DX” subsystem of Figure 6. 

An algebraic loop occurs when a signal loop exists with only direct feedthrough blocks within the loop, which means that 
Simulink needs the block's input signal value to calculate its output in the current time phase. Such a signal circuit creates 
a circular dependence of the outputs and inputs of the blocks at the same time step. This translates into an algebraic 
equation that must be solved at each stage, adding computational costs to the simulation of the impossibility of 
computation. The SIGN DX signal provides the sign of the DX speed calculated in a given simulation instant. It is calculated 
using a Simulink block of type "SIGN" that provides an output equal to 1 if the speed is positive and -1 if the speed is 
negative. The Reset DX signal is finally determined by a “Hit-Crossing” block, detecting when the input signal crosses the 
zero value. If the passage from zero takes place, then the output will be equal to 1, calculating a FF as static friction (i.e. 
related to adherence conditions). Otherwise, FF is associated with sliding conditions and, therefore, is obtained using the 
dynamic model. The algorithm thus computed does not require the instantaneous speed value coming from the state 
port of the acceleration integrator. In fact, the application of the friction algorithm described for the second order system 
was impossible due to the simplification inherent in the degraded model. By reducing the degree of the physical system, 
the corresponding Simulink model presents only the speed integrator, not allowing the determination of the speed 
computed at the current step before its declaration by the integrator. The use of the memory block, therefore, allows 
overcoming the problem in the manner described previously. In this way, it is possible to apply the friction model to the 
degraded system and compare it with the second-order system in the following chapters. 

7 ANALYSIS OF THE NUMERICAL RESULTS 

To evaluate the performance of the proposed friction algorithm (applied to degraded-order dynamic model), we 
compared the time responses generated by the detailed numerical model (equipped with a second-order dynamic model) 
with those obtained with the actuator model degraded to the first order. For shortness, in this paper are reported only 
some explanatory cases, suitable to put in evidence the main models' peculiarities; interested readers can directly test 
the models illustrated downloading them online from [XXX]. In Figure 8, the response of the high-order system was tested 
by varying the mass of the actuator from 0.1 kg (purple line) to 1000 kg (yellow) based on a logarithmic progression of the 
system inertia. Figure 8 shows the models response for a step command of 0.2 m, applied at time = 0.005 seconds. Note 
that, when the inertia decreases, the dynamic response provided by the second-order models pack closer to those of the 
first order, both in the start-up transient and in stationary conditions (e.g. static positioning error due to friction). In this 
case, the response of the first-order model cannot be identified in the figure because it tends to overlap almost entirely 
with that of the second-order system with very low inertia (MJ = 0.1 kg). 



 

 

 
Figure 8  EHA response for a step command of 0.2 m. Comparison, as the actuator mass MJ varies, between the second-
order model and the corresponding first-order degraded one. The mass MJ varies from 0.1 kg (purple line) to 1000 kg 
(yellow line) in a logarithmic progression. 
 
 
As reported above, if the inertia is negligible, the dynamic response of the first-order model of the EHA (Figure 9) is 
substantially identical to that generated by a second-order system (Figure 10). Obviously, as the mass of the system 
increases (Figures 12 and 13), the trend of the simulated position XJ (red curve) will begin to deviate from the equivalent 
response of the degraded system. Note also how, at least for reduced masses (Figures 10-11), the trend of the speed 
transient (yellow line) and the value of the steady-state error (i.e. the difference between the command - blue line - and 
the position of the actuator - red line) basically follow what simulated by the degraded model (Figure 9) 
Vice versa, considering higher masses (100 kg), the break-away speed transient becomes more evident (Figure 12).  
Its position time- response shows a significantly increasing delay compared to the first-order system because, in this case, 
inertial reactions are no longer negligible.  
When the inertial term becomes predominant (e.g. in the case shown in Figure 13, having mass MJ = 1000 kg), there is a 
reduction in the stability margin of the system associated with the onset of oscillatory phenomena. In this case, of course, 
the first-order degraded model falls short as it is not capable of simulating the oscillatory dynamics of an under-damped 
system. In Figures 14-18, the response of the two systems to a position ramp command is considered. 
The dynamic response of the simulated systems is characterized by a break-away transient (related to the slope of the 
command input and the dynamic characteristics of the different models), followed by a section in which the EHA moves 
at a constant speed (equal to the slope of the commanded ramp) along a straight path with a slope equal to that of the 
command. Note the peak of actuation speed following the break-away is caused by the momentary imbalance between 
the actuation force and the friction force. As already explained in chapters 5 and 6, this is because the transition from the 
adhesion to the sliding condition is a non-linear phenomenon in which the friction force markedly reduces (according to 
Eq. 5). 
 

 
Figure 9  EHA first-order degraded model. 



 

 

 
Figure 10  EHA second-order model – MJ = 0.1 [kg]. 

 
Figure 11  EHA second-order model – MJ = 1 [kg]. 

 
Figure 12  EHA second-order model – MJ = 100 [kg]. 

 
Figure 13  EHA second-order model – MJ = 1000 [kg]. 

 
Figure 14  EHA first-order degraded model. 



 

 

 
Figure 15  EHA second-order model – MJ = 0.1 [kg]. 

 
Figure 16  EHA second-order model – MJ = 1 [kg]. 

 
Figure 17  EHA second-order model – MJ = 100 [kg]. 

 
Figure 18  EHA second-order model – MJ = 1000 [kg]. 

 
As the mass involved increases, the peak takes on lower values since the accelerations connected to it are less. 
In the case of very high inertia (markedly undercut systems and a sufficiently high ramp slope), the second-order system 
generates a stick-slip phenomenon [18, 23]. 

8 CONCLUSIONS 

The simulations show the accuracy of the proposed algorithm taking into account the effects of dry friction on the 
behaviour of the actuators. It should be noted the proposed models can correctly describe the dynamic/static behaviour 
of the considered on-board electrohydraulic actuators for primary flight controls. The degraded first-order model is still 
able to simulate with suitable precision the dynamic response of the considered EHA taking into account the effects due 



 

 

to several nonlinear phenomena (i.e. friction force on the mechanical transmission, pressure saturation of the hydraulic 
pressure regulated by the EHA servo valve, ends-of-travels acting on the jack stroke).  
The simulations prove that the first-order model is an excellent choice to describe servomechanisms characterized by low 
inertia (i.e. the inertial term of the mathematical model is negligible compared to viscous or elastic ones), but it is not 
recommended for higher-inertia systems. Furthermore, for these dynamic systems, the second-order model can be used 
with greater temporal discretization due to the low speed and the frequencies at which they work, and therefore 
numerical problems should not occur. 
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LIST OF SYMBOLS 

Act Th sum of active forces   [𝑁] 
AJ        piston active area   [𝑚2] 
CJ      dimensional viscous coefficient [𝑁𝑠 𝑚⁄ ] 
Com     command signal    [𝑚] 
Cor     servovalve piloting current  [𝑚𝐴] 
Err      position error    [𝑚] 
D2XJ   acceleration of the piston rod  [𝑚 𝑠2⁄ ] 
DXJ       velocity of the piston rod   [𝑚 𝑠⁄ ] 
F12        hydraulic force acting on piston  [𝑁] 
FR        external load acting on piston rod  [𝑁] 
FV        viscus force acting on piston rod  [𝑁] 
GP      pressure gain of the SV spool  [𝑃𝑎 𝑚⁄ ] 
GQ       flow gain of the the SV spool  [𝑚2 𝑠⁄ ] 
MJ       equivalent mass of the actuator  [𝑘𝑔] 
P12      hydraulic differential pressure  [𝑃𝑎] 
QJ        working flow    [𝑚3 𝑠⁄ ] 
XF     valve first -stage displacement  [𝑚] 
XS       valve second-stage displacement  [𝑚] 
XJ        aerodynamic surface position  [𝑚] 
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