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Abstract. Due to the huge amount of available omic data, classifying
samples according to various omics is a complex process. One of the
most common approaches consists of creating a classifier for each omic
and subsequently making a consensus among the classifiers that assigns
to each sample the most voted class among the outputs on the individual
omics.

However, this approach does not consider the confidence in the predic-
tion ignoring that a biological information coming from a certain omic
may be more reliable than others. Therefore, it is here proposed a method
consisting of a tree-based multi-layer perceptron (MLP), which estimates
the class-membership probabilities for classification. In this way, it is not
only possible to give relevance to all the omics, but also to label as Un-
known those samples for which the classifier is uncertain in its prediction.
The method was applied to a dataset composed of 909 kidney cancer sam-
ples for which these three omics were available: gene expression (mRNA),
microRNA expression (miRNA) and methylation profiles (meth) data.
The method is valid also for other tissues and on other omics (e.g. pro-
teomics, copy number alterations data, single nucleotide polymorphism
data). The accuracy and weighted average f1-score of the model are both
higher than 95%. This tool can therefore be particularly useful in clin-
ical practice, allowing physicians to focus on the most interesting and
challenging samples.

Data availability: the code is freely accessible at
https://github.com/Bontempogianpaolol/Consunsus-on-multi-omics,
while mRNA, miRNA and meth data can be obtained from the GDC
database [2] or upon request to the authors.

Keywords: Bayesian Neural Networks - Gene expression - mRNA -
miRNA - Methylation - Multi Layer Perceptron (MLP) - Multi-omics
- Multi-omics classification
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1 Introduction

In recent years, the reduction of costs for the sequencing of biological molecules
including DNA, RNA and proteins has allowed the widespread of huge amounts
of data both in the form of large structured databases and in the form of repos-
itories specially created for the study of particular pathologies [1-3].

In this context, various omic data can be taken into account for the study
and analysis of samples, either tumor or healthy: gene expression data (mRNA),
microRNA expression data (miRNA), methylation data (meth), copy number al-
terations data (CNA), single nucleotide polymorphism data (SNV), proteomics
and phosphoproteomics data.

Two large strands are typically available in multi-omics analysis: first the
subdivision of the samples into its own classes [8-11] and second, the identifica-
tion of specific pathways and gene patterns in the dataset [12,13]. This work is
focus exclusively on the first strand; in particular, some methods are presented
for the classification of kidney cancer samples by simultaneously exploiting the
information from the mRNA, miRNA, and methylation (meth) data. Although
the work is focused on mRNA, miRNA and meth omics, it must be noticed that
the same algorithms can be applied to a greater number of omics or other omics
in place of them.

In the multi-omics classification approach, a crucial step is represented by the
algorithm by which to integrate the classification results from each omic. One
of the standard approaches is to make a consensus among the various omics,
such that the multi-omic class is the most voted class among the outputs on the
individual omics [14, 15]. However, this approach has two main limitations. At
first, it is difficult to attribute to the multi-omic class in the case in which all the
outputs of the individual omics are completely disjoint or more than one class
is equally voted among all the omics. Secondly, each omic carries characteristics
that may not be present in the other omics. For classification purposes, therefore,
the contribution of a single omic should be considered according to the certainty
in its classification.

This work proposes the use of a learning method that for each omic returns
not only the corresponding class, but also its membership probability to that
class, overcoming the main problem of standard consensus when the same sample
is assigned to different classes across the omics or when there is no clear class
prevalence.

In addition, the use of the class-membership probability allows to filter sam-
ples according to the class probability and consequently postpone for further
analyses those samples on which there is not enough certainty in the classi-
fication across all the omics. This approach is particularly useful in creating
automatic tools that, integrating different omic information, may favor clinical
practice, by proposing a classification label when all the omics are enough cer-
tain in their classification and, an Unknown label when discrepancies are found
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across the omics. In this way, physicians can have a quick look at well defined
samples and focus more on the most interesting and challenging cases where
human control is crucial.

2 Biological data

Although the proposed method can be applied to any tissue and pathology,this
work is deal with the study of kidney tumor samples freely available in the Ge-
nomic Data Commons (GDC) database [2]. The samples used in this study be-
long to three main kindney tumor subtypes: kidney renal papillary cell carcinoma
(KIRP), kidney renal clear cell carcinoma (KIRCH) and kidney chromophobe
(KICH). In addition, a reduced number of healthy samples is available both for
KIRP and KICH subtypes (usually these tissues are healthy areas surrounding
a KIRP or KICH tumor). For KIRP, KIRCH and KICH subtypes, only samples
samples available are selected for mRNA, miRNA and meth data, obtaining a
final dataset of 909 samples.

The mRNA, miRNA and meth data are tabular data commonly represented
as matrices, where the value in position (,j) represents the amount of a specific
biological product or the intensity of a phenomenon (mRNA, miRNA and meth
respectively) in a specific sample. The mRNA, miRNA and meth matrices carry
different biological information. The mRNA expression value is strictly related
to the amount of its protein (higher is the number, higher the amount of the
protein) which regulates a specific pathway in the cell life cycle.

The miRNA expression value indicates the amount of a specific miRNA, a
small non coding RNA molecule which intervenes in the post-transcriptional
process, regulating the amount of produced final protein.

Methylation value refers to the methylation beta value, an estimate of the
methylation level computed as the ratio of intensities between methylated and
unmethylated alleles. The biological effect of the methylation consists of the
change of the activity of a DNA segment without changing its sequence (when
methylation occurs, it reduces the DNA transcription, thus consequently reduc-
ing the amount of protein).

It must be noticed that many biological molecules act together in order to
regulate the cell activity and that changes in the values of one or more omics
can be correlated to a specific pathology or a tumor subtype.

2.1 Data preprocessing

After downloading and selecting samples for which both mRNA, miRNA and
meth data are available, the following preprocessing is performed:

— mRNA: 5000 features x 909 samples
Raw count data have originally about 60000 mRNA genes and have been
normalized using the Variance Stabilizing Trasformation (VST) [16]. Then all
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not protein coding genes have been discarded reaching about 20000 mRNA
genes and z-score transformation has been performed. In the end, the top
5000 mRNA genes with the highest standard deviation are selected.

— miRNA: 1200 features x 909 samples
The miRNA data have about 2000 miRNAs and have been normalized using
deseq [17]. Then pseudo-counts have been computed as
logs(count_value+1). In the end, z-score transformation has been performed
and the top 1200 miRNAs with the highest standard deviation have been
selected.

— meth: 5000 features x 909 samples
Among the 27000 features in methylation array data obtained with Illumina
Human Methylation 27 platform, the top 5000 with the highest standard
deviation are selected. Since original data are intrinsically normalized, no
further normalization is required.

The 909 samples belong to 5 classes: tumor KIRCH: 509, tumor KIRP:
288, tumor KICH: 65, healthy KIRCH: 24, healthy KIRP: 23.

They have been further divided into training set (75% of the samples) and
test set (25% of the samples) such that the latter includes the same proportion
of samples belonging to the different classes.

In order to test the model on samples that do not belong to the kidney
classes, 37 stomach samples have been obtained from GDC [2], by applying the
same preprocessing steps described in 2.1. This dataset is used only as test test,
without re-training the kidney model to evaluate the ability of the probabilistic
approaches, such as the tree MLP classifier, to recognize unseen classes.

3 Method

An extension of the multi layer perceptron (MLP) combining several MLPs in
a tree architecture (tree MLP) is here proposed. Such an architecture has been
designed to face with the classification of samples where no clear class preva-
lence was obtained through the consensus of the various omic-based classifiers.
Moreover, it aims at identify and filtering out samples uncertainly classified.

Since a MLP equipped with a cross-entropy loss function, with associated
either logistic sigmoid (two class problem) or softmax (multiclass problem), out-
puts the class-membership posterior probabilities of the inputs [21], the proposed
tree MLP classifier is therefore able to return the class label and the associated
probability of the sample belonging to a class.

As it can be seen in Fig. 1, a tree-like architecture was created with MLP mod-
els as nodes and trained separately on subsets of the training set. For this specific
problem, there are a root node (trained to recognize healthy from tumor samples)
and two leaf nodes. The former is trained on healthy samples and classifies them
into KIRP and KIRCH healthy tissues. The latter is trained on tumor samples
and classifies them into KIRP, KIRCH, and KICH tumors. Therefore, given a
new sample S, it will be classified by the root MLP as healthy or tumor (y,ot)



Multi-omics classification exploiting uncertainty-aware models 5

with a class-membership probability P,. After selecting the leaf node correspond-
ing to Yroot, it returns the subclass label yeq s (tumor KIRP, tumor KIRCH, and
tumor_KICH for tumor leaf MLP; healthy_KIRP and healthy KIRCH for normal
leaf MLP) with its class-membership probability Pieqr. The final class ypreq is
equal to Yieaf-

¥ x
root node: healthy or tumor?
training on X,y

X
LY

L

leaf node: if healthy leaf node: if tumor
training on X',y" training on X",y"
X' X"
> —
Yy, MY/ SSN

¢ ' ¢y;red lP" ly'p'red

Fig.1: Proposed tree MLP model: i) each node is trained on three different
subsets of the original dataset. (X, y) aims to distinguish between healthy and
tumor samples, (X’, y’) between subtypes of healthy samples and (X”, y”) be-
tween subtypes of tumor samples; ii) the output of each node consists of the
predicted label ypreq and the class-membership probability P.

Once the classification on each individual omic is performed, the final con-
sensus is built taking into account the final probabilities on each omic. Given:

— n: the number of the omics,

— m: the number of the classes,

— th: threshold on the omics, in order to filter predictions with low probabilities
across all the omics,

— tr: threshold on the classes, in order to select only samples with a not uniform
distribution of the class-membership probabilities across the m classes,

— P;;: the class membership probability for class 7 and omic j,

-5 = Z?:l P;;: the sum of the probabilities on all the omics for a single
class,

- S, = Z:ll S;: the sum of the probabilities on all the omics and all the
samples,

— Sy = Si/n: the mean of the probabilities on all the omics for a single class.
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The consensus for a sample is built according to the next formula:

Unknown, if max(S,,) < th or max(S;)/S, < tr

Yconsensus = .
argmax(S;), otherwise
i

In that way, a sample with a low mean probability across all the omics is
labelled as Unknown. In addition, when a sample receives similar S; values for
more than one class, the model is uncertain in its prediction. Therefore, a tr
threshold is set in order to select only samples with a not uniform distribution
of the class-membership probabilities across the m classes.

This final consensus can be applied using any number of omics as long as

each omic represents different points of view of the same sample. Obviously, the
larger the number of the omics, the more reliable the consensus prediction can
be.
As it can be seen in Table 77, very small architectures in the implemented neural
networks were used (e.g. MLP with a single hidden layer with 20 neurons and
a single activation layer) since the chosen number of main PCA components is
low. This structure is the same for all the nodes of the tree MLP. Many hyper-
parameters configurations have been considered. In the end, gradient descent
with back propagation and the cross entropy as loss function were used. The
optimizer was Adam.

In order to have a baseline for the results, a support vector machine (SVM)
and a random forest (RF) classifier have been applied to the training set (with
hyper-parameters optimization). Unless these models do not output a class-
membership probability, they can provide valuable insights onto the data. Since
they are unable to estimate the certainty of their prediction, the implementation
of the consensus has been slightly modified. The final consensus for SVM and
RF classifiers is given by the majority voting between the different omics.

On the other hand, to compare the tree MLP architecture with other meth-
ods that return a class-membership probability, a standard MLP classifier and
a Bayesian neural network (BNN) were built. Similar to the tree MLP architec-
ture, the standard MLP has the structure reported in Table 77.

The BNN model has the same structure as the MLP; however it works in
a complete different way. Indeed, as the loss is modified with a Bayesian reg-
ularization term, its weights are no longer deterministic like a standard MLP,
but probabilistic, and each neuron learns to follow probabilistic distributions.
Therefore, it is possible to infer the level of uncertainty of the class-membership
probability estimation of the input, which represents how much a sample belongs
to a given class. The model is applied to the sample n times and the median
value among all the output probabilities is selected as the final probability. For
instance, if the median value is 0.95, it means that the output is highly stable
and its classification uncertainty is very low.
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All models have been tested both on the test set, consisting of kidney samples
belonging to the 5 classes of the training set, and on the 37 stomach cancer
samples. All models were implemented in Pytorch framework [22]. In addition,
the Pyro library [23] was used for the BNN to transform the parameters into
random variables and to run stochastic variational inference.

4 Results

In this section, the results related to the proposed method are presented, as
well as those of SVM, RF, MLP and BNN models. All performance metrics
are obtained setting th = 0.9 and tr = 0.25. For tree MPL, MLP and BNN
classifiers, all metrics are computed discarding Unknown samples.

In detail, concerning the tree MLP classifier, it is reported the confusion matrix
with the classification results as well as the final consensus both on kidney test
set (Fig. 2 (a-d)) and on 37 stomach samples (Fig. 77 (e-f)). Globally, the tree
MLP method reached the 98% of accuracy and 97% of weighted average f1-
score (Table 1). The metrics were computed disregarding Unknown samples as
they had not been assigned to any classes. The tree MLP classifier selected as
Unknown the 21,49% of kidney test set samples, and misclassified the 2% of the
not Unknown samples. Concerning the 37 stomach samples, all of them were
correctly labelled as Unknown ((Table 1).

healthy-kIRc { @ 0 0 0 0 6
100
healthy-kiRp | © 0 0 0 0 6 predicted | o
80
5 tumorkKicH{ © o o 1 0 15 B
] [
2 60 2
B &
E tumor-KIRC 1 © o o 114 2 12 ﬂé
2
40
tumor-kiRp 1 © o o 1 10 o .
Unknown o
20
] 0 0 0 0 []
T 0
< O O 2
& & F @ N N
& ¢ & ¢ Wy &
& & & &S & §
Predicted label Predicted label
(a) consensus on kidney test set (b) consensus on stomach samples

Fig. 2: Confusion matrices for tree MLP classifier on (a-d) kidney test set.

Consensus confusion matrices for SVM and RF classifiers on kidney samples
are reported in Fig. 3(a-b). Both SVM and RF reached the 95% of accuracy and
weighted average fl-score. It should be noticed that the consensus creation for
SVM and RF is different from that used in tree MLP, MLP and BNN models,
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since SVM and RF does not output the class-membership probabilities. There-
fore, for SVM and RF classifiers the consensus is based on the majority voting
on the three omics without considering class probabilities. As a consequence, the
results for SVM and RF on stomach samples are not reported, since all the 37
stomach samples will be forced to one of the five kidney classes.

120
healthy-KIRc { 6 0 0 o o healthy-kiRC { € 0 0 0 0
100
healthy-kiRp { 1 5 0 o o healthy-kiRp { 3 3 0 0 0
80
2 wmorkichH{ © 0 w 2 0 8 wmorkich{ © g w 0 0
v 60 v
2 2
= =
tumorkiRC {  © 0 i 5 w0 tumor-kiRc{  © g g 2
tumorkiRp { @ 0 i 2 2 wmorkiRp {0 g 2 2
unknown T T T T T 0 unknown T
o 9
A A O A
o = r &ec & = & \Qcc (\‘oc &
& & & & & & &8 <
Predicted label Predicted label
(a) consensus SVM on kidney test set (b) consensus RF on kidney test set

Fig.3: Consensus confusion matrices on kidney test set on (a) SVM, (b) RF
classifiers.

In addition, the performances with standard MLP model on the kidney test
set were evaluated. After proper hyper-parameter tuning, the results obtained for
the consensus are reported in Fig. 3(c). Globally, it reached the 99% of accuracy
and 99% of weighted average fl-score. All metrics were computed disregarding
Unknown samples. Standard MLP model classified as Unknown the 22,80% of
kidney samples and misclassified the 1,10% of the not Unknown samples. Con-
cerning the 37 stomach samples, all of them were correctly labelled as Unknown
(see in Fig. 5(a)).

Consensus performances obtained with the BNN model are reported in Fig. 3(d).

The BNN model classified as Unknown the 20,17% of kidney samples and mis-
classifies the 2% of the not Unknown samples. In addition, it achieved the 98%
of accuracy and the 98% of weighted average fl-score. However, concerning the

37 stomach samples, only the 73% of them were correctly labelled as Unknown
(see in Fig. 5(b)).

In the end, the main results achieved for all the classifiers are reported in
Table 1.

120
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‘ ‘Precision ‘ Recall ‘ F1-score ‘ Accuracy ‘ Support ‘ Unknown ‘

RF 95% 9%5% | 95% 95% 228 -
SVM 95% 95% | 95% 95% 228 -
tree MLP| 97% 98% | 9% 98% 179 21,49%
MLP 98% 9% | 99% 99% 176 22,80%
BNN 98% 98% | 98% 98% 182 20,17%

Table 1: Comparison between all the methods on the kidney test set. All the
reported metrics are computed with weighted average only on not Unknown
samples. The support metric, or the number of not unknown samples, is the
value on which the other metrics are based.

5 Discussion

As reported above, all the classifiers perform generally well. In fact, the accu-
racy and weighted average fl-score is always higher or equal to 95% (see Table 1).

In detail, SVM and RF models reached high classification rates on the kid-
ney test set with accuracy and weighted average fl-score equal to 95%. Since
these two models always force a prediction, they prevent labelling samples as
Unknown. Although it could seem a minor issue, in real clinical practice, it
is suitable to receive an Unknown label when the classifier is uncertain in its
prediction. Compared to the majority voting consensus used for SVM and RF
classifiers, the proposed methos analyzes the probability values obtained on each
omic and provides an integrated assessment of all the probability values.

Considering tree MLP, standard MLP and BNN classifiers, they labelled
as Unknown a similar percentage of kidney test set samples (21.49%, 22.80%,
20,17%, respectively) and had a similar weighted average fl1-score (97%, 99%,
98%, respectively).

It should be noticed that, considering a tissue which the classifiers were not
trained on (stomach samples), tree MLP and MLP classifiers labelled all the 37
stomach samples as Unknown, against the 73% of the BNN classifier.

Unlike the standard MLP, in a tree MLP model it is possible to retrain one of
its nodes separately. This aspect is crucial in the biological domain. In fact, new
molecular subtypes of the same tumor are continually redefined. In this case, the
tree MLP model can be updated on the new classes retraining only the involved
nodes and not the entire classifier, avoiding spare of time. In the MLP archi-
tectures, the threshold represents a cut with respect to the class-membership
point-wise posterior probabilities of the inputs. On the other hand, in the BNN
architecture, all the output probabilities estimated for each sampling are sum-
marized by a median value. This scalar can be used for recognition thresholding.
However, even if both techniques look identical, the probability value on which
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they act is completely different in nature. Therefore, a direct comparison be-
tween the two MLP-based methods and the BNN architecture is not completely
possible. In the presented results, same th and tr values were applied to the
three probabilistic approaches for the sake of comparison. This choice probably
leaded the BNN to be less selective in the classification of stomach samples.

In addition, it can be noticed that a key role in the results is played by the
criteria that has been used to obtain the final consensus across all the omics. In
fact, the proposed consensus algorithm labels as Unknown samples with a low
mean probability across all the omics or with similar sum probabilities on the
classes (S;). In that way, it prevents an unsafe labelling.

6 Conclusions

In the multi-omics classification task, the main limitation of the standard consen-
sus is given by the absence of a measure to check the relevance of each individual
omic in the classification.

Here, to overcome this problem, a tree MLP architecture is proposed to take
into account the reliability of the classification on the individual omics exploiting
uncertainty-aware models. Compared to the standard MLP and BNN architec-
tures to classify kidney test set, the tree MLP represents a good compromise in
terms of percentage of samples labelled as Unknown, and misclassification rate
on the remaining samples (21,49% and 2% respectively). In addition, the tree
MLP model significantly outperforms the BNN model when predicting samples
coming from a tissue on which the model has not been trained. This aspect is
particularly relevant in clinical practice, since usually it is preferable to receive
an Unknown label instead of a wrong prediction. Moreover, compared to a stan-
dard MLP, the tree structure is particular effective in applications where there is
an ever evolving knowledge, such as genetic complex diseases studies, preventing
the classifier to be trained from scratch.
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