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Abstract

This paper presents numerical results on the micromechanics linear analysis of representative volume el-

ements (RVE) containing voids. The modeling approach is the micromechanical framework within the

Carrera Unified Formulation (CUF) in which fibers and matrix are 1D finite elements (FE) with enriched

kinematics and component-wise capabilities (CW). RVE models are 3D and consider all six stress compo-

nents. Such a modeling strategy leads to a twofold reduction of the degrees of freedom (DOF) as compared

to 3D FE. The numerical assessments address the influence of the volume fraction and distribution of

voids, including comparisons with data from the literature and statistical studies regarding homogenized

properties and stress fields. The proposed modeling approach can capture the local effects due to the pres-

ence of voids, and, given its computational efficiency, the present framework is promising for nonlinear

analysis, such as progressive failure.

Keywords: Voids, micromechanics, CUF, fiber reinforced polymers
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1 Introduction

Fiber-reinforced composites are increasingly popular in many engineering fields to provide superior per-

formances as compared to metals [1, 2]. In addition to space and aeronautics industries, the automotive

and energy sector are making growing use of these materials due to the lightweight and the high specific

strength and stiffness [3, 4]. Composites have a multiscale nature, and the proper detection of fundamental

mechanical behavior requires modeling of the various scales. The present paper focuses on the microscale

in which the differences between constituent properties and the presence of interfaces and defects lead to

modeling challenges [5]. Defects stemming from manufacturing can significantly modify the microscale

characteristics and lead to various damage mechanisms, such as [2, 6] interfacial debonding and sliding,

matrix microcracking, delamination, fiber breakage, and fiber micro-buckling.

The present paper deals with the numerical modeling of voids in the matrix. Voids can influence the

matrix-dominated mechanical properties and lead to the localization of stresses [7]. Many works have

investigated the void formation, growth, morphology, and influence on structural performance. The work

of Mehdikhani et al. [8] is a comprehensive guide for the selection of these studies.

Computational micromechanics is a popular tool to study defects and related issues. By the direct model-

ing of the microscale components and defects, micromechanics can provide the homogenized macroscopic

mechanical properties and, via de-homogenization, the stress and strain fields at the microscale. Various

numerical approaches, e.g., finite elements (FE), can model the microscale via the use of a representa-

tive volume element (RVE) containing the typical architecture of the composite structure in hand [9–18].

Other works investigate the effect of voids in the elastic regime and strength prediction, embedding them

into the FE model and considering various loading conditions and failure modes [3, 5, 19–30].

The use of FE models can lead to very high computational costs. Such costs may be prohibitive when

the 3D structure of the RVE is of interest, or nonlinear analyses are necessary. The present work falls

within the Carrera Unified Formulation (CUF) use for micromechanics [31–33]. One of the advantages of

CUF is the possibility of modeling multi-component structures as an ensemble of 1D finite elements with

enriched cross-section kinematics [34]. Such a capability significantly reduces the computational costs - as

there are no aspect ratio constraints - but retains 3D-like accuracy for all stress and strain components.

CUF for linear and nonlinear multiscale problems provided twofold reductions on computational costs as

compared to 3D FE [35, 36].
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The objective of the present work is to investigate the influence of microscale matrix voids on the macro-

scopic mechanical properties and the microscopic fields. For the first time, CUF is used to model 3D RVE

and voids. The modeling of voids includes their volume fraction and distribution. This paper is organized

as follows: Sections 2 and 3 describe the theoretical framework for FE and micromechanics, respectively.

The numerical results are in Section 4, and conclusions in Section 5.

2 Higher-order 1D structural theories

(b)(a)

Figure 1: (a) Beam with arbitrary cross-section oriented along the y-axis, and (b) the 9-node bi-quadratic
Lagrange expansion element in the natural coordinate system

Considering a beam oriented along the y-axis, as shown in Fig. 1(a), the displacement field in CUF is

u = Fτ (x, z)uτ (y), τ = 1, 2, . . .M (1)

Where u is the displacement field and Fτ (x, z) is the expansion function across the cross-section. uτ is

the generalized displacement vector, and M is the number of terms in the expansion function. The choice

of Fτ and M is arbitrary. The present work utilizes the Lagrange Expansion (LE) class of expansions

to enhance the cross-section kinematics, resulting in a Component-Wise (CW) model. In this approach,

Lagrange polynomials explicitly discretize the cross-section geometry and displacement field. This work
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uses 9-node bi-quadratic expansion elements (L9), see Fig. 1(b), in which the 3D displacement field is

ux =

9∑
τ=1

Fτ (x, z) · uxτ (y)

uy =

9∑
τ=1

Fτ (x, z) · uyτ (y)

uz =

9∑
τ=1

Fτ (x, z) · uzτ (y)

(2)

The use of Lagrange expansion results in a 1D numerical model that explicitly models the 3D domain

without the need of fictitious entities like the reference axis. Furthermore, the displacement field consists

of only translational degrees of freedom (DOF), without involving rotations. Further details on the use

of Lagrange polynomials as expansion functions can be found in [37].

The stress and strain fields in vector notation are

σ = {σxx, σyy, σzz, σxy, σxz, σyz}T

ε = {εxx, εyy, εzz, εxy, εxz, εyz}T
(3)

Assuming linear strains, the displacements are related to the strains as

ε = D · u (4)

where D is the linear differentiation operator given by

D =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


The constitutive law, considering an elastic material behavior, is

σ = Cε (5)
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where C is the linear elastic material matrix. The structure is discretized in the axial direction using

beam elements, interpolated using the nodal shape functions Ni. The combination of beam elements and

cross-section expansions results in a 3D displacement field defined as

u(x, y, z) = Fτ (x, z)Ni(y)uτi (6)

where uτi is the nodal displacement field. Based on the principle of virtual displacements,

δLint = δLext (7)

where δLint is the virtual variation of the internal strain energy,

δLint =

∫
V
δεTσ (8)

Lext is the work due to the externally applied load,

Lext = FsNjδu
T
sjP (9)

where P is the external force vector. Using Eqs. (5), (6) and (8), the stiffness matrix is defined as

δLint = δuTsjkijτsuτi (10)

with

kijτs =

∫
l

∫
Ω

DT (Ni(y)Fτ (x, z))CD(Nj(y)Fs(x, z)) dΩ dl (11)

kijτs is the 3x3 Fundamental Nucleus (FN), and is invariant with respect to the applied structural theory.

Ω and l represent the cross-section domain and beam length, respectively. A detailed explanation of the

fundamental nucleus and the assembly of the global stiffness matrix is found in [34].
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3 Component-wise micromechanics framework

z,3

y,1

x,2
(a)

(b)

Figure 2: Modelling the RVE using the CW approach. (a) 3D domain of a square-packed RVE and its
individual constituents, and (b) 1D-CUF model

The CW micromechanics framework adopts 1D CUF models with Lagrange expansion functions. In

this approach, an RVE is modeled, as shown in Fig. 2. Beam elements are used in the RVE thickness

direction, and Lagrange expansion elements explicitly model the individual constituents of the RVE cross-

section. The formulation is based on the assumption of a periodic microstructure, and periodic boundary

conditions (PBC) are applied to the RVE. Such a process ensures the energy equivalence between the

heterogeneous material and the effective homogenized medium [9]. The periodic boundary conditions,

applied on opposite boundary surfaces, are formulated as

uj+i (x, y, z)− uj−i (x, y, z) = ε̄ik(x
j+
k − x

j−
k ) (12)

where ε̄ik is the applied macroscopic strain, indices j+ and j− represent the positive and negative

directions, respectively, along xk. Two PBC sets can thus be distinguished, which are applied in the

cross-section edges and the beam ends, respectively, as shown in Fig. 3. The homogenized stress (σ̄ij)
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(a) (b)

x

z

y

z

Figure 3: Application of the PBC on a square-packed RVE (a) on the opposite edges of the cross-section
and (b) at the beam end nodes

and strain (ε̄ij) response is obtained by volume averaging the microscopic fields (σij , εij) [9],

ε̄ij =
1

V

∫
V
εijdV (13)

σ̄ij =
1

V

∫
V
σijdV (14)

where V is the RVE volume. The constitutive relation for the homogenized medium reads as

σ̄ij = C̄ijklε̄ij (15)

where C̄ijkl is the homogenized elastic material matrix. A detailed explanation of the micromechanics

framework using the CW approach is given in [31].

Voids are modeled in the matrix constituent of the RVE by selecting a set of Gauss points (GP) within

the matrix domain and assigning them arbitrarily low elastic moduli. Such a process creates voids with

a domain equal to the volume associated with the selected GP. Matrix GP are iteratively selected as

void candidates until the void volume fraction, given as an input, is satisfied. Furthermore, the matrix

GP can be selected either randomly throughout the RVE, or be biased in the RVE thickness direction.

The former results in voids that are randomly and equally distributed within the RVE, while the latter
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results in voids clustered towards one end of the RVE. This methodology thus allows for the development

of a fully 3D cubic RVE with matrix voids of a required volume fraction as well as morphology. As an

example, a multi-fiber RVE with 1% randomly distributed voids has been schematically shown in Fig. 4.

Such a technique enables the efficient development of multiple configurations of the RVE for a given void

volume fraction, which is an important requirement for statistical studies on the influence of voids.

1% void fraction

Figure 4: A multi-fibre RVE with 1% voids randomly distributed within the matrix

4 Numerical results

4.1 Pristine RVE

The RVE has 22 randomly distributed fibers, and the material system is carbon/epoxy with 60% of fiber

volume fraction. Figure 5 shows the randomly distributed fibers; the blue cylinders represent the carbon

fibers, and the white portion indicates the matrix. The side of the cross-section is 38.5 µm. The thickness

along the y-axis is 19.25 µm. The radius of the fiber is 3.6 µm. The material properties are in Table 1 and

retrieved from Sevenois et al. [38] through a reverse engineering approach. The longitudinal direction of

the fiber coincides with the y-axis, see Fig. 2. This section aims to evaluate the influence of the cross-

Table 1: Properties of the constituent materials [38], the units of the elastic moduli are GPa

Material E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23

Fiber 223.987 18.534 36.898 7.232 0.258 0.282
Matrix 3.700 3.700 3.700 3.700 0.400 0.400

section modeling on the homogenized properties and select the discretization for all subsequent analyses.
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Figure 5: RVE with randomly distributed fibers

Figures 6 show two examples of cross-section discretizations. The FE mesh along y is constant and has

one B4 element; as shown in previous works [31, 32], such axial mesh is sufficiently accurate. Figure 7

x

z

314-L9 487-L9

Figure 6: Cross-sections with 314 and 487 L9 elements

shows the homogenized properties for various meshes. The reference value to compute the error is the

one provided by the most refined discretization, 3144 L9. The coarsest discretization has the highest

error. However, such errors are lower than 2%. Given that the use of the 314 L9 leads to a considerably

reduced computational cost for the statistical studies, the following numerical examples will use the same

discretization. A further assessment focuses on the verification of the results via a comparison with [38],
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Figure 7: Effect of the cross-section discretization on the homogenized properties of the pristine RVE
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see Table 2. The results show a good match. Figures 8 and 9 show stress distributions given by an applied

strain of 0.2%.

Table 2: Homogenized properties for the pristine RVE via 314 L9 and results from [38], the units of the
elastic moduli are GPa

Model 1D-CUF FE ref. [38]

E11 135.88 135.74
E22 9.96 9.66
E33 9.91 9.66
G12 5.19 5.31
G13 5.02 5.31
G23 3.15 3.23
n12 0.31 0.31
n13 0.31 0.31
n23 0.47 0.48

10
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200
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Figure 8: Axial stress contours, σxx, σzz, and σyy, with applied εxx, εzz, and εyy, respectively, pristine
RVE

4.2 RVE with voids

The analysis of voids considers two RVE configurations. The first one - referred to as RVE-1, has the

same material and geometrical characteristics seen in the previous section. The second one, RVE-2,

differs only for the dimension along y; that is, 38.5 µm. From the modeling standpoint, the cross-section

discretizations are the same, whereas two B4 are employed in RVE-2. Figure 10 shows both RVE and the

beam meshes in which the reported mesh over the matrix is not representative of the numerical model,

but it serves postprocessing purposes. o Table 3 summarizes the main characteristics of the models. The

shape and void percentages considered in this paper are consistent with those from the literature [8]. The

analysis considers two void distributions as follows
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Figure 9: Shear stress contours, σxz, σxy, σyz, with applied εxz, εxy, and εyz, respectively, pristine RVE

x

y

z

x

y

z

RVE-1 RVE-2

Figure 10: RVE-1 and RVE-2 and beam meshes

� The first distribution - referred to as VD-1 - is random within the RVE. Figure 11 shows an example

of this void arrangement for the RVE-2.

� The second distribution - referred to as VD-2 - is random along the cross-section but follows a linear

distribution of the void percentage along y. By considering Fig. 12, the first segment along y has

5% of the total voids, while the last one has some 30%. The aim is to simulate a configuration with

moderate clustering.

In both cases, 100 distributions per each void volume fraction were considered to evaluate statistical

parameters. Table 4 presents the main characteristics of each distribution. VD-2 was applied only to

RVE-2 due to the small y-dimension of RVE-1. Furthermore, VD-2 considers the random variation of

the slope of the distribution; that is, the maximum of voids can be either on the last segment or the first

13



1% 4% 5%3%2%

Figure 11: Random distributions of voids with increasing contents, VD-1
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Figure 12: Clustering of voids, VD-2
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Table 3: Structural and FE modeling of RVE-1 and RVE-2

Discretization DOF

RVE-1
314 L9 on the cross-section,

one B4 along y
15876

RVE-2
314 L9 on the cross-section,

two B4 along y
27783

one. The results consider homogenized properties and local distributions of stress. For the latter, all six

Table 4: Summary of VD-1 and VD-2

VD-1
RVE considered RVE-1 and RVE-2

Void volume fractions 1, 2, 3, 4, 5 %
Subcases per void volume fractions 100

VD-2
RVE considered RVE-2

Void volume fractions 1, 2, 3, 4, 5 %
Subcases per void volume fractions 100

strains were applied separately, and, in each case, the strain is 0.2%. The statistical parameters employed

are the following [39, 40]: mean value x̄, median q2, standard deviation s, minimum value min, maximum

value max, first quartile q1, third quartile q3. Such parameters were computed on the maximum values

of stress components of a given void distribution and content.

4.2.1 Influence of void distribution on homogenized properties

The first numerical assessment focuses on the homogenized properties. Tables 5 and 6 presents the results

regarding VD-1 and both RVE. Table 7 shows the results for RVE-2 and considering VD-2. The results

suggest the following:

� As expected, the void content affects the mechanical properties with the degradation that can reach

4%. The standard deviation is very low in all cases.

� The use of a deeper RVE does not affect the mean values; that is, there is no significant influence

on the homogenized properties. Likewise, the adoption of different void distributions does not lead

to significant modifications of the properties.

� The influence of RVE and void content on the standard deviation is more evident, but, in all cases,

s is low.
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Table 5: Mean value (x̄) and standard deviation (s) of the homogenized properties, RVE-1 and VD-1

Void content (%)

1 2 3 4 5

x̄ (GPa)

E11 135.846 135.809 135.771 135.734 135.697
E22 9.887 9.818 9.747 9.679 9.609
E33 9.836 9.765 9.695 9.625 9.555
G12 5.156 5.127 5.098 5.069 5.040
G13 4.993 4.964 4.935 4.906 4.877
G23 3.125 3.102 3.080 3.057 3.034

s (MPa)

E11 0.744 1.100 1.056 1.258 1.460
E22 2.641 3.425 3.480 3.755 4.471
E33 2.264 2.735 3.388 4.493 3.960
G12 1.869 2.132 2.508 2.733 3.039
G13 1.496 1.956 2.502 2.923 2.828
G23 0.571 0.953 0.887 1.026 1.316

Table 6: Mean value (x̄) and standard deviation (s) of the homogenized properties, RVE-2 and VD-1

Void content (%)

1 2 3 4 5

x̄ (GPa)

E11 135.846 135.809 135.772 135.734 135.697
E22 9.887 9.818 9.749 9.679 9.609
E33 9.836 9.766 9.696 9.625 9.555
G12 5.156 5.127 5.098 5.069 5.040
G13 4.993 4.964 4.935 4.906 4.878
G23 3.125 3.103 3.080 3.057 3.034

s (MPa)

E11 0.508 0.680 0.784 0.850 0.963
E22 1.470 2.174 2.231 2.910 3.108
E33 1.307 2.036 2.761 2.405 3.127
G12 1.064 1.673 1.835 1.979 2.064
G13 0.969 1.304 1.894 1.790 2.165
G23 0.456 0.580 0.647 0.790 0.868

Table 7: Mean value (x̄) and standard deviation (s) of the homogenized properties, RVE-2 and VD-2

Void content (%)

1 2 3 4 5

x̄ (GPa)

E11 135.846 135.809 135.772 135.734 135.697
E22 9.887 9.818 9.749 9.679 9.610
E33 9.836 9.766 9.696 9.625 9.555
G12 5.156 5.127 5.098 5.069 5.040
G13 4.994 4.964 4.936 4.906 4.877
G23 3.125 3.103 3.080 3.057 3.034

s (MPa)

E11 0.511 0.682 0.686 0.825 0.919
E22 1.566 1.955 2.330 2.680 2.527
E33 1.540 2.047 2.339 2.692 2.794
G12 1.120 1.448 1.765 1.824 1.921
G13 1.064 1.194 1.585 1.816 1.970
G23 0.417 0.573 0.658 0.771 0.936
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4.2.2 Influence of void distribution on stress fields

The second numerical assessment concerns the influence of RVE and VD on the stress distributions. Table

8 shows the statistical parameters regarding the maximum values of axial stress found in the RVE-1 having

VD-1 and under various axial strains. The first column indicates the applied strain, the second one the

stress component, whereas the last one shows the void content. Similarly, Tables 9 and 10 presents the

statistical parameters obtained by applying shear strains. The results of RVE-2 with VD-1 are in Tables

11, 12, and 13. Figure 13 shows the box plots of the RVE-1 with VD-1 and applied axial strains. The

most relevant stress components are reported. The box plot displays simultaneously several features of

the data set [40]. The left side of the box is the first quartile (q1), and the right side is the third quartile

(q3). The difference q3− q1 is the interquartile range (IQR). The vertical line inside the box is the second

quartile or median (q2). The dashed horizontal line on the left of the box connects q1 to the smallest data

point within 1.5 IQR. Similarly, the one on the right side connects q3 to the largest data point within 1.5

IQR. Data points falling beyond these ranges are indicated explicitly. For example, considering the case

of 5% voids and εxx for RVE-1, the highest maximum stress is 106.8 MPa. q1, q2 and q3 are 72.6, 77.6

and 84 MPa, respectively. The lowest minimum of stress is 62.8 MPa. Figures 14, 15, and 16 are the

box plots with applied shear strains for RVE-1 and both strains for RVE-2. The results of VD-2 are

in Tables 14, 15, and 16, and Figures 17 and 18. Figure 19 shows an example of stress distributions over

a cross-section of the RVE. The cross-sections are those in which the peak values were found. The

results suggest the following

� There is a general increase of stresses moving from RVE-1 to RVE-2 and VD-1 to VD-2. In other

words, by considering deeper RVE and clustering, higher stresses were found.

� By considering the locations of stress peaks, they were found in the proximity of voids and at the

interfaces between fibers and matrix.

� The increase of void content leads to higher stresses and wider stress ranges. Several box plots show

rightward skewness of the data, i.e., quite high-stress peaks as compared to the mean value.

� As expected, by applying a longitudinal strain (εyy), most of the load is carried by the fibers. The

increase of the void content causes a slight increase in the fiber load as it deteriorates the matrix

stiffness.
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Table 8: Statistical parameters of the axial stresses (MPa) for various void contents (%) with applied εxx,
εyy, and εzz, RVE-1 and VD-1

x̄ q2 s min max q1 q3 Voids

εxx

σmaxxx

56.670 56.197 4.841 47.949 75.549 53.463 59.128 1
63.619 62.368 6.083 53.205 83.828 59.979 67.256 2
67.209 66.043 6.359 57.859 93.672 62.654 69.749 3
72.385 71.975 6.880 60.132 93.625 67.939 76.037 4
78.668 77.614 8.927 62.752 106.830 72.615 84.004 5

σmaxyy

37.084 36.600 3.283 30.820 49.030 35.126 39.027 1
41.574 40.554 4.313 34.638 56.720 38.633 44.150 2
43.947 43.016 4.106 35.976 60.923 41.084 45.546 3
47.270 46.986 4.529 38.287 60.974 44.018 49.376 4
51.387 50.242 6.131 40.111 71.246 47.215 55.293 5

σmaxzz

36.775 36.527 3.384 29.576 48.887 34.566 38.607 1
41.407 40.373 4.579 34.433 58.128 37.979 44.188 2
43.690 42.999 4.356 36.284 59.424 40.579 45.822 3
46.611 46.085 4.604 38.434 60.719 43.152 49.202 4
50.750 49.705 6.247 39.652 71.785 46.245 54.809 5

εyy

σmaxxx

21.365 21.054 1.711 18.488 26.995 20.335 21.940 1
24.380 23.896 2.536 20.487 33.686 22.556 25.751 2
26.259 25.687 2.712 21.732 38.296 24.671 26.999 3
27.632 27.079 2.638 23.758 38.414 25.733 28.771 4
30.354 29.779 3.658 23.973 45.779 27.550 32.587 5

σmaxyy

456.784 456.729 0.793 455.612 459.420 456.152 457.119 1
457.711 457.614 1.069 456.125 461.168 456.913 458.224 2
458.522 458.341 1.130 456.457 462.539 457.818 459.155 3
459.116 458.877 1.216 456.268 462.540 458.293 459.875 4
459.767 459.580 1.315 457.277 463.191 458.828 460.451 5

σmaxzz

21.686 21.250 1.772 18.776 26.737 20.321 22.931 1
25.415 24.498 3.936 20.010 43.822 22.755 26.549 2
27.733 26.797 4.229 22.349 44.956 24.731 29.240 3
29.762 28.635 4.343 23.900 44.237 26.767 31.276 4
31.531 30.300 4.508 25.207 46.899 28.297 33.226 5

εzz

σmaxxx

37.967 37.228 3.636 30.741 49.088 35.709 39.420 1
43.580 41.379 7.155 35.145 80.370 39.059 46.015 2
47.999 46.647 7.202 35.386 72.759 43.037 50.447 3
51.617 48.708 8.836 39.474 81.787 45.579 55.250 4
53.271 51.648 8.195 39.851 79.988 47.618 56.238 5

σmaxyy

38.673 38.031 3.561 32.136 50.242 36.481 40.160 1
44.237 42.425 7.075 36.116 79.411 39.652 46.604 2
48.770 47.737 7.144 37.803 75.340 43.465 52.086 3
52.709 50.127 8.716 41.658 79.996 47.246 55.247 4
54.410 52.991 8.124 41.642 83.652 48.430 58.174 5

σmaxzz

59.310 58.232 5.392 50.047 76.481 56.026 61.267 1
67.781 65.093 10.457 54.467 118.228 60.751 71.349 2
74.608 72.414 10.733 60.051 115.875 66.339 79.398 3
80.906 77.128 13.076 61.675 122.699 73.160 84.118 4
83.825 81.378 11.946 63.852 129.370 75.342 89.852 5
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Figure 13: Box plots of axial stresses with applied axial strains, RVE-1 and VD-1
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Figure 14: Box plots of stress components with applied shear strains, RVE-1 and VD-1
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Figure 15: Box plots of axial stresses with applied axial strains, RVE-2 and VD-1
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Figure 16: Box plots of stress components with applied shear strains, RVE-2 and VD-1

22



50 60 70 80 90 100 110 120

xx
max (MPa)

1

2

3

4

5

V
o
id

 (
%

)

457 458 459 460 461 462 463

yy
max (MPa)

1

2

3

4

5

50 60 70 80 90 100 110 120 130 140 150

zz
max (MPa)

1

2

3

4

5

V
o
id

 (
%

)

Figure 17: Box plots of stress components with applied axial strains, RVE-2 and VD-2
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Figure 18: Box plots of stress components with applied shear strains, RVE-2 and VD-2
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Table 9: Statistical parameters of stresses (MPa) for various void contents (%) with applied εxz, RVE-1
and VD-1

x̄ q2 s min max q1 q3 Voids

σmaxxx

30.805 30.050 3.415 25.565 46.629 28.635 32.427 1
34.537 33.835 4.170 26.272 48.472 31.461 36.653 2
38.093 37.324 5.138 28.982 54.148 34.863 40.916 3
39.908 39.397 4.557 31.828 53.213 36.679 42.068 4
42.705 41.544 5.721 32.111 60.232 38.208 46.298 5

σmaxyy

22.234 22.371 2.278 18.175 31.514 20.228 23.627 1
25.130 24.513 2.889 20.277 35.152 23.448 26.018 2
27.535 27.161 3.586 21.789 38.993 25.277 29.220 3
29.044 28.498 3.446 22.878 39.533 26.713 30.997 4
31.553 30.680 4.652 23.472 46.079 28.268 34.002 5

σmaxzz

27.696 27.621 2.648 21.492 36.014 26.165 29.158 1
31.258 30.426 3.326 25.948 41.815 29.317 32.955 2
33.543 32.692 4.062 27.929 48.693 30.819 35.393 3
35.801 34.934 4.262 28.906 48.680 32.539 39.023 4
39.403 37.604 6.398 30.211 57.848 34.744 42.619 5

σmaxxz

23.332 22.787 1.310 22.086 30.339 22.477 23.749 1
25.533 24.852 2.831 22.225 35.063 23.441 26.449 2
25.883 25.173 2.420 22.469 33.916 24.117 27.093 3
27.396 26.760 3.137 23.077 38.418 24.836 28.798 4
28.870 28.518 3.390 23.295 39.246 26.260 31.173 5

100

1.5e+02

50

-8.0e+00

Figure 19: Cross-section distributions of stresses in which peak values were found, void content 5%,
applied εzz, RVE-2 and VD-2

25



Table 10: Statistical parameters of stresses (MPa) for various void contents (%) with applied εxy and εyz,
RVE-1 and VD-1

x̄ q2 s min max q1 q3 Voids

εxy

σmaxyy

21.784 21.118 6.195 11.855 45.525 17.085 24.162 1
30.693 30.031 6.467 19.520 49.347 25.708 34.987 2
36.921 35.692 6.793 25.062 56.996 32.120 40.700 3
43.298 40.832 8.730 30.106 70.883 36.463 47.364 4
49.871 48.275 8.511 34.598 71.430 43.836 53.535 5

σmaxxy

63.376 61.813 3.844 60.111 79.480 60.825 65.998 1
65.501 63.685 4.896 59.892 82.703 61.322 68.995 2
67.107 65.933 4.863 60.415 80.350 62.924 69.972 3
68.973 68.214 5.266 59.588 85.396 65.391 71.999 4
69.565 69.412 5.191 59.149 84.766 65.866 72.130 5

σmaxyz

21.530 21.230 1.633 19.450 26.227 20.159 22.372 1
22.833 22.759 1.848 19.665 31.435 21.480 23.895 2
23.954 23.750 2.069 19.957 28.814 22.417 25.223 3
24.520 24.335 2.064 19.877 31.635 23.181 25.785 4
25.685 25.163 2.470 21.635 33.578 23.880 27.293 5

εyz

σmaxyy

19.791 19.022 5.395 12.292 41.777 15.880 21.845 1
27.668 27.137 5.674 16.378 48.906 23.592 31.313 2
35.047 33.804 6.981 22.704 59.602 30.311 38.709 3
41.319 40.862 6.482 29.860 62.146 37.005 44.087 4
47.408 45.947 7.481 33.746 67.329 41.824 52.463 5

σmaxxy

24.920 23.979 2.071 23.089 33.275 23.556 25.799 1
26.323 25.987 2.530 23.041 34.810 23.989 27.674 2
28.028 27.353 3.131 23.126 36.069 25.723 29.877 3
28.667 28.144 3.436 23.301 40.553 26.521 30.229 4
30.703 30.166 3.352 24.011 39.322 28.148 32.857 5

σmaxyz

59.737 60.069 6.250 47.890 81.287 55.421 63.651 1
63.582 62.157 8.476 49.629 104.874 58.792 66.568 2
67.037 65.812 6.561 56.721 94.796 62.925 69.869 3
70.015 68.356 10.103 56.585 104.051 63.138 75.074 4
70.348 67.821 7.816 57.085 100.543 64.730 74.396 5
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Table 11: Statistical parameters of stresses (MPa) for various void contents (%) with applied εxx, εyy, εzz,
RVE-2 and VD-1

x̄ q2 s min max q1 q3 Voids

εxx

σmaxxx

59.086 58.353 4.574 52.065 73.738 56.227 61.126 1
65.992 64.571 5.913 55.098 86.136 61.962 69.396 2
71.621 70.726 6.690 60.990 94.387 66.437 75.202 3
76.181 75.115 7.391 62.506 106.706 71.354 79.036 4
82.136 80.263 9.221 68.600 109.120 75.567 86.160 5

σmaxyy

38.845 38.192 3.154 34.079 47.219 36.894 40.171 1
43.033 42.273 4.078 35.090 56.107 40.010 45.508 2
46.653 46.357 4.131 39.283 58.505 43.468 48.616 3
49.684 48.804 4.974 41.135 69.396 46.422 51.477 4
53.363 51.473 6.053 44.754 71.528 48.977 56.216 5

σmaxzz

38.624 37.915 3.311 33.174 47.847 36.495 40.463 1
42.904 42.201 4.406 34.439 58.216 39.591 45.357 2
45.916 45.034 3.886 39.075 58.814 43.318 47.910 3
48.920 48.363 5.289 40.645 66.979 45.315 50.722 4
52.360 50.680 6.238 43.006 71.232 48.325 54.997 5

εyy

σmaxxx

22.057 21.686 1.562 19.473 27.567 20.831 23.033 1
25.374 24.761 2.428 21.839 33.653 23.752 26.403 2
27.675 27.257 2.686 23.220 35.950 25.538 29.087 3
29.362 28.967 2.985 23.974 42.264 27.345 30.883 4
31.547 30.340 4.260 26.726 51.214 28.757 32.494 5

σmaxyy

456.799 456.744 0.509 455.837 458.028 456.397 457.098 1
457.665 457.565 0.672 456.633 459.922 457.182 458.006 2
458.286 458.161 0.668 457.109 459.787 457.801 458.660 3
458.955 458.682 0.990 457.338 463.445 458.261 459.463 4
459.261 459.198 0.788 457.975 462.414 458.705 459.539 5

σmaxzz

22.625 22.400 1.871 19.932 30.225 21.333 23.684 1
26.581 25.273 3.917 21.703 46.122 24.399 27.565 2
29.201 28.018 4.304 23.847 48.341 26.482 30.231 3
31.484 29.935 5.305 25.590 55.035 27.900 32.588 4
33.069 32.105 4.112 26.405 45.406 29.887 35.026 5

εzz

σmaxxx

39.330 38.785 3.711 32.825 55.203 36.998 41.021 1
45.588 43.364 6.964 36.173 75.418 41.508 47.042 2
49.808 47.958 8.707 38.861 88.736 43.932 53.097 3
54.795 51.412 10.315 41.795 104.810 47.898 59.691 4
57.269 54.665 8.658 44.970 83.411 51.214 61.796 5

σmaxyy

40.086 39.590 3.678 33.460 56.653 37.981 41.792 1
46.393 44.784 6.818 36.278 74.171 42.230 48.258 2
50.643 48.531 8.742 39.696 91.030 44.589 54.456 3
55.528 51.451 10.114 42.924 102.507 49.040 59.394 4
58.244 56.213 8.326 46.350 83.372 51.958 61.345 5

σmaxzz

61.490 60.748 5.603 51.402 86.630 57.813 63.710 1
71.066 68.876 9.865 58.211 110.253 64.723 73.759 2
77.824 74.160 13.015 62.214 138.632 69.479 83.314 3
85.117 80.287 14.718 67.544 151.642 75.752 90.106 4
89.242 87.643 12.010 71.256 125.561 80.559 93.652 5
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Table 12: Statistical parameters of stresses (MPa) for various void contents (%) with applied εxz, RVE-2
and VD-1

x̄ q2 s min max q1 q3 Voids

σmaxxx

32.767 32.319 3.446 26.510 44.510 30.611 34.751 1
36.017 35.512 3.425 29.454 48.059 33.690 38.151 2
39.285 38.334 4.576 30.620 56.095 35.895 41.802 3
42.610 41.396 4.990 34.802 56.516 38.725 45.264 4
44.116 42.772 5.809 33.754 66.041 39.720 47.688 5

σmaxyy

23.626 23.185 2.302 20.092 31.829 22.337 24.424 1
26.079 26.024 2.512 21.805 35.437 24.336 27.393 2
28.590 28.122 3.216 23.405 43.579 26.226 30.115 3
30.838 30.872 3.278 25.150 39.111 27.985 33.019 4
32.180 31.488 3.944 25.201 46.000 29.641 34.641 5

σmaxzz

29.516 28.611 3.092 25.473 42.860 27.759 30.228 1
32.688 32.010 3.532 26.525 41.951 29.982 35.574 2
35.315 34.712 4.251 28.611 54.328 32.231 37.741 3
37.839 37.318 4.015 30.645 48.793 35.024 39.910 4
39.838 39.881 4.213 30.862 56.272 36.787 42.442 5

σmaxxz

23.951 23.738 1.447 22.199 29.425 22.781 24.715 1
26.216 25.583 2.520 22.534 36.084 24.593 27.471 2
27.619 27.162 2.810 22.868 39.971 25.700 29.040 3
28.650 28.126 2.617 24.548 41.136 26.927 29.869 4
30.031 29.514 3.651 25.055 42.677 27.142 32.170 5

� σxx and σzz is the stress component with the highest values in the matrix. In some cases, the

increase of this component reached three times the value of the pristine RVE.

Further analyses can make use of the probability density function [39] as shown in Figs. 20 and 21. The

aim is to show the major differences in the results stemming from the three modeling approaches, namely,

RVE-1 and VD-1, RVE-2 and VD-1, and RVE-2 and VD-2. As stated above, there is an increase in both

the mean and peak values as deeper RVE and clustering are considered. By moving from RVE-1/VD-1

to RVE-2/VD-2, the mean values increased by some 10%.

5 Conclusions

The present work has investigated the influence of matrix voids on the prediction of the homogenized

properties and stress fields in RVE for fiber-reinforced polymer composites. The assessments are numerical

and based on a numerically efficient FE framework and refined 1D structural models from CUF. The

RVE models have randomly distributed fibers and voids within the matrix. All three constituents are

modeled via a component-wise approach via Lagrange polynomials defining the displacement field and the

geometry. The use of 1D models avoids the aspect ratio constraints of 3D FE and leads to significantly
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Table 13: Statistical parameters of stresses (MPa) for various void contents (%) with applied εyz and εxy,
RVE-2 and VD-1

x̄ q2 s min max q1 q3 Voids

εyz

σmaxyy

20.020 19.301 4.532 11.050 35.085 16.953 22.898 1
27.768 26.507 6.810 17.752 53.593 22.986 29.985 2
32.251 30.610 5.944 22.022 48.272 27.419 35.547 3
38.163 36.618 8.120 23.685 58.861 31.776 43.498 4
41.886 40.531 7.193 29.472 60.791 35.895 47.705 5

σmaxxy

25.900 25.516 2.101 23.338 33.271 23.953 27.415 1
27.200 27.059 2.433 23.652 35.062 25.201 28.757 2
29.144 28.554 2.968 23.558 39.388 27.234 31.167 3
30.633 29.866 3.777 24.850 42.728 27.808 32.637 4
31.346 30.510 3.869 25.140 45.029 28.566 33.845 5

σmaxyz

60.572 60.762 4.968 48.284 77.659 56.989 63.214 1
66.553 64.988 7.414 54.657 101.766 61.653 69.257 2
70.233 68.658 7.139 57.289 96.886 65.634 73.226 3
73.706 71.556 9.671 59.329 117.436 66.662 76.852 4
73.963 71.153 8.176 62.108 97.577 68.744 78.685 5

εxy

σmaxyy

22.565 22.174 5.419 12.646 46.350 18.364 25.469 1
30.965 29.366 7.871 15.009 66.575 26.259 33.711 2
33.777 31.783 7.372 21.799 56.058 28.692 36.546 3
39.585 38.555 8.006 25.038 65.015 33.669 43.868 4
44.343 42.294 9.157 29.837 74.184 37.520 49.710 5

σmaxxy

65.118 64.859 3.490 60.580 74.632 62.103 67.171 1
67.810 67.368 4.508 60.467 78.017 64.616 71.403 2
69.975 69.362 4.958 60.876 85.716 65.998 73.325 3
72.375 71.477 5.551 63.173 95.013 68.403 76.123 4
73.706 73.696 5.093 63.207 85.359 69.924 77.209 5

σmaxyz

22.067 21.734 1.468 19.713 25.920 20.996 22.934 1
23.150 22.732 1.681 19.762 27.572 21.943 24.216 2
24.595 24.502 1.937 21.794 34.707 23.237 25.341 3
25.302 25.016 1.844 21.704 31.895 23.959 26.641 4
26.028 25.592 2.163 22.031 33.482 24.404 27.289 5
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Figure 20: Fitting of the probability density function of σmaxzz with applied εzz (a) RVE-1 and VD-1, (b)
RVE-2 and VD-1, (b) RVE-2 and VD-2, void content 5%
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Table 14: Statistical parameters of the axial stresses (MPa) for various void contents (%) with applied
εxx, εyy, εzz, RVE-2 and VD-2

x̄ q2 s min max q1 q3 Voids

εxx

σmaxxx

61.184 60.513 5.420 51.224 80.075 57.401 63.775 1
68.120 67.009 6.479 57.352 84.459 63.328 71.757 2
73.616 73.292 7.045 60.621 95.766 68.139 76.427 3
81.647 80.292 8.969 67.006 112.855 74.983 86.571 4
88.384 86.704 10.851 71.621 122.568 80.835 94.156 5

σmaxyy

40.114 39.585 3.715 33.903 52.691 37.195 42.301 1
44.505 43.602 4.582 36.722 55.507 40.712 47.476 2
48.049 46.903 4.703 39.253 60.303 44.565 50.210 3
53.014 52.126 5.967 44.620 75.771 48.688 56.000 4
57.265 56.281 7.259 45.180 82.883 52.087 61.074 5

σmaxzz

39.811 38.870 3.900 33.616 52.128 36.866 42.412 1
44.218 43.421 4.736 35.187 55.609 40.608 46.922 2
47.793 47.275 4.681 39.196 59.951 44.829 50.088 3
52.135 50.979 6.274 42.419 79.755 47.546 55.520 4
56.144 54.872 7.290 41.707 85.881 51.257 59.882 5

εyy

σmaxxx

22.866 22.151 2.369 19.637 31.509 21.278 24.125 1
26.168 25.364 2.567 22.763 34.504 24.079 27.980 2
28.521 28.007 2.817 23.172 40.033 26.839 29.830 3
31.286 30.456 3.531 26.334 45.258 28.994 32.568 4
33.911 33.667 4.004 27.330 46.940 30.669 36.192 5

σmaxyy

457.284 457.156 0.552 456.355 458.813 456.880 457.644 1
458.239 458.170 0.819 457.000 461.811 457.595 458.680 2
458.946 458.838 0.793 457.575 461.419 458.336 459.458 3
459.707 459.490 0.976 458.037 462.620 458.936 460.405 4
459.983 459.844 0.866 458.020 462.887 459.389 460.556 5

σmaxzz

23.566 22.745 2.524 19.554 31.632 21.862 24.934 1
26.963 26.282 3.284 21.994 38.557 24.740 28.313 2
30.692 29.707 4.496 24.935 53.239 27.897 32.357 3
32.340 31.371 4.368 26.345 55.498 29.557 34.407 4
35.936 34.555 4.906 28.757 52.841 32.105 38.669 5

εzz

σmaxxx

40.884 39.986 4.289 33.392 57.787 37.971 43.399 1
46.842 45.322 6.268 35.751 69.818 42.370 49.646 2
52.476 51.505 8.343 40.776 89.037 46.746 55.205 3
55.604 53.630 7.955 44.153 88.789 49.953 58.041 4
60.714 58.703 9.607 48.107 103.831 54.355 65.274 5

σmaxyy

41.576 40.548 4.476 34.441 57.409 38.447 44.151 1
47.688 46.730 6.036 37.894 69.273 43.320 50.476 2
53.528 52.091 8.501 41.823 89.030 47.383 56.144 3
56.632 54.894 7.921 44.355 89.260 51.292 59.340 4
62.257 59.939 9.384 47.014 101.843 56.464 66.879 5

σmaxzz

63.501 62.090 7.024 53.176 88.684 58.399 67.208 1
73.075 71.401 8.955 57.582 103.572 66.655 77.292 2
82.106 80.633 12.928 64.174 133.630 74.139 87.171 3
87.218 84.795 11.703 69.644 134.656 79.457 92.648 4
96.180 92.460 14.073 72.974 151.082 85.732 102.695 5
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Table 15: Statistical parameters of the stresses (MPa) for various void contents (%) with applied εxz,
RVE-2 and VD-2

x̄ q2 s min max q1 q3 Voids

σmaxxx

32.989 32.163 4.044 25.498 52.723 30.281 35.119 1
37.825 37.247 4.337 31.297 53.423 34.628 39.197 2
40.695 39.884 4.293 32.023 54.350 37.516 43.715 3
44.599 43.274 5.376 36.180 57.803 40.217 47.929 4
47.680 46.473 7.485 36.011 87.341 42.779 50.664 5

σmaxyy

23.970 23.514 2.522 20.285 35.145 22.029 25.709 1
27.385 26.824 2.984 22.268 38.468 25.163 29.026 2
29.982 29.079 3.444 22.793 41.750 27.830 31.888 3
32.563 31.732 3.941 26.255 45.894 29.673 35.459 4
35.136 34.596 5.267 26.979 59.975 31.538 37.009 5

σmaxzz

29.750 28.976 2.766 26.211 38.862 27.658 31.333 1
33.682 33.081 3.497 27.400 43.096 31.294 35.923 2
37.313 36.264 4.594 29.645 55.192 34.171 39.632 3
40.226 39.670 4.597 29.768 58.403 37.550 42.241 4
44.324 43.313 6.283 33.381 66.927 40.089 46.637 5

σmaxxz

24.560 24.170 1.895 22.350 34.621 23.125 25.373 1
26.646 26.128 2.818 22.206 35.983 24.560 28.000 2
27.902 27.354 2.887 23.337 41.013 25.770 29.446 3
29.453 29.013 3.479 24.420 43.170 26.818 31.159 4
30.902 30.032 3.095 26.062 42.359 28.670 32.773 5
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Figure 21: Fitting of the probability density function of σmaxyz with applied εyz (a) RVE-1 and VD-1, (b)
RVE-2 and VD-1, (b) RVE-2 and VD-2, void content 4%
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Table 16: Statistical parameters of the stresses (MPa) for various void contents (%) with applied εyz and
εxy, RVE-2 and VD-2

x̄ q2 s min max q1 q3 Voids

εyz

σmaxyy

20.290 19.264 5.407 13.098 52.881 16.789 22.535 1
31.790 31.594 6.446 21.305 56.715 26.491 34.959 2
40.235 37.751 8.673 27.987 77.049 34.250 42.887 3
46.519 45.106 7.191 35.307 70.625 41.917 51.084 4
57.071 56.090 9.011 40.612 82.125 50.009 61.905 5

σmaxxy

25.724 25.044 2.482 23.377 38.514 24.045 26.752 1
28.199 27.628 2.987 23.464 38.133 26.143 29.557 2
29.629 29.094 3.231 24.094 40.065 27.266 31.219 3
31.108 30.273 4.038 24.273 46.375 28.401 33.198 4
32.239 31.666 4.052 25.462 45.885 29.247 34.163 5

σmaxyz

61.989 62.027 4.920 51.904 82.254 58.386 64.902 1
67.716 66.712 7.379 54.425 98.255 63.042 70.546 2
70.507 68.962 7.909 57.407 96.102 64.842 74.168 3
73.761 72.232 8.135 58.936 104.704 68.343 77.213 4
77.246 75.763 8.513 63.038 107.611 71.231 82.170 5

εxy

σmaxyy

23.606 22.164 6.074 14.351 47.181 19.767 26.322 1
33.531 32.056 8.677 20.891 74.465 27.439 36.996 2
42.219 39.942 8.821 26.222 66.975 36.359 46.840 3
48.904 47.841 7.635 33.686 71.438 43.108 54.139 4
58.139 55.929 9.302 41.535 92.147 51.706 63.112 5

σmaxxy

65.690 65.300 3.661 60.662 75.835 62.713 67.627 1
69.364 68.307 4.653 62.345 85.661 65.422 73.146 2
71.130 71.107 5.694 60.118 84.438 66.109 75.247 3
72.958 72.508 5.534 62.908 92.724 69.058 76.192 4
75.239 74.535 5.912 61.754 98.422 71.969 78.361 5

σmaxyz

22.257 21.935 1.702 19.992 27.488 20.958 22.779 1
23.764 23.419 2.172 20.403 33.136 22.158 24.645 2
24.815 24.466 2.189 21.597 33.206 23.023 26.072 3
26.086 25.630 2.174 21.772 32.160 24.626 27.107 4
27.191 26.770 2.646 22.004 39.498 25.503 28.379 5
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lower computational costs. The present framework can deal with various sets of void distributions to

investigate the influence of void content and morphology. Such analyses considered multiple scenarios

and statistical metrics. The RVE is 3D, and the influence of its depth is another assessed parameter. The

most significant findings are the following:

� As well-known, the influence of void distributions and RVE dimensions on the homogenized prop-

erties is low. The void content is the fundamental parameter to consider, independently of the void

arrangement.

� The void arrangement influences the stress fields. The clustering of voids leads to higher stress mean

values and peaks, and broader ranges of stress.

� Likewise, deeper RVE leads to higher stress values. The combined effect - deeper RVE and clustering

- may lead to some 10% increments in the mean values of stress.

� All six stress components are affected with particularly significant variations in cross-sectional axial

components.

The future extensions should consider the nonlinear analysis to investigate the influence of voids on failure.

Furthermore, the modeling of more complex RVE architectures and the multiscale analysis are of interest.
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