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Politecnico di Torino, DIGEP (Department of Management and Production Engineering), 
Corso Duca degli Abruzzi 24, 10129, Torino (Italy) 

ABSTRACT 

The manufacturing field encompasses a number of problems in which some experts formulate their rankings 

of a set of objects, which should be aggregated into a collective judgment. E.g., consider the aggregation of 

(i) the opinions of designers on alternative design concepts, (ii) the opinions of reliability/safety engineers on 

the criticality of a set of failures, (iii) the perceptions of a panel of customers on alternative aesthetic features 

of a product, etc.. For these problems, the Kendall’s concordance coefficient (W) can be used to express the 

degree of agreement between experts in a simple and practical way. Unfortunately, this indicator is 

applicable to complete rankings only, while experts often find it more practical to formulate incomplete 

rankings, e.g., identifying only the most/less relevant objects and/or deliberately excluding some of them, if 

they are not sufficiently relevant or well known. 

This research aims at extending the use of the traditional W to incomplete rankings, preserving its practical 

meaning and simplicity. In a nutshell, the proposed methodological approach associates a so-called 

“midrank” to all objects, even the ones that are not easily comparable with the other ones; subsequently, W 

can be applied to these midranks. The description is supported by several pedagogical examples.  

Keywords: Incomplete ranking, Incomparability, Coefficient of concordance, Midrank, Degree of 

completeness.  

1. INTRODUCTION 

A widely debated problem in the scientific literature is that of “m-rankings”, in which each of m 

experts formulates his/her own (subjective) ranking of n objects, based on the degree of an attribute 

of these objects; then, rankings have to be aggregated into a collective judgment (Kendall and 

Smith, 1939; Kendall, 1963; Keeney and Raiffa, 1993; Agresti, 2010).  

This problem of wide cross-cutting nature is debated in various scientific fields, ranging from 

decision science to social choice theory, psychometrics, voting theory, multi-criteria decision 

making, etc. (Kelly, 1991; Tideman and Plassmann, 2012; Coaley, 2014). This problem is also 

debated in the manufacturing field: let us consider, for example, the aggregation of (i) the opinions 

of different designers on some alternative design concepts, or (ii) the opinions of 

maintenance/reliability experts on the more critical failures of a production process, or (iii) the 
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opinions of a panel of service/product customers on the degree of importance of some customer 

needs (Nahm et al., 2013; Franceschini et al., 2015; Franceschini and Maisano, 2019c; Geramian et 

al., 2019). 

A range of aggregation techniques have been produced in the scientific literature over the years 

(Frey et al., 2010; Katsikopoulos, 2012; Franceschini and Maisano, 2017). These techniques differ 

in various aspects, including the type of model (e.g., mathematical, statistical, fuzzy techniques, 

verbal rules of thumb, etc.) and the type of collective judgment (e.g., object rankings, 

ordinal/interval/ratio scale values, etc.) (Coaley, 2014; De Vellis, 2016; Wang et al. 2017; Çakır, 

2018). The different aggregation techniques, although sophisticated, rational and practical, 

inexorably clash with Arrows’ theorem, which determines their “imperfection” with respect to 

several properties, also known as fairness criteria (Franssen, 2005; Hunt, 2007; Reich, 2010; Arrow, 

2012; Jacobs et al., 2014; Franceschini and Maisano, 2019a). 

This paper takes a step back with respect to the ranking-aggregation problem, dealing with the 

evaluation of the degree of agreement/conflict of the rankings themselves. This evaluation has 

relevant practical implications, such as (Franceschini and Maisano, 2015): 

 it may lead to the detection of anomalies in the selection of a panel of supposedly homogeneous 

experts; 

 it may indicate possible intrinsic difficulties in reaching a consensus, depicting in some ways the 

plausibility of the collective judgment; 

 with some adjustments, it allows to assess the goodness of alternative aggregation techniques 

(Franceschini and Maisano, 2019a). 

The scientific literature includes several indicators to estimate the degree of agreement of a pair of 

rankings, based on two steps: (1) decomposing the two rankings into paired-comparison 

relationships and (2) measuring the association between the above-mentioned relationships. Some 

of the most popular indicators are the Pearson product-moment correlation coefficient (), the 

Kendall's Tau coefficient (), and the Spearman’s coefficient of rank correlation (R) (Gibbons and 

Chakraborti, 2010; Franceschini and Maisano, 2015). All these indicators allow to estimate the 

degree of agreement between two rankings and to test the null hypothesis of independence between 

them, in a simple and rigorous way (Gibbons and Chakraborti, 2010; Agresti, 2010). Unfortunately, 

for problems characterized by more than two rankings, these indicators are not practical and do not 

allow simple and effective significance test. 

Kendall and Smith (1939) were the first researchers who developed a single coefficient of overall 

association for more than two rankings are. Their coefficient, called concordance coefficient (W), is 

related to the dispersion in the ranks associated with each object, depending on the rankings 
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formulated by the experts. Besides being relatively simple and effective, the W indicator allows to 

test the null hypothesis of overall independence between rankings, with a specified significance 

level (Gibbons and Chakraborti, 2010; Agresti, 2010). 

An important limitation of W is that it is only applicable to complete rankings, i.e., rankings 

including all the objects of interest, according to a hierarchical sequence characterized by 

relationships of strict dominance and/or indifference (Nederpelt and Kamareddine, 2004). 

Unfortunately, the formulation of complete rankings is unsuitable to some practical contexts, such 

as (Chen and Cheng, 2010): 

 those characterized by a relatively large number of objects, which make the formulation of 

complete rankings potentially uncertain and time-consuming; 

 those in which experts have the possibility to exclude some objects from their rankings, because 

they do not know enough about them and/or are not able to compare them with other objects; 

 those in which experts have limited attention (e.g., in the case of telephone or street interviews). 

For the above reasons, it seems reasonable to envisage a less rigid response mode, in which experts 

do not necessarily have to formulate complete rankings but can also formulate incomplete rankings 

including only the objects with the higher and/or lower degree of the attribute. In addition, experts 

can choose whether or not to order these objects, or, if they are not familiar with other objects, they 

can decide to exclude them from their rankings.   

Although the information content of incomplete rankings is unequivocally lower than that of 

complete ones, incomplete rankings are not necessarily less accurate or less useful for practical 

purposes: it has been observed that experts tend to focus on the objects at the extremes of a ranking, 

providing more reliable judgments about them to the detriment of the remaining objects (Harzing et 

al., 2009; Amodio et al., 2016; Lagerspetz, 2016; Vetschera, 2017; Aledo et al., 2018).  

The aim of this paper is to adapt the traditional W to problems characterized by incomplete 

rankings, such as the afore-described ones. The scientific literature embraces some attempts to 

extend the use of W to incomplete rankings, although they rely on assumptions that somehow limit 

the “degree of incompleteness” of rankings. For example, Durbin (1951) proposed a model relying 

on the assumption that rankings are incomplete in the same symmetrical way as in an incomplete 

Latin square, or Youden array (Alvo and Cabilio, 1991). Grzegorzewski (2006) presented a fuzzy 

generalization of W, assuming a “non-degenerated” set of rankings, which means that all objects 

under study have been univocally ranked by at least one of the experts. Lewis and Johnson (1971) 

proposed an extension of W when experts and objects coincide, and each expert evaluates all the 

others ones except him/herself. 
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Our intention is instead to avoid imposing constraints such as those mentioned, leaving some 

freedom to experts in their response mode. From a methodological point of view, we will develop a 

procedure to associate a so-called “midrank” to each object, even to those that cannot be compared 

with at least a portion of the other ones (e.g., those omitted or deliberately excluded by the experts). 

The revisited W, which will then be calculated considering these midranks, can be interpreted as a 

generalization of the traditional one. 

The rest of this paper is organized into four sections. Section 2 gives some hints on the meaning and 

calculation of the traditional W. Section 3 illustrates the new approach, providing several 

application examples to incomplete rankings. Section 4 summarizes the original contributions of 

this paper and its practical implications, limitations and suggestions for future research. Further 

information is contained in the Appendix section. 

2. BASICS ON THE TRADITIONAL CONCORDANCE COEFFICIENT 

2.1 Definition and meaning 

Let us assume that each of m experts formulates a complete ranking of n objects, that is, an ordered 

sequence characterized by relationships of strict dominance (e.g., “oi > oj”) among the possible pairs 

of objects (e.g., “o1 > o3 > o2 > …”). For the sake of simplicity, relationships of indifference (e.g., 

“oi  oj”) are – at least for the moment – neglected; however, these relationships will be introduced 

later on.  

For each of these rankings, it is possible to univocally associate rank data to the various objects; 

these data could be visualized in the form of a so-called rank table, i.e., a two-way layout of 

dimension m×n, with row and column labels designating experts and objects. We denote the ranked 

observations by Rij, i = 1, 2, …, m, j = 1, 2, …, n, so that Rij is the rank of object number j when 

considering the ranking by expert i (see Table 1). 

 
  Objects 

  o1 o2 … on Row totals

E
xp

er
ts

 e1 R11 R12 … R1n nꞏ(n+1)/2 
e2 R21 R22 … R2n nꞏ(n+1)/2 
⁝ ⁝ ⁝   ⁝ ⁝ 

em Rm1 Rm2 … Rmn nꞏ(n+1)/2 

Col. totals R1 R2 … Rn mꞏnꞏ(n+1)/2  

Table 1. Visualization of data related to m (complete) rankings, in the form of a rank table containing the 
ranks (Rij) assigned by each i-th expert to each j-th object.  

The i-th row is a permutation of the numbers 1, 2, ..., n – therefore the row totals are  nꞏ(n + 1)/2 – 

and the j-th column is the collection of ranks given to the j-th object by all experts. The ranks in 

each column are then indicative of the agreement between experts: if the j-th object has the same 
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preference relative to all other objects in the opinion of each of the m experts, all ranks in the j-th 

column will be identical. If this is true for every column, the experts agree perfectly and the 

respective column totals (R1, R2, …, Rn) will be some permutation of the numbers: 

1·m, 2·m, 3·m, …, n·m. (1) 

Since the average column total is R = mꞏ(n + 1)/2, for perfect agreement between rankings, the sum 

of squares of deviations of column totals from the average column total will be a constant: 
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The actual observed sum of squares of these deviations is: 
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Therefore the value of S for any set of m rankings ranges between zero and [m2ꞏnꞏ(n2 – 1)]/12, with 

the maximum value attained in the case of perfect agreement and the minimum value attained when 

Rj = R = mꞏ(n + 1)/2 for all j, that is, when each expert’s rankings are assigned completely at 

random so that there is no agreement between experts.  

The ratio of S to its maximum value 
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 (4) 

therefore provides a measure of agreement between experts or concordance between rankings. This 

measure, called Kendall’s coefficient of concordance, ranges between 0 and 1, with 1 designating 

perfect agreement/concordance and 0 indicating no agreement or independence of rankings 

(Kendall, 1963; Legendre, 2010). 

2.2 Calculation example 

Let us assume that experts are able to formulate complete rankings of the eight objects, including 

strict dominance (“>”) relationships (see Table 2(a)). Then, the W coefficient of these rankings is 

calculated, with the aim of estimating the degree of agreement of the experts. Table 2(b) contains 

the corresponding rank table from which W can be determined (through Eq. 4) as: 

%661
4200

2586
.W  , (5) 

denoting a certain degree of agreement between the experts.  

2.3 Tied objects 
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Up to now we have assumed that each row of our m×n rank table is a permutation of the first n 

integers (see Table 1). If an expert cannot express any preference (or dominance) between two or 

more objects, or if the objects are actually indistinguishable, we may wish to allow the expert to 

assign equal ranks, in fact introducing also some relationships of indifference (e.g., “oi  oj”) among 

the possible pairs of objects (Fabbris, 2013). If these numbers are the average ranks that each set of 

tied objects would occupy if a strict dominance relationship could be expressed, the average column 

total is not changed with respect to the case seen in Sect. 2.1 (i.e., R = mꞏ(n + 1)/2).  

 

  (a) Complete rankings (b) Rank table

    o1 o2 o3 o4 o5 o6 o7 o8 Row totals

E
xp

er
ts

 

e1 o6>o3>o1>o5>o4>o2>o7>o8  3 6 2 5 4 1 7 8 36 
e2 o6>o3>o5>o7>o1>o8>o4>o2  5 8 2 7 3 1 4 6 36 
e3 o6>o3>o5>o4>o8>o2>o1>o7  7 6 2 4 3 1 8 5 36 
e4 o6>o5>o2>o3>o1>o8>o4>o7  5 3 4 7 2 1 8 6 36 
e5 o3>o6>o5>o7>o1>o4>o2>o8  5 7 1 6 3 2 4 8 36 
e6 o3>o5>o6>o7>o2>o1>o8>o4  6 5 1 8 2 3 4 7 36 
e7 o5>o6>o3>o4>o1>o8>o2>o7  5 7 3 4 1 2 8 6 36 
e8 o5>o6>o3>o1>o2>o8>o7>o4  4 5 3 8 1 2 7 6 36 
e9 o6>o2>o3>o7>o8>o1>o5>o4  6 2 3 8 7 1 4 5 36 
e10 o3>o5>o1>o6>o8>o4>o2>o7  3 7 1 6 2 4 8 5 36 

Col. totals 49 56 22 63 28 18 62 62 360  

Table 2. (a) Complete rankings of eights objects formulated by ten experts and (b) corresponding rank table. 

Let us consider the (complete) rankings in Table 3(a), which are identical to those of Table 2(a), 

except for those formulated by the experts e5 and e6, in which some relationships of strict 

dominance are replaced by relationships of indifference. For example, in the new ranking by e5, the 

objects o5, o7 and o1 are tied for 3rd, 4th, and 5th place; since the mean of {3, 4, 5} = 4, ranks would 

be assigned to the raw data values as follows: {4, 7, 1, 6, 4, 2, 4, 8}. 

However, the sum of squares of deviations of any set of n ranks is reduced if there are ties. It can be 

shown that, for any ranking i = 1, 2, …, m, the corrected value of the denominator of W is (Kendall, 

1963; Legendre, 2010): 

  121
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where  



ig

k
kki ttT

1

3  is a correction factor for ties1, in which tk is the number of tied ranks in the 

k-th group of tied ranks (where a group is a set of values having constant tied rank) and gi is the 

number of groups of ties in the set of ranks (ranging from 1 to n) for expert i. Thus, Ti is the 

                                                      
1 In this case, “ties” are represented by indifference relationships (e.g., “oi  oj”). 
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correction factor required for the set of ranks for expert i. The W version with the correction for tied 

objects then becomes: 

 
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 (a) Complete rankings (b) Rank table  
   o1 o2 o3 o4 o5 o6 o7 o8 Row totals

e1 o6>o3>o1>o5>o4>o2>o7>o8  3 6 2 5 4 1 7 8 36 
e2 o6>o3>o5>o7>o1>o8>o4>o2  5 8 2 7 3 1 4 6 36 
e3 o6>o3>o5>o4>o8>o2>o1>o7  7 6 2 4 3 1 8 5 36 
e4 o6>o5>o2>o3>o1>o8>o4>o7  5 3 4 7 2 1 8 6 36 
e5 o3>o6>(o5~o7~o1)>o4>o2>o8  4 7 1 6 4 2 4 8 36 
e6 (o3~o5)>o6>o7>o2>o1>(o8~o4)  6 5 1.5 7.5 1.5 3 4 7.5 36 
e7 o5>o6>o3>o4>o1>o8>o2>o7  5 7 3 4 1 2 8 6 26 
e8 o5>o6>o3>o1>o2>o8>o7>o4  4 5 3 8 1 2 7 6 36 
e9 o6>o2>o3>o7>o8>o1>o5>o4  6 2 3 8 7 1 4 5 36 
e10 o3>o5>o1>o6>o8>o4>o2>o7  3 7 1 6 2 4 8 5 36 

Col. totals 48.0 56.0 22.5 62.5 28.5 18.0 62.0 62.5 360

 

 

Table 3. (a) Complete rankings of eight objects (o1 to o8) formulated by ten experts (e1 to e10); these rankings 
include both indifference (“~”) and strict dominance (“>”) relationships. (b) Corresponding rank table. 

Again, the range of W is between 0 (full disagreement) and 1 (full agreement). We observe that, in 

the case of absence of tied objects, i.e., when Ti = 0 i , the formula in Eq. 7 becomes that in Eq. 4. 

As an example, considering the rank table in Table 3(b), it is obtained Ti = 0  8 7, 4, 3, 2, ,1i , 

T5 = 24 and T6 = 12; consequently, 36
1




m

i
iT  and   %960

4170

2539

12361050400

2539
.

/
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
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2.4 Test of significance 

The null hypothesis of independence among the rankings means that the relevant ranks are allotted 

randomly by each expert to the set of objects, so that there is no concordance. The appropriate 

rejection region is represented by relatively large values of W. The exact sampling distribution of W 

could be determined only by an extensive enumeration process. Exact tables for relatively small 

values of m and n are given in (van der Laan and Prakken, 1972). For relatively large m values (i.e., 

m ≥ 7), an approximation to the sampling distribution may be used for tests of significance. 

Precisely, W can be described by a chi-square distribution with n – 1 degrees of freedom (Gibbons 

and Chakraborti, 2010). The rejection region for significance level  then is: 

 2
1for  ,nQQ  , (8) 

Q being defined as: 
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Returning to the example in Sect. 2.2 (including complete rankings with strict-dominance 

relationships only) and that in Sect. 2.3 (including complete rankings with strict-dominance and 

indifference relationships), the Q-values of 43.100 and 42.621 can be determined respectively. 

Since they are both 067142
5 ,71 .%n    , the hypothesis of independence among the rankings is 

rejected in both cases, with a confidence level of 1 – = 95%. 

3. ADAPTING W TO INCOMPLETE RANKINGS 

3.1 Introductory example 

Sect. 2 has shown that W can be computed after translating each of the m rankings into a relevant 

string of object ranks. This “translation” is immediate for a complete ranking, where one-and-one-

only rank can be associated with each object. On the other hand, the problem is more complicated 

for incomplete rankings. For the purpose of example, let us consider a problem in which three 

experts (e1 to e3) formulate incomplete rankings of five objects (o1 to o5), as reported in Figure 1. It 

can be noticed that: 

 e1 indicates only the two most preferred objects (o1 and o4), without ordering them. For this 

reason, a relationship of incomparability – which means “we do not know what kind of (strict 

dominance or indifference) relationship exists between them” – (“o1 || o4”) has been included; 

 e2 identifies and orders the three most preferred objects; 

 e3 identifies the most preferred object (o4), the least preferred one (o3) and claims not to know o5. 

The last object is therefore excluded from his/her evaluation. 

 
(a) Incomplete rankings (b) Objects (c) Rank table 

  (explicit) (implicit) (excluded)  o1 o2 o3 o4 o5 Row totals
e1: (o1 || o4) > … o1 and o4 o2, o3 and o5 None  ? ? ? ? ? ? 
e2: o2 > (o1 ~ o4) > … o1, o2 and o4 o3 and o5 None  2.5 1 ? 2.5 ? ? 
e3: o4 > … > o3 (o5 excluded) o3 and o4 o1 and o2 o5  ? ? ? ? ? ? 

Col. totals ? ? ? ? ? ? 

 

 

Figure 1. Example of incomplete rankings of five objects, formulated by three experts. 

 
In general, incomplete rankings cannot be uniquely translated into corresponding object ranks. For 

example, considering the ranking by e1, the ranks of o1 and o4 – although certainly not higher than 2 

– cannot be determined univocally. Or, considering the ranking by e3, it cannot necessarily be said 
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that o4 is ranked first, since the excluded object (o5) – if known – could be placed ahead or at the 

same level of o4.  

3.2 Descriptive parameters 

Before tackling the problem of managing incomplete rankings, let us take a step back, introducing 

some descriptive parameters of a generic incomplete ranking: 

 n is the total number of objects of interest; 

 k is the number of so-called isolated objects, i.e., objects that the expert believes should be 

excluded from the evaluation since they are not know well enough (Bruggemann and Carlsen, 

2011). Each isolated i-th object is therefore considered incomparable with any other j-th object 

(“oi || oj”). 

 t is the number of so-called “t-objects”, where “t” stands for “top”, i.e., objects explicitly 

indicated by the expert, with a higher degree of the attribute than all others. 

 b is the number of so-called “b-objects”, where “b” stands for “bottom”, i.e., objects explicitly 

indicated by the expert, with a lower degree of the attribute than all others. 

 n – t – b – k is the number of remaining objects, i.e., objects that – although they were not 

explicitly mentioned by the expert, being neither t nor b-objects – are not excluded from the 

expert’s evaluation; it should be noted that these objects – which are well known – are radically 

different from the isolated ones and are characterized by mutual relations of incomparability. 

Depending on the availability/expertise of the expert, t/b-objects can be ordered (“o”) or unordered 

(“u”), i.e., the expert simply mentions them, without building a hierarchy using relationships of 

strict dominance or indifference. Returning to the example in Figure 1, o1 and o4 are unordered t-

objects for the incomplete ranking by e1, while they are ordered t-objects for that by e2.  

The combination of the parameters n, t, b, k and the fact that the t/b-objects are ordered or not 

determine different types of incomplete rankings, which can be translated into corresponding 

paired-comparison relationships. E.g., for unordered t-objects, it is not possible to deduce 

relationships of strict dominance or indifference between them, although it can be argued that the 

degree of the attribute of these objects is certainly higher than that of the b-objects (see the example 

in Figure 2). 

We now introduce the so-called degree of completeness of a generic ranking: 

nC
c

2

ranking in the relationscomparison paired  usable"" of No.
 , (10) 

which expresses the fraction of “usable” paired-comparison relationships – i.e. relationships of strict 

dominance (“oi > oj”) or indifference (“oi ~ oj”) – with respect to the total ones: 2/)1(2  nnCn , 
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where n is the total number of objects of the problem. By way of example, Figure 2 shows the 

determination of the c values related to a specific incomplete ranking. It can be seen that the more 

complete the ranking, the higher  1,0c ; the unit value is reached for complete rankings. 

Analytic form: 

{(o1 > o3 > {o4 || o5 || o8} > {o6 || o7}) || o2} 

o5 o4 o8 

o1 

o3 

o2 

(b) Incomplete-ranking graph 

o6 o7 

t-objects  
(t = 2, ordered) 

b-objects  
(b = 2, unordered) 

remaining objects  
(n – t – b – k = 3) 

isolated object  
(k = 1) 

total objects 
(n = 8) 

 o1 o2 o3 o4 o5 o6 o7 o8

o1 -        

o2 || -       

o3 < || -      

o4 < || < -     

o5 < || < || -    

o6 < || < < < -   

o7 < || < < < || -  

o8 < || < || || > > - 

 

(c) Paired-comparison relationships 

Degree of completeness: 

c = 17 / 28 = 60.7% 

 L. bound U. bound Midrank 

o1 1 2 1.5 

o2 1 8 4.5 

o3 2 3 2.5 

o4 3 6 4.5 

o5 3 6 4.5 

o6 6 8 7.0 

o7 6 8 7.0 

o8 3 6 4.5 

  Sum = 36.0 

(d) Determination of rank intervals

  “>” and “<” strict dominance; 
  “||” incomparability. 

(a) Verbal description by the expert: 

   “The top objects are o1 and o3, which are already sorted in descending order. 
The bottom objects are o6 and o7, which I prefer not to order. 
I do not know the object o2 well enough, so I refrain from evaluating it and exclude it from the ranking.” 

 
Figure 2. Example of incomplete ranking: (a) verbal description of the ranking as it was collected from the expert; (b) 

graph and description through parameters n, t, b and k; (c) translation of the ranking into paired-comparison 

relationships and calculation of the degree of completeness c; (d) assignment of rank intervals to each object, according 

to the rules in Table 4. 

 
Interestingly, even rankings that are significantly incomplete may contain a relevant portion of 

usable paired-comparison relationships. E.g., consider the incomplete ranking in Figure 2, in which 

only half of the objects are explicitly indicated by the expert (in fact, o4, o5 and o6 are not among the 

t/b-objects, while o2 was intentionally excluded) and some among them (i.e., the b-objects) have not 

even been ordered; despite the apparently large incompleteness, Figure 2(c) shows that more that 

sixty percent of the usable paired-comparison relationships are still preserved (c = 60.7%). 

The indicator c can be extended from a single ranking to sets of m rankings – such as those 

characterizing a decision-making problem with m experts. We thus define a new aggregated 

indicator ( c ), depicting the overall degree of completeness: 

m

c

Cm

Cc

i

i
c

m

i
i

n

m

i

n
i

m

i

m

i





















1

2

1
2

1

th

1

th

ranking  in the relationscomparison paired  usable"" of no. Total

ranking  in the relationscomparison paired  usable"" of No.

, (11) 
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ci being the c value related to the ranking by a generic i-th expert. 

Eq. 11 shows that  1,0c  can also be interpreted as the arithmetic average of the c values related 

to the set of rankings under consideration. 

Figure 4(a) collects the descriptive parameters n, t, b, k, c, c  related to the three incomplete 

rankings in Figure 1(a). 

3.3 Rationale of the revisited W 

Considering a generic i-th incomplete ranking, we can associate a so-called rank interval to each 

j-th object: [ L
ijR , U

ijR ], being 

 L
ijR  a lower bound (superscript “L” stands for “lower”) corresponding to the minimum possible 

object rank, in one of the possible complete rankings that are compatible with the incomplete 

one. Any complete ranking is defined as “compatible” if, when translated into paired-comparison 

relationships, it is characterized by the same usable relationships (of strict dominance or 

indifference) that characterize the incomplete ranking, excluding those of incomparability. Using 

the terminology of the Mathematics’ Poset Theory, such a complete ranking is said to be a 

“linear extension” of the incomplete ranking from which it derives (Caperna and Boccuzzo, 

2018). 

 U
ijR  an upper bound (superscript “U” stands for “upper”) corresponding to the maximum 

possible object rank, in one of the possible complete rankings that are compatible with the 

incomplete one. 

For example, let us consider the incomplete ranking exemplified in Figure 2(b). If, for a moment, 

we forget the isolated object o2, the object o3 would have rank 2 for any compatible complete 

ranking. However, since the (unknown) rank of o2 could be higher, lower or tied with respect to that 

of o3, the maximum possible rank of o3 will be 3. The rank interval of o3 would therefore be [2, 3] 

(see Figure 2(d)). On the other hand, the rank interval of o2 will be [1, 8], since this object – which 

is by definition incomparable to the others – could be in any position of a complete compatible 

ranking. This reasoning can be extended to all other objects, allowing to determine their 

corresponding rank intervals.  

Table 4 shows a reference scheme to determine the rank intervals of objects, depending on the 

parameters n, t, b and k. Mathematical arguments supporting the determination of this scheme are 

contained in section A.1 (in the Appendix). 

Using this scheme, it is not necessary to consider all possible complete rankings that are compatible 

with the incomplete one of interest, which would be extremely complex and computationally 

expensive, especially for large n values. In that regard, Sect. A.2 (in the Appendix) includes a 
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“mind-expanding” example showing that even for simple incomplete rankings, the number of 

incomplete rankings compatible with them can be relatively large (NP-hard problem) (De Loof et 

al., 2011; Bruggemann and Carlsen, 2011). 

 No. of objects Rank interval Midrank sum 
L
ijR  U

ijR  Rij  

t-objects  (ordered) t r r + k 
2

k
r   






 


2

1 kt
t  

 (unordered) idem 1 t + k 
2

1 kt 
 idem 

b-objects (ordered) b s + n – b – k s + n – b 
2

k
bns  






 


2

1 kb
nb  

 (unordered) idem 1 + n – b – k n 
2

1 kb
n


 idem 

Isolated objects k 1 n 
2

1 n
 






 


2

1 n
k  

Remaining objects n – t – b – k t + 1 n – b 
   

2

1 bnt       
2

1 bnt
kbtn




Note: n is the total number of objects; 
 t is the number of t-objects;  
 b is the number of b-objects; 
 k is the number of isolated objects; 
 r [1, t] is the rank of a generic t-object in a (complete) sub-ranking including only the (ordered) t-objects; 
 s [1, b] is the rank of a generic b-object in a (complete) sub-ranking including only the (ordered) b-objects; 

 L
ijR  is the rank-interval lower bound;  

 U
ijR  is the rank-interval upper bound;  

 Rij is the midrank of the rank interval of interest. 

Table 4. Reference scheme to determine the L
ijR , U

ijR , and Rij values of each object, depending on the 

parameters t, b, k and n. 

Returning to the incomplete ranking in Figure 2, we would have the following parameters n = 8, 

t = 2 (ordered), b = 2 (unordered) and k = 1. For the purpose of example, the rank intervals of o3 and 

o6 can be calculated by applying the formulae in Table 4, obtaining: 

 

 

 


















8

612811
:unordered object,- 

312

2
:ordered object,- 

6

3

nR

kbnR
bo

krR

rR
to

U
ij

L
ij

U
ij

L
ij

, (12) 

where r[1, t] is the rank of a generic t-object in a (complete) sub-ranking including only the 

(ordered) t-objects. 

In the hypothesis that the rank of each object follows a symmetrical distribution with respect to the 

relevant rank interval, it can be said that the average value of the ranking coincides with the so-

called “midrank”, defined as: 
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2

U
ij

L
ij

ij

RR
R


 . (13) 

The “mind-expanding” example in Sect. A.3 (in the Appendix) concerns a specific decision-making 

problem where the above hypothesis of symmetry seems to be respected. However, the general 

legitimacy of the hypothesis will be rigorously investigated in future studies. 

Following the scheme in Table 4, each object can be uniquely associated with one-and-only-one 

midrank, based on the parameters t, b, k and n. For example, considering the ranking in Figure 2, 

the midranks of o3 and o6 would be:  

 

  7
2

121
8

2

1
:unordered object,- 

52
2

1
2

2
:ordered object,- 

6

3











kb
nbo

.
k

rto
. (14) 

Rank data ( L
ijR , U

ijR  and Rij) related to the objects of a generic incomplete ranking can therefore be 

collected in a new rank table (Table 5), which is more general than that one seen for complete 

rankings (Table 1). In the case of complete rankings – i.e. when there are neither isolated objects 

(k = 0) nor remaining ones (t + b = n), and the t/b-objects are ordered – it is trivial to demonstrate 

that L
ijR = U

ijR = Rij for each (i, j) combination. In other words, the rank table for complete rankings 

(Table 1) can be interpreted as a special case of the new rank table with rank intervals and midranks 

(Table 5). 

Additionally, we notice that the midranks defined in Table 4 are compatible with the convention 

adopted for the calculation of W in the case of tied object (in Sect. 2.3), i.e., each row total of the 

rank table should be equal to   21 nn  (see also Table 1). A formal demonstration is contained in 

Sect. A.1 (in the Appendix). 

  Objects  

  o1 o2 … on Row totals 

e1 
LR11 , UR11  → R11 

LR12 , UR12 → R12 … L
nR1 , U

nR1 → R1n nꞏ(n+1)/2 

e2 LR21 , UR21  → R21 LR22 , UR22 → R22 … L
nR2 , U

nR2 → R2n nꞏ(n+1)/2 

⁝ ⁝   ⁝    ⁝   ⁝ E
xp

er
ts

 

em L
mR 1 , U

mR 1  → Rm1 
L
mR 2 , U

mR 2 → Rm2 … L
mnR , U

mnR → Rmn nꞏ(n+1)/2 

Col. totals R1 = i(Ri1) R2 = i(Ri2) … Rn = i(Rin) mꞏnꞏ(n+1)/2 

 

 

Table 5. Scheme of the new rank table containing the rank intervals [ L
ijR , U

ijR ] and midranks (Rij) of the 

objects, for incomplete rankings. 

The next step is the application of W to the data contained in the new rank table. Since for the same 

ranking it is possible to have multiple objects with the same midrank, the formula in Eq. 7, which 

allows tied (mid)ranks, can be used. Then the significance can be tested as shown in Sect. 2.4. 
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The flow chart in Figure 3 summarizes the fundamental phases of the proposed approach. 

Figure 4(b) shows an example of the construction of the rank table, midranks and W for the 

incomplete rankings in Figure 1(a). 

4. Have all rankings been taken into account? 

1.  Consider one incomplete ranking at a time 

2. Identify the different typologies of objects (t-, b-, isolated, remaining ones) 

3.  Associate a rank interval and a midrank to each object 

NO YES (next ranking) 

5.  Calculate W considering the midranks of the objects 

6.  Test of significance (see Sect. 2.4) of the resulting W  
 

Figure 3. Flow-chart of the proposed procedure for the calculation of W, in the case of incomplete rankings.  

 

(a) Descriptive params.   (b) Rank table
 n k t b c    o1 o2 o3 o4 o8 Row totals  T

e1: 5 0 2 (u) 0 60.0%    1.0, 2.0 → 1.5 3.0, 5.0 → 4.0 3.0, 5.0 → 4.0 1.0, 2.0 → 1.5 3.0, 5.0 → 4.0 15  30
e2: 5 0 3 (o) 0 90.0%    2.5, 2.5 → 2.5 1.0, 1.0 → 1.0 4.0, 5.0 → 4.5 2.5, 2.5 → 2.5 4.0, 5.0 → 4.5 15  12
e3: 5 1 1 1 50.0%    2.0, 4.0 → 3.0 2.0, 4.0 → 3.0 4.0, 5.0 → 4.5 1.0, 2.0 → 1.5 1.0, 2.0 → 1.5 15  24
    c = 66.7% Col. totals 7.0 8.0 13.0 5.5 11.5 45 T = 66

Note: n is the total number of objects; 
 k is the number of isolated objects; 
 t is the number of t-objects;  
 b is the number of b-objects; 
 “(o)” means ordered t/b-objects; 
 “(u)” means unordered t/b-objects;  
 T is a correction factor for ties of each ranking; 
 c is the degree of incompleteness of each ranking; 
 c depicts the overall degree of incompleteness. 

  
W = 53.7%

 

 

Figure 4. Determination of the descriptive parameters, rank table, midranks and W for the three incomplete 
rankings in Figure 1(a).  

3.4 Application examples 

This sub-section contains some application examples of the revisited version of W to six different 

problems. All these problems include m = 10 experts formulating their rankings of n = 8 objects. 

These problems are intended to reflect different degrees of completeness. 

The first problem (0) is the one already exemplified in Sect. 2.2, characterized by complete 

rankings; it will be classified as “complete problem”. This problem represents a situation in which 

experts have the competence and the possibility to formulate complete rankings, without 

omitting/excluding any object. 

The next four problems (1 to 4) include incomplete rankings compatible with those of the problem 

(0); for this reason, they will be labelled as “incomplete problems”. This compatibility indicates that 

experts are consistent with themselves, although they formulate rankings with very different 

degrees of incompleteness in the various problems. These four incomplete problems represent other 
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situations, in which – due to their inability or practical impossibility – not all experts are able to 

formulate complete rankings; nevertheless, they still give their contribution to the problem through 

the formulation of incomplete rankings. The sixth problem (5) represents a deliberately extreme 

situation of incompleteness, in which all the experts – not knowing the totality of the objects – 

exclude them all from their evaluations! 

Tables A.3 to A.8 (in Sect. A.3, in the Appendix) contains the rankings and the parameters 

characterizing these problems; it can be noticed that the degree of completeness – expressed using c 

and c  (Eqs. 10 and 11) – tends to decrease gradually. 

Focusing on the incomplete problem (1), the corresponding rank data are reported in Table A.9 (in 

Sect. A.3, in the Appendix) and the resulting W = 65.0%. This value is very close and even slightly 

higher than that related to the complete problem (0) in Sect. 2.2 (W = 61.6%). The reason is that – 

despite the numerator of W 

 



n

j
j RRNum

1

2
 (15) 

decreases due to the decreased degree of completeness (c = 73.2%) – also the denominator 

  121
1

22








 



m

i
iTmnnmDen  (16) 

decreases due to the effect of the corrective term for tied ranks, i.e., 


m

i
iT

1

 in Eq. 7 (see the synthetic 

results in Table 6(1)). 

 

Problem Description c  


m

i
iT

1

 Num Den W Q 2
,1 n  Reject H0? 

(0) complete 100.0% 0 2586 4200 61.6% 43.100 14.067 Yes 
(1) incomplete 73.2% 834 2277 3505 65.0% 45.475 14.067 Yes 
(2) incomplete 57.9% 480 1269 3800 33.4% 23.376 14.067 Yes 
(3) incomplete 42.9% 300 733 3950 18.5% 12.981 14.067 No 
(4) incomplete 25.7% 1392 337 3040 11.1% 7.760 14.067 No 
(5) incomplete 0.0% 5040 0 0 indeterminate indeterminate 14.067 indeterminate 

Table 6. Synthetic results of the application of W to the six problems in Tables A.3 to A.8 (see Sect. A.3 in 
the Appendix), according to the proposed approach. 

In the present case 

  06714475451 2
5,71 ..nmWQ %n    , (17) 

leading to reject the null hypothesis (H0) of independence between rankings, as already done for the 

complete problem (0), in Sect. 2.4. 
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Extending the analysis to the next four incomplete problems (2 to 4), the results in Table 6 are 

obtained (see also the relevant rank tables in Sect. A.3: Tables A.10 to A.14). Interestingly, W tends 

to decrease as the degree of completeness decreases (see also Figure 5). This reduction is mainly 

determined by the reduction of the numerator of W (Num), which depicts the variability between the 

sums of the object ranks related to different experts (see numerical data in Table 6).  

Additionally, in the “exaggeratedly” incomplete problem (5), W is indeterminate because: 

 Numerator (Num) is zero, denoting the lowest possible variability; 

 Denominator (Den) is zero, due to the effect of the corrective term for tied objects, i.e., 

 12

1




nnT
m

i
i  in this case. 

R² = 0.8417

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

cW vs.

(1) 
(0) 

(4) 

(2) 

(3) 

 

Figure 5. Relationship between the concordance coefficient (W) and the degree of completeness ( c ), for the 
exemplified problems (numerical data in Table 6).  

Finally, Q tends to decrease as c decreases, leading not to reject the hypothesis of independence 

between (incomplete) rankings for the problems (3) and (4). 

The authors acknowledge that the results presented in this sub-section – in particular the presumed 

proportionality between W and c  for problems characterized by compatible rankings (see Figure 5) 

– are specific to the above six problems and may not necessarily have a general validity. 

Nevertheless, these results are corroborated by further studies that the authors are currently 

undertaking on a much larger sample of incomplete problems.  

4. CONCLUSIONS 

This article revisited the traditional coefficient of concordance W, extending its use to incomplete 

rankings. Although the proposed procedure does not affect the formulation, the practical meaning 

and the test of significance of the traditional W, it requires an additional preliminary phase for the 
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calculation of the object rank intervals and the corresponding midranks. Reversing the perspective, 

the traditional procedure can be interpreted as a special case of the revisited one, in which rank 

intervals have coincident bounds and the rank of each object is one-and-only-one. 

Preliminary application examples showed that the coefficient of concordance tends to decrease as 

the degree of completeness of rankings decreases – reflecting situations where experts cannot 

handle all objects. Additionally, the ranking incompleteness favours the variability in the object 

midranks, which in turn determines a “polarization” of the rank totals (Rj) towards the average 

value R . This in turn produces a reduction of the numerator of W, which is only partially 

compensated by a reduction of the denominator (see Table 6). 

The proposed procedure, although simple, versatile and automatable, has some limitations: 

1. The determination of a midrank assumes that the rank of an object is distributed symmetrically 

with respect to the rank interval. A more rigorous alternative would be to study the actual rank 

distribution, generating all the complete rankings compatible with the incomplete one 

(Bruggemann and Carlsen, 2011; De Loof et al., 2011; Caperna and Boccuzzo, 2018). 

2. The proposed methodology for calculating midranks only covers incomplete rankings that can be 

described using the parameters t, b, k and n. For example, it does not cover incomplete rankings 

with multiple branches (Bruggemann and Carlsen, 2011) or with “anchor” objects (De Loof et 

al., 2011; Franceschini and Maisano, 2019b). 

3. The synthesis of rank intervals into midranks is in some ways questionable because it leads to 

equalizing objects with very different rank intervals. To clarify this concept, let us consider two 

different rankings of the objects o1 and o2: the first ranking – i.e., “o1 ~ o2” – is complete, while 

the second one is assumed to be incomplete since the expert, not knowing both objects, refrains 

from evaluating them (so both objects can be classified as isolated: n = k = 2). For the first 

ranking, the rank intervals of o1 and o2 are therefore coincident and equal to [1.5, 1.5]; for the 

second ranking, they would be again coincident and equal to [1, 2]. It should be noted that, while 

the width of [1.5, 1.5] is zero, that of [1, 2] is the maximum possible for an object in a ranking 

with n = 2 objects (see Table 4); nevertheless, these different rank intervals are synthesized in the 

same midrank value: i.e., 1.5. A question now arises: Is this result acceptable/reasonable? The 

authors believe that this concern can be overcome by associating W with an uncertainty indicator 

– currently under development – which takes into account the width/dispersion of rank intervals 

before being synthesized into midranks. More details about this issue are contained in Sect. A.2, 

in the Appendix. 
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Regarding the future, we plan to extend the testing of W, in order to organically investigate the 

influence of the characteristic parameters of the rankings (e.g., degree of completeness, number of 

objects, number of experts, etc.). 
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APPENDIX 

A.1 Details on the reference scheme to determine midranks 

This section provides some mathematical arguments to test the formulae contained in the scheme in 

Table 4. The first four sub-sections are dedicated respectively to (1) t-objects (ordered or not), (2) b-

objects (ordered or not), (3) isolated objects and (4) remaining objects. The last sub-section 

provides a mathematical demonstration concerning the sum of the midranks of all the objects of a 

generic incomplete ranking. 

A.1.1 t-objects 

In case the t-objects are ordered, let us assume that r is the rank of a generic t-object within a sub-

ranking consisting of the t-objects only. If there are no isolated objects (i.e. objects intentionally 

excluded from expert evaluation), the rank of each t-object can only be r for any compatible 

complete ranking. In the presence of (k) isolated objects, the maximum possible rank of the generic 

t-object can be (r + k), in the hypothesis that all the isolated objects are placed ahead of it. In 
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conclusion, we would have rRL
ij   and krRU

ij  , with a corresponding midrank of 

  2/2/ krRRR U
ij

L
ijij  . 

Let us now consider the case in which the t-objects are not ordered. In the best case, a generic 

t-object could be alone at the top of the complete compatible ranking, therefore 1L
ijR . In the worst 

case, in presence of (k) isolated objects, a generic t-object will be alone at the bottom of the sub-

ranking consisting of the (t) t-objects and below the isolated objects themselves; it will therefore be 

in the position: ktRU
ij  . The corresponding midrank will therefore be: 

 
2

1 kt
Rij


 . In this 

case, the sum of the midranks of all the (t) t-objects would be: 
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This result would be obtained also for ordered t-objects, in fact:  
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A.1.2 b-objects 

In case the b-objects are ordered, let us assume that s is the rank of a generic b-object within a sub-

ranking consisting of the b-objects only. If there are no isolated objects, in any possible compatible 

complete ranking, the rank of each b-object can only be s plus the rank of the objects ahead of it, 

i.e., the (t) t-objects and the (n – t – b – k) remaining objects (see Sect. 3.2); the resulting rank will 

therefore be: s + t + (n – t – b – k) = s + n – b – k. 

In the presence of (k) isolated objects, the maximum possible rank of the generic b-object can be 

(s + n – b – k) + k = s + n – b, in the hypothesis that all the (k) isolated objects are placed ahead of 

it. In conclusion, we would have kbnsRL
ij   and bnsRU

ij  , with a corresponding 

midrank of   2/2/ kbnsRRR U
ij

L
ijij  . 

Let us now consider the case in which the b-objects are not ordered. In the best case, a generic 

b-object could be alone at the top of the b-objects, therefore immediately behind the t-objects and 

the remaining objects; therefore kbnkbtntRL
ij  1)(1 . In the worst case, in 

presence of (k) isolated objects, a generic b-object will be alone at the bottom of a compatible 

complete ranking; it will therefore be in the position: nRU
ij  . The corresponding midrank will 

therefore be: 
2

1 kb
nRij


 . In this case, the sum of the midranks of all the (b) b-objects would 

be: 





 


2

1 kb
nb .  



 22

The last result would also be obtained for ordered b-objects, in fact: 
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A.1.3 Isolated objects 

Being deliberately excluded as not sufficiently known, these objects could be placed in any position 

of the complete compatible rankings. In extreme cases, each of these isolated objects could then be 

placed:  

 alone at the top, ahead of the other objects ( 1L
ijR ); 

 alone in the bottom, below the other objects ( nRU
ij  ). 

The corresponding midrank will therefore be: 
2

1

2

nRR
R

U
ij

L
ij

ij





 . The sum of the midranks 

related to all the (k) isolated objects is: 





 


2

1 n
k .  

A.1.4 Remaining objects 

These objects – which are not explicitly mentioned by the expert in the incomplete ranking – will be 

in an intermediate zone between the t-objects and the b-objects. Since these (n – t – b – k) objects 

are not ordered, the L
ijR  and U

ijR  values will be the same for all; the lowest possible rank will be the 

one immediately after the t-objects, i.e., 1 tRL
ij , while the highest possible rank will be the one 

immediately before the b-objects, i.e., bnRL
ij  . The corresponding midrank is: 
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A.1.5 Proof concerning the sum of all object midranks 

This sub-section contains a proof that the midranks in Table 4 are compatible with the convention 

adopted by Kendall for the calculation of W (in Sect. 2.1), i.e., that each row total of the rank table 

is equal to   21 nn . The proof is that adding the elements contained in the last column of Table 

4 (“Midrank sum”), it can be obtained: 
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A.2 Mind-expanding example 

This section contains a further example with a double purpose: 

1. Providing a preliminary assessment of whether the proposed procedure is based on legitimate 

assumptions and provides plausible results; 

2. Justifying the need to integrate W with an additional uncertainty indicator (which will be 

developed in a future research). 

Let us consider two decisional problems, both characterized by four experts (e1 to e4) formulating 

individual rankings of four objects (o1 to o4). In the first case, rankings are complete, while in the 

second case are incomplete. Figure A.1 shows (a) these two sets of rankings and (b) their mutual 

compatibility (cf. definition of compatibility in Sect. 3.3). Additionally, Figure A.1(c) shows that 

both problems produce identical rank tables and, consequently, identical W values.  

 

 o1 o2 o3 o4 
o1 -    

o2 < -   

o3 < ~ -  

o4 < < < - 

 o1 o2 o3 o4 
o1 -    

o2 < -   

o3 < < -  

o4 < < ~ - 

 o1 o2 o3 o4 
o1 -    

o2 > -   

o3 ~ < -  

o4 ~ < ~ - 

 o1 o2 o3 o4 
o1 -    

o2 ~ -   

o3 ~ ~ -  

o4 ~ ~ ~ - 

 o1 o2 o3 o4

o1 -    

o2 < -   

o3 < || -  

o4 < < < - 

 o1 o2 o3 o4

o1 -    

o2 < -   

o3 < < -  

o4 < < || - 

 o1 o2 o3 o4

o1 -    

o2 > -   

o3 || < -  

o4 || < || - 

 o1 o2 o3 o4

o1 -    

o2 ~ -   

o3 ~ ~ -  

o4 || || || - 

 (1) Complete problem     (2) Incomplete problem 

    t b k 
e1: o1 > (o2 ~ o3) > o4 e1: o1 > … > o4 1 1 0 
e2: o1 > o2 > (o3 ~ o4) e2: o1 > o2 > … 2 (ordered) 0 0 
e3: o2 > (o1 ~ o3 ~ o4) e3: o2 > … 1 (ordered) 0 0 
e4: o1 ~ o2 ~ o3 ~ o4 e4: o1 ~ o2 ~ o3  3 (ordered) 0 1 (o4) 

 

 

 o1 o2 o3 o4 
e1 1, 1 → 1.0 2, 3 → 2.5 2, 3 → 2.5 4, 4 → 4.0
e2 1, 1 → 1.0 2, 2 → 2.0 3, 4 → 3.5 3, 4 → 3.5
e3 2, 4 → 3.0 1, 1 → 1.0 2, 4 → 3.0 2, 4 → 3.0
e4 2, 3 → 2.5 2, 3 → 2.5 2, 3 → 2.5 1, 4 → 2.5

 o1 o2 o3 o4 
e1 1.0 2.5 2.5 4.0 
e2 1.0 2.0 3.5 3.5 
e3 3.0 1.0 3.0 3.0 
e4 2.5 2.5 2.5 2.5 

W = 44.8% 
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e2: o1>o2>…
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e4: o1~o2~o3
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Figure A.1. Example of two decisional problems (one complete and one incomplete) characterized by 
identical rank tables and W values. The complete problem is compatible with the incomplete one. 

The suggested example brings out a somewhat questionable aspect: i.e., the procedure for 

calculating midranks actually equals objects with very different rank intervals. To clarify this 

concept, let us consider the (complete and incomplete) rankings by expert e4 in Figure A.1. 

Regarding the complete ranking, the rank interval of o4 is [2.5, 2.5] (absence of dispersion); 

regarding the incomplete ranking, it is [1, 4] (maximum possible dispersion for a rank interval 

related to a ranking with n = 4 objects). So, the proposed procedure synthesizes these two radically 

different rank intervals into the same midrank: i.e., 2.5. Is this result acceptable/reasonable? 

Reflecting on the proposed procedure, the first part is a conventional transformation of each rank 

interval into a single equivalent rank (i.e., midrank). Of course, different conventional constructions 

could be adopted, resulting in different W values. This aspect raises a further question: Of all the 

possible ways of determining W for incomplete rankings, does the proposed one rely on reasonable 

hypotheses and provide plausible results? To provide a comprehensive answer to the above 

question, it would be necessary to carry out a structured study, as we plan to do in the future. 

Nevertheless, some preliminary arguments to support the proposed technique are presented below, 

in the form of comments about the results of the previous example. 

Let us consider a rigorous but also very laborious way of determining W for problems with 

incomplete rankings; this method is based on three steps (De Loof et al., 2011; Bruggemann and 

Carlsen, 2011):  

 For each incomplete ranking, all the possible compatible complete rankings are generated. 

 Combining the above complete rankings, all the possible complete problems that are compatible 

with the initial incomplete one are identified. 

 The W value related to each complete problem is determined. Then, the distribution of the 

resulting W values is constructed and studied.  

Table A.1 exemplifies this exercise for the four incomplete rankings in Figure A.1(2). Even very 

simple incomplete rankings may generate a relatively large number of compatible complete 

rankings, e.g., the one formulated by expert e3 generates thirteen complete rankings. In fact, this 

problem can be classified as NP-hard, as its complexity increases exponentially with the number of 

objects and experts (Bruggemann and Carlsen, 2011).  

Considering the set of rankings compatible with a certain incomplete ranking, it is interesting to 

examine the rank distributions. For example, Figure A.2(a) shows the rank distributions related to 

the thirteen rankings compatible with the incomplete ranking by expert e3. Analyzing these 

distributions reveals some interesting aspects: 
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1. All four distributions, respectively referred to each of the four objects (o1 to o4), are symmetrical. 

This symmetry is probably related to the structure of the incomplete rankings considered in this 

specific case (Caperna and Boccuzzo, 2018). In the future, we plan to assess the legitimacy of 

the symmetry hypothesis in more rigorous and general terms. 

2. Due to the aforesaid symmetry, the average value of each distribution coincides with the midrank 

(cf. Figure A.2 and Figure A.1(c)). 

3. The distributions of the object ranks are generally correlated with each other, as also exemplified 

in the Pearson correlation matrix in Table A.2. 

 
Experts: e1 e2 e3 e4 
Incompl. rankings: o1 > … > o4 o1 > o2 > … o2 > … o1 ~ o2 ~ o3 

(o2 excluded) 
Compatible  compl. 
rankings: 

    
(1) o1 > (o2 ~ o3) > o4 (1) o1 > o2 > (o3 ~ o4) (1) o2 > o1 > o3 > o4 (1) (o1 ~ o2 ~ o3) > o4 
(2) o1 > o2 > o3 > o4 (2) o1 > o2 > o3 > o4 (2) o2 > o1 > o4 > o3 (2) o4 > (o1 ~ o2 ~ o3) 
(3) o1 > o3 > o2 > o4 (3) o1 > o2 > o4 > o3 (3) o2 > o1 > (o3 ~ o4) (3) o1 ~ o2 ~ o3 ~ o4 

   (4) o2 > o3 > o1 > o4  
   (5) o2 > o3 > o4 > o1  
   (6) o2 > o3 > (o1 ~ o4)  
   (7) o2 > o4 > o1 > o3  
   (8) o2 > o4 > o3 > o1  
   (9) o2 > o4 > (o1 ~ o3)  
   (10) o2 > (o1 ~ o3) > o4  
   (11) o2 > (o1 ~ o4) > o3  
   (12) o2 > (o3 ~ o4) > o1  
   (13) o2 > (o1 ~ o3 ~ o4)  

Table A.1. Possible complete rankings, which are compatible with the four incomplete rankings at the top. 
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o1 o2  o1 o2 o3 o4 
 2.0 1.0 3.0 4.0 
 2.0 1.0 4.0 3.0 
 2.0 1.0 3.5 3.5 
 3.0 1.0 2.0 4.0 
 4.0 1.0 2.0 3.0 
 3.5 1.0 2.0 3.5 
 3.0 1.0 4.0 2.0 
 4.0 1.0 3.0 2.0 
 3.5 1.0 3.5 2.0 
 2.5 1.0 2.5 4.0 
 2.5 1.0 4.0 2.5 
 4.0 1.0 2.5 2.5 
 3.0 1.0 3.0 3.0 

    
Mean 3.0 1.0 3.0 3.0 

St. dev. 0.76 0.00 0.76 0.76

(a) Ranks (b) Distributions 

 

Figure A.2. Ranks and corresponding distributions related to the four objects (o1 to o4), considering the 
thirteen complete rankings compatible with the incomplete ranking by expert e3 (see Table A.1). 
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Subsequently, we consider all the possible combinations between the sets of compatible complete 

rankings in Table A.1, i.e., (i) the three complete rankings related to the incomplete rankings by e1, 

(ii) the three ones related to the incomplete rankings by e2, (iii) the thirteen ones related to the 

incomplete rankings by e3, and (iv) three ones related to the incomplete rankings by e4. 

Consequently, 3∙3∙13∙3 = 351 complete decisional problems, which are compatible with the initial 

(incomplete) one, can be identified. For each of these problems, it is then possible to determine a 

corresponding value of W (through the traditional procedure in Sect. 2) and then to study the 

corresponding W distribution. We point out that these 351 complete problems arise from an 

incomplete problem with a relatively small number of experts and objects. This denotes the low 

sustainability of the proposed construction, for realistic problems characterized by a large number 

of objects and/or experts. 

Object o1 o2 o3 o4

o1 1       
o2 0 1   
o3 -0.5 0 1  
o4 -0.5 0 -0.5 1 

Table A.2. Pearson correlation table of the ranks related to the four objects (o1 to o4), considering the thirteen 
complete rankings compatible with the incomplete ranking by expert e3 (see Table A.1). 

The histogram in Figure A.3 represents the distribution of the W values resulting from the example. 

We note that this distribution is slightly right-skewed (median below mean value) and has a 

relatively high dispersion (standard deviation of 19.3%). The mean value of W is equal to 39.7%. 

Interestingly, the W value determined through the procedure based on midranks (i.e., 44.8%, as 

shown in Figure A.1) is relatively close to the previous mean value, denoting a certain plausibility 

of the procedure itself.  

 
Descriptive statistics

Total count 351 
Mean 39.7% 
St. dev. 19.3% 
Minimum 5.6% 
Maximum 86.1% 
Q1 25.0% 
Median 37.5% 
Q3 54.3% 

Q1 

Q3

Mean

 W = 44.8%  
(with midranks) 

P
er

ce
nt

 

15%                30%                45%               60%                 75%
0 

2 

4 

6 

8 

10 

12 

 

Figure A.3. Histogram and descriptive statistics of the W distribution related to the 3·3·13·3 = 351 possible 
complete problems examined. 
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The authors are currently developing a new technique to determine an indicator that expresses the 

uncertainty of the W values, calculated using midranks; this indicator should somehow take into 

account the dispersion of the initial rank-intervals, without neglecting any correlations between 

them. In addition, this new indicator could be interpreted as a proxy for the dispersion of the above-

exemplified W distribution, which avoids to carry out such a laborious construction. 

A.3 Further data concerning the six problems exemplified 

Tables A.3 to A.8 illustrate the rankings and descriptive parameters (n, t, b, k, c and c ) related to 

the six problems exemplified in Sect. 3.4. For each ranking, the (k) isolated objects are specified in 

brackets; “(o)” denotes t/b-objects in case they are ordered, while “(u)” in case they are unordered. 

 (0) Complete problem     
Expert Rankings t b k c 

e1 o6>o3>o1>o5>o4>o2>o7>o8 4 (o) 3 (o) 0 100.0% 
e2 o6>o3>o5>o7>o1>o8>o4>o2 4 (o) 3 (o) 0 100.0% 
e3 o6>o3>o5>o4>o8>o2>o1>o7 4 (o) 3 (o) 0 100.0% 
e4 o6>o5>o2>o3>o1>o8>o4>o7 4 (o) 3 (o) 0 100.0% 
e5 o3>o6>o5>o7>o1>o4>o2>o8 4 (o) 3 (o) 0 100.0% 
e6 o3>o5>o6>o7>o2>o1>o8>o4 4 (o) 3 (o) 0 100.0% 
e7 o5>o6>o3>o4>o1>o8>o2>o7 4 (o) 3 (o) 0 100.0% 
e8 o5>o6>o3>o1>o2>o8>o7>o4 4 (o) 3 (o) 0 100.0% 
e9 o6>o2>o3>o7>o8>o1>o5>o4 4 (o) 3 (o) 0 100.0% 
e10 o3>o5>o1>o6>o8>o4>o2>o7 4 (o) 3 (o) 0 100.0% 

   c = 100.0% 

Note: “(o)” stands for ordered t/b-objects. 
Table A.3. Complete problem (0) and respective descriptive parameters. 

 

(1) First incomplete problem     
Expert Rankings t b k c 

e1 o6>o3>o1>o5>o4>o2>o7>o8 4 (o) 3 (o) 0 100.0% 
e2 o6>o3>o5>{o7||o1}>o8>o4>o2 3 (o) 3 (o) 0 96.4% 
e3 o6>o3>o5>{o4||o8}>o2>o1>o7 3 (o) 3 (o) 0 96.4% 
e4 {o6||o5||o2}>{o3||o1}>{o8||o4||o7} 3 (u) 3 (u) 0 75.0% 
e5 o3>o6>o5>{o7||o1||o4||o2||o8} 3 (o) 0 0 64.3% 
e6 o3>o5>o6>{o7||o2||o1||o8||o4} 3 (o) 0 0 64.3% 
e7 o5>o6>o3>{o4||o1||o8||o2||o7} 3 (o) 0 0 64.3% 
e8 {o5||o6||o3}>{o1||o2||o8||o7||o4} 3 (u) 0 0 53.6% 
e9 o6>o2>o3>{o7||o8||o1||o5||o4} 3 (o) 0 0 64.3% 
e10 {o3||o5||o1}>{o6||o8||o4||o2||o7} 3 (u) 0 0 53.6% 

   c = 73.2% 

Note: “(o)” stands for ordered t/b-objects; 
 “(u)” stands for unordered t/b-objects. 

Table A.4. First incomplete problem (1) and respective descriptive parameters. 

 

(2) Second incomplete problem     
Expert Rankings t b k c 

e1 o6>o3>o1>o5 >o4>o2>o7 4 (o) 3 (o) 1 (o8) 75.0% 
e2 o6>o3>o5>o7>o1>o4>o2 3 (o) 3 (o) 1 (o8) 75.0% 
e3 o3>o5>o4>o8>o2>o1>o7 3 (o) 3 (o) 1 (o6) 75.0% 
e4 {o6||o5||o2}>o3>{o8||o4||o7} 3 (u) 3 (u) 1 (o1) 53.6% 
e5 o3>o6>o5>{o7||o1||o4||o2} 3 (o) 0 1 (o8) 53.6% 
e6 o3>o5>o7>{o2||o1||o8||o4} 3 (o) 0 1 (o6) 53.6% 
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e7 o5>o6>o3>{o4||o1||o2||o7} 3 (o) 0 1 (o8) 53.6% 
e8 {o5||o6||o3}>{o1||o8||o7||o4} 3 (u) 0 1 (o2) 42.9% 
e9 o6>o2>o3>{o8||o1||o5||o4} 3 (o) 0 1 (o7) 53.6% 
e10 {o3||o5||o1}>{o6||o8||o4||o2} 3 (u) 0 1 (o7) 42.9% 

   c = 57.9% 

Note: “(o)” stands for ordered t/b-objects; 
 “(u)” stands for unordered t/b-objects. 

Table A.5. Second incomplete problem (2) and respective descriptive parameters. 

 (3) Third incomplete problem    
Expert Rankings t b k c 

e1 o6>o1>o5>o2>o7>o8 3 (o) 3 (o) 2 (o4, o3) 53.6% 
e2 o6>o3>o7>o1>o8>o4 3 (o) 3 (o) 2 (o2, o5) 53.6% 
e3 o6>o5>o4>o8>o1>o7 3 (o) 3 (o) 2 (o3, o2) 53.6% 
e4 {o6||o5||o3}>{o1||o8||o7} 3 (u) 3 (u) 2 (o2, o4) 32.1% 
e5 o3>o6>o5>{o4||o2||o8} 3 (o) 0 2 (o1, o7) 42.9% 
e6 o3>o6>o7>{o2||o8||o4} 3 (o) 0 2 (o5, o1) 42.9% 
e7 o5>o3>o1>{o8||o2||o7} 3 (o) 0 2 (o4, o6) 42.9% 
e8 {o5||o3||o2}>{o8||o7||o4} 3 (u) 0 2 (o1, o6) 32.1% 
e9 o2>o3>o7>{o1||o5||o4} 3 (o) 0 2 (o8, o6) 42.9% 
e10 {o5||o1||o6}>{o8||o4||o2} 3 (u) 0 2 (o7, o3) 32.1% 

   c = 42.9% 

Note: “(o)” stands for ordered t/b-objects; 
 “(u)” stands for unordered t/b-objects. 

Table A.6. Third incomplete problem (3) and respective descriptive parameters. 

 

(4) Fourth incomplete problem     
Expert Rankings t b k c 

e1 o6>o3>o5>o4>o2>o7 3 (o) 3 (o) 2 (o8, o1) 53.6% 
e2 o6>{o3||o5||o1||o4}>o2 1 1 2 (o7, o8) 32.1% 
e3 o6>{o3||o5||o8||o2}>o7 1 1 2 (o1 o4) 32.1% 
e4 o6>{o5||o3||o1||o4}>o7 1 1 2 (o8, o2) 32.1% 
e5 o3>{o6||o5||o7||o4||o2} 1 0 2 (o8, o1) 17.9% 
e6 o3>{o5||o7||o1||o8||o4} 1 0 2 (o2, o6) 17.9% 
e7 o5>{o6||o3||o4||o1||o8} 1 0 2 (o2, o7) 17.9% 
e8 o5>{o3||o1||o2||o8||o7} 1 0 2 (o6, o4) 17.9% 
e9 o6>{o3||o7||o8||o1||o4} 1 0 2 (o2, o5) 17.9% 
e10 o3>{o5||o1||o6||o8||o7} 1 0 2 (o4, o2) 17.9% 

   c = 25.7% 

Note: “(o)” stands for ordered t/b-objects. 
Table A.7. Fourth incomplete problem (4) and respective descriptive parameters. 

 

(5) Fifth incomplete problem     
Expert Rankings t b k c 

e1 {o1||o2||o3||o4||o5||o6||o7||o8} 0 0 All 0.0%
e2 {o1||o2||o3||o4||o5||o6||o7||o8} 0 0 All 0.0%
e3 {o1||o2||o3||o4||o5||o6||o7||o8} 0 0 All 0.0%
e4 {o1||o2||o3||o4||o5||o6||o7||o8} 0 0 All 0.0%
e5 {o1||o2||o3||o4||o5||o6||o7||o8} 0 0 All 0.0%
e6 {o1||o2||o3||o4||o5||o6||o7||o8} 0 0 All 0.0%
e7 {o1||o2||o3||o4||o5||o6||o7||o8} 0 0 All 0.0%
e8 {o1||o2||o3||o4||o5||o6||o7||o8} 0 0 All 0.0%
e9 {o1||o2||o3||o4||o5||o6||o7||o8} 0 0 All 0.0%
e10 {o1||o2||o3||o4||o5||o6||o7||o8} 0 0 All 0.0%

   c = 0.0%

Table A.8. Fifth incomplete problem (5) and respective descriptive parameters. 
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Tables A.9 to A.14 contain the rank tables relating to the six problems (0 to 5) shown in Tables A.3 

to A.8 respectively. 
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(0) Complete problem  

 o1 o2 o3 o4 o5 o6 o7 o8 Row totals 

e1 3, 3 → 3.0 6, 6 → 6.0 2, 2 → 2.0 5, 5 → 5.0 4, 4 → 4.0 1, 1 → 1.0 7, 7 → 7.0 8, 8 → 8.0 36 
e2 5, 5 → 5.0 8, 8 → 8.0 2, 2 → 2.0 7, 7 → 7.0 3, 3 → 3.0 1, 1 → 1.0 4, 4 → 4.0 6, 6 → 6.0 36 
e3 7, 7 → 7.0 6, 6 → 6.0 2, 2 → 2.0 4, 4 → 4.0 3, 3 → 3.0 1, 1 → 1.0 8, 8 → 8.0 5, 5 → 5.0 36 
e4 5, 5 → 5.0 3, 3 → 3.0 4, 4 → 4.0 7, 7 → 7.0 2, 2 → 2.0 1, 1 → 1.0 8, 8 → 8.0 6, 6 → 6.0 36 
e5 5, 5 → 5.0 7, 7 → 7.0 1, 1 → 1.0 6, 6 → 6.0 3, 3 → 3.0 2, 2 → 2.0 4, 4 → 4.0 8, 8 → 8.0 36 
e6 6, 6 → 6.0 5, 5 → 5.0 1, 1 → 1.0 8, 8 → 8.0 2, 2 → 2.0 3, 3 → 3.0 4, 4 → 4.0 7, 7 → 7.0 36 
e7 5, 5 → 5.0 7, 7 → 7.0 3, 3 → 3.0 4, 4 → 4.0 1, 1 → 1.0 2, 2 → 2.0 8, 8 → 8.0 6, 6 → 6.0 36 
e8 4, 4 → 4.0 5, 5 → 5.0 3, 3 → 3.0 8, 8 → 8.0 1, 1 → 1.0 2, 2 → 2.0 7, 7 → 7.0 6, 6 → 6.0 36 
e9 6, 6 → 6.0 2, 2 → 2.0 3, 3 → 3.0 8, 8 → 8.0 7, 7 → 7.0 1, 1 → 1.0 4, 4 → 4.0 5, 5 → 5.0 36 
e10 3, 3 → 3.0 7, 7 → 7.0 1, 1 → 1.0 6, 6 → 6.0 2, 2 → 2.0 4, 4 → 4.0 8, 8 → 8.0 5, 5 → 5.0 36 

          
Col. totals 49.0 56.0 22.0 63.0 28.0 18.0 62.0 62.0 360 

Table A.9. Rank table concerning the complete problem (0) in Table A.3. 

(1) First incomplete problem  

 o1 o2 o3 o4 o5 o6 o7 o8 Row totals 

e1 3, 3 → 3.0 6, 6 → 6.0 2, 2 → 2.0 5, 5 → 5.0 4, 4 → 4.0 1, 1 → 1.0 7, 7 → 7.0 8, 8 → 8.0 36 
e2 4, 5 → 4.5 8, 8 → 8.0 2, 2 → 2.0 7, 7 → 7.0 3, 3 → 3.0 1, 1 → 1.0 4, 5 → 4.5 6, 6 → 6.0 36 
e3 7, 7 → 7.0 6, 6 → 6.0 2, 2 → 2.0 4, 5 → 4.5 3, 3 → 3.0 1, 1 → 1.0 8, 8 → 8.0 4, 5 → 4.5 36 
e4 4, 5 → 4.5 1, 3 → 2.0 4, 5 → 4.5 6, 8 → 7.0 1, 3 → 2.0 1, 3 → 2.0 6, 8 → 7.0 6, 8 → 7.0 36 
e5 4, 8 → 6.0 4, 8 → 6.0 1, 1 → 1.0 4, 8 → 6.0 3, 3 → 3.0 2, 2 → 2.0 4, 8 → 6.0 4, 8 → 6.0 36 
e6 4, 8 → 6.0 4, 8 → 6.0 1, 1 → 1.0 4, 8 → 6.0 2, 2 → 2.0 3, 3 → 3.0 4, 8 → 6.0 4, 8 → 6.0 36 
e7 4, 8 → 6.0 4, 8 → 6.0 3, 3 → 3.0 4, 8 → 6.0 1, 1 → 1.0 2, 2 → 2.0 4, 8 → 6.0 4, 8 → 6.0 36 
e8 4, 8 → 6.0 4, 8 → 6.0 1, 3 → 2.0 4, 8 → 6.0 1, 3 → 2.0 1, 3 → 2.0 4, 8 → 6.0 4, 8 → 6.0 36 
e9 4, 8 → 6.0 2, 2 → 2.0 3, 3 → 3.0 4, 8 → 6.0 4, 8 → 6.0 1, 1 → 1.0 4, 8 → 6.0 4, 8 → 6.0 36 
e10 1, 3 → 2.0 4, 8 → 6.0 1, 3 → 2.0 4, 8 → 6.0 1, 3 → 2.0 4, 8 → 6.0 4, 8 → 6.0 4, 8 → 6.0 36 

          
Col. totals 51.0 54.0 22.5 59.5 28.0 21.0 62.5 61.5 360 

Table A.10. Rank table concerning the first incomplete problem (1) in Table A.4. 

(2) Second incomplete problem  

 o1 o2 o3 o4 o5 o6 o7 o8 Row totals 

e1 3, 4 → 3.5 6, 7 → 6.5 2, 3 → 2.5 5, 6 → 5.5 4, 5 → 4.5 1, 2 → 1.5 7, 8 → 7.5 1, 8 → 4.5 36 
e2 5, 6 → 5.5 7, 8 → 7.5 2, 3 → 2.5 6, 7 → 6.5 3, 4 → 3.5 1, 2 → 1.5 4, 5 → 4.5 1, 8 → 4.5 36 
e3 6, 7 → 6.5 5, 6 → 5.5 1, 2 → 1.5 3, 4 → 3.5 2, 3 → 2.5 1, 8 → 4.5 7, 8 → 7.5 4, 5 → 4.5 36 
e4 1, 8 → 4.5 1, 4 → 2.5 4, 5 → 4.5 5, 8 → 6.5 1, 4 → 2.5 1, 4 → 2.5 5, 8 → 6.5 5, 8 → 6.5 36 
e5 4, 8 → 6.0 4, 8 → 6.0 1, 2 → 1.5 4, 8 → 6.0 3, 4 → 3.5 2, 3 → 2.5 4, 8 → 6.0 1, 8 → 4.5 36 
e6 4, 8 → 6.0 4, 8 → 6.0 1, 2 → 1.5 4, 8 → 6.0 2, 3 → 2.5 1, 8 → 4.5 3, 4 → 3.5 4, 8 → 6.0 36 
e7 4, 8 → 6.0 4, 8 → 6.0 3, 4 → 3.5 4, 8 → 6.0 1, 2 → 1.5 2, 3 → 2.5 4, 8 → 6.0 1, 8 → 4.5 36 
e8 4, 8 → 6.0 1, 8 → 4.5 1, 4 → 2.5 4, 8 → 6.0 1, 4 → 2.5 1, 4 → 2.5 4, 8 → 6.0 4, 8 → 6.0 36 
e9 4, 8 → 6.0 2, 3 → 2.5 3, 4 → 3.5 4, 8 → 6.0 4, 8 → 6.0 1, 2 → 1.5 1, 8 → 4.5 4, 8 → 6.0 36 
e10 1, 4 → 2.5 4, 8 → 6.0 1, 4 → 2.5 4, 8 → 6.0 1, 4 → 2.5 4, 8 → 6.0 1, 8 → 4.5 4, 8 → 6.0 36 

          
Col. totals 52.5 53.0 26.0 58.0 31.5 29.5 56.5 53.0 360 

Table A.11. Rank table concerning the second incomplete problem (2) in Table A.5. 
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(3) Third incomplete problem  

 o1 o2 o3 o4 o5 o6 o7 o8 Row totals 

e1 2, 4 → 3.0 4, 6 → 5.0 1, 8 → 4.5 1, 8 → 4.5 3, 5 → 4.0 1, 3 → 2.0 5, 7 → 6.0 6, 8 → 7.0 36 
e2 4, 6 → 5.0 1, 8 → 4.5 2, 4 → 3.0 6, 8 → 7.0 1, 8 → 4.5 1, 3 → 2.0 3, 5 → 4.0 5, 7 → 6.0 36 
e3 5, 7 → 6.0 1, 8 → 4.5 1, 8 → 4.5 3, 5 → 4.0 2, 4 → 3.0 1, 3 → 2.0 6, 8 → 7.0 4, 6 → 5.0 36 
e4 4, 8 → 6.0 1, 8 → 4.5 1, 5 → 3.0 1, 8 → 4.5 1, 5 → 3.0 1, 5 → 3.0 4, 8 → 6.0 4, 8 → 6.0 36 
e5 1, 8 → 4.5 4, 8 → 6.0 1, 3 → 2.0 4, 8 → 6.0 3, 5 → 4.0 2, 4 → 3.0 1, 8 → 4.5 4, 8 → 6.0 36 
e6 1, 8 → 4.5 4, 8 → 6.0 1, 3 → 2.0 4, 8 → 6.0 1, 8 → 4.5 2, 4 → 3.0 3, 5 → 4.0 4, 8 → 6.0 36 
e7 3, 5 → 4.0 4, 8 → 6.0 2, 4 → 3.0 1, 8 → 4.5 1, 3 → 2.0 1, 8 → 4.5 4, 8 → 6.0 4, 8 → 6.0 36 
e8 1, 8 → 4.5 1, 5 → 3.0 1, 5 → 3.0 4, 8 → 6.0 1, 5 → 3.0 1, 8 → 4.5 4, 8 → 6.0 4, 8 → 6.0 36 
e9 4, 8 → 6.0 1, 3 → 2.0 2, 4 → 3.0 4, 8 → 6.0 4, 8 → 6.0 1, 8 → 4.5 3, 5 → 4.0 1, 8 → 4.5 36 
e10 1, 5 → 3.0 4, 8 → 6.0 1, 8 → 4.5 4, 8 → 6.0 1, 5 → 3.0 1, 5 → 3.0 1, 8 → 4.5 4, 8 → 6.0 36 

          
Col. totals 46.5 47.5 32.5 54.5 37.0 31.5 52.0 58.5 360 

Table A.12. Rank table concerning the third incomplete problem (3) in Table A.6. 

(4) Fourth incomplete problem  

 o1 o2 o3 o4 o5 o6 o7 o8 Row totals 

e1 1, 8 → 4.5 5, 7 → 6.0 2, 4 → 3.0 4, 6 → 5.0 3, 5 → 4.0 1, 3 → 2.0 6, 8 → 7.0 1, 8 → 4.5 36 
e2 2, 7 → 4.5 6, 8 → 7.0 2, 7 → 4.5 2, 7 → 4.5 2, 7 → 4.5 1, 3 → 2.0 1, 8 → 4.5 1, 8 → 4.5 36 
e3 1, 8 → 4.5 2, 7 → 4.5 2, 7 → 4.5 1, 8 → 4.5 2, 7 → 4.5 1, 3 → 2.0 6, 8 → 7.0 2, 7 → 4.5 36 
e4 2, 7 → 4.5 1, 8 → 4.5 2, 7 → 4.5 2, 7 → 4.5 2, 7 → 4.5 1, 3 → 2.0 6, 8 → 7.0 1, 8 → 4.5 36 
e5 1, 8 → 4.5 2, 8 → 5.0 1, 3 → 2.0 2, 8 → 5.0 2, 8 → 5.0 2, 8 → 5.0 2, 8 → 5.0 1, 8 → 4.5 36 
e6 2, 8 → 5.0 1, 8 → 4.5 1, 3 → 2.0 2, 8 → 5.0 2, 8 → 5.0 1, 8 → 4.5 2, 8 → 5.0 2, 8 → 5.0 36 
e7 2, 8 → 5.0 1, 8 → 4.5 2, 8 → 5.0 2, 8 → 5.0 1, 3 → 2.0 2, 8 → 5.0 1, 8 → 4.5 2, 8 → 5.0 36 
e8 2, 8 → 5.0 2, 8 → 5.0 2, 8 → 5.0 1, 8 → 4.5 1, 3 → 2.0 1, 8 → 4.5 2, 8 → 5.0 2, 8 → 5.0 36 
e9 2, 8 → 5.0 1, 8 → 4.5 2, 8 → 5.0 2, 8 → 5.0 1, 8 → 4.5 1, 3 → 2.0 2, 8 → 5.0 2, 8 → 5.0 36 
e10 2, 8 → 5.0 1, 8 → 4.5 1, 3 → 2.0 1, 8 → 4.5 2, 8 → 5.0 2, 8 → 5.0 2, 8 → 5.0 2, 8 → 5.0 36 

          
Col. totals 47.5 50.0 37.5 47.5 41.0 34.0 55.0 47.5 360 

Table A.13. Rank table concerning the fourth incomplete problem (4) in Table A.7. 

(5) Fifth incomplete problem  

 o1 o2 o3 o4 o5 o6 o7 o8 Row totals 

e1 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 36 
e2 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 36 
e3 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 36 
e4 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 36 
e5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 36 
e6 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 36 
e7 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 36 
e8 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 36 
e9 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 36 
e10 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 1, 8 → 4.5 36 

          
Col. totals 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 360 

Table A.14. Rank table concerning the fifth incomplete problem (5) in Table A.8. 


