POLITECNICO DI TORINO Repository ISTITUZIONALE

Optimizing Sewage Sludge Digestion in Wastewater Treatment Plants: a Case Study from the Largest WWTP in Italy

Original Optimizing Sewage Sludge Digestion in Wastewater Treatment Plants: a Case Study from the Largest WWTP in Italy / Borzooei, S.; Campo, G.; Cerutti, A.; Meucci, L.; Panepinto, D.; Ravina, M.; Riggio, V.; Ruffino, B.; Scibilia, G.; Zanetti, M (2020), pp. 311-316. (Intervento presentato al convegno 28th European BiomassConference.) [10.5071/28theubce2020-2co.5.2].
Availability: This version is available at: 11583/2846654 since: 2020-09-24T14:09:13Z
Publisher: ETA-Florence Renewable Energies
Published DOI:10.5071/28theubce2020-2co.5.2
Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright

(Article begins on next page)

Optimizing Sewage Sludge Digestion in Wastewater Treatment Plants: A Case Study from the Largest WWTP in Italy

Marco Ravina

S. Borzooei, G. Campo, A. Cerutti, L. Meucci, D. Panepinto, V. Riggio, B. Ruffino, G. Scibilia, M.C. Zanetti

Politecnico di Torino - Department of Environment, Land and Infrastructure Engineering Società Metropolitana Acque Torino - Research Center

e-EUBCE 2020

Castiglione Torinese WWTP

Castiglione Torinese WWTP

Objective: Sludge treatment and anaerobic digestion stage optimization

- Evaluation of combined thermal and chemical pre-treatments (named <u>hybrid pre-</u> <u>treatments</u>) on waste activated sludge (WAS)
- 2. Evaluation of the introduction of a <u>biogas</u> <u>upgrading process to biomethane</u>

in terms of mass, energy and greenhouse gas emission balance.

- → Biogas/biomethane production
- → GHG losses from AD process
- → GHG losses from upgrading process

Energy balance

- ightarrow Biomethane energy content & useful energy
- ightarrow Cradle-to-grave energy accounting
- → Plant energy auto-consumption

Emission balance

- → Cradle-to-grave emissions of the process
- → Emission avoidance due to fossil fuel replacement

WAS pre-treatment tests and results

- Raw and treated WAS were digested in mesophilic conditions (38 °C) in 6 L batch reactors.
- The biogas produced was collected in 5 L Tedlar bags
- Test lasted 20 days
- Results showed that the thermoalkali treatment determined an increase in SBP and SMP of 46.2% and 86.1%, respectively

Full process simulation - Greenhouse gas balance

Input parameter/value	Present		Alternative		Difference
	t CO2 _{eq} /y	t CO2 _{eq} /m³ biogas y	t CO2 _{eq} /y	t CO2 _{eq} /m³ biogas y	
Total CH ₄ loss from the process	2,437	0.213	3,883	0.287	+34%
Total CO ₂ loss from the process	147	0.013	115	0.008	-39%
Net electricity production	-5,883	-0.514	-	-	-
Biomethane replacing natural gas	-	-	-14,594	-1.078	-
Thermal energy auto-consumption covered by external source	-	-	1,203	0.089	+100%
Electricity auto-consumption covered by external source	-	-	3,967	0.293	+100%
Energy consumption for digestate handling/transfer	117	0.010	93	0.007	-30%
Produced GHG emissions	2,701	0.236	9,261	0.684	+180%
Avoided GHG emissions	-5,883	-0.514	-14,594	-1.078	-109%
GHG emission balance	-3,182	-0.278	-5,333	-0.394	-41%

Conclusion

- →Optimization would provide important positive impacts on the overall energy and mass balance of the WWTP sludge line:
 - 1. the installation of a dynamic thickener would allow a **reduction of the sludge volume** entering into the digestion process. Consequently, the thermal energy auto-consumed in the digestion stage would be lower than the present.
- 2. biogas production would be around 20% higher than the methane fraction contained in the biogas actually produced.
- energy saving and the increased specific biomethane production would improve the overall GHG balance of the system

Next steps:

- → Further tests and implementation at the field scale
- →Integration of a microalgae photo-bioreactor for CO₂ capture

Thank you

marco.ravina@polito.it