POLITECNICO DI TORINO Repository ISTITUZIONALE

Optimizing Sewage Sludge Digestion in Wastewater Treatment Plants: a Case Study from the Largest WWTP in Italy

Original

Optimizing Sewage Sludge Digestion in Wastewater Treatment Plants: a Case Study from the Largest WWTP in Italy / Borzooei, S.; Campo, G.; Cerutti, A.; Meucci, L.; Panepinto, D.; Ravina, M.; Riggio, V.; Ruffino, B.; Scibilia, G.; Zanetti, M.. - (2020), pp. 311-316. (Intervento presentato al convegno 28th European BiomassConference.) [10.5071/28theubce2020-2co.5.2].

Availability: This version is available at: 11583/2846654 since: 2020-09-24T14:09:13Z

Publisher: ETA-Florence Renewable Energies

Published DOI:10.5071/28theubce2020-2co.5.2

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

WAS pre-treatment tests and results

- Raw and treated WAS were digested in mesophilic conditions (38 °C) in 6 L batch reactors.
- The biogas produced was collected in 5 L Tedlar bags
- Test lasted 20 days
- Results showed that the thermoalkali treatment determined an increase in SBP and SMP of 46.2% and 86.1%, respectively

Csmat

Full process si	mulation	- Greenh	iouse g	gas balc	ance
Input parameter/value	Present		Alternative		Difference
	t CO2 _{eq} /y	t CO2 _{eq} /m ³ biogas y	t CO2 _{eq} /y	t CO2 _{eq} /m³ biogas y	
Total CH ₄ loss from the process	2,437	0.213	3,883	0.287	+34%
Total CO ₂ loss from the process	147	0.013	115	0.008	-39%
Net electricity production	-5,883	-0.514	-	-	-
Biomethane replacing natural gas	-	-	-14,594	-1.078	-
Thermal energy auto-consumption covered by external source	-	-	1,203	0.089	+100%
Electricity auto-consumption covered by external source	-	-	3,967	0.293	+100%
Energy consumption for digestate handling/transfer	117	0.010	93	0.007	-30%
Produced GHG emissions	2,701	0.236	9,261	0.684	+180%
Avoided GHG emissions	-5,883	-0.514	-14,594	-1.078	-109%
GHG emission balance	-3,182	-0.278	-5,333	-0.394	-41%

