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We have developed an efficient framework for analyz-
ing the reflection and transmission properties of semi-
conductor photonic crystal optical amplifiers. Specifi-
cally, we have investigated the use of slow-light to en-
hance the gain of short integrated amplifiers. We find
that the expected enhancement in transmission is lim-
ited by distributed feedback induced by the material
gain itself. Such back-scattering is further enhanced
by the refractive index variation associated with the
linewidth enhancement factor. The inclusion of this ef-
fect reveals that for a given material gain, devices with
smaller linewidth enhancement factor may offer better
performance.
© 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Enhancing the modal gain coefficient [1] is one of the mul-
tiple possibilities offered by slow-light (SL) in photonic crystal
(PhC) structures [2]. Experimentally verified [3], this gain en-
hancement enables the realization of shorter optical amplifiers
with promising applications to photonic integrated circuits [4],
as well as shorter lasers [5]. However, a fundamental limitation
to this approach is imposed by the gain itself [6]. SL is also
known to enhance the impact of refractive index variations. In a
PhC waveguide, a uniform refractive index variation results in a
band edge shift, with interesting reported applications [7, 8].

In this letter, we perform a detailed investigation of the im-
pact of SL on the optical propagation in a PhC semiconductor
optical amplifier (SOA). Our analysis is restricted to the linear
regime, i.e. sub-milliwatt power levels [9], appropriate for on-
chip interconnects.. Compared to previous works [9, 10], we
utilize an approach adapted from theory of distributed feedback
(DFB) lasers to offer new insights. Specifically, we consider the
practical case of a buried heterostructure (BH) active region [11]
and account for the refractive index variation due to the active
material linewidth enhancement factor (LEF). The presence of
material gain induces coupling between the Bloch modes of
the amplifier, which are otherwise uncoupled; consequently, a
strong reflection builds up, which limits the achievable gain. If
the LEF is accounted for, this degrading phenomenon may occur
at smaller gain values and/or at wavelengths farther from the

band edge as compared to the case when the LEF is neglected,
an effect which was not previously considered.

In the spirit of coupled-mode theory (CMT), the electromag-
netic state of a PhC line-defect waveguide with a complex refrac-
tive index can be represented as [12][

E(r)

H(r)

]
= c+(z)

[
e+(r)

h+(r)

]
+ c−(z)

[
e−(r)

h−(r)

]
(1)

In this formulation, the material gain (or absorption) induced by
carrier density is viewed as a perturbation to an unperturbed
waveguide with purely real refractive index. In Eq. (1), z is the
propagation coordinate and r the position vector. e+ (e−) is the
forward-propagating (backward-propagating) electric field of
the guided Bloch mode at the angular frequency ω; similarly, h±
are the magnetic fields. These modes are normalized according
to the power flux which they carry [12]. Moreover, they are
z−periodic, with the period given by lattice constant a. The
amplitudes c± generally depend on the perturbation, as well as
on z and ω. They are given by c± = ψ±e±ikzz, where kz is the
(real) wavenumber of the unperturbed waveguide, while ψ±
are slowly-varying spatial envelopes. If nonlinear effects are ne-
glected, the envelopes are governed by two coupled differential
equations [13]

∂zψ+ = iκFFψ+ + iκFBe+i2δzψ− (2a)

−∂zψ− = iκBFe−i2δzψ+ + iκFFψ− (2b)

which we call coupled-Bloch-mode (CBM) equations. Here,
δ = π/a − kz is the detuning from the band edge. In con-
trast to the classical CMT of DFB lasers [14], the self- (κFF) and
cross-coupling coefficients (κFB and κBF) strongly depend on
frequency. They are given by κx ≈ (ω/c)(∆nr + ini)S(ω)Γx(ω),
with x = FF, FB, BF. Here, c is the vacuum light speed and
S = ng(ω)/nslab the slow-down factor, with ng and nslab be-
ing, respectively, the group index and (real) slab refractive in-
dex of the unperturbed waveguide (material dispersion is ne-
glected). ni is the imaginary refractive index associated with
carrier density and ∆nr a possible, real variation to nslab (not
necessarily due to carrier density). ΓFF and ΓFB (ΓBF = Γ?

FB)
are coefficients depending on the spatial overlap between the
perturbation and Bloch modes of the unperturbed waveguide.
They are given, respectively, by ΓFF = (1/a)

∫
a Γ11(z)dz and

ΓFB = (1/a)
∫

a Γ12(z)e+i 2π
a zdz, where

Γ11(z) =
a
∫

A ε0n2
slab|e+(r)|

2F(r)dA∫
V
[
ε0n2

b(r)|e+(r)|2
]

dV
(3a)
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Fig. 1. Dispersion curve (left) and group index (right) of the
fundamental TE-like mode of the unperturbed waveguide.
The bottom left inset shows the top view of the unperturbed
waveguide and reference planes of a unit cell along the prop-
agation direction. The other insets display the electric field in-
tensity |e+|2 on the waveguide cross-section at the input (zin)
and center (zmid) of a unit cell at kza/(2π) = 0.54 (ng ≈ 56)
and kza/(2π) = 0.62 (ng ≈ 12). The vertical (horizontal) white
lines delimit the air holes (semiconductor slab).

Γ12(z) =
a
∫

A ε0n2
slab

[
e−(r) · e∗+(r)

]
F(r)dA∫

V
[
ε0n2

b(r)|e+(r)|2
]

dV
(3b)

Γ11 and Γ12 are normalized coupling coefficients derived in [12].
V is the volume of a supercell, A the transverse cross-section
at z and nb = nslab (nb = nclad) in the slab (cladding) is the
background refractive index. F is the distribution function of the
perturbation, represented by the active layers of quantum wells
(QWs) or quantum dots (QDs), which are assumed to undergo
spatially uniform pumping. They may uniformly extend across
the lateral direction (in what we call an all-active waveguide) [3]
or be confined to the line-defect, such as for waveguides with
a BH active region. In either case, Γ11 and Γ12 are z−periodic,
with period a. Therefore, they may be expanded in a Fourier
series. In this case, one finds ΓFF (ΓFB) to be the dominant har-
monic in the expansion of Γ11 (Γ12), thus obtaining Eqs. (2a)-(2b)
from those derived in [12]. This is explained in detail in [13] for
all-active waveguides; we have found that the same holds in the
case of a BH active region. ΓFF and ΓFB depend, in principle, on
the number and position of the active layers along the direction
orthogonal to the slab (y−). However, the field confinement
along the y−direction is due to total internal reflection. Owing
to the high refractive index contrast between the air and slab
material, this is weakly dependent on ω and z as compared to
confinement along the lateral direction (x−), which is due to
the photonic band gap. Consequently, we may evaluate ΓFF and
ΓFB by assuming the perturbation to be homogeneous within
the slab along the y−direction. Under these conditions, ni re-
flects the modal gain coefficient g0, with ni = −(c/ω)g0/2 and
g0 = Γygmat. Here, gmat is the material gain and Γy the optical
confinement factor along the y−direction within the active lay-
ers (assumed to be frequency-independent).

In the following, we assume nclad = 1, corresponding to the
slab being suspended in air [11], and nslab = 3.17, representative

Fig. 2. (a) ΓFF and ΓFB for a waveguide with a BH active re-
gion. The inset illustrates the device under study in this let-
ter. (b) Impact of a given ∆nr on the optical propagation in a
waveguide with ni = 0 and L = 100a. The left axis shows the
effective propagation constant of the perturbed waveguide
with ∆nr = −0.001 (solid) normalized to π/L. The disper-
sion curve of the unperturbed waveguide is also shown (dot-
ted). The perturbation is limited to the line-defect. The right
axis displays the power transmission through the perturbed
waveguide.

of the InP platform. The slab thickness is 250 nm and the hole
radius 0.25a, with a = 438 nm. Fig. 1 illustrates the dispersion
relation (left axis) and group index (right axis) of the unper-
turbed waveguide, computed by the plane wave eigensolver
MIT Photonic-Bands [15]. The top view of the unperturbed
waveguide is displayed by the bottom left inset. The other in-
sets show the electric field intensity |e+|2 on the waveguide
cross-section at the input (zin) and center (zmid) of a unit cell
for two different wavelengths (λ), corresponding to moderately
low (ng ≈ 12) and high (ng ≈ 56) group index. As the group
index increases, the mode spreads in the lateral direction [16].
Consequently, if the active region is limited to the line-defect, a
gradual decrease in ΓFF is to be expected. This is evidenced by
Fig. 2(a), showing ΓFF for a waveguide with a BH active region.
In addition, here we also show that a strong cross-coupling (i.e.
ΓFB) builds up while approaching the band edge, as explained
in detail in [13] for all-active waveguides. The same dependence
is found here for a BH active region. For the choice of unit cell
in Fig. 1, ΓFB turns out to be (to very good approximation) real
and positive. To easily incorporate the LEF, we assume a linear
dependence on carrier density of the material gain and real part
of the perturbed waveguide refractive index, nr. By introducing
the LEF, αH = −(dnr/dN)/(dni/dN) [17], with N being the
carrier density, and assuming nslab to coincide with nr at the
transparency carrier density, we may then reformulate nr as
nr(N) = nslab + αHni(N), leading to ∆nr = αHni. Finally, the
scattering loss is modeled with a phenomenological approach
by adding a loss contribution to the self-coupling coefficient,
i.e. κFF = (ω/c)(∆nr + ini) S ΓFF + i

[
α1S + α2S2] /2, where, α1

and α2 account, respectively, for disorder-induced coupling with
radiation modes and back-scattering [18]. We also note that the
CBM equations are cast in a form that is suitable for being com-
bined with a more rigorous treatment of disorder [5, 19].
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Fig. 3. Amplifier gain (solid) and reflection (dotted) with (a,
c) αH = 0 and (b, d) αH = 3. They are plotted: (a, b) versus
the modal gain, g0, at λ ≈ 1575 nm (blue) and λ ≈ 1581 nm
(red); (c, d) versus wavelength, λ, at g0 = 100 cm−1 (blue) and
g0 = 200 cm−1 (red). The dashed, black line in (a) is the gain
with SL effects being neglected.

By solving the CBM equations as an initial value problem,
the spatial dependence of the fields may be written as[

E(r)

H(r)

]
= F̃

[
ẽ+(r)

h̃+(r)

]
e+ik̃zz + B̃

[
ẽ−(r)

h̃−(r)

]
e−ik̃zz (4)

Here, ẽ± = e± + r±e∓i 2π
a ze∓ is the electric field of the forward-

(+) and backward-propagating (-) Bloch mode of the perturbed
waveguide, with analogous expressions for the magnetic fields
h̃±. Each Bloch mode of the perturbed waveguide results from
the interference of the forward- and backward-propagating
Bloch modes of the unperturbed waveguide, with r+ and r−
determining the strength of the backward component as com-
pared to the forward one and viceversa. F̃ and B̃ are the ampli-
tudes, while k̃z = βeff − igeff/2 is the (complex) wavenumber.
The effective propagation constant and net modal gain are, re-
spectively, βeff = Re {λ1} + π/a and geff = −2Im {λ1}, with
λ1 = ±

√
(κFF − δ)2 − κFBκBF. In the presence of gain, the sign

of the square root is selected such that Im {λ1} and Im {κFF}
have the same sign. Finally, r± = −κBF;FB/ [(κFF − δ) + λ1].
This approach is similar to that suggested in [20] for DFB lasers.
Without cross-coupling, one finds βeff = kz − SΓFFg0αH/2 and
geff = SΓFFg0 − (α1S + α2S2). Therefore, a simple enhancement
of the modal gain proportional to the slow-down factor may
be only expected in the absence of cross-coupling, which is the
case when we operate far from the band edge. Through the
same procedure leading to Eq. (4), one may derive the scatter-
ing matrix S relating the amplitudes of the Bloch modes exiting

and entering the perturbed waveguide, i.e. [c−(0) c+(L)]T =

S [c+(0) c−(L)]T , with T denoting the transpose operator. Here,
z = 0 (z = L) corresponds to the input (output) of the active
region (see the inset of Fig. 2(a)). The elements of S are given by

S11;22 =
−
(

e+2iλ1 L − 1
)

r±

1− r+r−e+2iλ1 L e∓i 2π
a L (5a)

Fig. 4. (a, b) Amplifier gain and (c, d) reflection with (a, c)
αH = 0 and (b, d) αH = 3 versus wavelength, λ, and modal
gain, g0.

S12;21 =
(1− r+r−)e+iλ1 L

1− r+r−e+2iλ1 L e+i π
a L (5b)

Here, |S21|2 (|S11|2) is the normalized power flux transmitted
(backscattered) by the perturbed waveguide in the ideal case of
continuity boundary conditions at the input and output inter-
faces, thus describing an intrinsic effect of the amplifier.

For the sake of clarity, we first consider the case of a sole
refractive index variation ∆nr. For this purpose, Fig. 2(b) shows
the power transmission |S21|2 through a waveguide with ∆nr =
−0.001, ni = 0, α1 = α2 = 0 and L = 100 a (right axis) com-
puted by Eq. (5b). Since there is neither gain, nor loss, one finds
|S11|2 = 1− |S21|2. The squared magnitude of S11 represents
the fraction of power backscattered at the interface between two
adjacent sections of a PhC waveguide only differing (by ∆nr)
in the slab refractive index, with the second section being the
perturbed one and having length L. The left axis shows the ef-
fective propagation constant of the perturbed waveguide (solid)
and that of the unperturbed waveguide (dotted) normalized to
π/L. Due to ∆nr, the band edge of the unperturbed waveguide
shifts to shorter wavelengths. This shift cannot be correctly re-
produced if the cross-coupling coefficients are neglected [13].
In the induced stop band, the power transmission is zero, as
the Bloch modes are evanescent (i.e. λ1 is purely imaginary,
with geff<0) and the waveguide is sufficiently long. Just outside
the stop band, the power transmission shows some oscillations,
with complete transmission being achieved at wavelengths for
which βeffL/π is an integer.

We shall now consider the impact of the active material. Due
to the adverse effect of disorder on practical devices, we limit
the discussion to modes with group index up to around 60 [21]
and assume α1 = 5 cm−1. For simplicity, we also assume α2 = 0,
since this effect only gives rise to a minor, quantitative change
of the results for realistic [5] values of α2. Furthermore, we as-
sume L = 100 a and consider g0 values not larger than 200 cm−1.
As an example, with typical values of Γy ≈ 2% per active layer
and 5 active layers, this translates into a maximum material
gain of 2000 cm−1, which is reasonable [17]. Fig. 3 shows the
amplifier gain (|S21|2) and reflection (|S11|2) as a function of (a,
b) modal gain, g0, and (c, d) wavelength, λ, with (a, c) αH = 0
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Fig. 5. Amplifier gain in dB with (a) αH = 0, (b) αH = 1.5, (c)
αH = 3 and (d) αH = 4.5. The colored area corresponds to the
reflection being smaller than −20 dB.

and (b, d) αH = 3. The choice αH = 0 reflects an ideal QD
laser, while αH = 3 is representative of a generic QW laser.
For αH = 0 (see Fig. 3(a)), at λ ≈ 1575 nm (blue) the amplifier
gain monotonically increases with the modal gain, while for
λ ≈ 1581 nm (red) it achieves a maximum. The appearance of
an optimum is explained as resulting from the build-up of a
strong reflection. Indeed, the closer λ is to the band edge, the
stronger the distributed feedback induced by material gain is,
owing to the smaller detuning δ (see Eqs. (2a)-(2b)) as well as the
relative increase of ΓFB as compared to ΓFF (see Fig. 2(a)). As a
reference, the amplifier gain with SL effects being neglected (i.e.
S = 1, ΓFF = 1 and ΓFB = 0) is also shown (dashed, black). In a
complementary fashion (see Fig. 3(c)), at g0 = 100 cm−1 (blue)
both amplifier gain and reflection increase as the wavelength
approaches the band edge, because the slow-down factor grows.
However, at g0 = 200 cm−1 (red) the distributed feedback be-
yond a certain wavelength is large enough to induce a steep
decrease in the amplifier gain. For αH = 3 (see Fig. 3(b)), the
band edge shifts to shorter and shorter wavelengths as the modal
gain grows, due to the increasing ∆nr induced by the carrier den-
sity. Consequently, the amplifier gain at a given wavelength,
in dependence of the modal gain, may be slightly enhanced
by αH , due the larger effective group index resulting from the
band edge shift. However, this enhancement comes at the price
of an enhanced reflection, due to the combined effect of gain-
and index-induced distributed feedback. Therefore, the drop
in amplifier gain sets in at smaller modal gain values than for
αH = 0. Similarly (see Fig. 3(d)), it occurs, for a given value of
modal gain, at wavelengths more detuned from the band edge.

A complete overview is provided by Fig. 4, reporting con-
tour plots of (a, b) amplifier gain and (c, d) reflection with (a,
c) αH = 0 and (b, d) αH = 3 versus wavelength and modal
gain. It is seen that both amplifier gain and reflection diverge
for certain combinations of wavelength and modal gain. These
points correspond to the poles of the scattering matrix S (i.e.
r+r−e+2iλ1 L = 1) and therefore to the onset of lasing, which is
genuinely sustained by the Bloch modes gain-induced coupling.

The quantification of a maximum amplifier gain depends on
the acceptable level of reflection, which varies with the applica-
tion. As an example, Fig. 5 illustrates the gain corresponding to

the reflection being smaller than −20 dB. The LEF is (a) αH = 0,
(b) αH = 1.5, (c) αH = 3 and (d) αH = 4.5. As αH grows, one
has increasingly less freedom, in terms of λ and g0, to achieve
a certain gain. For instance, a maximum gain larger than 11 dB
can be achieved with αH = 0, but not greater than 8 dB with
αH = 4.5. This suggests that for a given material gain, QDs may
be more attractive than QWs as active layers.

In conclusion, we have provided a theoretical study of the
impact of slow-light on the optical propagation properties of
PhC SOAs with a buried heterostructure active region. We
have found that the maximum amplifier gain is limited by the
buildup of a strong reflection, which increases as the operation
wavelength approaches the band edge and/or the material gain
grows. We have clarified the impact of the linewidth enhance-
ment factor, which further hampers the achievement of a given
gain. This implies that devices with smaller linewidth enhance-
ment factor may offer better performance.
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Photonic Integrated Circuits (John Wiley & Sons, Inc., 2012), 2nd ed.
18. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasen-
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