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In the context of stochastic thermodynamics, a minimal model for nonequilibrium steady states has been
recently proposed: the Brownian gyrator (BG). It describes the stochastic overdamped motion of a particle
in a two-dimensional harmonic potential, as in the classic Ornstein-Uhlenbeck process, but considering the
simultaneous presence of two independent thermal baths. When the two baths have different temperatures,
the steady BG exhibits a rotating current, a clear signature of nonequilibrium dynamics. Here, we consider a
time-dependent potential, and we apply a reverse-engineering approach to derive exactly the required protocol
to switch from an initial steady state to a final steady state in a finite time τ . The protocol can be built by first
choosing an arbitrary quasistatic counterpart, with few constraints, and then adding a finite-time contribution
which only depends upon the chosen quasistatic form and which is of order 1/τ . We also get a condition
for transformations which, in finite time, conserve internal energy, useful for applications such as the design
of microscopic thermal engines. Our study extends finite-time stochastic thermodynamics to transformations
connecting nonequilibrium steady states.

DOI: 10.1103/PhysRevE.102.030105

Introduction. Fast switching through two or more modes
of operation in microscopic experiments, where fluctuations
dominate, is a goal for several applications: cyclical meso-
scopic thermal machines such as colloids in time-dependent
optical traps [1–6], thermal engines realized in bacterial baths
[7,8], realization of bit operation under noisy environment
with connection to information theory [9], and much more.
Experiments and theory have recently demonstrated the exis-
tence of special protocols that in finite time realize conditions
which are usually realized in infinite time: these protocols
can be deduced by reverse-engineering the desired, fast path
of evolution of given observables, including the probability
distribution in phase space [10,11].

A paradigmatic example has been given in one effective
dimension with a harmonic trap, realized by optical radiation
confining a colloidal particle [12]. The colloidal particle has
reached a steady state in the trap with a stiffness ki. Then
the trap is modulated from the initial stiffness ki to a new
stiffness k f in some finite time τ . If the change ki → k f is
realized in too short a time, e.g., taking ideally τ = 0 (what is
called “STEP” protocol), then the colloidal particle will take
some uncontrolled additional time to reach the steady state
compatible with the final stiffness. Such a “natural” time is
related to the typical relaxation times of the system and can
be very long, depending upon the situation. Interestingly, it
is possible to design one or more “swift equilibration” (SE)
protocols k(t ), with k(0) = ki and k(τ ) = k f , such that at time
τ the final steady state is reached and no additional relaxation
time is needed. The shape of k(t ) can be nonintuitive: when
τ is smaller than the typical relaxation times, such protocols
may exhibit large excursions well outside of the range [ki, k f ].

In fact, there are cases where k(t ) can even become negative,
posing problems to its experimental realization. Additional
constraints may be introduced into the mathematical design
problem, in order to limit the protocol excursion [13]. Other
possibilities have been suggested, where the trap position is
also modulated by additional noise [14]. The SE protocol has
been demonstrated also in atomic force microscopy experi-
ments [15].

Here, we discuss the problem of swift equilibration in a
two-dimensional harmonic trap. The generalization may seem
a pure increase of dimensionality, but in fact it allows us to
step outside of the realm of pure equilibrium steady states.
A two-dimensional harmonic trap may be coupled to differ-
ent thermostats and, in general, may exhibit rotating currents
which break the time-reversal symmetry even in the steady
state [16–23]. It is therefore a sound test ground for the study
of SE protocols for switching between two different nonequi-
librium steady states in a finite time.

Swift equilibration protocol. Firstly, let us introduce the
general strategy for the SE. We adopted a different and, in
a sense, more general approach with respect to [12]. Con-
sider an experimental system that can be leveraged controlling
some forcing parameters, which will be noted in a vector
�. The instantaneous statistical state of the system can be
described by a set of parameters, which will be denoted by
a vector γ (t ): for instance, in a Gaussian process, as in our
case below, these can be the parameters of a multivariate
Gaussian. The value of the parameters γ (t ) depends, through
a dynamical equation, on the history of the applied forcing �

up to time t . We prepare the system in a stationary condition,
given a value for the forcing �i. This means that we observe

2470-0045/2020/102(3)/030105(5) 030105-1 ©2020 American Physical Society

https://orcid.org/0000-0002-1921-1196
https://orcid.org/0000-0002-6051-0972
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.030105&domain=pdf&date_stamp=2020-09-30
https://doi.org/10.1103/PhysRevE.102.030105


A. BALDASSARRI, A. PUGLISI, AND L. SESTA PHYSICAL REVIEW E 102, 030105(R) (2020)

a time constant value of the system parameters γ that depends
on the forcing �i: we note this value as γ st[�i]. Our goal is
to lead the system into a new stationary state with a final set
of parameters γ st[� f ], in a finite time τ .

Of course, if τ is very large, any transformation behaves
as a SE protocol. More precisely, let us consider an arbi-
trary function P (s), with s ∈ [0, 1], such that P (0) = �i

and P (1) = � f . Then the evolution of parameters �(t ) =
P (t/τ ) is a SE protocol in the limit τ much larger than the
largest characteristic time of the system dynamics. In fact, in
this case the change in the forcing parameters is so slow that
the system is always in its stationary state. In this quasistatic
forcing, γ (t ) = γ st[P (t/τ )] at any time, including the final
one.

On the contrary, when τ is finite (smaller than the largest
characteristic time of the system), P (t/τ ) is not a SE and must
be modified with appropriate finite-time corrections, i.e., a
finite-τ SE protocol reads � = P + 1

τ
δP : here we denote the

finite-time corrections with δP . The quantity δP , hereafter
named the finite-time correction to the quasistatic protocol,
depends upon the choice of the quasistatic protocol P . This is
the relevant quantity one has to know to experimentally per-
form the desired SE. The exact, explicit and general formula
for δP[P (s)] in the case of the Brownian gyrator constitutes
the main result of this Rapid Communication, and it allows a
number of interesting theoretical considerations.

The Brownian gyrator. The system we consider has been
introduced in [17] and then studied in [18] and [19], with
an experimental realization obtained recently in [21–23]. It
is widely known as Brownian gyrator (BG). Its stochastic
differential equation takes the form

dx = −(kx x + u y)dt +
√

2TxdWx,

(1)
dy = −(ky y + u x)dt + √

2TydWy,

which fairly describes an overdamped particle subject to a
potential V (x, y) = 1

2 kxx2 + 1
2 kyy2 + uxy in contact with two

thermal baths at temperatures Tx and Ty. Note that the con-
dition of confining potential, required for the steady states, is
kxky − u2 > 0 [24]. In this Rapid Communication we consider
the case where kx, ky, u may depend upon time (on the con-
trary, we keep the temperatures constant). For compactness
we denote the set of parameters by the vector �, i.e., �1 = kx,
�2 = ky, and �3 = u. The associated Fokker-Planck equation
reads

∂t p = ∂x(p∂xV ) + ∂y(p∂yV ) + Tx∂
2
x p + Ty∂

2
y p, (2)

where p(x, y; t ) is the one time distribution of the stochastic
process. The process is Gaussian and for Gaussian initial
condition keeps the Gaussian form at all times:

p(x, y; t ) = exp
(− 1

2γ1x2 − 1
2γ2y2 − γ3 x y

)
2π

(
γ1γ2 − γ 2

3

)−1/2 , (3)

where γ = {γ1, γ2, γ3} depends on time. The introduction of
form (3) in Eq. (2) leads to the equations governing the time
evolution of γ (t ), since

γ̇1 = 2
(
kxγ1 − Txγ

2
1 + uγ3 − Tyγ

2
3

)
,

γ̇2 = 2
(
kyγ2 − Tyγ

2
2 + uγ3 − Txγ

2
3

)
,

γ̇3 = γ3(kx + ky) + u(γ1 + γ2) +
− 2γ3(Txγ1 + Tyγ2). (4)

If the parameter vector � of Eq. (1) does not depend on
time, then the time dependence of γ (t ) is only due to the
relaxation from initial conditions. In that case, assuming that
the potential is confining, a steady state is reached asymp-
totically, and—for ergodicity—coincides with the solution
∂t pst = 0, uniquely determined by the values γ st[�] that obey
Eqs. (4) with all left-hand sides set to zero (see Supplemental
Material [25]). When Tx = Ty = T (“thermodynamic equilib-
rium”), the Boltzmann distribution pst ∝ e−V/T is recovered,
i.e., γ st

1 = kx
T , γ st

2 = ky

T , γ st
3 = u

T . On the contrary, when Tx �=
Ty, the steady state is not of the Boltzmann form and,
most importantly, contains a current: J(x, y) = (−pst∂xV −
Tx∂x pst,−pst∂yV − Ty∂y pst ) �= (0, 0) which is rotational, with
null divergence. The steady current breaks time-reversal in-
variance (detailed balance) and for this reason the BG has
been proposed as a minimal model for nonequilibrium steady
states [17].

SE for the Brownian gyrator. We look for the forcing
protocol � that in a finite time τ leads the system from
the stationary state γ st[�i] to the stationary state γ st[� f ].
We require that the vector �(t ) ≡ {kx, ky, u} has the form
�(t ) = P (t/τ ) + 1

τ
δP (t/τ ), where P (s) ≡ {Kx,Ky,U} is a

given quasistatic protocol, and δP (s) ≡ {δkx, δky, δu} is its
finite-time correction.

In order to accomplish our task, first we invert the dynami-
cal equations (4) in order to get rid of explicit time and obtain
a set of expressions for kx, ky, u as functions of γi and γ̇i only
(i ∈ [1, 3]). For the full formula see Supplemental Material
[25]: the important fact is that such expressions can be written
in the form � = A[γ] + B[γ] · γ̇ with A[γ] a vector and B[γ]
a matrix. If we require that γ (t ) is a function of s = t

τ
, then

γ̇ = 1
τ

d
dsγ and the second term vanishes in the τ → ∞ limit.

Then it is natural to identify P = A[γ], and δP = B[γ] · d
dsγ

(see Supplemental Material [25] for the full formula of both
terms).

In order to close our loop, now we need to express ev-
erything as a function of the quasistatic protocol. This is
done in two steps. The first step is to invert the relation
P = A(γ ). Since this relation is valid even in the τ → ∞
limit, the result is nothing but the expression of γ st[P] that
solve Eqs. (4) in the stationary condition and parameters set
to P . Finally, we have to express d

dsγ as a function of the
quasistationary protocols. This is done considering that d

ds =
K′

x∂Kx + K′
y∂Ky + U ′∂U and applying this operator to γ st[P]

(here and in the following f ′ stands for d
ds f ). Putting back γi

and d
dsγi in the definition of the forcing protocol, we obtain

the final expression:

�(t ) = P (t/τ ) + 1

τ
δP (t/τ ),

δP (s) = B[P (s)] · P ′(s),
(5)

with a matrix B which is fully defined in the Supplemen-
tal Material [25]. We recall the operative meaning of this
formula: one chooses an arbitrary [26] quasistatic protocol
P (s) = {Kx(s),Ky(s),U (s)} and this corresponds to a par-
ticular form of δP (s) = {δkx(s), δky(s), δu(s)} for finite-time
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corrections. Before giving a handier expression of δP , we
discuss some special cases.

Firstly, we consider the case where there is no interaction
among x and y, i.e., when u = 0 both at the beginning and at
the end. Then it does not make sense to switch on u during the
protocol, so that the choice U (s) ≡ 0 is quite general (hence
U ′ ≡ 0). The two degrees of freedom are independent; each
one follows a separate equation and the finite-time corrections
take the characteristic log derivative of the quasistatic pro-
tocol: δkx = 1

2
K′

x
Kx

, δky = 1
2
K′

y

Ky
, δu = 0. This result coincides

with that in [12].
As a second step, we consider the case of two interacting

degrees of freedom U �= 0 in contact with the same thermal
bath at temperature Tx = Ty = T . In this case the finite-time
corrections to the quasistatic forcing read:

δkeq
x =

(
� + K2

y

)
K′

x + U2K′
y − 2KyUU ′

2Ks�
,

δueq = −U (KyK′
x + KxK′

y) − 2KxKyU ′

2Ks�
,

where Ks = Kx + Ky and � = KxKx − U2. The value for
δkeq

y is obtained swapping the subscripts x and y in the ex-
pression for δkeq

x . Note that the result does not depend on the
temperature T . This result generalizes [12] in two dimensions.

A richer phenomenology is obtained in the realm of
nonequilibrium, when Tx �= Ty and a nonzero current appears
in the stationary state (a brief study of the current during the
SE can be found in the Supplemental Material [25]).

For instance, for Ty = Tx + dT , we observe interesting de-
viations

δkx = δkeq
x − KsU ′ − UK′

s

TxK3
s

dT + O(dT 2),

δky = δkeq
y + KsU ′ − UK′

s

TxK3
s

dT + O(dT 2),

δu = δueq − U (K′
yKx − K′

xKy)

TxK3
s

dT + O(dT 2).

Note that for a symmetric protocol Kx = Ky = K the finite-
time correction to u becomes of the second order in dT . For
such a symmetric protocol one has that δkeq

x = δkeq
y and both

are proportional to a logarithmic derivative, as happens to the
noninteracting case: δkeq

x = δkeq
y = 1

2
d
ds ln(K2 − U2) (which

is minus the “free energy” of the system divided by 2T ; see
Supplemental Material [25]). In the same symmetric case,
one can consider a quasistatic protocol involving only weak
interactions U 	 1. In this case the general nonequilibrium
case reads:

δkx = 1

2

K′

K − U
Tx

(Tx + Ty)U ′

4K2
+ O(U2),

δky = 1

2

K′

K − U
Ty

(Tx + Ty)U ′

4K2
+ O(U2),

δu = 1

2

U ′

K − U
2

K′

K2
+ O(U2).

Note that the corrections to δkx and δky at first order in U are
different: the finite-time correction to a symmetric quasistatic

protocol should not be the same, since the symmetry is broken
by the nonequilibrium condition Ty �= Tx. Nevertheless we
note that they differ only by a factor Tx/Ty. It turns out that
this is a general mathematical feature of the solution for the
general (nonsymmetric) quasistatic protocol. In fact, in the
general case, the finite-time corrections δkxy and δu have a
striking mathematical structure:

δkx = δkeq
x + 1

Tx

d

ds
F ,

δkx = δkeq
y − 1

Ty

d

ds
F , (6)

δu = δueq + (Ty − Tx )J + d

ds
G,

where F and G are functions of Ks and U . The function
J remains finite in the equilibrium limit Ty → Tx, while F
and G vanish. The explicit expressions for F , G, and J are
quite simple and are given in the Supplemental Material [25].
Equations (6) are the main result of this work.

Energetics. SE protocols represent an interesting theoreti-
cal framework to study energetics and thermodynamics. For
instance, we consider internal energy for the model in this
study:

E = 〈V 〉 = 1
2 kx〈x2〉 + 1

2 ky〈y2〉 + u〈xy〉,
where, calling det 	 = γ1γ2 − γ 2

3 , we have 〈x2〉 = γ2/ det 	,
〈y2〉 = γ1/ det 	, and 〈xy〉 = −γ3/ det 	. Since during the SE,
the distribution parameters γ (t ) depend on the quasistatic
protocol as γ st[P (t/τ )], the expressions for 〈x2〉, 〈y2〉, and
〈xy〉 can be written in terms of the quasistatic protocol (see
Supplemental Material [25]). Hence, using the expression for
the forcing protocols � = P + 1

τ
δP , one can compute the

explicit expression of the internal energy E . Remarkably, it

FIG. 1. SE in action (details in the Supplemental Material [25]).
On the left: (a) initial marginal distribution p(x, t = 0) and p(y, t =
0) (points for simulations) compared with the theoretical stationary
distributions (line); (b) same quantities at t = τ , the end of the SE
transformation. Middle and right plots show the use of two qua-
sistatic protocols, with the same initial and final parameters �i and
� f : a simple cubic protocol (black) and an isothermal protocol (red).
Upper plots: (c) forcings for a large τ = 10, which are very close to
the quasistatic protocol chosen; (d) for a much faster SE, τ = 0.1,
the forcings have large corrections given by Eq. (6). Lower plots (e)
and (f): the values of the internal energy E in the four different cases
(cubic and isothermal during slow and fast SE).
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turns out, after careful algebra, that this expression is simple:

E = Tx + Ty

2
− 1

τ

d

ds

[ KxTy + KyTx

4(KxKy − U2)

]
s=t/τ

. (7)

Several comments about this equation are in order. Firstly we
note that during a quasistatic protocol (τ → ∞) the internal
energy is constant, as one could expect: this constant value
does not depend on the forcing parameters, neither on kx,y nor
on u. More interestingly, the finite-time correction to the inter-
nal energy can be written with a single differential form 1

τ

′,

where 
 = KxTy+KyTx

4(KxKy−U2 ) . An immediate reward of this result
is that it allows one to identify a specific class of quasistatic
protocols that we call the finite-time isothermal protocols,
defined as the SE protocols that keep 
 constant. Using such
a quasistatic protocol one can perform a SE procedure with
constant internal energy in any finite time τ , provided to force
the system with the appropriate finite-time corrections (6).
In Fig. 1 we show simple numerical simulations giving a
demonstration of our results.

Conclusions. Here we have proposed a general framework
for studying finite-time transformations in stochastic pro-
cesses under the important request of connecting two steady
states without the need of further relaxation time (“swift equi-
libration”). Our general framework is based upon the idea of

fixing an arbitrary quasistatic protocol and then computing
the finite-time corrections to it. We have applied our idea to
a model (“Brownian gyrator”) with a harmonic potential in
contact with two different thermal baths, a minimal nonequi-
librium generalization of the celebrated Ornstein-Uhlenbeck
process. In this sense, the model can be considered as the
harmonic oscillator or the “perfect gas” for nonequilibrium
steady states. Despite the linearity of the model, the problem
of SE discloses a rich and promising terrain for theoretical
explorations. We give the exact explicit expression for the
general SE, and also a simple condition to obtain finite-time
transformations that conserve internal energy. The existence
of experimental realizations of the steady Brownian gyrator
[16,21–23] let us foresee interesting experimental investi-
gations of our procedures in the near future. An important
theoretical perspective concerns the research of optimal pro-
tocols with respect to work or other thermodynamic relevant
quantities; for instance, a suitable definition of finite-time
adiabatic transformations [27] to the case where two thermal
baths are present.
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