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Abstract—In smart factories, the performance of the produc-
tion lines is improved thanks to the wide application of mobile
robots. In workspaces where human operators and mobile robots
coexist, safety is a fundamental factor to be considered. In this
context, the motion planning of Autonomous Mobile Robots is a
challenging task, since it must take into account the human factor.
In this paper, an implementation of a three-level online path
planning is proposed, in which a set of waypoints belonging to a
safe path is computed by a supervisory planner. Depending on the
nature of the detected obstacles during the robot motion, the re-
computation of the safe path may be enabled, after the collision
avoidance action provided by the local planner is initiated.
Particular attention is devoted to the detection and avoidance
of human operators. The supervisory planner is triggered as
the detected human gets sufficiently close to the mobile robot,
allowing it to follow a new safe virtual path while conservatively
circumnavigating the operator. The proposed algorithm has been
experimentally validated in a laboratory environment emulating
industrial scenarios.

Index Terms—Mobile robots, online path planning, human
obstacle avoidance.

I. INTRODUCTION AND STATE OF THE ART

The application of mobile robots in industry is growing in
recent years, since they increase flexibility and enhance the
performance of the production line. Those mobile platforms
that follow a fixed path while performing repetitive tasks are
known as Automated Guided Vehicles (AGVs), while those
that move autonomously within the industrial environment are
called Autonomous Mobile Robots (AMRs).

In the scenario envisaged for the smart factories, the mo-
bile agents work in a space shared with human operators.
In this context, the use of AMRs is preferred, since they
are able to process the information coming from their sur-
roundings, thanks to the on-board intelligent sensory system.
However, the mobile robot motion planning is not an easy
task. Path planning is a well-known problem for finding
feasible collision-free paths that allow the robot to reach a
desired destination. The complexity of the problem may vary
depending on the knowledge about the environment, as well as
the presence of dynamic obstacles, such as human operators
in the industrial workspaces.

Therefore, many researchers have developed several algo-
rithms for robot navigation. For example, there are naviga-

tion algorithms based on probabilistic methods, such as the
Rapidly-exploring Random Tree (RRT) [1], RRT* [2], and the
Probability Roadmap (PRM) [3], that randomly explore the
free spaces on the map to find a feasible path that connects
the initial and final poses. Despite several improvements of
such methods and their wide use thanks to their simplicity,
they do not guarantee the optimality of the solutions [4].

Other path planning algorithms are based on heuristic-
search methods, such as Genetic Algorithms (GAs) [5], Di-
jkstra [6], A* [7] and D* [8]. The GAs are inspired by
the Darwinian evolution, by selecting the fittest sub-optimal
solutions for reproduction, so to produce offsprings of the next
generation. On the other hand, A* is an improvement of the
Dijkstra algorithm to find the shortest path, whilst D* is an
algorithm based on the A*, but with a dynamic cost behaviour.

In particular, the conventional A* algorithm has been ap-
plied in many path planning problems because of its simplicity
and high efficiency in finding the optimal solution. Even
though it does not provide a safe and smooth path, it is still
widely used due to its versatility, since it can be customized
and/or combined with other path-finding algorithms so that
specific requirements can be fulfilled. Therefore, many ver-
sions of the A* algorithm were proposed. In [9], a modified
A* algorithm is presented, in which virtual obstacles are added
in the environment in order to guarantee safety during the
path planning process. The improved A* algorithm presented
in [10] takes into account the safety and time cost in the
objective function, so it can be applied also in complex
terrain environments.

Another navigation method that is recently emerging is the
Artificial Potential Field (APF), in which the robot is attracted
towards the desired destination while it is repelled from
obstacles [11]. A Membrane Evolutionary Artificial Potential
Field (memEAPF) is proposed in [12]. The parameters for
generating a feasible and safe path are obtained through a
combination of three methods: APF, membrane computing and
a genetic algorithm. In [13], the authors presented a navigation
system for dynamic industrial cluttered environments that
combines the information coming from a sensor network and
an APF based navigation algorithm.

In industrial environments where the human operators and
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mobile agents share the working space, safety is a fundamental
factor to be considered. Nevertheless, most of the navigation
algorithms do not take into account the human factor, since it
is a dynamic obstacle whose behaviour is difficult to predict,
or consider the human operators as generic dynamic obstacles,
without any specific distinction [14].

Instead, there are some safety concepts presented in [15],
that consider the usage of mobile robots in different scenar-
ios. Furthermore, there are currently no standards for safe
navigation in industry for AMRs, although some guidelines
are recently being developed (R15.08 Drafting Subcommittee
presentation from the Autonomous Mobile Robot Conference,
September 2019 [16]). The current working scenario syner-
gistically involves human operators and fixed-base or mobile
robots, making the latter ones part of the production line. This
makes new questions arise about the operators’ willingness
to work closely with unpredictable machines (as usually the
AMRs are) [17].

This paper refers to an improvement of the Supervisory
Global Planner (SGP) architecture introduced in [18] with the
integration of an online update of the computed path, and the
human detection capability presented in [19], which allows for
a more conservative local behaviour around human obstacles.
In the case of static scenarios, the position of the obstacles in
the environment are well known, so the generated path can be
considered as a safe path. However, when the robot deviates
due to the presence of a human operator, the local planner
reacts to that obstacle, and the SGP is triggered starting from
the current robot pose.

The key point is given by the definition of predefined
safe paths, to be followed by the mobile agents each time
it is possible, in order to minimize the risk of unexpected
obstacles along their motion (similarly to the fixed paths
followed by traditional AGVs). This is enriched by the ability
of simultaneously handling the presence of dynamic obstacles,
guaranteeing a safer avoidance policy in case of humans and
the return to the safe path as soon as possible. The resulting
behaviour is especially suitable for industrial scenarios, in
which a proper level of autonomy must be left to the mobile
agents to really exploit them in the implementation of flexible
production lines, while assuring at the same time safety
conditions adequate for the presence of human operators.

The path planning algorithm run by the supervisory planner
has a deterministic and repetitive behavior (i.e., given the ini-
tial and final poses, the path will always be the same). It is then
considered as safe not only because it automatically avoids
all the known static obstacles, but also because it provides a
fixed path followed by the mobile robots, if no variation occurs
in the environment along such a path. This way, the human
operator who is working cooperatively with mobile agents
is aware about the trajectory of the robot, and can possibly
avoid intersecting the robot safe path. Nevertheless, a human
worker could unintentionally cross the dedicated pre-defined
route: the proposed algorithm allows to conservatively avoid
obstacles identified as humans even though the latter ones are
not expected.

The combination of the mentioned features ensures an
overall safe behaviour, since the robot (i) follows a safe virtual
path, (ii) has the ability of re-planning when a human obstacle
is close and (iii) can adapt its behaviour to the environment’s
changes.

The paper is organized as follows: Section II presents the
proposed procedure, at first providing some details about
the online supervisory planner, then describing the algorithm
implementation. The testing of the procedure is unfolded in
Section III, where the results obtained from different test
scenarios are reported. Finally, Section IV provides the con-
clusions and some open issues.

II. ONLINE SUPERVISORY ALGORITHM FOR SAFE PATH
TRAVELING WITH HUMAN OBSTACLE AVOIDANCE

In this section, a description of the developed online path
planning algorithm is provided.

In general, the mobile robot path planning is performed
at two levels: Global Planning and Local Planning. Given
a starting point and the destination coordinates, the Global
Planner (GP) computes offline the path that only considers the
static obstacles in the real world environment, while the Local
Planner (LP) updates the computed path when the sensor sys-
tem detects the presence of an unexpected obstacle, allowing
the robot to avoid any potential collision while moving.

The introduction of the SGP as the highest level within this
planning hierarchy allows the robot to follow a set of determin-
istic waypoints, along a safe virtual path. The SGP algorithm
is based on the collision-free motion planning presented in
[20], that generates a path that tends to an algebraic curve.
In particular, the SGP takes into account the kinematic model
of the unicycle robot, and the safe curve is obtained letting
the intersection of the obstacle space and a set of polynomial
functions describing the possible trajectories be empty. Note
that the equations describing this curve will be omitted here for
brevity, since they were already provided and experimentally
validated in [18]. However, in the latter, the SGP computed
the waypoints offline: whenever the LP deviated the robot due
to the presence of unknown obstacles, it was not ensured to
resume the motion along the SGP computed path. In fact, the
modified A* algorithm is intrinsically attracted by the imposed
safe curve when the robot is sufficiently near to it, while only
the pure A* mechanism is kept otherwise. Moreover, obstacles
were detected but not identified, i.e, a human obstacle was
treated in the same way as a generic object.

In order to obtain a safer behaviour, in terms of human
obstacle detection and avoidance, the features of smart AMRs
presented in [19] are added now, so the human operator can be
identified and published as a virtual obstacle, whose inflation
radius is larger than the one around generic obstacles. In
terms of safe path conservation, an event-based trigger is
added to the SGP. This planner will be referred in the next
sections as the Online Supervisory Global Planner (OSGP).
The hierarchical planning structure is reported in Figure 1.



Fig. 1. Hierarchical structure of the online supervised global planning.

A. OSGP algorithm implementation

The code for computing the SGP path is implemented in
MATLAB and provides as output a set of waypoints from
a starting pose towards a final goal. The MATLAB function
also registers as a ROS (Robot Operating System) [21] node, in
order to convey the planning information onto the ROS Param-
eter Server. The communication with the robot ROS network
is performed through the MATLAB ROS Toolbox, that allows
the local machine to compute and send the waypoints, and
read the status of the robot in order to trigger the re-planning
behaviour.

The waypoints values are suitably namespaced to ease
potential multi-robot implementations, and made available to
the ROS system nodes managing the autonomous mobile robot
navigation and vision-enhanced obstacle avoidance. It is worth
noting that the whole MATLAB part is run in headless mode,
i.e., the code is run from the command line with specific
options that suppress the display server, the splash screen
display, and the desktop version modules, which significantly
reduces the CPU usage.

Following a system of event-based triggers, the SGP algo-
rithm is re-computed only when strictly necessary, to ensure
a deterministic and time-efficient behaviour. As previously
mentioned, the path computed by the OSGP can be considered
as safe, since it is based on a binary occupancy grid map in
which static obstacles are conservatively enclosed by ellipses
of minimum radius. The GP implements a modified A*
algorithm where waypoints passed by the OSGP are favoured
in terms of cost, for the heuristic global plan computation. As a
human obstacle is detected and sufficiently close to the AMR,
the LP deviates the robot and a trigger is sent to the OSGP
for path re-computation. In order to let the robot trigger the
OSGP planning while already overcoming the human obstacle,
a small delay is introduced. The current pose of the mobile

platform is taken into account and used as a starting pose for
the collision-free motion planning algorithm.

The dynamic obstacles are avoided thanks to the LP and,
in particular, human obstacles are identified using YOLO
(You Only Look Once) [22]: the C++ YOLO code has been
modified filtering the information about the bounding boxes
of the identified objects in order to consider only pixels
labelled as “person”. These data are then written to a text file,
which is fed to a ROS topic. The identified humans relative
distances are subsequently computed, exploiting camera-laser
data sensor fusion. The humans’ positions on the map are
then published as virtual obstacles enclosed in virtual cages:
to influence the local planner costmap, humans are assigned
a greater inflation radius value than other obstacles. This
prevents the AMR from traveling too close to the operator
when trying to overcome it. For further details about this
behaviour, refer to [19]. The overall algorithm flow is showed
in Figure 2.

Fig. 2. Flowchart for the OSGP algorithm.

To better highlight the core difference from the SGP al-
gorithm proposed in [18], the expected behaviour is repre-
sented in Figure 3. When using the offline SGP version, a
significant deviation from the supervisory path could result
in the activation of the pure A* mechanism, which computes



the shortest path (grey dotted line) to reach the final goal.
However, this is undesirable, since it is not compliant with the
safety requirements, due to the fact that there may be other
human operators outside the safe path. To make up for this
unwanted behaviour, the SGP safe virtual path is re-planned
online, taking as starting pose the current one (blue solid line).

Moreover, the proposed algorithm presents some implemen-
tation measures that can improve the technology criticality
level [23] and can be considered as catalyst for an eased
transferability to real industrial contexts.

• Containerization as portability facilitator. The OSGP
algorithm with human obstacle detection and avoidance
has been containerized using Docker [24]. The ele-
ments which can be considered robot-agnostic have been
grouped based on their main task, e.g., AMR vision,
AMR navigation, and SGP computations. Therefore, to
ease up the migration to other hardware specifications and
software environments, all the robot-specific elements and
tuning parameters have been grouped to enable suitable
edits. Using containers allows to speed up the transfer
process from laboratory demonstrators to commercially
available AMRs. Indeed, the Linux containers technology
is considered a lightweight alternative to virtual machines
[25] and allows the end-user to run the containerized
application having the installation of Docker on the target
machine as only constraint.

• Cost-efficient improvements as technology transfer en-
ablers. The use of cost-efficient sensors enhanced by
deep learning algorithms can be considered a key en-
abler for technology transfer in contexts that would,
as a matter of principle, not consider it. By exploiting
sensors which may not fall within the classification of
high-end and/or high tech devices, the focus is moved
from the economic value toward the innovation meaning
of a resulting solution. Upgrading obsolete equipment
can foster the adoption of new technologies avoiding to
exacerbate low technology transfer rates that may affect
Small and Medium Enterprises [26].

III. EXPERIMENTAL RESULTS

In order to demonstrate the validity of the OSGP algorithm
in an environment similar to an industrial context, the emulated
scenario involved a mobile robot moving in a closed space
shared with human operators, like warehouse corridors with
racks or assembly workstations with conveyors. The working

Fig. 3. SGP behaviour versus OSGP behaviour.

space used for testing is shown in Figure 4, reporting the
MATLAB occupancy grid map and OSGP path plot, and the
corresponding GP path plan visualization on ROS rviz.

To validate the proposed algorithm, we employed a Pioneer
3DX mobile robot equipped with a SICK LMS200 laser range
finder with 10-meter range and scanning angle of 180◦. The
video stream from an entry level IP camera served as vision
source, fed to the YOLO real-time object detection system.
As a processing unit we used a Raspberry Pi 3 Model B
mounting an ARM Cortex-A53 (x4 core) CPU (1.2 GHz)
and 1-GB RAM; the core processes were performed on a
desktop PC with a Intel Core i7-7700 CPU and a dedicated
GTX1060/6GB GPU.

Notice that some open issues identified in the practical im-
plementation of the offline SGP algorithm, have been solved.
Among these, a smoother behaviour have been achieved by
substituting the TrajectoryPlannerROS local planner
with the TebLocalPlannerROS, based on Time Elastic
Bands evaluation [27]. Also, the MATLAB code has been
run with its GUI switched off, i.e., in headless mode, to get
rid of the time necessary for the interactive program parts
to load, since no interaction is needed during the algorithm
execution. In particular, the supervisory planner function is
run according to specific trigger flags which let MATLAB
and the ROS system interact and automate the re-computation
process. The overall high level setting representation is shown
in Figure 5.

The execution of the online SGP algorithm in different test
scenarios is showcased in the video footage available at [28].

A. Test Scenario 1: OSGP re-planning behaviour
In the first scenario (see Figure 6), we tested the re-planning

behaviour of the OSGP when a human obstacle is identified. In
this case, the person represents a human operator performing
some operations in front of a workstation. As seen at 00:41,
the AMR starts its motion along the safe path computed by the
SGP and tracked by the GP plan (blue solid line) and when a
person is detected, the LP (orange solid line) starts its standard
obstacle avoidance mechanism.

As the human gets closer, the OSGP is eventually triggered
(00:58) and a new reference path is provided to the GP. In
this way, the mobile robot is always brought back towards
the safe path even if its motion is significantly deviated.
Moreover, it can be seen that the robot overcomes a person
maintaining a conservative distance imposed by the virtual
obstacle publication.

B. Test Scenario 2: human detection without re-planning
At 01:15 of the video, it is possible to appreciate the case

in which a operator performing some quick checks along a
rack is detected but, being far enough from the current AMR
pose, the OSGP path re-computation is not triggered. Indeed,
in this case the human presence does not disturb the mobile
robot activities and a re-planning would introduce unnecessary
overhead. Note that the operator pose is published as a virtual
obstacle in the map (red dots). A screenshot of the performed
test is provided in Figure 7.



C. Test Scenario 3: generic obstacle avoidance

The last test scenario, as shown at 01:37 of the video,
considers the case in which a generic obstacle (not present in
the static map) is encountered: the robot successfully avoids
it without triggering a new safe path computation. This is
desired to avoid further computations when it is not needed:
the absence of a human operator in the robot neighbourhood
does not impose a reactive resume of the safe virtual path.
The third scenario OSGP behaviour can be seen in Figure 8.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a supervisory planner algorithm
that generates an online-updated safe path. In absence of
changes in the environment, the motion of the AMR follows
the safe virtual path that is provided by the OSGP. This
feature can potentially increase the workers’ confidence in
sharing the workspace with mobile robots, since their overall
motion can be predicted. Besides, using YOLO, the AMR
can distinguish if an obstacle is a generic object or a human
operator, and gather its distance through camera-laser data
fusion. By publishing the human obstacle as a virtual one
within the navigation map, its increased inflation radius allows
for a conservative avoidance.

A possible further enhancement could be given by the
creation of a specific dataset to train the YOLO neural net-
work, with the aim of making it recognise peculiar pieces of
equipment (not included in common datasets, e.g., the COCO
dataset). These may be machines whose surroundings should
be avoided due to particular conditions, e.g., high temperatures
or radiations, implying that a close approach during motion

could compromise the mobile platforms and/or the machinery
itself. Clearly, the extension of the object recognition capabili-
ties would depend on the plant configuration and on the client
specific needs.

The tracking of a reference safe virtual path is always
ensured, since the re-planning mechanism of the OSGP is
triggered when a human is close enough to the robot in
motion. In addition, thanks to the ROS namespace feature it
is possible to extend the algorithm to the multi-agent case,
while containerization using Docker fosters the technological
transfer towards industrial processes by facilitating portability.

Even though some of the implementation choices can ease
the criticality level of the proposed algorithm, being the range
of AMRs available on the market very wide, some custom
tuning for integration would be necessary. For sure some test
scenarios on the field would be more indicative of the usability
in a real industrial context.

As of now, the OSGP re-planning mechanism is triggered
after a small delay. As a future improvement to make the sys-
tem more efficient, re-planning while overcoming the human
obstacle could be guaranteed by choosing a different type of
trigger, to make sure that the robot has indeed left the original
safe virtual path. For example, the trigger signal could be set
if the distance from the initially imposed path is higher than a
threshold, so to reduce the number of trigger events. In fact, re-
triggering after an imposed waiting time does not ensure that
the robot has moved from its current pose, maybe delayed by
some external disturbance or internal computations.

It should be noted that the online computation of the SGP
could be fully implemented in ROS, e.g., with Python, using

Fig. 4. Top: MATLAB OSGP path plot. Bottom: rviz visualization of the static map used for SLAM navigation.
.



Fig. 5. High level algorithm implementation schema.

a proper differential equation solver. However, MATLAB was
chosen since its solvers provide good enough results and can
be easily integrated with other systems.

Future work could deal with the extension of the proposed
framework to the multi-robot case. This problem is particularly
challenging since, in this case, the OSGP also has to account
for possible collisions among the robots, thus making the path
planning more complex.
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Fig. 6. Test scenario 1: rviz view of the OSGP re-planning behaviour after human detection.

Fig. 7. Test scenario 2: OSGP behaviour when a human obstacle is sufficiently far from the AMR.

Fig. 8. Test scenario 3: OSGP algorithm reaction to a generic obstacle detection.




