
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SEkey: a distributed hardware-based key management system / Fornero, Matteo; Maunero, Nicolò; Prinetto, Paolo;
Varriale, Antonio. - ELETTRONICO. - (2020), pp. 1-7. (Intervento presentato al convegno 2020 IEEE East-West Design
& Test Symposium (EWDTS) tenutosi a Varna (BG) nel September 4-7, 2020) [10.1109/EWDTS50664.2020.9225107].

Original

SEkey: a distributed hardware-based key management system

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EWDTS50664.2020.9225107

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2846368 since: 2020-11-02T14:08:34Z

Institute of Electrical and Electronics Engineers Inc.

SEkey: A Distributed Hardware-based Key
Management System

Matteo FORNERO
CINI Cybersecurity National Lab.

Turin, Italy
matteo.fornero@consorzio-cini.it

Nicolò MAUNERO
Politecnico di Torino

CINI Cybersecurity National Lab.
Turin, Italy

nicolo.maunero@polito.it

Paolo PRINETTO
Politecnico di Torino

CINI Cybersecurity National Lab.
Turin, Italy

paolo.prinetto@polito.it

Antonio VARRIALE
B5 Labs Ltd.

Ta’ Xbiex, Malta
av@blu5labs.eu

Abstract—Cryptography plays a key role in all the aspects
of today cybersecurity and any cryptographic approach relies
on cryptographic keys, i.e., series of bits that determine how a
plain text is encrypted and decrypted, according to an agreed
algorithm. The secrecy and security of an encryption key are
thus crucial and fundamental: if the cryptographic key is com-
promised and known, everyone can decrypt a text encrypted ac-
cording to the strongest encryption algorithm. As a consequence,
several Key Management Systems (KMS) have been developed
to easily support the management of cryptographic keys, whose
number is constantly increasing, due to the amount of devices
and communications that take place today, even in very restricted
contexts. SEkey is a key management system developed targeting
a distributed environment, where it is possible to identify a single
central manager that acts as a Key Distribution Center (KDC)
and many users that locally store and manage their own keys.
Users, to a certain extent, can also work ‘offline’ without being
always in direct communication with the central manager. SEkey
is built leveraging the functionalities and physical properties of
the SEcubeTM Hardware Security Module (HSM). All the key
values and critical information are stored inside the SEcubeTM

and never leave the device in clear, and all the cryptographic
operations are performed by the SEcubeTM itself. The guidelines
provided by NIST where followed during the whole development
process, guaranteeing all the most important security features
and principles.

I. INTRODUCTION

The increase in the number of connected devices, that has
been taking place for several years now, is posing several
security challenges by considerably enlarging the cyber attack
surface. The quantity and quality of data exchanged every
second among people and various devices is increasing at an
exponential rate, making it mandatory to secure them.

Cybersecurity is a term that includes several concepts, but
the fil rouge that connects them all is cryptography. As defined
by NIST [4], cryptography is the discipline that embodies
the principles, means and methods for the transformation of
data in order to hide their semantic content, prevent their
unauthorized use ore avoid their undetected modification. This
data transformation process takes place through mathematical
operations, more or less complex, that combine together the
input data, usually referred to as cleartext, and the crypto-
graphic key to obtain the modified data as output, what is
usually referred to as ciphertext.

The cryptographic key is a parameter used in conjunction
with a cryptographic algorithm that determines its spectrum
of operation [7]. Drawing a parallel with everyday life, the
role of a cryptographic key is similar to the key of a lock.
Locking is like data encryption while unlocking is like data
decryption and, just as in the case of a lock, also in cryptog-
raphy protecting the key is of paramount importance: even in
presence of the best encryption algorithm, if the cryptographic
key is compromised and everyone knows it, then everyone can
access the encrypted data.

Nowadays the amount of keys and the requirements for their
security make it practically impossible to manage them by
hand; for this reason the so-called Key Management Systems
(KMS) were born, applications that aim to automate and
simplify the management of cryptographic keys in highly
complex contexts.

In this paper we present SEkey, a mixed hardware-software
Key Management System, leveraging on the SEcubeTM1 Hard-
ware Security Module (HSM). SEkey is designed and devel-
oped having in mind a distributed ecosystem where each entity
gets its own SEcubeTM device. Each SEcubeTM is in charge of
securely storing all the encryption keys and of providing all the
security primitives for securely managing keys and performing
cryptographic operations. This allows to never expose the
actual key value outside of the device when performing crypto
operations. In addition, during the key distribution process,
keys are over-ciphered with a unique key shared only by
the administrator and the user that receive the update. Inside
SEkey, two roles are available: the security administrator and
the user. The former is in charge of distributing keys and
synchronising all the SEcubesTM, while the user passively uses
its device for security purposes, everything related to the key
management being automatically handled by the SEcubeTM

device.
The paper is structured as follows: the next section intro-

duces a brief overview on the SEcubeTM project and device.
In the second section a brief analysis of the SOA on different
types of KMS is proposed and the most important guidelines
from the NIST for KMS development are reported. Then the
implementation details and the most relevant features of SEkey

1https://www.secube.eu/

https://www.secube.eu/

are presented, concluding with possible improvements and
future works.

II. THE SECUBETM OPEN SECURITY PLATFORM

The SEcubeTM Open Security Platform [18] leverages on
the functionalities of the SEcubeTM SoC to provide a security-
oriented open software and hardware platform. The SEcubeTM

SoC, developed by the Blu5 Group Company, includes three
main cores:

• A STM32F4 microcontroller unit, equipped with an ARM
Cortex-M4 processor.

• A reconfigurable hardware device (FPGA).
• An EAL 5+ certified Smart Card.

A 3D packaging of the three components and a set of custom
technological solutions improve the resiliency to side-channel
attacks [5] and to attempts to exfiltrate data from the device.

The SEcubeTM platform is equipped with set of high-
level APIs that abstract complex concepts of cybersecurity
and cryptography [19], designed to ease the development
of high security applications. Among the others, the open
source libraries [8] include SEfile [9] and SElink [8], aimed at
protecting data at rest and data in motion, respectively [20].
In particular, SElink provides a set of API that can be used
to securely handle communications channels via end-to-end
encryption, whereas SEfile provides a set of API for handling
files in a secure way, allowing secure implementations of the
most common system calls of the Posix Portable Operating
System Interface and WIN32. These APIs are a simplified
version of these system calls, not exposing all the functionali-
ties provided by them, but managing internally all the security
operations required to handle encrypted files.

III. BACKGROUND

A. Key Management Systems Overview

Key Management Systems can be clustered according to
different categories, including the way they are provided to
the customers, the organization of the Key Distribution Center,
and their key storage facilities.

According to the way a KMS is provided to the customers,
four categories are mostly used: software, virtual, appliance,
and service [6].

A software KMS is purely software-based and either imple-
ments its own protocol or is compliant with standard ones.
The software runs on an Operating System (OS) that is
hosting the KMS (typically, a server built by the customers
to accommodate the KMS software).

A virtual KMS is a pre-installed virtual machine that runs
the KMS software in a virtualised environment. The hardware
where the VM runs is not shipped with the MKS and is under
control and responsibility of the customers.

An appliance KMS is an integrated hardware-software so-
lution. In this case both hardware and software are provided
to the customer and they can be, for example, a server
with certified hardware and software or a KMS running or
leveraging on a hardware security module.

Type Pros Cons

Software

Wide compatibility HW and OS provided by cus-
tomer

Runs on pre-existing hardware Hardware may not be certified
Runs on common OS OS may not be certified
Easy to fix and update Usually weaker

Virtual

Wide compatibility HW provided by customer
Runs on pre-existing hardware Hardware may not be certified
Easy to run multiple installa-
tions

Usually weaker

OS provided with the KMS Virtualization overhead
Easy to fix and update

Appliance

HW and SW provided with the
KMS

Lower flexibility

Turnkey installation Difficult to fix or update
All-in-one solution HW limitations
Usually more secure Usually more expensive

Service

No installation required Keys stored in the cloud
Easy to use No physical control
No local resources required
Flexible in terms of usage and
payments

TABLE I
PROS AND CONS OF DIFFERENT KINDS OF KMS [6]

A service KMS is a cloud-based solution that can be used
by the customers without the need of a specific hardware
or infrastructure. This approach is also known as KMS-as-
a-service and it is one of the most used solutions due to its
flexibility and its migration capabilities.

Table I summarises pros and cons of each solution.
When categorised according to their Key Distribution Center

(KDC), i.e., the entity responsible for distributing keys, key
management systems are usually clustered as distributed,
centralized and decentralized [14]. A centralized KMS is built
around a single central entity that is in charge of managing
the keys and distributing them to all the users. In a distributed
KMS there is no single master entity and each user of the
KMS manages her/his own keys and uses contributory key
agreement protocols [2] to cooperate and contribute, with all
other members of the group, to the creation of a shared key. In
a decentralized KMS users are split into several smaller sub-
groups, each managed by an appointed manager who can, in
turn, refer or not to a manager of the entire KMS.

With respect to the adopted key storage solution, KMS’s
are usually defined as centralised or distributed [10]. In the
former case all the keys are stored by the master entity of the
KMS that is in charge of providing secure storage for all of
them, whereas in the latter one each user is in charge of storing
her/his own keys in a secure way and should be provided with
all the tools necessary to fulfil this requirement. An example of
distributed KMS can be the Apple Secure Enclave Processor
(SEP) [13] an isolated component from the main processor that
provides secure storage for critical information, finger print,
cryptographic keys, etc. but also cryptographic primitives for
the main system.

B. NIST Recommendation

US NIST plays a key role in providing guidelines and
recommendation for Key Management and KMS development
[3], today widely and extensively adopted by the implementers

Fig. 1. Key State and Transactions

of KMS’s worldwide. In the sequel we briefly recall some
of the most significant issues pointed out in the NIST’s
documents.

Key life cycle: at any given point in time, a key is
characterised by a specific state [3] that determines how the
key can be used. Figure 1 shows the different states and the
permitted transitions among states.

• Pre-activation: when a key is created it enters this state
and it cannot be used until “activated”.

• Active: in order to be used, a key must be in this state.
• Suspended: when in this state, the key cannot be used,

but it can be activated again.
• Deactivated: the key can be used only to decrypt, but no

longer to encrypt. When a key is replaced by a newer
one, it is still needed for decrypting data encrypted by it.

• Compromised: this is a warning state. It means that the
key is, or may be, compromised due to, for example, a
data breach; the key can still be used for both encryption
and decryption but with particular care. A compromised
key cannot be reactivated.

• Destroyed: when in this state, the key is completely
removed from the system.

Cryptoperiod is the time span during which a specific key
can be used. This quantity is extremely important and it is
strictly related to the security of a cryptographic key, the more
a key is used, the more frequently it must be updated in order
to lower the chance for it to be compromised.

Physical and logical access protection this is of paramount
importance for the KMS. Access to keys must be protected
physically and logically to avoid any disclosure of critical
information, unwanted modifications, unauthorised usage or
access. For the physical protection, NIST suggests the adop-
tion of custom hardware solutions, such as hardware security

modules. Logical protection measures include encryption, au-
thentication, integrity checks, access control, and accountabil-
ity.

Physical and logical separation of roles for the actors
within the KMS. Access to physical assets, such as, key
servers, backup servers, etc. must be limited and monitored.
Similarly, from a logical perspective the adoption of different
privilege levels can be used to limit the access to critical
features of the KMS:

• Separation of Duties: no user in the system should
have enough privileges to be able to misuse the system.
Critical functionalities are split among different members
to prevent a single user from having enough information
or privileges to maliciously damage the whole system.

• Least Privilege: each member or actor of the system is
given the least amount of access privileges that allows
she/he to perform her/his jobs.

All the above guidelines and principles have been strictly
followed and adopted during the design and implementation
of the SEkey KMS.

IV. SEKEY

In this section we introduce the basic features of SEkey,
a KMS that leverages on the features and functionalities
provided by the SEcubeTM hardware security module. In
particular we shall focus on (i) SEkey general architecture,
(ii) the concept of User Groups, (iii) the different roles within
the KMS, (iv) how the SEcubeTM is profitably employed, (v)
the internal structure of SEkey, (vi) the cryptographic keys
distribution mechanism, and (vii) the key management feature.

A. SEkey General Architecture

As shown in Figure 2, SEkey manages and distributes
cryptographic keys shared among users who are clustered
in groups [20], each one being characterised by a custom
security policy. The KMS is controlled by an administrator
who interacts with the users by means of APIs performing
a wide range of actions, such as creating and distributing
cryptographic keys, creating and managing users and groups,
etc.
A peculiar aspect of SEkey is that each user is forced to
make use of a dedicated SEcubeTM device, thus implementing
a distributed architecture wherein the cryptographic keys are
automatically delivered to the users, who securely store them
inside their SEcubeTM devices. Therefore, the users make use
of the KMS together with their SEcubeTM devices in order to
secure the data they need to exchange or store.

B. User Groups

At the core of SEkey there is the notion of group [20], which
is the fundamental component used to control the users and
the access to the cryptographic keys. Each group consists of an
arbitrary number of users and cryptographic keys. Every user
of SEkey belongs to a specific set of groups; similarly, each
cryptographic key of the KMS is owned by a specific group. A
user may belong to several groups, therefore the intersection

Fig. 2. SEkey General Architecture

of multiple groups may not be empty. On the other hand,
the ownership of cryptographic keys is fixed; a key is always
owned exclusively by a single group, without any possibility
of changing the owner. Notice that the ownership of a key is
always referred to a group, never to a single user.
The users gain access only to the cryptographic keys owned
by the groups to which they belong; therefore, group members
can encrypt shared information using the group cryptographic
keys. Two users can share encrypted information only if both
belong to at least one group, meaning that they both have ac-
cess to (at least) one common encryption key. Moreover, each
group is associated with a set of security policies, detailing
specific rules to be followed when managing the security of
that specific group. These include, among the others, details
about the criptographic algorithms to be adopted, the resource
(software, hardware, smart card) to be used for cyphering, the
default cryptoperiod of the keys, the schedule of their updating,
and so on.

This hierarchy is based on a simple concept: the smaller
the group, the higher its security [20]. This idea arises from
the assumption that a smaller group involves a reduced num-
ber of individuals, therefore the security risks are inherently
mitigated because the surface available for a cyber attack is
greatly reduced and the sensitive information is shared among
a smaller number of people.

C. Roles of the Involved Actors

Actors operating in the SEkey KMS acts either as ad-
ministrator or as user. Each role is fixed, meaning that the
administrator is not a user and the users cannot act as the
administrator.
The administrator plays a key role, being the only one having
the privilege to modify the configuration of the KMS (i.e.,
create, distribute, destroy cryptographic keys) and to set up and
update groups and users, defining their security perimeters and
policies. The SEcubeTM device of the administrator contains

all the informations managed by the KMS, including all the
cryptographic keys; this mainly allows the system to recover
from faults that may occurs on the user side. Following the
“need-to-know” principle, the administrator shares with the
users only the minimum necessary set of information: for
example, a user ignores the existence of other people outside
of his groups.

Users play a passive role, they can use the KMS but are
not allowed to perform any change, neither in the system
configuration nor in the involved keys. A user can, in fact,
access its own set of cryptographic keys, only; moreover, each
key can be used to perform cryptographic operations towards
specific recipients only. A user is unable to perform operations
which have not been authorized by the administrator (e.g.,
communicating with users with whom he has got no group in
common).

D. SEkey Internal Structure

SEkey, in addition to cryptographic keys, requires to prop-
erly manage additional information and metadata which are
essential to the system management. To effectively and ef-
ficiently tackle this issue, each user of SEkey is given a
private instance of the SEcubeTM device, which is used to
store these critical information items in different locations.
In particular, keys are stored in the internal memory of the
SEcubeTM devices in order to guarantee the highest level of
physical protection, whereas the metadata are stored into its
MicroSD card. The main reason for this separation is that the
size of the internal flash memory of the SEcubeTM device is
limited to 2 MB, thus it has been reserved to the cryptographic
keys.

All the cryptographic primitives are executed by the
SEcubeTM itself, the user (and administrator as well) only gets
the output of those operations, such as encrypted or decrypted
data, computed signatures and so on. Moreover, the firmware
of the device exposes neither any function to read the content
of the internal memory nor the key values in clear, granting
a good level of isolation from the main system. In a way
similar to the concept of tokenisations [11] [12], used in digital
payments, where credit card numbers are not sent directly,
but instead a mathematically unrelated identifier is shared.
Only when the payment has to be processed the unique ID is
substituted with the corresponding credit card number; outside
of the HSM each key is referred through its own Unique ID. It
is, hence, impossible to retrieve actual key values because no
trace of them can be found anywhere else except the internal
memory of the SEcubeTM devices.

Since the metadata about keys, users, and groups are stored
into a MicroSD card, a different strategy is required to grant
a suitable level of security and protection. This alternative
strategy relies on SEfile (see Section II): a library of the
SEcubeTM Open Source SDK that allows to encrypt files and to
work with them while keeping everything constantly encrypted
on disk. SEfile works together with the open source SQLite2

2https://www.sqlite.org/index.html

https://www.sqlite.org/index.html

database engine in order to implement a library called ‘Secure
Database’. In this library, specific for the SEcubeTM device,
the SQLite database engine has been tweaked to work on a
constantly encrypted database while granting confidentiality,
integrity and authentication of the DB files thanks to the
cryptographic primitives provided by the SEcubeTM device.

In addition, SEcubeTM is protected by a pair of PIN codes
that must be used to access the functionalities provided by the
device. Each PIN code is unique to a given SEcubeTM and it
is associated with a specific privilege level, admin and user.
The PIN codes of each SEcubeTM are set during the physical
initialization of the device, which takes place before the HSM
being physically handed to the user or to the administrator.
The PIN codes of the SEcubeTM devices are not related to the
actual role of the actors of the KMS. Their only purpose is
to stop unauthorised people from accessing the functionalities
of the device or limiting the features exposed by the firmware
of the SEcubeTM to boost the overall security of the system.
Following the Least Privilege paradigm (see Section III-B),
only the minimum amount of information required by each
involved actor to perform its operations, is disclosed [15]. For
example, each user is provided only with the PIN that grants
access to the user privilege level of his SEcubeTM device while
the PIN for the admin level is kept secret inside the SEcubeTM

of the administrator.

E. System Update and Cryptographic Key Distribution

Fig. 3. Update Distribution

Having a distributed architecture where the SEcubeTM de-
vices of the users store locally every information that is
required for the correct functioning of the KMS, a dedicated
secure protocol to share and distribute the data (i.e. groups up-
date, the cryptographic keys and so on) from the administrator
to the users is required.

The distribution of the data is always initiated by the
administrator, who automatically pushes the data to the users;
then the users process these data and store them inside their
SEcubeTM devices.

This mechanism requires a very simple underlying in-
frastructure (Figure 3) that relies on update files generated
specifically for each user of the system. The update files are
encrypted with a key that is known only to the administrator

and to the recipient; thus, a secure end-to-end channel is
implemented between the host computers of the involved
parties. Whenever a new update file is generated by the
administrator of SEkey, it is written to a non-volatile memory
support that must be accessible also to the users. This non-
volatile memory could be anything ranging from a shared disk
in a LAN to a cloud service, the only requirement being that
all parties involved in the KMS must be able to access to it.
SEkey is configured to automatically generate the update files
from the administrator side, and to automatically process them
from the user side. The update files contain every data that a
given user is entitled to store into her/his personal SEcubeTM.
When SEkey needs to share a cryptographic key from the
SEcubeTM of the administrator to the SEcubeTM of a user, that
key must be exported from the HSM of the administrator and
written to the update file of the user. The encrypted channel
implemented by the update file is not sufficient to protect the
key because its value would still be visible to the administrator
(the plaintext content of the update file is initially built in
the host computer of the administrator, then it is encrypted
by the SEcubeTM and finally written to the update file). In
order to solve this problem, SEkey implements an additional
encrypted end-to-end channel, created inside the update file.
This channel is built directly between the SEcubeTM devices
of the involved parties (administrator and user), it allows to
export a key from the SEcubeTM of the administrator only if
that key is already wrapped with another key (which is unique
for each user). In this way, the key is already exported outside
of the SEcubeTM in an encrypted format, guaranteeing that
even the administrator cannot see its real value. When the
SEcubeTM of a user receives a wrapped key, it removes the
wrapping and stores the key inside its flash memory, never
exposing the real value of the key outside of the HSM.
From a physical point of view, the generation of the cryp-
tographic keys managed by the KMS is always performed
inside the SEcubeTM of the administrator using a True Random
Number Generator embedded in the SEcubeTM MCU [16],
guaranteeing that each key is random and secure.

F. Key Management Features

The ultimate goal of a KMS is to manage the life cycle of
the cryptographic keys. In this sense, each key is characterised
by several properties, the most important being the cryptope-
riod and the state (see Section III-B).

The cryptoperiod states how long a key can be used to
encrypt data. It can be set, by default, to the value specified by
the security policy of the groups that owns the key. However,
it could be set to a smaller value when needed; values higher
than the default one are not allowed.

The state, instead, determines the current condition of the
key. For example, a key can be used to apply cryptographic
protection (encrypt data) only if it is in the active state; on the
other hand, it can be used to decrypt data also if it is not active.
Some states, such as destroyed and compromised, always
prevent SEkey from using a key due to security reasons.

Depending on its cryptoperiod and on its state, a key may
be eligible for usage. SEkey automatically manages a portion
of the life cycle of each cryptographic key, for example it
deactivates the keys whose cryptoperiod is expired and it has
built-in protection mechanisms to prevent the usage of keys
depending on their current state.

When an application needs to perform an encryption op-
eration, it can simply call an API of the KMS that returns
the unique identifier of the most secure key to be used,
then that identifier is passed to the encryption APIs of the
SEcubeTM. The most secure key to be used in a given situation
is determined by the list of the recipients of the data to be
encrypted. Here comes into play the concept of group (see
Section IV-B) so if a user needs to encrypt a message that
must be sent to another user, SEkey will automatically search
a usable key belonging to the smallest group in common
between all the parties involved in the communication, because
a smaller group is considered to be safer. The same holds if
a user wants to encrypt data for private usage, for example
before storing them on a cloud server. In that case the user
will specify himself as the only recipient, so SEkey will search
for a usable key belonging to a group where that user is the
only member.

In addition to the keys managed by the KMS, additional
cryptographic keys are required to properly manage the sys-
tem. These keys are not under the direct control of the KMS
or the administrator, but are generated automatically by the
system. are not visible to the user, and are used to encrypt
data locally to each SEcubeTM. For example, every SEcubeTM

generates a unique key that is used to encrypt the metadata
database of SEkey.

V. CONCLUSIONS

In this paper, SEkey was presented, a key management
system that leverages the peculiar features and functionalities
of the SEcubeTM hardware security module to provide all what
is required to securely manage cryptographic keys.

During the design of SEkey, all the most important security
dictates provided in the NIST guidelines were followed. Each
key is associated with a cryptoperiod and a state. Seven
different states are used to determine the type of operations
that a key can perform. Moreover, following the ‘Least Privi-
lege’ principle two actors with different privileges have been
identified in the KMS, the administrator and the user: the
former having the full privilege to perform any modification to
the KMS data while the latter can just use the KMS passively
without any authority to make changes.

The SEkey KMS is based on a distributed structure and its
users are organised according to a particular hierarchy that pro-
vides multiple groups, each characterised by specific security
policies. Users can communicate and share information with
each other by means of symmetric cryptographic keys shared
within the group. Each actor in the KMS has its own SEcubeTM

HSM and all the cryptographic keys and critical items are
stored securely in the internal device flash memory. Moreover,
all the cryptographic primitives are provided by the SEcubeTM

itself, hence keys never leave the device when performing
crypto operations and are never exposed in clear. The keys
that are distributed by the administrator are over-encrypted
with a unique key shared only between the administrator and
the user who must receive them. To limit the use of the device
internal memory, all the metadata handled by the KMS are
saved, on a MicroSD card connected to the SEcubeTM, in
an always encrypted database, thus guaranteeing the integrity,
confidentiality and authenticity of these data. Since the internal
memory of SEcubeTM is limited to 2MB available, the adopted
approach allows storing inside a single flash memory sector
(128KB) up to 4096 different keys (assuming a key size of
256 bits).

As far as future improvements there are the following
aspects are going to be tackled in the near future:

• Management of session keys: keys that can be generated,
used and dismissed within a group when there is the need
of instantiating a communication channel. In this way
it is possible to better separate keys that can be used
to cryptographically secure data at rest (e.g., files) and
data in motion (e.g., calls). Groups can internally manage
the creation of these type of keys, using for example a
contributory key agreement protocol, without querying
the central manager.

• Improvement in the internal flash memory management of
the device: since flash memories have a limited amount of
write operations that can be performed, having to replace
every now and then keys inside it can quickly wear out
memory.

• Implementation of a PUF inside the device: this can be
used either as a strong private cryptographic key, used
for example for the metadata database encryption, or as
a unique key shared by the administrator and each user
used for the encryption of SEkey update messages.

• Addressing the problem of non-repudiation in group en-
cryption. Methodologies exists involving either asymmet-
ric encryption, such as Ring Signature [21] or Threshold
Signature [1], or symmetric encryption such as the use
of trusted third party top provide a One Time Password
to be used in the signing process [17].

VI. ACKNOWLEDGMENTS

The activities presented in the present paper are par-
tially supported by the European Union’s Horizon 2020 re-
search and innovation programme, under grant agreement No.
830892, project SPARTA and by B5 Labs Ltd..

REFERENCES

[1] Michel Abdalla, Sara Miner, and Chanathip Namprempre. Forward-
secure threshold signature schemes. In Cryptographers’ Track at the
RSA Conference, pages 441–456. Springer, 2001.

[2] Y. Amir, Y. Kim, C. Nita-Rotaru, J. L. Schultz, J. Stanton, and G. Tsudik.
Secure group communication using robust contributory key agreement.
IEEE Transactions on Parallel and Distributed Systems, 15(5):468–480,
2004.

[3] E. Barker. Recommendation for key management: Part 1 - general. NIST,
Tech. Rep, 2020.

[4] W. C. Barker. Guideline for identifying an information system as a
national security system. NIST, Tech. Rep, 2003.

[5] M. Bollo, A. Carelli, S. Di Carlo, and P. Prinetto. Side-channel analysis
of secube™ platform. In 2017 IEEE East-West Design Test Symposium
(EWDTS), pages 1–5, 2017.

[6] CRYPTOMAThIC. Selecting The Right Key Management
System. https://www.cryptomathic.com/hubfs/Documents/White
Papers/Cryptomathic White Paper - Selecting The Right Key
Management System.pdf, 2019. [Online; accessed 22-July-2020].

[7] K. Dempsey, M. Nieles, and V. Y. Pillitteri. An introduction to
information security. NIST, Tech. Rep, 2017.

[8] M. Fornero, N. Maunero, P. Prinetto, G. Roascio, and A. Varriale.
SEcube Open Security Platform - Introduction. https://www.secube.eu/
site/assets/files/1218/wiki.pdf, 2019. [Online; accessed 22-July-2020].

[9] M. Fornero, N. Maunero, P. Prinetto, G. Roascio, and A. Varriale. SEfile
Documentation. https://www.secube.eu/site/assets/files/1218/wiki.pdf,
2020. [Online; accessed 22-July-2020].

[10] V. Gopal, S. Fadnavis, and J. Coffman. Low-cost distributed key
management. In 2018 IEEE World Congress on Services (SERVICES),
pages 57–58, 2018.

[11] Gabriel Babatunde Iwasokun, Taiwo Gabriel Omomule, and
Raphael Olufemi Akinyede. Encryption and tokenization-based
system for credit card information security. International Journal of
Cyber Security and Digital Forensics, 7(3):283–293, 2018.

[12] Ronald Julien Jr. The cybersecurity aspects of Apple Pay. PhD thesis,
Utica College, 2016.

[13] T. Mandt, M. Solnik, and D. Wang. Demystifying the secure enclave
processor. Black Hat Las Vegas, 2016.

[14] Sandro Rafaeli and David Hutchison. A survey of key management
for secure group communication. ACM Computing Surveys (CSUR),
35(3):309–329, 2003.

[15] F. B. Schneider. Least privilege and more [computer security]. IEEE
Security Privacy, 1(5):55–59, 2003.

[16] STMicroelectronics. AN4230 Application Note - STM32
microcontroller random number generation validation using the
NIST statistical test suite. https://www.st.com/resource/en/application
note/dm00073853-stm32-microcontroller-random-number-generation-
validation-using-the-nist-statistical-test-suite-stmicroelectronics.pdf,
2020. [Online; accessed 22-July-2020].

[17] International Telecommunication Union. X.1156: Non-repudiation
framework based on a one-time password. https://www.itu.int/rec/T-
REC-X.1156-201306-I/en, 2014. [Online; accessed 22-July-2020].

[18] A. Varriale, E. I. Vatajelu, G. Di Natale, P. Prinetto, P. Trotta, and
T. Margaria. Secube™: An open-source security platform in a single
soc. In 2016 International Conference on Design and Technology of
Integrated Systems in Nanoscale Era (DTIS), pages 1–6, 2016.

[19] Antonio Varriale, Giorgio Di Natale, Paolo Prinetto, Bernhard Steffen,
and Tiziana Margaria. Secube (tm): an open security platform-general
approach and strategies. In Proceedings of the International Conference
on Security and Management (SAM), page 131. The Steering Committee
of The World Congress in Computer Science, Computer . . . , 2016.

[20] Antonio Varriale, Paolo Prinetto, Alberto Carelli, and Pascal Trotta.
Secube (tm): Data at rest and data in motion protection. In Proceedings
of the International Conference on Security and Management (SAM),
page 138. The Steering Committee of The World Congress in Computer
Science, Computer . . . , 2016.

[21] Fangguo Zhang and Kwangjo Kim. Id-based blind signature and ring
signature from pairings. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 533–547.
Springer, 2002.

https://www.cryptomathic.com/hubfs/Documents/White_Papers/Cryptomathic_White_Paper_-_Selecting_The_Right_Key_Management_System.pdf
https://www.cryptomathic.com/hubfs/Documents/White_Papers/Cryptomathic_White_Paper_-_Selecting_The_Right_Key_Management_System.pdf
https://www.cryptomathic.com/hubfs/Documents/White_Papers/Cryptomathic_White_Paper_-_Selecting_The_Right_Key_Management_System.pdf
https://www.secube.eu/site/assets/files/1218/wiki.pdf
https://www.secube.eu/site/assets/files/1218/wiki.pdf
https://www.secube.eu/site/assets/files/1218/wiki.pdf
https://www.st.com/resource/en/application_note/dm00073853-stm32-microcontroller-random-number-generation-validation-using-the-nist-statistical-test-suite-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00073853-stm32-microcontroller-random-number-generation-validation-using-the-nist-statistical-test-suite-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00073853-stm32-microcontroller-random-number-generation-validation-using-the-nist-statistical-test-suite-stmicroelectronics.pdf
https://www.itu.int/rec/T-REC-X.1156-201306-I/en
https://www.itu.int/rec/T-REC-X.1156-201306-I/en

	Introduction
	The SEcubeTM Open Security Platform
	Background
	Key Management Systems Overview
	NIST Recommendation

	SEkey
	SEkey General Architecture
	User Groups
	Roles of the Involved Actors
	SEkey Internal Structure
	System Update and Cryptographic Key Distribution
	Key Management Features

	Conclusions
	Acknowledgments
	References

