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Abstract. In recent years, autonomous vehicles and mobile robots are starting to 

become a trend also in several new fields of application. In some cases, they are 

articulated vehicles with an active front module and a rear one that is pulled pas-

sively or that can contribute to the vehicle traction when required. Although mod-

elling of mobile robots is not a novelty, most of the available studies are limited 

to kinematic or very basic dynamic models. In order to correctly simulate mobile 

robots with fast dynamics or operating off-road, this study proposes a dynamic 

model of such systems derived taking into account lateral and longitudinal slip in 

the wheels. The model is then validated experimentally using a small articulated 

robot 

Keywords: Mobile robot, Articulated robots, Tractor-trailer. 

1 Introduction 

The application of mobile robots is growing interest in many fields of application, and 

in recent decades various mobile platforms have been designed to achieve even various 

tasks. In parallel to the development of new mobile robots, researchers have proposed 

several models of increasing complexity in order to describe and predict how a robot, 

or a class of robots, should behave and to design an optimal controller. 

The modelling of such systems is not new, and many works have focused on the 

main type of mobile robots composed by a single module such as differential drive [1] 

or car-like robots [2]. Fewer studies go into detail about multi-modular vehicle, but, 

thanks to some interest in developing autonomous trucks, there are some researches 

about modelling articulated (or tractor-trailer) robots, but most of the knowledge comes 

from studies about conventional vehicles [3–7]. Although these studies can provide 

some insight about how mobile articulated robots can behave, most of them are limited 

to just kinematic or to dynamic models with rigorous hypotheses. Therefore these mod-

els are not suited to describe robots having very fast dynamics or operating off-road or, 

more in general, in conditions where significant longitudinal or lateral wheel slips can 

occur. 
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This paper intends to develop a dynamic model of a generic articulated robot com-

posed of two modules having four wheels, where each module can work as a differential 

drive device. This necessity came from the need of modelling two mobile robots with 

a similar architecture: Agri.Q, an Unmanned Ground Vehicle (UGV) designed for pre-

cision agriculture [8–10], and Epi.Q, a modular surveillance UGV [11–15](Fig. 1). 

Ideally, the same model could be developed for them and, even more generally, in 

order to represent articulated robots with more than two modules and different locomo-

tion units, like for Rese.Q a snake-like tracked robot [16, 17]. 

 

  

Fig. 1. Agri.Q and Epi.Q, UGVs composed of two differential driven modules linked to-

gether. 

2 System modelling 

The system that is analysed and modelled is a generic mobile robot made of two mod-

ules with four wheels that can be independently actuated or not. With this architecture, 

it is possible to get several combinations such as the front module pulling the second 

one like a trailer, the second one pushing the first robot unit or both modules working 

together.  

A schematic model of the system is illustrated in Fig. 2. In this figure, the first plat-

form has its mass m1 centred at the point F, while point R represents the second module 

of mass m2. The two modules are linked by the two links L1 and L2 joined together by 

a passive revolute joint at the point O to establish a relative yaw motion between the 

modules. Although in the actual robots there is also a joint enabling the relative roll 

motion, the model does not represent it, since it is limited to the planar movement. For 

the generic module 𝑗 = 1,2, it is possible to locate the four wheels of mass mjk at 

(±dj,±bj) in the local reference frame placed at the module centre of mass. 

The two robot robots introduced before, Agri.Q and Epi.Q, can be easily represented 

by this model changing the appropriate geometric and mass parameters and adding 

some more constraints on the wheels to correctly represents the specific locomotion 

unit. 
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Fig. 2. Dynamic model generalised coordinates and geometric parameters. 

 

Table 1 collects the states of the system required to represent the robot, which are 

repeated for each module and each wheel: three coordinates (𝑥𝑗 , 𝑦𝑗 , 𝜃𝑗) define the pose 

of each module and other three coordinates (𝜌𝑗𝑘, 𝜂𝑗𝑘 , 𝜑𝑗𝑘) describe the state of each 

wheel. Therefore, given two modules and eight wheels, it is possible to define the gen-

eralised coordinates vector 𝐪30×1 collecting all of them. 

Table 1. Generalised coordinates description 

Symbol  Description 

j Module subscript. It is 1 or F for the front module and 2 or R for the rear one 

k Wheel subscript. Odd k is used for the right side, while even k for the left one 

𝑥𝑗 Horizontal position of the module j in the inertial reference frame 

𝑦𝑗 Vertical position of the module j in the inertial reference frame 

𝜃𝑗 Heading of the module j in the inertial reference frame 

𝜂𝑗𝑘 Lateral displacement of the wheel jk in the local reference frame 

𝜌𝑗𝑘 Longitudinal displacement of the wheel jk in the local reference frame 

𝜑𝑗𝑘 Angular displacement of the wheel jk about its axis 

 

However, the actual minimum number of states required to define the system ade-

quately is 12: two spatial coordinates to define the position of a module in the plane, 

two angular coordinates to represent the heading of the modules and eight angular co-

ordinates to represent the rotation of the wheels. Consequently, given the 30 states de-

fined before, 18 constraint equations must be defined: 

�̇�𝑗𝑘 =  �̇�𝑗𝑐𝑜𝑠𝜃𝑗 + �̇�𝑗𝑠𝑖𝑛𝜃𝑗 − (−1)
𝑘𝑏𝑗�̇�𝑗     with 𝑗 = 1,2 and 𝑘 = 1,2,3,4 (1) 

�̇�𝑗𝑘 =  −�̇�𝑗𝑠𝑖𝑛𝜃𝑗 + �̇�𝑗𝑐𝑜𝑠𝜃𝑗 + 𝑑𝑗�̇�𝑗    with 𝑗 = 1,2 and 𝑘 = 1,2 (2) 

�̇�𝑗𝑘 =  −�̇�𝑗𝑠𝑖𝑛𝜃𝑗 + �̇�𝑗𝑐𝑜𝑠𝜃𝑗 − 𝑑𝑗�̇�𝑗    with 𝑗 = 1,2 and 𝑘 = 3,4 (3) 
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�̇�2 = �̇�1 + 𝐿1�̇�1𝑠𝑖𝑛𝜃1 + 𝐿2�̇�2𝑠𝑖𝑛𝜃2 (4) 

�̇�2 = �̇�1 − 𝐿1�̇�1𝑐𝑜𝑠𝜃1 − 𝐿2�̇�2𝑐𝑜𝑠𝜃2 ( 5) 

Where (1), (2), and (3) represent the longitudinal and lateral wheels slips, while (4) 

and ( 5) embodies the relationship between the front and rear modules. These con-

straints can be compactly written in matrix form defining the system constraint matrix 

𝐀(𝐪) 

𝐀18×30(𝐪)�̇�30×1 = 0 (6) 

The Newton-Euler approach is used to derive the dynamic equations governing the 

system. The system is divided into 10 subsystems (front module, rear module and 8 

wheels) and for each one of them a free body diagram is drawn (Fig. 3).  

 

 

Fig. 3 Two modules and the generic wheel jk free-body diagrams 

From the free-body diagrams in Fig. 3, it is possible to write down the three equa-

tions governing the first (𝑗 = 1) and the second module (𝑗 = 2): 

𝑚𝑗�̈�𝑗 = 𝑐𝑜𝑠𝜃𝑗∑𝑅𝑗𝑘𝜌

4

𝑘=1

− 𝑠𝑖𝑛𝜃𝑗∑𝑅𝑗𝑘𝜂

4

𝑘=1

−(−1)𝑗𝑅𝑂𝑥 (7) 

𝑚𝑗�̈�𝑗 = 𝑠𝑖𝑛𝜃𝑗∑𝑅𝑗𝑘𝜌

4

𝑘=1

+ 𝑐𝑜𝑠𝜃𝑗∑𝑅𝑗𝑘𝜂

4

𝑘=1

− (−1)𝑗𝑅𝑂𝑦 (8) 

(𝐼𝑗 + 4𝐼𝑤𝑗𝑧)�̈�𝑗 = 

= 𝑏𝑗∑(−(−1)𝑘𝑅𝑗𝑘𝜌

4

𝑘=1

) + 𝑑𝑗(𝑅𝑗1𝜂 + 𝑅𝑗2𝜂 − 𝑅𝑗3𝜂 − 𝑅𝑗4𝜂) + 𝐿𝑗(𝑅𝑂𝑥𝑠𝑖𝑛𝜃𝑗 − 𝑅𝑂𝑦𝑐𝑜𝑠𝜃𝑗) 
(9) 

To complete the dynamic equations of the system, a set of three equations can be 

defined for the generic wheel 𝑗𝑘 with 𝑗 = 1,2 and 𝑘 = 1,2,3,4. As said before, the 
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vertical dynamics are neglected, and the normal force is just used to define the rolling 

resistance. The actual value of the normal force is the same for all the wheels. 

𝑚𝑤𝑗�̈�𝑗𝑘 = 𝑓𝑙𝑜𝑛𝑗𝑘 − 𝑅𝑗𝑘𝜌 +𝑚𝑤𝑗 �̇�𝑗𝑘�̇�𝑗 (10) 

𝑚𝑤𝑗 �̈�𝑗𝑘 = 𝑓𝑙𝑎𝑡𝑗𝑘 − 𝑅𝑗𝑘𝜂 −𝑚𝑤𝑗�̇�𝑗𝑘�̇�𝑗  (11) 

𝐼𝑤𝑗�̈�𝑗𝑘 = 𝜏𝑗𝑘 − 𝑟𝑤𝑗𝑓𝑙𝑜𝑛𝑗𝑘 − 𝑘𝑟𝑜𝑙𝑙𝑗𝑓𝑛𝑗𝑘sign(�̇�𝑗𝑘) (12) 

The set of 30 dynamic equations describing the system can be written in the follow-

ing form: 

𝐌�̈�𝐟(�̇�) + 𝐂(𝐪, �̇�) + 𝐟(�̇�) + 𝐀(𝐪)T𝐑 = 𝐁𝛕 (13) 

Where 𝐌30×30 is the diagonal mass matrix, due to the full kinematic decoupling of 

the states, 𝐁30×8 is the input matrix, 𝛕8×1 = [𝜏11, … , 𝜏𝑗𝑘 , … , 𝜏24]
𝑇
 is the input vector 

containing all the torques applied to the wheels, 𝐟(�̇�)30×1 is the vector of the wheel-

ground contact forces, 𝐂(𝐪, �̇�)30×1 is the Coriolis and centripetal forces vector, 

𝐀(𝐪)18×30 is the system constraint matrix and 𝐑18×1 is the constrain forces vector, or 

the Lagrange multipliers vector. 

From (6) it can be derived that all the permitted velocities are in the null space of 

𝐀(𝐪). The null space can be represented by a set of vectors 𝐧1(𝐪), … , 𝐧12(𝐪) defining 

the base of the null space matrix of 𝐀(𝐪): 

𝐀(𝐪)𝐧i(𝐪) = 0     with 𝑖 = 1,2, … ,12 (14) 

So it is possible to define 𝐍(𝐪) as the null space matrix of 𝐀(𝐪) such as  

𝐀18×30(𝐪)𝐍30×12(𝐪) = 0 ⇒  𝐍(𝐪)T𝐀(𝐪)T = 0 (15) 

At the same time �̇� is a linear combination of the 12 vectors composing 𝐍(𝐪), 

so it can be compactly written as �̇� = 𝐍(𝐪)𝐮. Where 𝐮 is a vector containing 

the minimum number of independent kinematic inputs 𝑢1, 𝑢2, … , 𝑢12 needed 

to describe the system completely. For the general case proposed here, the 

vector of independent kinematics input of the system can be the as it follows: 

𝐮12×1 = [�̇�1, �̇�1, �̇�1, �̇�11, �̇�12, �̇�13, �̇�14, �̇�2, �̇�21, �̇�22, �̇�23, �̇�24]
𝑇
 (16) 

Hence, it is possible to compute 𝐍(𝐪) from 𝐀(𝐪). With this new matrix, it is possible 

to redefine (13) using the minimum number of states following these steps: 

�̈� = �̇�𝐮 + 𝐍�̇� (17) 

𝐍T(𝐌�̇�𝐮 +𝐌𝐍�̇�) = 𝐍T𝐁𝛕 − 𝐍T𝐟 − 𝐍T𝐂 − 𝐍T𝐀T𝐑  

𝐍T𝐌𝐍�̇� = 𝐍T𝐁𝛕 − 𝐍T(𝐌�̇�𝐮 − 𝐂 − 𝐟)  
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�̇� = 𝐇𝛕 − 𝐆 

where 𝐇 = (𝐍T𝐌𝐍)−1𝐍T𝐁 and 𝐆 = (𝐍T𝐌𝐍)−1𝐍T(𝐌�̇�𝐮 − 𝐟 − 𝐂) 
(18) 

2.1 Contact forces 

In order to correctly model the dynamics of a generic articulated system, the contact 

forces generated by the wheel-ground interaction are crucial. Most of the studies that 

consider slip and skid of the wheels use the Pacejka magic formula to model the contact 

forces. Unfortunately, the number of parameters required to model the contact is high 

and usually it is not easy to identify them if the wheels are not commercial tires. For 

this reason, a simpler model based on wheel normal, longitudinal and lateral stiffness 

is defined and used. 

The normal contact force 𝑓𝑛𝑗𝑘 is defined as a linear function of the wheel normal 

displacement 𝛥𝑧𝑗𝑘: 

𝑓𝑛𝑗𝑘 = 𝑘𝑛𝑗𝛥𝑧𝑗𝑘  (19) 

Again, in this preliminary model, the robot vertical dynamic is neglected, so the hy-

pothesis that the normal force is always constant, the same for all the wheels and equal 

to the static value holds. Therefore, also all the inertial load transfer are neglected. 

The longitudinal contact force 𝑓𝑙𝑜𝑛𝑗𝑘 is defined as a linear function of the wheel-

contact plane relative velocity, while the lateral contact force 𝑓𝑙𝑎𝑡𝑗𝑘 is a linear function 

of the lateral velocity of the wheel: 

𝑖𝑓 √𝑓𝑙𝑜𝑛𝑗𝑘
2 + 𝑓𝑙𝑎𝑡𝑗𝑘

2 ≤ 𝜇𝑠𝑓𝑛𝑗𝑘 ⇒ {
𝑓𝑙𝑜𝑛𝑗𝑘 = 𝑘𝑙𝑜𝑛𝑗(𝑟𝑤𝑗�̇�𝑗𝑘 − �̇�𝑗𝑘)

𝑓𝑙𝑎𝑡𝑗𝑘 = −𝑘𝑙𝑎𝑡𝑗�̇�𝑗𝑘
 

𝑖𝑓 √𝑓𝑙𝑜𝑛𝑗𝑘
2 + 𝑓𝑙𝑎𝑡𝑗𝑘

2 > 𝜇𝑠𝑓𝑛𝑗𝑘 ⇒

{
  
 

  
 𝑓𝑙𝑜𝑛𝑗𝑘 = 𝜇𝑑𝑓𝑛𝑗𝑘

𝑘𝑙𝑜𝑛𝑗(𝑟𝑤𝑗�̇�𝑗𝑘 − �̇�𝑗𝑘)

√𝑓𝑙𝑜𝑛𝑗𝑘
2 + 𝑓𝑙𝑎𝑡𝑗𝑘

2

𝑓𝑙𝑎𝑡𝑗𝑘 = −𝜇𝑑𝑓𝑛𝑗𝑘
𝑘𝑙𝑎𝑡𝑗�̇�𝑗𝑘

√𝑓𝑙𝑜𝑛𝑗𝑘
2 + 𝑓𝑙𝑎𝑡𝑗𝑘

2

 

(20) 

3 Experimental validation 

As said previously, some parameters must be identified in order to validate the proposed 

model correctly. The lateral and longitudinal wheel stiffness are the main parameters 

that need to be identified by fitting experimental data. In contrast, all the other model 

parameters can be easily measured or guessed with good approximation. The estimation 

process is done solving a non-linear least-square problem to minimise the difference 

between the measured quantities and the simulated states. This was performed using 

the Levenberg–Marquardt algorithm. 
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Different tests are done so that it is possible to isolate the effects of the parameters 

singularly in order to simplify the estimation of such parameters. The first set of tests 

consists of letting the robot move in a straight line at different velocities to estimate the 

parameters affecting the longitudinal dynamics without the influence of any lateral dy-

namics. In the second set of tests, instead, the robot follows a circular trajectory with 

different angular speeds to the right and left side. In these cases, both lateral and longi-

tudinal dynamics are present, but with proper identification of the longitudinal ones, it 

is possible to focus on the estimation of lateral ones. 

In all the tests, as many system states as possible have been measured. Modules 

poses and time derivatives have been measured using an image tracking system devel-

oped by the research group [18, 19], and the torque and the angular velocities of the 

active wheels have been measured with the robot sensors. Although all these tests were 

done using Epi.Q as a testing platform, the same methodology should also work for 

Agri.Q or any articulated robot that can be described by the model. The convenience of 

using Epi.Q is simply due to its limited size and manageable performance. It is also true 

that most of the inertial effects of the wheels are practically negligible with such a small 

robot, so the added complexity of the inertial effects should truly appear with a larger 

robot like Agri.Q. 

The first set of tests consists of 7 different trials where the front module of the robot 

was set to reach and maintain the angular speeds of 100, 150, 200, 250, 300, 400 and 

500 𝑟𝑎𝑑/𝑠 for the two motors driving the front wheels producing straight trajectories. 

From these tests, it is possible to identify the main parameters governing the longitudi-

nal dynamics of the system: 𝜇𝑠 and 𝜇𝑑 , the contact static and dynamic friction coeffi-

cients, 𝑘𝑙𝑜𝑛𝑗 , the longitudinal stiffness of the wheels, and 𝑘𝑟𝑜𝑙𝑙𝑗, the rolling friction pa-

rameter. 

Fig. 4a depicts the comparison between the test with motors angular speed of 

250 𝑟𝑎𝑑/𝑠 and a simulation with the identified parameters; similar results are obtained 

for the other tests. The simulation slightly overshoots the experimental results for the 

slower speeds, while at higher speeds, they undershoot a little. However, in general, it 

is possible to state that the results are still a good representation of the tests. 

Given the identified longitudinal parameters (Table 2), it is now easier to obtain an 

estimate for the wheels lateral stiffnesses 𝑘𝑙𝑎𝑡𝑗, the main parameters governing the lat-

eral dynamics of the articulated robot. However, even if the main focus here it is to 

estimate 𝑘𝑙𝑎𝑡𝑗, all the previously identified parameters are estimated again, starting 

from the previous guesses. In order to achieve a good identification, a simple test was 

repeated two times to obtain some experimental data. In these tests, the motor on the 

right side was set to maintain 200 𝑟𝑎𝑑/𝑠 while the left one had to keep the speed of 

100 𝑟𝑎𝑑/𝑠 for about one minute. With this set up, the robot follows a circular trajec-

tory, whose radius should be about 0.445 𝑚 if the motion is purely kinematic. 

In Fig. 4b, it is possible to see the comparison of experimental and simulated results. 

Firstly, it has to be stated that the image-based tracking setup produces some uncer-

tainty along the camera optical centre, for this reason, the experimental curve appears 

a little bit deformed in one direction, like an ellipse. However, it is possible to compute 

its mean radius, obtaining 0.441 𝑚 , so it is still close to the expected value. The aver-

age radius of the simulated trajectory, instead, is 0.466 𝑚, so it can be considered a fine 
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approximation of the experimental results. Both the trajectories are pretty close to the 

ideal kinematic one, except during the initial straight transient. 

Fig. 4(c-b) show the contact forces of the right and left front wheels. Here it is pos-

sible to see one of the limitations of the model: the hypothesis of a constant and equal 

vertical load on each wheel seems to lead to improper load distribution and conse-

quently to wheel slip due to the strong correlation between vertical load and contact 

forces. 

Table 2.   Estimated parameters 

Parameter Estimated value Parameter Estimated value 

𝜇𝑠 0.9 𝑘𝑟𝑜𝑙𝑙𝑗 8 × 10−4𝑚 

𝜇𝑑 0.6 𝑘𝑙𝑎𝑡𝑗 200 𝑁𝑠/𝑚 

𝑘𝑙𝑜𝑛𝑗  120 𝑁𝑠/𝑚 𝑘𝑛𝑗  11 𝑁/𝑚𝑚 

 

 
 

(a) (c) 

  
(b) (d) 

Fig. 4. (a-b) Comparison between the experimental and simulated trajectories. (c-d) Simulated 

front wheels contact forces. 

4 Conclusions 

In the present paper, a general dynamic model of articulated wheeled mobile robot sub-

ject to wheels slippage is modelled. The Newton-Euler method has been used to derive 

the system dynamic equations, and a very simple ground-wheel contact force model 

has been developed to represent wheels dynamics correctly. Some tests have been done 
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in order to estimate the model parameters governing the system longitudinal and lateral 

dynamics. By using these parameters, it has been possible to simulate with good preci-

sion the actual robot behaviour during straight and circular manoeuvres. However, it is 

already clear that further development of this model has to integrate some vertical dy-

namics too, due to their strong correlation to the contact forces. 

 This model provides a good starting point to develop some control architectures of 

autonomous articulated robots, in particular in case of also the second module is an 

active driving unit. 

A similar identification methodology will be applied to Agri.Q, the larger agricul-

tural rover, in order to verify the scalability of this model. 
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