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Abstract—The recovery of sparse signals from their linear
mapping on a lower-dimensional space is traditionally performed
by finding the sparsest solution compatible with such solutions.
This task can be partitioned in two phases: support estimation
and coefficient estimation. We propose to perform the former
with a deep neural network jointly trained with the encoder that
divines a support that is used in the latter phase to estimate
the coefficients by pseudo-inversion. Numerical evidence demon-
strates that the proposed encoder-decoder architecture outper-
forms state-of-the-art Compressed Sensing (CS) approaches in
the recovery of synthetic ECG signals for a compression ratio
higher than 2.5. Further tests on real ECG prove the applicability
in real-world scenarios.

I. INTRODUCTION

Contexts in which sensors are designed with strict require-
ments in terms of computational resources and energy budget
are continuously increasing. An example is the continuous
monitoring of the heart activities that is of primary importance
in the detection and prevention of cardiovascular diseases and
requires the development of sensor networks that are either
wearable or wireless [1].

In this setting, the design of the sensing device aims at
reducing to the minimum the energy necessary to acquire and
transmit the valuable information. This is precisely the aim of
Compressed Sensing (CS) that leverages on the sparsity prop-
erty, which characterizes many real-word signals to compress
the waveform directly in the acquisition phase. Compression
is achieved by means of linear projection of the signal on
random sensing waveforms (called measurements), which are
in numbers potentially much lower than the dimensionality of
the signal acquired at Nyquist-rate. Obviously the number of
measurements is strictly linked to the energy budget as the
lower they are the larger the compression and the lower the
computational cost.

The advantage provided by CS at the encoder side comes at
the cost of additional complexity required for decoding. More
precisely, the signal recovery corresponds to the solution of
the problem of finding an n-dimensional sparse signal x from
the set of m measurements y with m ă n, i.e., determining
the sparsest vector x among the infinite solutions that are
linearly mapped to y by the encoder. This problem is known as
Basis Pursuit (BP) and it is generalized to BP with Denoising
(BPDN) in the presence of noise.

The literature provides different approaches to solve this
combinatorial problem, starting from linear programming [2]
that was the first approach able to obtain a solution in
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Fig. 1. General scheme of an encoder-decoder pair for ECG signals.

polynomial time, thus making the use of CS practical. This
first approach has been further improved by exploiting more
advanced solvers such as Spectral Projected Gradient for L1
Minimization (SPGL1) [3] and the Generalized Approximate
Message Passing (GAMP) [4], or iterative methods such as the
Orthogonal Matching Pursuit (OMP) [5] and the Compressive
Sampling Matching Pursuit (CoSaMP) [6].

More recently, some works have succeeded in reducing
computational complexity or in improving the quality of signal
reconstruction by employing Deep Neural Networks (DNNs)
at the decoder stage [7]–[14]. In [11] authors, inspired by
iterative solvers, proposed a stacked denoising autoencoder
(SDA) implemented using a 3-layer neural network to recover
sparse images from their measurements. Similarly, in [13],
authors have proposed a DNN, called ISTA-Net, inspired
by the Iterative Shrinkage-Thresholding Algorithm (ISTA)
[15], which optimizes the solution of BP to reconstruct com-
pressed images. In [12], a fully-connected DNN is applied
to measurements of videos for fast recovery and improved
reconstruction quality. A deep learning framework applied to
EEG signals is presented in [14], where three neural networks
have been jointly optimized to perform binary measurement
matrix multiplication, non-uniform quantization and signal
recovery, respectively.

In this work, we propose an innovative approach that uses
a DNN to improve the reconstruction of CS-sampled ECG
signals, thus allowing the encoder to decrease the number of
measurements needed to reconstruct the signal compared to
more classical CS. The neural network, that is jointly trained
with the encoder, is not used to recover the input signal directly
but only to estimate its support, i.e., the positions of the non-
null elements of the sparse representation of the input signal.
Once the support has been divined, the coefficients can be ob-
tained by pseudo-inverting the linear mapping in the encoder.
This approach is proved to improve reconstruction quality
compared to standard techniques in case of synthetically-
generated ECGs, and it is shown to be effective also on real
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ECGs.
The paper is organized as follows: Section II briefly reviews

the CS theory, introduces the concept of reconstruction based
on the DNN oracle, and shows a possible implementation of
the overall architecture. System performances are shown in
Section III, and finally, conclusions are drawn.

II. COMPRESSED SENSING AND DEEP NEURAL ORACLE

Let us assume that a sensor readings stream is chopped into
subsequent n-samples length time windows, each of which
is represented by a vector x “ px0, . . . , xn´1q. Let us also
assume that each possible vector x is κ-sparse with respect
to the basis defined by the columns of an orthonormal matrix
S, that is, when we express x “ Sξ, then only κ elements in
the vector ξ “ pξ0, . . . , ξn´1q are non-null, with κ ! n. With
these assumptions and considering the scheme in Figure 1, the
CS paradigm declines a proper encoder and decoder pair as
follows.

Signal compression is performed by projections of x over
the rows of a predefined m ˆ n sensing matrix A with
a resulting measurement vector y “ Ax, where m ă n
guarantees that signal is compressed by a factor n{m called
compression ratio (CR).

The fact that the information content in x depends only
on κ scalars hints at the possibility of recovery ξ, and
therefore x, from y. This is the idea behind many methods
already proposed in literature for the decoder stage [4]–[6].
As mentioned in the introduction, BP [2] is the most classical
one. Here, y “ ASξ (an ill-posed problem with infinite vectors
ξ mapped into the same y) is done by selecting the sparsest
vector ξ̂.

ξ̂ “ arg min
ξPRn

}ξ}1 s.t. y “ ASξ (1)

where the `1-norm } ¨ }1 promotes sparsity, A is such that CS
theory holds and x̂ “ Sξ̂ is the resulting reconstructed signal.

As a class of sensing matrices A to be paired with the CS
decoder, the standard CS theory initially proposed matrices
whose entries are instances of independent zero-mean and
unit-variance Gaussian random variables [16]–[18]. Then A
matrices composed by instances of independent antipodal
random variables (i.e., ˘1) were also adopted without per-
formance degradation [19]. Here we will focus on this class
of matrices since they reduce the acquisition complexity by
lowering the resources needed to compute Ax. As a further
step in resource optimization, methods able to reduce the
number of rows in A by exploiting adaptation to the acquired
class of signal have been discussed in literature [20]–[23].
Notably, the rakeness-based approach is also compliant with
the class of antipodal sensing matrices [23] so that we will
use performance associated with this method as a reference.

A. CS decoder with Deep Neural Oracle

Referring to a κ-sparse signal ξ, let us define its support
supp ξ as a binary vector s P t0, 1un such that sj “ 1 if
ξj ‰ 0 and sj “ 0 otherwise. Such kind of vectors can be
also used to address either elements of a vector or columns of
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Fig. 2. Trained CS with support oracle block scheme. Here, the first part
of the fully connected DNN performs CS encoder while the final estimated
support ŝ contains ones where the DNN outputs exceed a trained threshold.
The estimated support is employed during the signal reconstruction, where
the reconstructed signal x̂ is estimated.

a matrix, i.e., the notation ¨|s defines the subvector/submatrix
collecting only the κ elements/columns corresponding to sj “
1. Furthermore, we can say that x “ Sξ could be represented
by a n-dimensional binary vector s “ supp ξ and by the κ-
dimensional vector ξ|s.

With this notation, it is now possible to introduce our
alternative to the recovery stage in (1), which splits signal
reconstruction into two stages, the estimation of s and the
computation of ξ|s.

For the latter, if an oracle gives us ŝ, that estimates s by
looking at vector y, then one may note that y “ ASξ can be
inverted by solving y “ AS|ŝξ̂|ŝ, so that recovering ξ from

ξ̂|ŝ “
`

AS|ŝ
˘:
y (2)

where ¨: stands for the Moore-Penrose pseudo-inversion that
is needed since AS|ŝ P Rm,κ̂ is a matrix with more rows than
columns and where κ̂, that count the ones in ŝ, is in the same
order of κ ă m.

The adopted oracle is based on a Deep Neural Network
(DNN) trained with a large set of couples of vectors x and their
corresponding supports s. Since the encoder stage is similar
to a neural network layer, the training phase also involves the
design of the antipodal matrix A. This is done by inserting
an additional layer devoted to computing y that has n inputs,
m outputs, a linear activation function, zero bias, and weights
constrained to be 1 or ´1. As a result, encoder and decoder
are jointly defined in the support identification task.

Finally, ŝ estimated by the DNN and the corresponding ξ̂|ŝ
defines the recovered signal x̂ “ Sξ̂ as shown in Fig. 2. We
name this approach Trained CS with Support Oracle, TCSSO.

B. DNN structure and training

As shown in Fig. 2, the DNN we propose takes an n-
dimensional vector x as input while the final layer is composed
by n neurons that correspond to the estimation of s and
generate an output vector o. There are also a first hidden
fully connected layer with m neurons and antipodal weights
(implementing the sensing matrix A) and 3 additional fully
connected layers of cardinality 2n, 2n, and n. The adopted
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Fig. 3. Performance in terms of PCR as function of the compression ratio
for both TCSSO and the BP decoder coupled with rakeness-based encoder
adaptation (RAK + BP).

activation function is linear for the first hidden layer while
ReLu functions are used for the successive three layers. The
output layer is also fully connected with a sigmoidal activation
function1. Finally the support estimation is done by selecting
the binary vector ŝ P t0, 1un such that ŝj “ 1 if oj ě omin

and ŝj “ 0 otherwise.
During the training phase, weights and bias computation is

based on the minimization of a loss function that give us the
total component-wise clipped cross-entropy between s and o

X “ ´
ÿ

j|sj“1

logcε pojq´
ÿ

j|sj“0

logcε p1´ ojq

where ε is a small value and logcεp¨q is a clipped log function
defined as mintlog2p1´ εq,maxtlog2pεq, log2p¨quu.

Note that, for the layer corresponding to the encoder stage,
during the forward pass, we refer to antipodal weights, but
this kind of constraint conflicts with the application of the
backpropagation algorithm. To solve this issue, we use a
matrix of unconstrained weights W enc in the backward pass
such that the gradient can be computed, while the forward pass
employs A “ signpW encq, where sign is applied component-
wise at each training step. As a final remark, the training set
used to compute all the DNN parameters is also employed to
estimate the threshold omin.

III. NUMERICAL EVIDENCE

The first considered dataset is composed by 8ˆ 105 signal
instances of synthetic ECG randomly generated as in [25]
with the same parameters of [22] where the sample rate is
256 sample{s and with n “ 128 as in [26]. A set of 80% of
these instances is for the DNN training, while the remaining
20% are for a first TCCSO performance assessment (this is
the test set).

Training and inference of the proposed DNN were done
employing the TensorFlow framework [27] with Keras API
[28]. More precisely, a stochastic gradient descent algorithm
has been considered for the DNN fitting, where each gradient

1we refer to a function that maps any scalar a into
`

1` e´a
˘´1.
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Fig. 4. RSNR histogram for TCSSO with ECG in [24], m “ 40 (CR “ 3.2).

step is computed on a 30 instances length mini-batch. The
entire fitting process is iterated for 500 epochs, with an initial
learning rate equal to 0.1.

As a figure of merit for performance assessment in the
reconstruction of single instances we adopt the Reconstruction
Signal-to-Noise Ratio (RSNR) expressed in dB

RSNR “ p}x}2{}x´x̂}2qdB

For the noiseless case, i.e., decoding of synthetic ECGs,
RSNR can also be used to define an ensemble-level perfor-
mance figure, the Probability of Correct Reconstruction (PCR)

PCR “ Pr tRSNR ě 100 dBu

PCR values are computed on the entire test set and represent
the probability that signal reconstruction does not fail. It was
done for DNN with different m values and with the omin value
that maximizes the average RSNR observed on the training set.

Results are in Fig. 3, where the number of measurements
ranges from m “ 24 to m “ 64 with CR that goes from 5.3 to
2. As anticipated in Sec. II, we use the decoder in (1) coupled
with adapted sensing matrices that follow the rakeness-based
CS approach [22], [23] as a reference so that a comparison
with a state of the art approach is included.

TCSSO outperforms the already proposed CS framework
technique. In particular, m “ 28 (CR « 4.6) corresponds to
a PCR value higher than 0.9, while the traditional approach
does not correctly reconstruct any input instance.

To move a step forward to real-applications, the DNN
trained with synthetic ECG chunks has been tested on real
ECG signals coming from the online repository [24] that is part
of the Physionet project [29]. This database is composed of
168 ECG tracks (20.48 seconds each) sampled at 250Hz such
that each record corresponds to 40 windows, i.e., n “ 128.
Samples are obtained by 12 bit ADC. The choice of this
database is motivated by the abundance of records represent-
ing possible abnormal ECG waveforms ranging from motion
artifacts to arrhythmia.

The entire dataset has been randomly split into two parts
such that the 20% of the instances are involved in the eval-
uation of omin while the remaining part is for performance
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Fig. 5. Comparison between original ECG records and the corresponding reconstruction using TCCSO with m “ 40. From the top to the bottom the
waveforms refer to the first 20 s of the record 1, 4, 5, 13, 29, 37, 106 of the MIT-BIH Compression Test Database [24]. In each plot the y-axis represents the
signal amplitude expressed in mV.

assessment. To limit the effect of noise affecting real signals,
we also limit the number of ones in the vector s to 32, i.e., if
the number of entries in o ě omin exceeds 32 then the ones
in s correspond to the 32 highest values in o.

Fig. 4 shows the RSNR values distribution for the con-
sidered test set where m “ 40 (CR “ 3.2). This value
is a conservative choice motivated by the processing of real
waveforms. As a result, we observe a non-negligible variance
in the quality of reconstruction, and instances with poor
recovery performance exist. Moreover, the comparison with
original ECG records and the corresponding reconstructed
waveforms in Fig. 5 confirms that the proposed method
correctly reconstructs ECG windows except for a few wrong
recoveries.

IV. CONCLUSION

A CS decoder that first estimates the positions of non-
zero coefficients and then computes their magnitudes has been

proposed, where the support guessing is performed by a DNN-
based oracle that also imposes the sensing matrix.

The proposed decoder largely outperforms state of the art
approaches allowing for a further reduction in the amount of
measurements to be computed and transmitted by the encoder
stage. Furthermore, preliminary tests on real ECG records
confirm the effectiveness of this method where few wrong
instances reconstructions are also observed. To mitigate these
unwanted signal reconstructions, the DNN we propose will be
trained on an enlarged dataset that will include instances of
real ECG instances.
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