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Abstract—In supervised learning, labeled data are provided as 

inputs and then learning is used to classify new observations. 
Error tolerance should be guaranteed for classifiers when they are 
employed in critical applications. A widely used type of classifiers 
is based on voting among instances (referred to as single voter 
classifiers) or multiple voters (referred to as ensemble classifiers). 
When the classifiers are implemented on a processor, Time-Based 
Modular Redundancy (TBMR) techniques are often used for 
protection due to the inflexibility of the hardware. In TBMR, any 
single error can be handled at the cost of additional computing 
either once for detection or twice for correction after detection; 
however, this technique increases the computation overhead by at 
least 100%. The Voting Margin (VM) scheme has recently been 
proposed to reduce the computation overhead of TBMR, but this 
scheme has only been utilized for k Nearest Neighbors (kNNs) 
classifiers with two classes. In this paper, the VM scheme is 
extended to multiple classes, as well as other voting classifiers by 
exploiting the intrinsic robustness of the algorithms. kNNs (that is 
a single voter classifier) and Random Forest (RF) (that is an 
ensemble classifier) are considered to evaluate the proposed 
scheme. Using multiple datasets, the results show that the 
proposed scheme significantly reduces the computation overhead 
by more than 70% for kNNs with good classification accuracy and 
by more than 90% for RF in all cases. However, when extended to 
multiple classes, the VM scheme for kNNs is not efficient for some 
datasets. In this paper, a new protection scheme referred to as k+1 
NNs is presented as an alternative option to provide efficient 
protection in those scenarios. In the new scheme, the computation 
overhead can be further reduced at the cost of allowing a very low 
percentage of errors that can modify the classification outcome. 
 

Index Terms—Machine learning, voting classifier, error 
tolerance, k nearest neighbors, random forest. 
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I. INTRODUCTION 
ACHINE Learning (ML) is used to analyze data for a wide 
range of applications, such as medicine, biology, finance, 

vehicle, communications or daily life [1]-[6]. By using specific 
algorithms, ML is the process of guiding a machine (computer) 
to construct a reasonable model based on a set of known data 
and use such model to judge (analyze) new data. When ML 
targets at predicting a valued result for the new data, the process 
is known as regression; whereas if the object is a discrete result, 
the process is known as classification [7], [8]. Some of the 
simplest and yet powerful algorithms for classification are 
based on voting. Once the features of the new element are input 
in the model, the voting classifiers predict the class for the new 
element by taking a majority voting among the instances (in a 
single voter classifiers, such as k Nearest Neighbors [9], [10]) 
or multiple voters (in ensemble classifiers, such as Random 
Forest [11], [12]). 

ML classifiers are commonly implemented for computation 
either on a CPU or embedded microprocessor; these chips are 
prone to errors, such as soft errors due to radiation effects [13], 
[14]. Errors that occur in the computation process or in storage 
for training elements can modify the classification result. Even 
if errors are isolated events [13], they would not be acceptable 
if the classifiers are part of safety and/or critical systems [15], 
[16], because an error can cause a functional failure. For 
example, in autonomous vehicle applications, errors in the ML 
classifiers that are used to determine whether an object is a 
pedestrian or in the ML-based driver fingerprinting extraction 
for cash trucks [17] can have a dramatic consequence; thus 
error-tolerance and reliability needs to be assured [18], [19]. 
When algorithms for ML computation are implemented in 
specialized hardware units (such as arithmetic circuits), errors 
can be handled by employing error-tolerant techniques (such as 
Triple Modular Redundancy [20] or Reduced Precision 
Redundancy [21]), or using Error Correction Codes (that were 
first applied in communication [22])  for memory (storing 
training data) [23], [24].  

However, when the ML algorithms are run on a processor, 
hardware implementations are difficult to modify without 
resorting to expensive redundancy utilization; in this case, 
Time-Based Modular Redundancy (TBMR) is often used to 
detect and correct errors. By running the computation twice, an 
error can be detected if the two results are mismatched. Then if 
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the error is detected, computation is run for a third time and the 
error can be corrected by majority voting among the three 
results. The TBMR technique can correct all single errors in 
arithmetic operations, but it incurs in a large computation 
overhead, costing approximately 2x in terms of execution time 
and power consumption; such approach may not be acceptable 
when the ML algorithms are employed in resource-limited 
platforms, like smartphones, low-power wearable and 
Internet-of Things (IoT) devices [25], [26]. Recently, a 
different protection scheme referred to as Voting Margin (VM) 
has been proposed [27] to deal with single errors for kNNs 
classifiers; VM exploits algorithmic features. The VM scheme 
is based on the observation that when voting among the kNNs 
has a large majority (i.e. a margin exists), then an error in one of 
the computed distances cannot change the classification result. 
Compared with TBMR, the VM scheme can drastically 
decrease the recomputation overhead, because when there is a 
VM, the classifier is always reliable (i.e., we do not need to 
perform the recomputation to detect/correct errors). However, 
the current VM technique is designed for kNNs classifiers with 
only two classes. In many cases, classification among multiple 
classes is needed [28], [29]; therefore, efficient error-tolerant 
protection techniques for those classifiers are needed. 

In this paper, we address the limitations of VM by extending 
it to voting classifiers with multiple classes. By considering 
kNNs and Random Forest classifiers as examples, the scheme is 
illustrated and evaluated for both single voter classifiers and 
ensemble classifiers. Moreover, a new scheme (referred to as 
the k+1 NNs scheme) is also proposed as alternative for kNNs 
classifiers to improve the VM scheme of [27]. Software 
simulation results show that the proposed schemes achieve a 
significant reduction in terms of computation overhead 
comparing with existing techniques such as TBMR. 

The remaining part of this paper is organized as follows. In 
Section II, the algorithms and implementations of different 
voting classifiers (including single voter classifiers and 
ensemble classifiers) are introduced; the Voting Margin 
protection technique for kNNs classifiers with only two classes 
[27] is also illustrated. Section III presents the proposed 
error-tolerant schemes for voting classifiers with multiple 
classes, which are evaluated in Section IV. Discussion of the 
different schemes is given in Section V. Finally, the paper ends 
in Section VI with the conclusion.  

II. PRELIMINARIES 
This section first provides a brief description of voting 

classifiers including kNNs and Random Forests, and their 
implementations. Then, the impact of errors that occur when 
voting is performed, is discussed. Finally, the Voting Margin 
protection technique for classifiers with two classes proposed 
in [27] is reviewed.  

A. Voting Classifiers and Implementation 
Voting classifiers can be either implemented based on a 

single voter among different instances/elements to predict the 
class (this is accomplished by voting their classes), or based on 
an ensemble method that combines a set of voters and voting 

among them again to improve classification performance. 
kNNs are one of the simplest yet powerful classification 

algorithms [9]; the algorithm’s hyperparameter (i.e., the value 
of k corresponding to the highest classification accuracy) is 
usually obtained by using the well-known 10-fold 
cross-validation methodology [30]. Once the optimal k is 
determined, the features and labels of the training elements are 
stored and used to predict the class for a new element. To do so, 
the distances from all training elements to the element being 
classified are first computed and the set of kNNs is selected. 
Then, majority voting is executed among the k classes of the 
neighbors to establish the predicted class. A special case occurs 
when there are equal votes with multiple classes, leading to a tie. 
When there are only two classes, to break ties the value of k can 
be selected as an odd number, so that the number of elements 
with each class can be simply compared with the threshold (i.e., 
ceil((k+1)/2), which is (k+1)/2 when k is odd) to find the 
majority. 

 When there are at least three classes, voting is more complex; 
it includes two cases, which are illustrated in the example 
shown in Figure 1. Once the kNNs are selected, the number of 
elements with each class are compared with each other. The 
first case is that there is only one class with the largest number 
of neighbors, then it is used as the classification result. This is 
shown in Figure 1 a), there are one, zero and four neighbors in 
Class A, B and C, thus the predicted result is Class C. If there 

 
a)                                                    b) 

Figure 1 Illustration of the kNNs algorithm with three classes. The green, 
yellow and blue elements are stored with their class. The grey element is the 
one being classified. As k = 5, first the five elements closest to it are 
identified (shown in the solid circle). Then, a vote is taken among them to 
determine the class of the grey element: a) the voting result is class C; b) the 
voting result is class A. 

 
Figure 2 Illustration of the Random Forest algorithm, where T is the number 
of decision trees and the topmost node in a tree is the root node. 
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are two or more classes voted by the same largest number of 
neighbors (i.e., there is a tie), we cannot provide an outcome by 
just using voting. In this case, other methods (such as selecting 
the nearest neighbor or randomly) are generally used to break 
ties and determine the classification result. For example, in 
Figure 1 b), two neighbors belong to Class A, one neighbor to 
Class B and two neighbors to Class C.  However, as the nearest 
neighbor of the ones in A or C is green, then Class A will be 
output as predicted result if we select the class of the nearest 
neighbor to break a tie. 

Ensemble classifiers consist of multiple classifiers that act as 
single voters; each of them is based on a random sample of the 
training elements and different feature importance. The 
classification procedure for each voter is the same as for the 
classifiers introduced above. A widely used ensemble classifier 
is Random Forest (RF), which utilizes T decision trees and is 
illustrated in Figure 2.  Once the prediction model is trained, 
labels are stored on the leaf nodes of the decision trees while the 
decision thresholds on the features are stored in the root and the 
internal (non-leaf) nodes. The decision tree is a flow-chart-like 
structure, in which each internal node denotes a test on an 
attribute, each branch represents the outcome of a test, and each 
leaf node holds a class label. 

For classification of an incoming element, its class is 
predicted firstly by each tree (for example it is predicted by 
Tree 1 as Class A in Figure 2). Then the final result is obtained 
by simply establishing a majority voting among the results of 
those voters for a second round. This process accomplishes a 
better performance of classification but incurring in a larger 
execution overhead than for a single tree. 

B. Errors on Voting Classifiers 
Errors that occur during the process of classification for an 

incoming element may change the voting result and thus 
modify the end result as outcome. For example, in the kNNs 
classifier, an incorrect distance from a training element to the 
incoming element to be classified could be calculated if there is 
an error in the distance computation process, likely changing 
the set of kNNs. In this case, voting is done among incorrect 
kNNs and may generate a different result. Therefore, depending 
on the impact on the kNNs, errors in a distance computation 
include the following types. 

Type 1: An element that was in the set of kNNs is moved due 
to the error, but it is still in the set. Only the position has been 
changed (nearer or further away from the element being 
classified). 

Type 2: An element that should be in the set of kNNs, has a 
larger distance as result of the error and thus, it is no longer in 
the set, the k+1th NN is in the set instead.  

Type 3: An element that should not be in the set of kNNs has 
a smaller distance as result of the error that places it in the set. 
The kth NN is therefore no longer in the set. 

Type 4: An element that was not in the set of kNNs, is 
moved, but it does not change the kNNs for the element being 
classified and thus, it has no impact on the result.  

The first three types of error can modify the classification 
result; however, we can detect that in some cases the result 

would be still correct even in the presence of an error. This will 
be discussed in Section III and used as basis of the proposed 
schemes. Intuitively, type 3 errors have more significant impact 
on the classification result than type 1 and 2 errors because the 
size (i.e. the total number of training elements) of the dataset is 
significantly larger than the value of k. 

For a Random Forest or an ensemble classifier, the analysis 
is simpler; single errors on any leaf or root of a decision tree 
may change the comparison path, resulting in a different class. 
This may affect voting among the trees and finally modify the 
classification result. 

Since in many cases, errors do not happen frequently, it is 
usually assumed that there is a single error on a system at a 
given time. This applies also to radiation-induced soft errors. In 
the systems considered, the distance computation in a kNNs 
classifier or the computation for the trees in a Random Forest 
classifier account for the bulk of the implementation and 
therefore, single errors that affect a distance computation, or 
one leaf/root are considered as error model in this paper. As for 
other operations that are not computationally intensive (e.g., 
voting), the traditional TBMR technique can be employed as 
error-tolerant scheme because it does not require large 
computational resources. 

C. Voting Margin Scheme for Two Classes 
When there are only two classes for the elements in a dataset, 

majority voting is simply done by comparing the number of 
elements belonging to each class with the threshold. For 
example, in a kNNs classifier, the threshold for voting is given 
by ceil((k+1)/2). Considering k=5 (five voters) as an example, 
there are three possible voting scenarios: 

1) All five neighbors agree on the same class; 
2) Four neighbors vote for one class, while the fifth 

neighbor votes for the other class; 
3) Three neighbors vote for one class, while the remaining 

two elements vote for the other class. 
In the first (second) scenario, the classification result is 

always correct under a single error, because the number of 
elements in the majority class is at least four (three) even after 
 

Algorithm 1 VM scheme used in kNNs with two classes 
1: Compute distances then obtain the classification result R1 
2: if VM >= 3 
3:     Output R1 
4: else if k+1th NN belongs to the majority class and kth NN 

belongs to the minority class 
5:     Output R1 
6: else  
7:     Recompute distances then obtain R2 
8:     if R1 = R2 
9:        Output R1 
10:   else 
11:       Recompute distances then obtain R3 
12:       Do majority voting among R1, R2 and R3 
13:       Output the voting result 
14:   end if 
15: end if 
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the error, so still larger than (equal to) the threshold 
ceil((k+1)/2)=3.  

Consider the Voting Margin (VM) as the difference between 
the numbers of NNs belonging to the majority class and the 
minority class when a single error cannot change the 
classification result (i.e., VM >= 3 in the case of two classes); 
when there is a VM, the number of elements with the majority 
class is larger than the voting threshold (i.e., at least equal to 
(k+1)/2+1, where k is odd). Therefore, for the first two possible 
voting scenarios, there is a VM because a single error can never 
change the voting result. However, in the third scenario, a 
single error may change the majority class to the minority. A 
possible case is that under a type 2 error discussed in Section 
II-B, the k+1th NN with the minority class moves in the set of 
kNNs; the other possible case is that under a type 3 error, the kth 
NN with the majority class is replaced by a further element with 
the minority class. In these cases, the classification result is 
modified; therefore, this third scenario must be considered 
because there is no VM. 

As per the above observations, the VM protection scheme 
has been proposed in [27] for kNNs classifiers, but only with 
two classes (as described in Algorithm 1). When a 
classification procedure starts, an initial classification result R1 
is obtained once the distances are computed and the kNNs are 
selected. Then voting is checked. If there is VM, or no VM but 
the k+1th NN belongs to the majority class and the kth NN 
belongs to the minority class, R1 is correct and so, it will be 
used as outcome; otherwise, the distances must be recomputed 
and a classification result R2 is then obtained based on voting 
among the updated kNNs. If R1 and R2 are a match, then we 
can safely provide either of them as a correct output. If there is a 
mismatch between R1 and R2, recomputation for a third time is 
required and a vote is required to obtain a correct result.  

Compared with the traditional time-based modular 
redundancy scheme, the VM protection technique [27] 
significantly reduces the overhead to detect errors, because the 
recomputation operation is only needed in some cases. The VM 
scheme can also be extended to protect classifiers with multiple 
classes and also to ensemble classifiers. This is studied in the 
following section. 

III. PROPOSED SCHEMES FOR MULTIPLE CLASSES 
This section first presents the Voting Margin (VM) scheme 

applicable to voting classifiers but with multiple classes; the k 
Nearest Neighbors (kNNs) and Random Forest (RF) classifiers 
are taken as examples to discuss the detailed implementation. 
In the second part, the k+1 NNs scheme is proposed as 
alternative to protect the kNNs classifier when VM introduces a 
large overhead.  

A. Extended Voting Margin Scheme 
The VM protection scheme [27] used for kNNs classifiers 

with two classes is modified, so that it can be applied also to 
voting classifiers with multiple classes. As discussed in Section 
II-C, when there are only two classes, VM refers to the case in 
which the number of elements with the majority class is larger 
than the voting threshold (i.e., at least equal to (k+1)/2+1 in a 

kNNs classifier, where k is odd); then a single error that may 
occur in a distance computation, can never change the 
classification, because it can only decrease the number of 
majority elements from (k+1)/2+1 to (k+1)/2 in the worst case, 
so having no impact on the voting result.  The smallest value of 
VM can also be regarded as a gap of three between the numbers 
of elements with the majority class and the minority class (the 
number of majority elements is (k+1)/2+1 while for the 
minority it is k-((k+1)/2+1), hence the gap is three). In this case, 
the classifier is always reliable under single errors. 

The case of multiple classes with a VM of three also makes 
the classifier reliable following the same reasoning as for the 
case of two classes. Consider the example shown in Figure 1 to 
illustrate the use of VM in a kNNs classifier (in which there are 
three classes and k=5). From Figure 1 a) that the neighbors have 
a VM of 3, the following observations are applicable (when 
considering the cases of single errors with different types 
discussed previously in Section II-B that can modify the result 
one by one). 

Under a type 1 error: Independently whether a Class A 
element (green) or a Class C element (blue) is moved by the 
error (as shown in Figure 3 a) and b)), the voting result is still 
Class C, because the number of neighbors within each class 
does not change. 

Under a type 2 error: One neighbor is removed by the error 
from the set of kNNs and a Class A element that originally was 
in the k+1th NN, is included in such set. There are at least three 
blue elements (Figure 3 c)), so the voting result is still Class C, 
again it is not subject to modification.  

Under a type 3 error: One element that was not in the set of 
kNNs, is included now, the kth neighbor (blue) is then removed 
(Figure 3 d)). Independently whether the new neighbor belongs 
to a class, there will be at least three blue elements, leading to 
the same correct voting result. 

As per the above discussion, it is always possible to correctly 

                       
a)                                                        b) 

c)                                                        d) 
Figure 3 Illustration of kNNs having VM of three: a) and b) under an error of 
type 1; c) under an error of type 2; d) under an error of type 3. 
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output the classification result when the kNNs have a VM of 
three. The scheme is also applicable to other voting classifiers 
with the same voting approach as kNNs (such as Random 
Forest as shown in Figure 2), in which voting among the 
decision results of each tree is the same as among the classes of 
each neighbor of kNNs. 

In the VM scheme used for kNNs classifiers with two classes 
[27], the correctness of the result can be established in some 
cases even if there is no VM (as discussed previously in Section 
II-C). When extending the VM scheme to kNNs classifiers with 
multiple classes, the vote can be also identified as correct in 
some cases even if there is no VM of three. Before describing 
the details of the proposed scheme, consider the impact of 
errors on classifiers with a tighter vote (having a VM of two) 
first. 

 Figure 4 shows an example of kNNs (three classes, VM of 2, 
and k=5), for the cases of error free and under different types of 
errors. The classification result is C in the error free case 
(shown in Figure4 a)). When a type 1 error occurs and moves a 
neighbor nearer to the element being classified (Figure 4 b)), 
there are still three neighbors agreeing on Class C, so the vote is 
unchanged. However, when a type 2 or 3 error occurs and 
replacing a Class C neighbor by Class A (Figure 4 c)) or B 
(Figure 4 d)), then there are two classes with the same largest 
number of neighbors in the set. In this case, the vote depends on 
which class the nearest neighbor belongs to (if we select the 
class of the nearer neighbor to break a tie). Therefore, the 
classification result may be affected; in Figure 4 c) the result 
changes from C to A, while in Figure 4 d) the result changes 
from C to B. 

Therefore, when the kNNs have a VM of two, the correctness 
of the classification result can be determined by checking the 
following two constraints: 

1) The class of the k+1th neighbor is majority; 
2) The class of the kth neighbor is minority. 

The first constraint guarantees that a type 2 error (such as 
shown in Figure 4 c)) can only keep or increase the number of 
elements as majority class. The second constraint must be met 
to avoid the case in which a type 3 error brings a minority 
element in the majority and the original kth majority neighbor is 
removed. 

Once the voting result is determined to be reliable (there is a 
VM larger than two or equal to two with the above constraints), 
it can be provided as output. Otherwise, recomputation for the 
second time or even third time is required (like the VM scheme 
for two classes in [27]) to detect and correct the error. This 
entire process is described in Algorithm 2. 

Moreover, when employing the VM scheme in Random 
Forest classifiers, recomputation is only needed for the trees 
agreeing on the majority class when there is a VM of two.  This 
occurs because differently from kNNs (in which the voters may 
change due to an error) in a Random Forest, the voters do not 
change, i.e. the error can only change the vote of one of the 
voters. Therefore, if a majority of the voters with the same 
result is error free with VM two, then as an error could only 
reduce the number of voters in another class by one, the result is 
correct. The same reasoning applies in general to ensemble 
classifiers. 

B. k+1 Nearest Neighbors Scheme 
The extended VM scheme would efficiently reduce the 

recomputation operations for datasets with high accuracy; 
however, as shown in the next section, the reduction can be 
small for datasets with low accuracy, because in this case, 
voting tends to be very tight. In this scenario, VM is not capable 
to significantly reduce the computational overhead and thus 
alternative schemes are required. Therefore, we propose a 
second technique (referred to as the k+1 NNs scheme) for those 
datasets to approximately correct the error, so reducing the 
failure rate of classification at a small recomputation overhead. 

In the k+1 NNs protection scheme, errors are detected by 
checking twice the k+1 nearest distances; this approximately 
guarantees the correct classification result by discarding the 
neighbor with a mismatched distance. The k+1 NNs scheme is 

Algorithm 2 VM scheme used in kNNs with multiple classes 
1: Compute distances then obtain the classification result R1 
2: if VM >= 3 
3:     Output R1 
4: else if VM = 2 and k+1th NN belongs to the majority class and 

kth NN belongs to the minority class 
5:     Output R1 
6: else  
7:     Recompute distances then obtain R2 
8:     if R1 = R2 
9:        Output R1 
10:   else 
11:       Recompute distances then obtain R3 
12:       Do majority voting among R1, R2 and R3 
13:       Output the voting result 
14:   end if 
15: end if 
 

                       a)                                                          b) 

                       c)                                                          d) 
Figure 4 Illustration of the kNNs having VM of two: a) error free case; b) 
under an error of type 1; c) under an error of type 2; d) under an error of type 3. 
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accomplished by the following steps (also as described in 
Algorithm 3). 

Step 1: When all distances from the training elements to the 
one being classified are computed and kNNs is selected as 
algorithm, then the k+1th NN and its distances are also stored. 

Step 2: Distance computation is performed again but only 
for the k+1 nearest neighbors (instead of all training elements). 

Step 3: Compare each of the k+1 distance pairs to check if 
there is an error. If they are the same (so there is no error 
changing the kNNs), a vote is taken among those kNNs to 
obtain the final classification result. If there is a mismatch, the 
error is detected, then the distance in error is recomputed for a 
third time and a vote is taken to obtain the correct value. Once 
completed, the elements with the k lower distances are selected 
to vote and the classification result is obtained. 

This scheme fully protects the kNNs algorithm against type 3 
errors, because in this case, the element brought by the error 
will be discarded, and so keeping the same kNNs. For type 2 
errors, the scheme would not be effective, because one element 
of the original kNNs has been replaced by the k+1th NN; the 
original kNNs set cannot be recovered even if the distance for 
the mismatched neighbor is recomputed.  

The third time of recomputation in step 3 of the algorithm is 
used to avoid the case in which a type 1 error (that exchanges 
two elements with the same classes) has no impact on the 
classification result and is discarded; then, the k+1th NN may 
change the classification result. Consider next an example of 
this case. Assume that there are three classes A, B, and C and k 

is 3, and the classes of kNNs are AAB. If a type 1 error occurs 
on the second A element (i.e. reducing the distance, so that it is 
smaller than the first A element), the updated kNNs are still 
AAB. Hence, there is no impact on the classification result 
among the kNNs (that is A). However, this error is detected 
when recomputation occurs for the second time; then, the 
second A element is discarded if no computation occurs for the 
third time. In this case, the final voting is modified to B if the 
class of the k+1th NN is B (the updated kNNs will be ABB). 

The percentage of errors that modify the classification result 
in the unprotected kNNs algorithm (that includes errors of all 
types), should be reduced significantly by using the k+1 NNs 
scheme, because type 3 errors are the most common. This is 
evaluated in the following section. 

IV. EVALUATION 
In this section, the proposed schemes have been evaluated 

using Matlab for kNNs and Random Forest (RF) classifiers by 
covering several widely used datasets with multiple classes 
taken from a public repository [31]. The following cases are 
evaluated as schemes. 

Case 1: the extended VM scheme for the kNNs classifier;  
Case 2: the k+1 NNs scheme for the kNNs classifier;  
Case 3: the extended VM scheme for the RF classifier.  
The selected datasets cover a wide range of applications and 

have a different number of elements, features, classes and 
classification performance when using the kNNs and RF 
algorithms. A brief description of the datasets is shown in Table 
I; the optimal parameters (k for kNNs and T for RF) 
corresponding to the top accuracy are determined by using the 
10-fold cross-validation methodology on the training set (70% 
elements of the entire dataset). The classification accuracy is 
also plotted at different parameters in Figures 1 and 2 in the 
Appendix; when comparing the two figures, the RF classifier 
performs better than kNNs in most cases. 

In the first evaluation, single computational errors are 
injected at distances for the unprotected kNNs classifiers. On 
the assumption that the same probability of error occurrence is 
applicable to every distance, the position of an error is selected 
randomly with a uniform distribution. The magnitude of an 
error is set randomly with a value from 0 to a maximum value 
of all computed distances, so it is able to deal with all possible 
errors that have an impact on the classification result (because 
an element with an incorrect distance larger than the maximum 

TABLE I 
DESCRIPTION OF CONSIDERED DATASETS 

Dataset Application # 
Elements 

# 
Features 

#  
Classes 

Using kNNs Using RF 
Optimal k Top accuracy Optimal T Top accuracy 

Iris Botany 150 4 3 5 97.78% 80 97.78% 
Student academic performance [32] Pedagogics 131 20 3 7 41.03% 130 46.15% 

Forest type mapping [33] Ecology 325 27 4 9 77.32% 140 85.57% 
Statlog (Vehicle silhouettes) [34] Vehicle 846 18 4 11 77.17% 90 79.13% 

Mice protein expression [35] Biology 1080 80 8 3 99.38% 60 100.00% 
CNAE-9 Finance 1080 856 9 7 84.57% 100 92.18% 

Wine quality [36] Life 4898 11 11 19 53.17% 120 66.67% 
Thyroid disease Medicine 7200 21 3 5 94.34% 110 99.72% 

Nursery Sociology 12960 8 5 17 96.40% 150 99.38% 
 

Algorithm 3 k+1 NNs scheme used in kNNs 
1: Compute distances 
2: Select k+1 NNs and keep their distances D1 
3: Recompute distances for k+1 NNs and obtain D2 
4: if D1 = D2 
5:     Do majority voting among the classes of kNNs 
6:     Output the classification result 
7: else  
8:     Recompute distance for the mismatched neighbor 
9:     Do majority voting among the three computed distances 

for the mismatched neighbor 
10:   Obtain the correct distances and the corresponding kNNs 
11:   Do majority voting among the classes of kNNs 
12:   Output the classification result 
13:end if 
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distance has the same effect as an element with the maximum 
distance). A single error on a distance is inserted when 
classifying an element and the process is repeated 10,000 times 
for each element. The percentages of errors that modify the 
classification result, are presented in Table II for kNNs at 
different k, as well as the average value among all k cases 
considered. The kNNs classifier can mask many of the errors, 
showing the intrinsic robustness of this algorithm. This 
behavior of kNNs shows that it can be used with no protection 
in some applications that can tolerate a few errors. However, 
for critical applications having a high accuracy requirement, 

additional protection is needed to completely correct, or at least 
reduce to a very small number the errors and their impact. 

In the second evaluation, the proposed extended VM scheme 
is assessed. Errors are injected as in the first evaluation and are 
checked to establish the number of recomputations needed to 
detect errors (i.e., to check the cases in which the constrains 
presented in Section III-A are not met). Table III shows the 
percentage of elements for which recomputation of the kNNs is 
required. For datasets with good performance (i.e. with 
accuracy higher than 80%), the percentage is always below 
30% for the optimal k. Hence, the recomputation overhead is 

TABLE II 
PERCENTAGE OF ERRORS THAT MODIFY THE CLASSIFICATION RESULT IN THE UNPROTECTED KNNS SCHEME (RESULTS FOR THE OPTIMAL K ARE 

HIGHLIGHTED IN BOLD) 

k Iris 
Student 

academic 
performance 

Forest 
type 

mapping 

Statlog 
(Vehicle 

silhouettes) 

Mice 
protein 

expression 
CNAE-9 Wine 

quality 
Thyroid 
disease Nursery 

3 1.93% 21.97% 7.68% 5.26% 0.27% 13.40% 7.35% 0.56% 2.98% 
5 1.33% 16.23% 3.87% 4.65% 0.81% 7.89% 4.88% 0.27% 0.94% 
7 0.80% 15.13% 6.01% 3.81% 0.84% 6.38% 3.65% 0.19% 0.82% 
9 0.49% 18.03% 2.82% 4.70% 0.72% 5.58% 3.11% 0.12% 0.87% 

11 0.44% 18.41% 3.10% 4.42% 0.77% 4.90% 2.86% 0.08% 0.74% 
13 0.47% 16.10% 1.53% 2.94% 0.60% 3.29% 2.35% 0.03% 0.60% 
15 0.42% 13.41% 1.93% 4.08% 0.26% 2.72% 2.04% 0.05% 0.57% 
17 0 9.28% 1.24% 3.54% 0.70% 3.68% 1.83% 0.04% 0.44% 
19 0 10.79% 1.20% 3.42% 1.23% 3.36% 1.51% 0.01% 0.49% 

Average 0.65% 15.53% 3.26% 4.09% 0.69% 5.69% 3.29% 0.15% 0.94% 
 

TABLE III 
PERCENTAGE OF ELEMENTS FOR WHICH RECOMPUTATION IS NEEDED WHEN EMPLOYING THE EXTENDED VM SCHEME IN KNNS (RESULTS FOR THE OPTIMAL K 

ARE HIGHLIGHTED IN BOLD) 

k Iris 
Student 

academic 
performance 

Forest 
type 

mapping 

Statlog 
(Vehicle 

silhouettes) 

Mice 
protein 

expression 
CNAE-9 Wine 

quality 
Thyroid 
disease Nursery 

3 32.28% 76.56% 51.15% 62.31% 23.13% 68.86% 69.92% 11.59% 34.98% 
5 11.62% 65.95% 34.54% 43.67% 5.15% 36.17% 58.78% 3.74% 14.19% 
7 7.53% 69.77% 28.78% 42.79% 5.58% 28.95% 52.15% 2.12% 11.52% 
9 5.56% 66.72% 22.91% 38.53% 5.92% 28.01% 44.20% 1.29% 10.56% 

11 3.87% 68.15% 16.71% 36.66% 6.90% 25.82% 41.07% 0.91% 8.47% 
13 2.22% 58.51% 11.57% 34.06% 6.51% 23.47% 35.29% 0.56% 7.15% 
15 2.73% 52.28% 11.12% 33.08% 9.08% 22.59% 30.57% 0.51% 6.16% 
17 3.04% 46.46% 9.33% 30.14% 10.25% 22.93% 27.35% 0.42% 5.46% 
19 4.04% 40.31% 9.32% 28.64% 11.83% 21.59% 25.07% 0.37% 5.09% 

Average 8.10% 60.52% 21.71% 38.88% 9.37% 30.93% 42.71% 2.25% 11.51% 
 

TABLE IV 
PERCENTAGE OF ERRORS THAT MODIFY THE CLASSIFICATION RESULT WHEN EMPLOYING THE PROPOSED K+1 NNS SCHEME IN KNNS (RESULTS FOR THE 

OPTIMAL K ARE HIGHLIGHTED IN BOLD) 

k Iris 
Student 

academic 
performance 

Forest 
type 

mapping 

Statlog 
(Vehicle 

silhouettes) 

Mice 
protein 

expression 
CNAE-9 Wine 

quality 
Thyroid 
disease Nursery 

3 0 0.49% 0.05% 0.06% 0 0.07% 0.02% 0 0 
5 0 1.08% 0.05% 0.04% 0 0.04% 0.01% 0.01% 0 
7 0 0.87% 0.06% 0.06% 0.01% 0.06% 0.01% 0 0 
9 0 1.00% 0.09% 0.04% 0.01% 0.04% 0.02% 0 0 

11 0.02% 0.90% 0.05% 0.04% 0.01% 0.04% 0.02% 0 0 
13 0.02% 0.90% 0.02% 0.01% 0.01% 0.03% 0.02% 0 0 
15 0 1.21% 0.05% 0.06% 0 0.02% 0.02% 0 0 
17 0 0.56% 0.02% 0.06% 0.01% 0.03% 0.02% 0 0 
19 0 1.33% 0.02% 0.06% 0.01% 0.04% 0.02% 0 0 

Average 0 0.93% 0.05% 0.05% 0.01% 0.04% 0.02% 0 0 
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less than 1.3x that of the unprotected implementation, and 
significantly reduced when compared to the traditional TBMR 
technique (that is twice the unprotected case). However, for 
datasets with poor performance (the accuracy is lower than 
80%), the percentage of elements for which recomputation is 
needed, is up to approximately 70%; thus, the extended VM 
scheme is not very efficient in these cases. For these datasets, 
the k+1 NNs scheme is evaluated next. 

The k+1 NNs scheme is simulated in the third evaluation. As 
mentioned previously errors are rare events, so it is reasonable 
to inject errors only in the initial kNNs implementation; this 
also refers to the worst case because if errors occur in the 
recomputation for the k+1 NNs, they can be fully handled by 
the proposed k+1 NNs scheme (considered as Type 1 or Type 3 
errors). The evaluation results are shown in Table IV; 
compared with the results for unprotected kNNs (Table II), the 
percentage of errors that modify the classification result has 
been reduced by more than 10x, so now lower than 1% in all 
cases (and even 0 for several datasets). Therefore, the k+1 NNs 
scheme provides very good error protection. As discussed in 
Section III-B, the k+1 NNs scheme only recomputes the 
distances for the k+1 NNs to detect errors, therefore the 

overhead for the newly performed computation is very low, or 
even negligible when compared with the unprotected scheme, 
because the size of the dataset (the number of elements) is 
generally far larger than k. 

The first two evaluations presented above have been 
conducted to assess the extended VM scheme in an ensemble 
classifier, in particular, Random Forest (RF). The percentage of 
elements that modify the classification result in the unprotected 
RF classifier is shown in Table V. The result is lower than 
0.30% for the optimal T in all cases, showing the extreme 
intrinsic robustness of the RF algorithm. This makes possible to 
use it with no protection in applications that allow some errors. 
Moreover, in applications that require a complete error 
tolerance, the extended VM scheme also has an excellent 
performance, correcting all errors at a very low execution 
overhead. Table VI shows the percentage of elements for which 
recomputation is needed by the extended VM scheme; for 
datasets with good performance, the percentage is lower than 
3%. Even for datasets with poor performance, the percentage is 
also always lower than 6% for the optimal T. Therefore, errors 
can be detected at low cost. 

TABLE V 
PERCENTAGE OF ELEMENTS THAT MODIFY THE CLASSIFICATION RESULT IN THE UNPROTECTED RANDOM FOREST SCHEME (RESULTS FOR THE OPTIMAL T 

IS HIGHLIGHTED IN BOLD) 
# 

Decision 
trees 

Iris 
Student 

academic 
performance 

Forest 
type 

mapping 

Statlog 
(Vehicle 

silhouettes) 

Mice 
protein 

expression 
CNAE-9 Wine 

quality 
Thyroid 
disease Nursery 

50 0.09% 0.41% 0.26% 0.72% 0 0 0.11% 0 0 
60 0.02% 0.49% 0.24% 0.59% 0 0 0.09% 0 0 
70 0.04% 0.38% 0.18% 0.43% 0 0 0.09% 0 0 
80 0.09% 0.21% 0.18% 0.33% 0 0 0.09% 0 0 
90 0.05% 0.28% 0.07% 0.29% 0 0 0.07% 0 0 

100 0.02% 0.15% 0.05% 0.21% 0 0 0.05% 0 0 
110 0.02% 0.15% 0.08% 0.28% 0 0 0.06% 0 0 
120 0.07% 0.31% 0.05% 0.22% 0 0 0.04% 0 0 
130 0.07% 0.15% 0.07% 0.09% 0 0 0.05% 0 0 
140 0.02% 0.26% 0.05% 0.08% 0 0 0.04% 0 0 
150 0.04% 0.23% 0.08% 0.07% 0 0 0.04% 0 0 

Average 0.04% 0.22% 0.11% 0.30% 0 0 0.06% 0 0 

 
TABLE VI 

PERCENTAGE OF ELEMENTS FOR WHICH RECOMPUTATION IS NEEDED WHEN EMPLOYING THE RANDOM FOREST SCHEME (RESULTS FOR THE OPTIMAL T  IS 
HIGHLIGHTED IN BOLD) 

# 
Decision 

trees 
Iris 

Student 
academic 

performance 

Forest 
type 

mapping 

Statlog 
(Vehicle 

silhouettes) 

Mice 
protein 

expression 
CNAE-9 Wine 

quality 
Thyroid 
disease Nursery 

50 1.44% 14.28% 2.02% 7.00% 0.02% 5.04% 8.97% 0.06% 0.38% 
60 0.71% 12.05% 2.01% 5.78% 0.02% 4.19% 7.52% 0.04% 0.23% 
70 0.78% 9.92% 1.43% 5.15% 0.01% 3.36% 6.53% 0.03% 0.24% 
80 0.10% 8.79% 1.14% 4.52% 0.01% 3.13% 5.64% 0.02% 0.19% 
90 0.31% 7.64% 1.03% 4.20% 0 2.68% 5.02% 0.02% 0.17% 

100 0.73% 7.72% 0.84% 3.68% 0 2.47% 4.51% 0.02% 0.16% 
110 0.60% 6.77% 0.87% 3.37% 0 2.40% 4.02% 0.02% 0.13% 
120 0.51% 6.26% 0.62% 3.24% 0 2.02% 3.66% 0.01% 0.13% 
130 0.60% 5.74% 0.57% 2.93% 0 1.87% 3.37% 0.01% 0.11% 
140 0.47% 5.63% 0.45% 2.69% 0 1.66% 3.12% 0.01% 0.10% 
150 0.53% 5.18% 0.64% 2.47% 0 1.62% 2.93% 0.01% 0.09% 

Average 0.76% 7.76% 0.95% 4.09% 0.01% 2.77% 5.03% 0.02% 0.18% 
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V. DISCUSSION 
The important features of the three schemes analyzed and 

evaluated in Section IV are summarized in Table VII in terms 
of single errors tolerant capability (that are considered in this 
paper) and recomputation overhead. 

Failure rate: Compared with the unprotected case, the 
extended VM scheme can reduce the percentage of errors that 
modify the classification result for both kNNs and RF to 0, 
providing full error tolerance for single errors on distance/tree 
computations. The k+1 NNs scheme reduces the percentage of 
errors to values lower than 1%, because only Type 2 errors 
cannot be handled. In addition to tolerating single errors, it is of 
interest to mention that the proposed schemes can also handle 
multiple errors as long as they affect only one distance 
computation in a kNNs or the computation for one tree in a RF; 
otherwise they may fail in some cases when the errors affect 
multiple computations and change the voting result. 

Recomputation overhead: As presented in the introduction, 
the proposed schemes are utilized for ML algorithms that run 
on a processor (in which hardware implementations are 
difficult to modify); only the computational overheads in terms 
of execution time and power consumption are incurred. To 
detect errors, the extended VM scheme used in kNNs classifiers 
recomputes the distances from all elements to the one being 
classified, therefore the recomputation overhead depends on the 
size of the dataset (the number of training elements). When 
employing the k+1 NNs scheme, the recomputation overhead is 
very low because only the distances for k+1 nearest neighbors 
must be computed again. In a RF classifier protected by the 
extended VM scheme, the recomputation is done only for the 
trees that have the majority class when VM is two. Therefore, 
the number of trees having a majority class should be at most 
(approximately) half of the total number, i.e., at a level of a 
dozen. The cases in which full recomputation is required, occur 
only when the margin between the majority class and the 
second majority class is <2. Therefore, the recomputation 
overhead is still low, but higher than for the k+1 NNs scheme.  

VI. CONCLUSION 
In this paper, error-tolerant schemes for voting classifiers 

using Machine Learning algorithms with multiple classes have 
been proposed. Both single voter classifiers (k Nearest 
Neighbors, kNNs) and ensemble classifiers (Random Forest, 
RF) have been considered. 

Initially, we have proposed the extended Voting Margin 
(VM) scheme to protect the classifiers against single errors that 
occur during the classification procedure. The scheme is 
extended from the existing VM scheme of [27] used for kNNs 
classifiers with two classes only. By checking a VM of three or 

VM of two with some additional constraints, the classification 
result is determined to be correct, such that single errors have 
no impact on the classification and the recomputation operation 
for error detection can be saved. Due to the intrinsic robustness 
of the classifiers, the extended VM scheme can significantly 
save recomputation overhead compared with the conventional 
Time-Based Modular Redundancy (TBMR) technique. kNNs 
and RF classifiers have been used to evaluate the application of 
the extended VM scheme in different types of classifiers in this 
paper. By utilizing several widely used datasets with multiple 
classes taken from a public repository, the extended VM 
scheme has been shown to be efficient only for datasets with 
good performance (having an accuracy > 80%) using kNNs, 
saving of at least 70% in recomputation overhead is 
accomplished. For datasets with poor performance the 
reduction has been limited to less than 40%. When using RF 
classifiers, the scheme works well for all datasets, saving more 
than 90% of the recomputation overhead. Subsequently, 
another scheme (referred to as k+1 NNs) has been proposed as 
an alternative, targeting the cases in which the extended VM 
scheme is not very efficient for kNNs classifiers. In the k+1 
NNs scheme, the classification is the same as the original kNNs 
algorithm, but once all distances are established, the k+1th NN 
is also retained. Then the distances for all k+1 neighbors are 
recomputed to check with those kept from the first time to 
detect errors. To correct errors and have a correct classification 
result, distance recomputation for a third time is required when 
an error is detected. The proposed scheme can deal with all 
errors that move an element that was not in the set of kNNs and 
now is included; this scheme provides good protection for 
kNNs classifiers, because the correctable errors account for 
most of the cases. This has been corroborated by the simulation 
results, showing that the percentage of elements that can 
modify the classification results, is lower than 1%; for some 
datasets, it can be 0. The computation overhead is also 
significantly reduced compared with the extended VM scheme. 
Overall, in single voter classifiers such as kNNs, the extended 
VM scheme (k+1 NNs scheme) is the best option for datasets 
with good (poor) classification accuracy. In ensemble 
classifiers such as RF, the extended VM scheme always has 
good performance. 
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APPENDIX 
The dependency of the classification accuracy on the number 

of neighbors used in the kNNs algorithm and the number of 
trees in the Random Forest is shown in the next two figures for 
the datasets considered in this paper. 

 
Figure 1 Classification accuracy of different datasets when using kNNs at 
different number of neighbors k. 

 
Figure 2 Classification accuracy of different datasets when using Random 
Forest at different number of trees T. 
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