
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Error-Tolerant Computation for Voting Classifiers with Multiple Classes / Liu, Shanshan; Reviriego, Pedro; Montuschi,
Paolo; Lombardi, Fabrizio. - In: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. - ISSN 0018-9545. -
ELETTRONICO. - 69:11(2020), pp. 13718-13727. [10.1109/TVT.2020.3025739]

Original

Error-Tolerant Computation for Voting Classifiers with Multiple Classes

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TVT.2020.3025739

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2846080 since: 2020-11-24T17:01:33Z

IEEE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—In supervised learning, labeled data are provided as

inputs and then learning is used to classify new observations.
Error tolerance should be guaranteed for classifiers when they are
employed in critical applications. A widely used type of classifiers
is based on voting among instances (referred to as single voter
classifiers) or multiple voters (referred to as ensemble classifiers).
When the classifiers are implemented on a processor, Time-Based
Modular Redundancy (TBMR) techniques are often used for
protection due to the inflexibility of the hardware. In TBMR, any
single error can be handled at the cost of additional computing
either once for detection or twice for correction after detection;
however, this technique increases the computation overhead by at
least 100%. The Voting Margin (VM) scheme has recently been
proposed to reduce the computation overhead of TBMR, but this
scheme has only been utilized for k Nearest Neighbors (kNNs)
classifiers with two classes. In this paper, the VM scheme is
extended to multiple classes, as well as other voting classifiers by
exploiting the intrinsic robustness of the algorithms. kNNs (that is
a single voter classifier) and Random Forest (RF) (that is an
ensemble classifier) are considered to evaluate the proposed
scheme. Using multiple datasets, the results show that the
proposed scheme significantly reduces the computation overhead
by more than 70% for kNNs with good classification accuracy and
by more than 90% for RF in all cases. However, when extended to
multiple classes, the VM scheme for kNNs is not efficient for some
datasets. In this paper, a new protection scheme referred to as k+1
NNs is presented as an alternative option to provide efficient
protection in those scenarios. In the new scheme, the computation
overhead can be further reduced at the cost of allowing a very low
percentage of errors that can modify the classification outcome.

Index Terms—Machine learning, voting classifier, error
tolerance, k nearest neighbors, random forest.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

 Manuscript received May 18, revised August 6, and accepted September 17,
2020. The research was supported by the ACHILLES project
PID2019-104207RB-I00 and the Go2Edge network RED2018-102585-T
funded by the Spanish Ministry of Economy and Competitivity, and by the
Department of Research and Innovation of Madrid Regional Authority, in the
EMPATIA-CM research project (Reference no. Y2018/TCS-5046), and by
NSF under CCF-1953961 and 1812467 grants.

S. Liu and F. Lombardi are with Northeastern University, Dept. of ECE,
Boston, MA 02115, USA (email: ssliu@coe.neu.edu, lombardi@ece.neu.edu).

P. Reviriego is with Universidad Carlos III de Madrid, Av. De la
Universidad 30, Leganés, Madrid, Spain (email: revirieg@it.uc3m.es).

P. Montuschi is with Politecnico di Torino, Dipartimento di Automatica e
Informatica, 10129 Torino, Italy (email: paolo.montuschi@polito.it).

I. INTRODUCTION
ACHINE Learning (ML) is used to analyze data for a wide
range of applications, such as medicine, biology, finance,

vehicle, communications or daily life [1]-[6]. By using specific
algorithms, ML is the process of guiding a machine (computer)
to construct a reasonable model based on a set of known data
and use such model to judge (analyze) new data. When ML
targets at predicting a valued result for the new data, the process
is known as regression; whereas if the object is a discrete result,
the process is known as classification [7], [8]. Some of the
simplest and yet powerful algorithms for classification are
based on voting. Once the features of the new element are input
in the model, the voting classifiers predict the class for the new
element by taking a majority voting among the instances (in a
single voter classifiers, such as k Nearest Neighbors [9], [10])
or multiple voters (in ensemble classifiers, such as Random
Forest [11], [12]).

ML classifiers are commonly implemented for computation
either on a CPU or embedded microprocessor; these chips are
prone to errors, such as soft errors due to radiation effects [13],
[14]. Errors that occur in the computation process or in storage
for training elements can modify the classification result. Even
if errors are isolated events [13], they would not be acceptable
if the classifiers are part of safety and/or critical systems [15],
[16], because an error can cause a functional failure. For
example, in autonomous vehicle applications, errors in the ML
classifiers that are used to determine whether an object is a
pedestrian or in the ML-based driver fingerprinting extraction
for cash trucks [17] can have a dramatic consequence; thus
error-tolerance and reliability needs to be assured [18], [19].
When algorithms for ML computation are implemented in
specialized hardware units (such as arithmetic circuits), errors
can be handled by employing error-tolerant techniques (such as
Triple Modular Redundancy [20] or Reduced Precision
Redundancy [21]), or using Error Correction Codes (that were
first applied in communication [22]) for memory (storing
training data) [23], [24].

However, when the ML algorithms are run on a processor,
hardware implementations are difficult to modify without
resorting to expensive redundancy utilization; in this case,
Time-Based Modular Redundancy (TBMR) is often used to
detect and correct errors. By running the computation twice, an
error can be detected if the two results are mismatched. Then if

Error-Tolerant Computation for Voting
Classifiers with Multiple Classes

 Shanshan Liu, Member, IEEE, Pedro Reviriego, Senior Member, IEEE, Paolo Montuschi, Fellow,
IEEE and Fabrizio Lombardi, Fellow, IEEE

M

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the error is detected, computation is run for a third time and the
error can be corrected by majority voting among the three
results. The TBMR technique can correct all single errors in
arithmetic operations, but it incurs in a large computation
overhead, costing approximately 2x in terms of execution time
and power consumption; such approach may not be acceptable
when the ML algorithms are employed in resource-limited
platforms, like smartphones, low-power wearable and
Internet-of Things (IoT) devices [25], [26]. Recently, a
different protection scheme referred to as Voting Margin (VM)
has been proposed [27] to deal with single errors for kNNs
classifiers; VM exploits algorithmic features. The VM scheme
is based on the observation that when voting among the kNNs
has a large majority (i.e. a margin exists), then an error in one of
the computed distances cannot change the classification result.
Compared with TBMR, the VM scheme can drastically
decrease the recomputation overhead, because when there is a
VM, the classifier is always reliable (i.e., we do not need to
perform the recomputation to detect/correct errors). However,
the current VM technique is designed for kNNs classifiers with
only two classes. In many cases, classification among multiple
classes is needed [28], [29]; therefore, efficient error-tolerant
protection techniques for those classifiers are needed.

In this paper, we address the limitations of VM by extending
it to voting classifiers with multiple classes. By considering
kNNs and Random Forest classifiers as examples, the scheme is
illustrated and evaluated for both single voter classifiers and
ensemble classifiers. Moreover, a new scheme (referred to as
the k+1 NNs scheme) is also proposed as alternative for kNNs
classifiers to improve the VM scheme of [27]. Software
simulation results show that the proposed schemes achieve a
significant reduction in terms of computation overhead
comparing with existing techniques such as TBMR.

The remaining part of this paper is organized as follows. In
Section II, the algorithms and implementations of different
voting classifiers (including single voter classifiers and
ensemble classifiers) are introduced; the Voting Margin
protection technique for kNNs classifiers with only two classes
[27] is also illustrated. Section III presents the proposed
error-tolerant schemes for voting classifiers with multiple
classes, which are evaluated in Section IV. Discussion of the
different schemes is given in Section V. Finally, the paper ends
in Section VI with the conclusion.

II. PRELIMINARIES
This section first provides a brief description of voting

classifiers including kNNs and Random Forests, and their
implementations. Then, the impact of errors that occur when
voting is performed, is discussed. Finally, the Voting Margin
protection technique for classifiers with two classes proposed
in [27] is reviewed.

A. Voting Classifiers and Implementation
Voting classifiers can be either implemented based on a

single voter among different instances/elements to predict the
class (this is accomplished by voting their classes), or based on
an ensemble method that combines a set of voters and voting

among them again to improve classification performance.
kNNs are one of the simplest yet powerful classification

algorithms [9]; the algorithm’s hyperparameter (i.e., the value
of k corresponding to the highest classification accuracy) is
usually obtained by using the well-known 10-fold
cross-validation methodology [30]. Once the optimal k is
determined, the features and labels of the training elements are
stored and used to predict the class for a new element. To do so,
the distances from all training elements to the element being
classified are first computed and the set of kNNs is selected.
Then, majority voting is executed among the k classes of the
neighbors to establish the predicted class. A special case occurs
when there are equal votes with multiple classes, leading to a tie.
When there are only two classes, to break ties the value of k can
be selected as an odd number, so that the number of elements
with each class can be simply compared with the threshold (i.e.,
ceil((k+1)/2), which is (k+1)/2 when k is odd) to find the
majority.

 When there are at least three classes, voting is more complex;
it includes two cases, which are illustrated in the example
shown in Figure 1. Once the kNNs are selected, the number of
elements with each class are compared with each other. The
first case is that there is only one class with the largest number
of neighbors, then it is used as the classification result. This is
shown in Figure 1 a), there are one, zero and four neighbors in
Class A, B and C, thus the predicted result is Class C. If there

a) b)

Figure 1 Illustration of the kNNs algorithm with three classes. The green,
yellow and blue elements are stored with their class. The grey element is the
one being classified. As k = 5, first the five elements closest to it are
identified (shown in the solid circle). Then, a vote is taken among them to
determine the class of the grey element: a) the voting result is class C; b) the
voting result is class A.

Figure 2 Illustration of the Random Forest algorithm, where T is the number
of decision trees and the topmost node in a tree is the root node.

Class B
Class C

k=5
Class A

Class B
Class C

k=5
Class A

Class A

Tree 1Tree 1

Class B

Tree 2Tree 2

Class C

Tree TTree T

InstanceInstance

Majority Voting

Final Class

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

are two or more classes voted by the same largest number of
neighbors (i.e., there is a tie), we cannot provide an outcome by
just using voting. In this case, other methods (such as selecting
the nearest neighbor or randomly) are generally used to break
ties and determine the classification result. For example, in
Figure 1 b), two neighbors belong to Class A, one neighbor to
Class B and two neighbors to Class C. However, as the nearest
neighbor of the ones in A or C is green, then Class A will be
output as predicted result if we select the class of the nearest
neighbor to break a tie.

Ensemble classifiers consist of multiple classifiers that act as
single voters; each of them is based on a random sample of the
training elements and different feature importance. The
classification procedure for each voter is the same as for the
classifiers introduced above. A widely used ensemble classifier
is Random Forest (RF), which utilizes T decision trees and is
illustrated in Figure 2. Once the prediction model is trained,
labels are stored on the leaf nodes of the decision trees while the
decision thresholds on the features are stored in the root and the
internal (non-leaf) nodes. The decision tree is a flow-chart-like
structure, in which each internal node denotes a test on an
attribute, each branch represents the outcome of a test, and each
leaf node holds a class label.

For classification of an incoming element, its class is
predicted firstly by each tree (for example it is predicted by
Tree 1 as Class A in Figure 2). Then the final result is obtained
by simply establishing a majority voting among the results of
those voters for a second round. This process accomplishes a
better performance of classification but incurring in a larger
execution overhead than for a single tree.

B. Errors on Voting Classifiers
Errors that occur during the process of classification for an

incoming element may change the voting result and thus
modify the end result as outcome. For example, in the kNNs
classifier, an incorrect distance from a training element to the
incoming element to be classified could be calculated if there is
an error in the distance computation process, likely changing
the set of kNNs. In this case, voting is done among incorrect
kNNs and may generate a different result. Therefore, depending
on the impact on the kNNs, errors in a distance computation
include the following types.

Type 1: An element that was in the set of kNNs is moved due
to the error, but it is still in the set. Only the position has been
changed (nearer or further away from the element being
classified).

Type 2: An element that should be in the set of kNNs, has a
larger distance as result of the error and thus, it is no longer in
the set, the k+1th NN is in the set instead.

Type 3: An element that should not be in the set of kNNs has
a smaller distance as result of the error that places it in the set.
The kth NN is therefore no longer in the set.

Type 4: An element that was not in the set of kNNs, is
moved, but it does not change the kNNs for the element being
classified and thus, it has no impact on the result.

The first three types of error can modify the classification
result; however, we can detect that in some cases the result

would be still correct even in the presence of an error. This will
be discussed in Section III and used as basis of the proposed
schemes. Intuitively, type 3 errors have more significant impact
on the classification result than type 1 and 2 errors because the
size (i.e. the total number of training elements) of the dataset is
significantly larger than the value of k.

For a Random Forest or an ensemble classifier, the analysis
is simpler; single errors on any leaf or root of a decision tree
may change the comparison path, resulting in a different class.
This may affect voting among the trees and finally modify the
classification result.

Since in many cases, errors do not happen frequently, it is
usually assumed that there is a single error on a system at a
given time. This applies also to radiation-induced soft errors. In
the systems considered, the distance computation in a kNNs
classifier or the computation for the trees in a Random Forest
classifier account for the bulk of the implementation and
therefore, single errors that affect a distance computation, or
one leaf/root are considered as error model in this paper. As for
other operations that are not computationally intensive (e.g.,
voting), the traditional TBMR technique can be employed as
error-tolerant scheme because it does not require large
computational resources.

C. Voting Margin Scheme for Two Classes
When there are only two classes for the elements in a dataset,

majority voting is simply done by comparing the number of
elements belonging to each class with the threshold. For
example, in a kNNs classifier, the threshold for voting is given
by ceil((k+1)/2). Considering k=5 (five voters) as an example,
there are three possible voting scenarios:

1) All five neighbors agree on the same class;
2) Four neighbors vote for one class, while the fifth

neighbor votes for the other class;
3) Three neighbors vote for one class, while the remaining

two elements vote for the other class.
In the first (second) scenario, the classification result is

always correct under a single error, because the number of
elements in the majority class is at least four (three) even after

Algorithm 1 VM scheme used in kNNs with two classes
1: Compute distances then obtain the classification result R1
2: if VM >= 3
3: Output R1
4: else if k+1th NN belongs to the majority class and kth NN

belongs to the minority class
5: Output R1
6: else
7: Recompute distances then obtain R2
8: if R1 = R2
9: Output R1
10: else
11: Recompute distances then obtain R3
12: Do majority voting among R1, R2 and R3
13: Output the voting result
14: end if
15: end if

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

the error, so still larger than (equal to) the threshold
ceil((k+1)/2)=3.

Consider the Voting Margin (VM) as the difference between
the numbers of NNs belonging to the majority class and the
minority class when a single error cannot change the
classification result (i.e., VM >= 3 in the case of two classes);
when there is a VM, the number of elements with the majority
class is larger than the voting threshold (i.e., at least equal to
(k+1)/2+1, where k is odd). Therefore, for the first two possible
voting scenarios, there is a VM because a single error can never
change the voting result. However, in the third scenario, a
single error may change the majority class to the minority. A
possible case is that under a type 2 error discussed in Section
II-B, the k+1th NN with the minority class moves in the set of
kNNs; the other possible case is that under a type 3 error, the kth
NN with the majority class is replaced by a further element with
the minority class. In these cases, the classification result is
modified; therefore, this third scenario must be considered
because there is no VM.

As per the above observations, the VM protection scheme
has been proposed in [27] for kNNs classifiers, but only with
two classes (as described in Algorithm 1). When a
classification procedure starts, an initial classification result R1
is obtained once the distances are computed and the kNNs are
selected. Then voting is checked. If there is VM, or no VM but
the k+1th NN belongs to the majority class and the kth NN
belongs to the minority class, R1 is correct and so, it will be
used as outcome; otherwise, the distances must be recomputed
and a classification result R2 is then obtained based on voting
among the updated kNNs. If R1 and R2 are a match, then we
can safely provide either of them as a correct output. If there is a
mismatch between R1 and R2, recomputation for a third time is
required and a vote is required to obtain a correct result.

Compared with the traditional time-based modular
redundancy scheme, the VM protection technique [27]
significantly reduces the overhead to detect errors, because the
recomputation operation is only needed in some cases. The VM
scheme can also be extended to protect classifiers with multiple
classes and also to ensemble classifiers. This is studied in the
following section.

III. PROPOSED SCHEMES FOR MULTIPLE CLASSES
This section first presents the Voting Margin (VM) scheme

applicable to voting classifiers but with multiple classes; the k
Nearest Neighbors (kNNs) and Random Forest (RF) classifiers
are taken as examples to discuss the detailed implementation.
In the second part, the k+1 NNs scheme is proposed as
alternative to protect the kNNs classifier when VM introduces a
large overhead.

A. Extended Voting Margin Scheme
The VM protection scheme [27] used for kNNs classifiers

with two classes is modified, so that it can be applied also to
voting classifiers with multiple classes. As discussed in Section
II-C, when there are only two classes, VM refers to the case in
which the number of elements with the majority class is larger
than the voting threshold (i.e., at least equal to (k+1)/2+1 in a

kNNs classifier, where k is odd); then a single error that may
occur in a distance computation, can never change the
classification, because it can only decrease the number of
majority elements from (k+1)/2+1 to (k+1)/2 in the worst case,
so having no impact on the voting result. The smallest value of
VM can also be regarded as a gap of three between the numbers
of elements with the majority class and the minority class (the
number of majority elements is (k+1)/2+1 while for the
minority it is k-((k+1)/2+1), hence the gap is three). In this case,
the classifier is always reliable under single errors.

The case of multiple classes with a VM of three also makes
the classifier reliable following the same reasoning as for the
case of two classes. Consider the example shown in Figure 1 to
illustrate the use of VM in a kNNs classifier (in which there are
three classes and k=5). From Figure 1 a) that the neighbors have
a VM of 3, the following observations are applicable (when
considering the cases of single errors with different types
discussed previously in Section II-B that can modify the result
one by one).

Under a type 1 error: Independently whether a Class A
element (green) or a Class C element (blue) is moved by the
error (as shown in Figure 3 a) and b)), the voting result is still
Class C, because the number of neighbors within each class
does not change.

Under a type 2 error: One neighbor is removed by the error
from the set of kNNs and a Class A element that originally was
in the k+1th NN, is included in such set. There are at least three
blue elements (Figure 3 c)), so the voting result is still Class C,
again it is not subject to modification.

Under a type 3 error: One element that was not in the set of
kNNs, is included now, the kth neighbor (blue) is then removed
(Figure 3 d)). Independently whether the new neighbor belongs
to a class, there will be at least three blue elements, leading to
the same correct voting result.

As per the above discussion, it is always possible to correctly

a) b)

c) d)
Figure 3 Illustration of kNNs having VM of three: a) and b) under an error of
type 1; c) under an error of type 2; d) under an error of type 3.

Class B
Class C

k=5
VM was 3

Class A
Class B
Class C

Class A k=5
VM was 3

Class B
Class C

Class A k=5
VM was 3 Class B

Class C

Class A k=5
VM was 3

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

output the classification result when the kNNs have a VM of
three. The scheme is also applicable to other voting classifiers
with the same voting approach as kNNs (such as Random
Forest as shown in Figure 2), in which voting among the
decision results of each tree is the same as among the classes of
each neighbor of kNNs.

In the VM scheme used for kNNs classifiers with two classes
[27], the correctness of the result can be established in some
cases even if there is no VM (as discussed previously in Section
II-C). When extending the VM scheme to kNNs classifiers with
multiple classes, the vote can be also identified as correct in
some cases even if there is no VM of three. Before describing
the details of the proposed scheme, consider the impact of
errors on classifiers with a tighter vote (having a VM of two)
first.

 Figure 4 shows an example of kNNs (three classes, VM of 2,
and k=5), for the cases of error free and under different types of
errors. The classification result is C in the error free case
(shown in Figure4 a)). When a type 1 error occurs and moves a
neighbor nearer to the element being classified (Figure 4 b)),
there are still three neighbors agreeing on Class C, so the vote is
unchanged. However, when a type 2 or 3 error occurs and
replacing a Class C neighbor by Class A (Figure 4 c)) or B
(Figure 4 d)), then there are two classes with the same largest
number of neighbors in the set. In this case, the vote depends on
which class the nearest neighbor belongs to (if we select the
class of the nearer neighbor to break a tie). Therefore, the
classification result may be affected; in Figure 4 c) the result
changes from C to A, while in Figure 4 d) the result changes
from C to B.

Therefore, when the kNNs have a VM of two, the correctness
of the classification result can be determined by checking the
following two constraints:

1) The class of the k+1th neighbor is majority;
2) The class of the kth neighbor is minority.

The first constraint guarantees that a type 2 error (such as
shown in Figure 4 c)) can only keep or increase the number of
elements as majority class. The second constraint must be met
to avoid the case in which a type 3 error brings a minority
element in the majority and the original kth majority neighbor is
removed.

Once the voting result is determined to be reliable (there is a
VM larger than two or equal to two with the above constraints),
it can be provided as output. Otherwise, recomputation for the
second time or even third time is required (like the VM scheme
for two classes in [27]) to detect and correct the error. This
entire process is described in Algorithm 2.

Moreover, when employing the VM scheme in Random
Forest classifiers, recomputation is only needed for the trees
agreeing on the majority class when there is a VM of two. This
occurs because differently from kNNs (in which the voters may
change due to an error) in a Random Forest, the voters do not
change, i.e. the error can only change the vote of one of the
voters. Therefore, if a majority of the voters with the same
result is error free with VM two, then as an error could only
reduce the number of voters in another class by one, the result is
correct. The same reasoning applies in general to ensemble
classifiers.

B. k+1 Nearest Neighbors Scheme
The extended VM scheme would efficiently reduce the

recomputation operations for datasets with high accuracy;
however, as shown in the next section, the reduction can be
small for datasets with low accuracy, because in this case,
voting tends to be very tight. In this scenario, VM is not capable
to significantly reduce the computational overhead and thus
alternative schemes are required. Therefore, we propose a
second technique (referred to as the k+1 NNs scheme) for those
datasets to approximately correct the error, so reducing the
failure rate of classification at a small recomputation overhead.

In the k+1 NNs protection scheme, errors are detected by
checking twice the k+1 nearest distances; this approximately
guarantees the correct classification result by discarding the
neighbor with a mismatched distance. The k+1 NNs scheme is

Algorithm 2 VM scheme used in kNNs with multiple classes
1: Compute distances then obtain the classification result R1
2: if VM >= 3
3: Output R1
4: else if VM = 2 and k+1th NN belongs to the majority class and

kth NN belongs to the minority class
5: Output R1
6: else
7: Recompute distances then obtain R2
8: if R1 = R2
9: Output R1
10: else
11: Recompute distances then obtain R3
12: Do majority voting among R1, R2 and R3
13: Output the voting result
14: end if
15: end if

 a) b)

 c) d)
Figure 4 Illustration of the kNNs having VM of two: a) error free case; b)
under an error of type 1; c) under an error of type 2; d) under an error of type 3.

Class B
Class C

k=5
VM=2

Class A
Class B
Class C

Class A k=5
VM was 2

Class B
Class C

k=5
VM was 2

Class A
Class B
Class C

Class A k=5
VM was 2

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

accomplished by the following steps (also as described in
Algorithm 3).

Step 1: When all distances from the training elements to the
one being classified are computed and kNNs is selected as
algorithm, then the k+1th NN and its distances are also stored.

Step 2: Distance computation is performed again but only
for the k+1 nearest neighbors (instead of all training elements).

Step 3: Compare each of the k+1 distance pairs to check if
there is an error. If they are the same (so there is no error
changing the kNNs), a vote is taken among those kNNs to
obtain the final classification result. If there is a mismatch, the
error is detected, then the distance in error is recomputed for a
third time and a vote is taken to obtain the correct value. Once
completed, the elements with the k lower distances are selected
to vote and the classification result is obtained.

This scheme fully protects the kNNs algorithm against type 3
errors, because in this case, the element brought by the error
will be discarded, and so keeping the same kNNs. For type 2
errors, the scheme would not be effective, because one element
of the original kNNs has been replaced by the k+1th NN; the
original kNNs set cannot be recovered even if the distance for
the mismatched neighbor is recomputed.

The third time of recomputation in step 3 of the algorithm is
used to avoid the case in which a type 1 error (that exchanges
two elements with the same classes) has no impact on the
classification result and is discarded; then, the k+1th NN may
change the classification result. Consider next an example of
this case. Assume that there are three classes A, B, and C and k

is 3, and the classes of kNNs are AAB. If a type 1 error occurs
on the second A element (i.e. reducing the distance, so that it is
smaller than the first A element), the updated kNNs are still
AAB. Hence, there is no impact on the classification result
among the kNNs (that is A). However, this error is detected
when recomputation occurs for the second time; then, the
second A element is discarded if no computation occurs for the
third time. In this case, the final voting is modified to B if the
class of the k+1th NN is B (the updated kNNs will be ABB).

The percentage of errors that modify the classification result
in the unprotected kNNs algorithm (that includes errors of all
types), should be reduced significantly by using the k+1 NNs
scheme, because type 3 errors are the most common. This is
evaluated in the following section.

IV. EVALUATION
In this section, the proposed schemes have been evaluated

using Matlab for kNNs and Random Forest (RF) classifiers by
covering several widely used datasets with multiple classes
taken from a public repository [31]. The following cases are
evaluated as schemes.

Case 1: the extended VM scheme for the kNNs classifier;
Case 2: the k+1 NNs scheme for the kNNs classifier;
Case 3: the extended VM scheme for the RF classifier.
The selected datasets cover a wide range of applications and

have a different number of elements, features, classes and
classification performance when using the kNNs and RF
algorithms. A brief description of the datasets is shown in Table
I; the optimal parameters (k for kNNs and T for RF)
corresponding to the top accuracy are determined by using the
10-fold cross-validation methodology on the training set (70%
elements of the entire dataset). The classification accuracy is
also plotted at different parameters in Figures 1 and 2 in the
Appendix; when comparing the two figures, the RF classifier
performs better than kNNs in most cases.

In the first evaluation, single computational errors are
injected at distances for the unprotected kNNs classifiers. On
the assumption that the same probability of error occurrence is
applicable to every distance, the position of an error is selected
randomly with a uniform distribution. The magnitude of an
error is set randomly with a value from 0 to a maximum value
of all computed distances, so it is able to deal with all possible
errors that have an impact on the classification result (because
an element with an incorrect distance larger than the maximum

TABLE I
DESCRIPTION OF CONSIDERED DATASETS

Dataset Application #
Elements

Features

Classes

Using kNNs Using RF
Optimal k Top accuracy Optimal T Top accuracy

Iris Botany 150 4 3 5 97.78% 80 97.78%
Student academic performance [32] Pedagogics 131 20 3 7 41.03% 130 46.15%

Forest type mapping [33] Ecology 325 27 4 9 77.32% 140 85.57%
Statlog (Vehicle silhouettes) [34] Vehicle 846 18 4 11 77.17% 90 79.13%

Mice protein expression [35] Biology 1080 80 8 3 99.38% 60 100.00%
CNAE-9 Finance 1080 856 9 7 84.57% 100 92.18%

Wine quality [36] Life 4898 11 11 19 53.17% 120 66.67%
Thyroid disease Medicine 7200 21 3 5 94.34% 110 99.72%

Nursery Sociology 12960 8 5 17 96.40% 150 99.38%

Algorithm 3 k+1 NNs scheme used in kNNs
1: Compute distances
2: Select k+1 NNs and keep their distances D1
3: Recompute distances for k+1 NNs and obtain D2
4: if D1 = D2
5: Do majority voting among the classes of kNNs
6: Output the classification result
7: else
8: Recompute distance for the mismatched neighbor
9: Do majority voting among the three computed distances

for the mismatched neighbor
10: Obtain the correct distances and the corresponding kNNs
11: Do majority voting among the classes of kNNs
12: Output the classification result
13:end if

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

distance has the same effect as an element with the maximum
distance). A single error on a distance is inserted when
classifying an element and the process is repeated 10,000 times
for each element. The percentages of errors that modify the
classification result, are presented in Table II for kNNs at
different k, as well as the average value among all k cases
considered. The kNNs classifier can mask many of the errors,
showing the intrinsic robustness of this algorithm. This
behavior of kNNs shows that it can be used with no protection
in some applications that can tolerate a few errors. However,
for critical applications having a high accuracy requirement,

additional protection is needed to completely correct, or at least
reduce to a very small number the errors and their impact.

In the second evaluation, the proposed extended VM scheme
is assessed. Errors are injected as in the first evaluation and are
checked to establish the number of recomputations needed to
detect errors (i.e., to check the cases in which the constrains
presented in Section III-A are not met). Table III shows the
percentage of elements for which recomputation of the kNNs is
required. For datasets with good performance (i.e. with
accuracy higher than 80%), the percentage is always below
30% for the optimal k. Hence, the recomputation overhead is

TABLE II
PERCENTAGE OF ERRORS THAT MODIFY THE CLASSIFICATION RESULT IN THE UNPROTECTED KNNS SCHEME (RESULTS FOR THE OPTIMAL K ARE

HIGHLIGHTED IN BOLD)

k Iris
Student

academic
performance

Forest
type

mapping

Statlog
(Vehicle

silhouettes)

Mice
protein

expression
CNAE-9 Wine

quality
Thyroid
disease Nursery

3 1.93% 21.97% 7.68% 5.26% 0.27% 13.40% 7.35% 0.56% 2.98%
5 1.33% 16.23% 3.87% 4.65% 0.81% 7.89% 4.88% 0.27% 0.94%
7 0.80% 15.13% 6.01% 3.81% 0.84% 6.38% 3.65% 0.19% 0.82%
9 0.49% 18.03% 2.82% 4.70% 0.72% 5.58% 3.11% 0.12% 0.87%

11 0.44% 18.41% 3.10% 4.42% 0.77% 4.90% 2.86% 0.08% 0.74%
13 0.47% 16.10% 1.53% 2.94% 0.60% 3.29% 2.35% 0.03% 0.60%
15 0.42% 13.41% 1.93% 4.08% 0.26% 2.72% 2.04% 0.05% 0.57%
17 0 9.28% 1.24% 3.54% 0.70% 3.68% 1.83% 0.04% 0.44%
19 0 10.79% 1.20% 3.42% 1.23% 3.36% 1.51% 0.01% 0.49%

Average 0.65% 15.53% 3.26% 4.09% 0.69% 5.69% 3.29% 0.15% 0.94%

TABLE III
PERCENTAGE OF ELEMENTS FOR WHICH RECOMPUTATION IS NEEDED WHEN EMPLOYING THE EXTENDED VM SCHEME IN KNNS (RESULTS FOR THE OPTIMAL K

ARE HIGHLIGHTED IN BOLD)

k Iris
Student

academic
performance

Forest
type

mapping

Statlog
(Vehicle

silhouettes)

Mice
protein

expression
CNAE-9 Wine

quality
Thyroid
disease Nursery

3 32.28% 76.56% 51.15% 62.31% 23.13% 68.86% 69.92% 11.59% 34.98%
5 11.62% 65.95% 34.54% 43.67% 5.15% 36.17% 58.78% 3.74% 14.19%
7 7.53% 69.77% 28.78% 42.79% 5.58% 28.95% 52.15% 2.12% 11.52%
9 5.56% 66.72% 22.91% 38.53% 5.92% 28.01% 44.20% 1.29% 10.56%

11 3.87% 68.15% 16.71% 36.66% 6.90% 25.82% 41.07% 0.91% 8.47%
13 2.22% 58.51% 11.57% 34.06% 6.51% 23.47% 35.29% 0.56% 7.15%
15 2.73% 52.28% 11.12% 33.08% 9.08% 22.59% 30.57% 0.51% 6.16%
17 3.04% 46.46% 9.33% 30.14% 10.25% 22.93% 27.35% 0.42% 5.46%
19 4.04% 40.31% 9.32% 28.64% 11.83% 21.59% 25.07% 0.37% 5.09%

Average 8.10% 60.52% 21.71% 38.88% 9.37% 30.93% 42.71% 2.25% 11.51%

TABLE IV
PERCENTAGE OF ERRORS THAT MODIFY THE CLASSIFICATION RESULT WHEN EMPLOYING THE PROPOSED K+1 NNS SCHEME IN KNNS (RESULTS FOR THE

OPTIMAL K ARE HIGHLIGHTED IN BOLD)

k Iris
Student

academic
performance

Forest
type

mapping

Statlog
(Vehicle

silhouettes)

Mice
protein

expression
CNAE-9 Wine

quality
Thyroid
disease Nursery

3 0 0.49% 0.05% 0.06% 0 0.07% 0.02% 0 0
5 0 1.08% 0.05% 0.04% 0 0.04% 0.01% 0.01% 0
7 0 0.87% 0.06% 0.06% 0.01% 0.06% 0.01% 0 0
9 0 1.00% 0.09% 0.04% 0.01% 0.04% 0.02% 0 0

11 0.02% 0.90% 0.05% 0.04% 0.01% 0.04% 0.02% 0 0
13 0.02% 0.90% 0.02% 0.01% 0.01% 0.03% 0.02% 0 0
15 0 1.21% 0.05% 0.06% 0 0.02% 0.02% 0 0
17 0 0.56% 0.02% 0.06% 0.01% 0.03% 0.02% 0 0
19 0 1.33% 0.02% 0.06% 0.01% 0.04% 0.02% 0 0

Average 0 0.93% 0.05% 0.05% 0.01% 0.04% 0.02% 0 0

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

less than 1.3x that of the unprotected implementation, and
significantly reduced when compared to the traditional TBMR
technique (that is twice the unprotected case). However, for
datasets with poor performance (the accuracy is lower than
80%), the percentage of elements for which recomputation is
needed, is up to approximately 70%; thus, the extended VM
scheme is not very efficient in these cases. For these datasets,
the k+1 NNs scheme is evaluated next.

The k+1 NNs scheme is simulated in the third evaluation. As
mentioned previously errors are rare events, so it is reasonable
to inject errors only in the initial kNNs implementation; this
also refers to the worst case because if errors occur in the
recomputation for the k+1 NNs, they can be fully handled by
the proposed k+1 NNs scheme (considered as Type 1 or Type 3
errors). The evaluation results are shown in Table IV;
compared with the results for unprotected kNNs (Table II), the
percentage of errors that modify the classification result has
been reduced by more than 10x, so now lower than 1% in all
cases (and even 0 for several datasets). Therefore, the k+1 NNs
scheme provides very good error protection. As discussed in
Section III-B, the k+1 NNs scheme only recomputes the
distances for the k+1 NNs to detect errors, therefore the

overhead for the newly performed computation is very low, or
even negligible when compared with the unprotected scheme,
because the size of the dataset (the number of elements) is
generally far larger than k.

The first two evaluations presented above have been
conducted to assess the extended VM scheme in an ensemble
classifier, in particular, Random Forest (RF). The percentage of
elements that modify the classification result in the unprotected
RF classifier is shown in Table V. The result is lower than
0.30% for the optimal T in all cases, showing the extreme
intrinsic robustness of the RF algorithm. This makes possible to
use it with no protection in applications that allow some errors.
Moreover, in applications that require a complete error
tolerance, the extended VM scheme also has an excellent
performance, correcting all errors at a very low execution
overhead. Table VI shows the percentage of elements for which
recomputation is needed by the extended VM scheme; for
datasets with good performance, the percentage is lower than
3%. Even for datasets with poor performance, the percentage is
also always lower than 6% for the optimal T. Therefore, errors
can be detected at low cost.

TABLE V
PERCENTAGE OF ELEMENTS THAT MODIFY THE CLASSIFICATION RESULT IN THE UNPROTECTED RANDOM FOREST SCHEME (RESULTS FOR THE OPTIMAL T

IS HIGHLIGHTED IN BOLD)

Decision
trees

Iris
Student

academic
performance

Forest
type

mapping

Statlog
(Vehicle

silhouettes)

Mice
protein

expression
CNAE-9 Wine

quality
Thyroid
disease Nursery

50 0.09% 0.41% 0.26% 0.72% 0 0 0.11% 0 0
60 0.02% 0.49% 0.24% 0.59% 0 0 0.09% 0 0
70 0.04% 0.38% 0.18% 0.43% 0 0 0.09% 0 0
80 0.09% 0.21% 0.18% 0.33% 0 0 0.09% 0 0
90 0.05% 0.28% 0.07% 0.29% 0 0 0.07% 0 0

100 0.02% 0.15% 0.05% 0.21% 0 0 0.05% 0 0
110 0.02% 0.15% 0.08% 0.28% 0 0 0.06% 0 0
120 0.07% 0.31% 0.05% 0.22% 0 0 0.04% 0 0
130 0.07% 0.15% 0.07% 0.09% 0 0 0.05% 0 0
140 0.02% 0.26% 0.05% 0.08% 0 0 0.04% 0 0
150 0.04% 0.23% 0.08% 0.07% 0 0 0.04% 0 0

Average 0.04% 0.22% 0.11% 0.30% 0 0 0.06% 0 0

TABLE VI

PERCENTAGE OF ELEMENTS FOR WHICH RECOMPUTATION IS NEEDED WHEN EMPLOYING THE RANDOM FOREST SCHEME (RESULTS FOR THE OPTIMAL T IS
HIGHLIGHTED IN BOLD)

Decision

trees
Iris

Student
academic

performance

Forest
type

mapping

Statlog
(Vehicle

silhouettes)

Mice
protein

expression
CNAE-9 Wine

quality
Thyroid
disease Nursery

50 1.44% 14.28% 2.02% 7.00% 0.02% 5.04% 8.97% 0.06% 0.38%
60 0.71% 12.05% 2.01% 5.78% 0.02% 4.19% 7.52% 0.04% 0.23%
70 0.78% 9.92% 1.43% 5.15% 0.01% 3.36% 6.53% 0.03% 0.24%
80 0.10% 8.79% 1.14% 4.52% 0.01% 3.13% 5.64% 0.02% 0.19%
90 0.31% 7.64% 1.03% 4.20% 0 2.68% 5.02% 0.02% 0.17%

100 0.73% 7.72% 0.84% 3.68% 0 2.47% 4.51% 0.02% 0.16%
110 0.60% 6.77% 0.87% 3.37% 0 2.40% 4.02% 0.02% 0.13%
120 0.51% 6.26% 0.62% 3.24% 0 2.02% 3.66% 0.01% 0.13%
130 0.60% 5.74% 0.57% 2.93% 0 1.87% 3.37% 0.01% 0.11%
140 0.47% 5.63% 0.45% 2.69% 0 1.66% 3.12% 0.01% 0.10%
150 0.53% 5.18% 0.64% 2.47% 0 1.62% 2.93% 0.01% 0.09%

Average 0.76% 7.76% 0.95% 4.09% 0.01% 2.77% 5.03% 0.02% 0.18%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

V. DISCUSSION
The important features of the three schemes analyzed and

evaluated in Section IV are summarized in Table VII in terms
of single errors tolerant capability (that are considered in this
paper) and recomputation overhead.

Failure rate: Compared with the unprotected case, the
extended VM scheme can reduce the percentage of errors that
modify the classification result for both kNNs and RF to 0,
providing full error tolerance for single errors on distance/tree
computations. The k+1 NNs scheme reduces the percentage of
errors to values lower than 1%, because only Type 2 errors
cannot be handled. In addition to tolerating single errors, it is of
interest to mention that the proposed schemes can also handle
multiple errors as long as they affect only one distance
computation in a kNNs or the computation for one tree in a RF;
otherwise they may fail in some cases when the errors affect
multiple computations and change the voting result.

Recomputation overhead: As presented in the introduction,
the proposed schemes are utilized for ML algorithms that run
on a processor (in which hardware implementations are
difficult to modify); only the computational overheads in terms
of execution time and power consumption are incurred. To
detect errors, the extended VM scheme used in kNNs classifiers
recomputes the distances from all elements to the one being
classified, therefore the recomputation overhead depends on the
size of the dataset (the number of training elements). When
employing the k+1 NNs scheme, the recomputation overhead is
very low because only the distances for k+1 nearest neighbors
must be computed again. In a RF classifier protected by the
extended VM scheme, the recomputation is done only for the
trees that have the majority class when VM is two. Therefore,
the number of trees having a majority class should be at most
(approximately) half of the total number, i.e., at a level of a
dozen. The cases in which full recomputation is required, occur
only when the margin between the majority class and the
second majority class is <2. Therefore, the recomputation
overhead is still low, but higher than for the k+1 NNs scheme.

VI. CONCLUSION
In this paper, error-tolerant schemes for voting classifiers

using Machine Learning algorithms with multiple classes have
been proposed. Both single voter classifiers (k Nearest
Neighbors, kNNs) and ensemble classifiers (Random Forest,
RF) have been considered.

Initially, we have proposed the extended Voting Margin
(VM) scheme to protect the classifiers against single errors that
occur during the classification procedure. The scheme is
extended from the existing VM scheme of [27] used for kNNs
classifiers with two classes only. By checking a VM of three or

VM of two with some additional constraints, the classification
result is determined to be correct, such that single errors have
no impact on the classification and the recomputation operation
for error detection can be saved. Due to the intrinsic robustness
of the classifiers, the extended VM scheme can significantly
save recomputation overhead compared with the conventional
Time-Based Modular Redundancy (TBMR) technique. kNNs
and RF classifiers have been used to evaluate the application of
the extended VM scheme in different types of classifiers in this
paper. By utilizing several widely used datasets with multiple
classes taken from a public repository, the extended VM
scheme has been shown to be efficient only for datasets with
good performance (having an accuracy > 80%) using kNNs,
saving of at least 70% in recomputation overhead is
accomplished. For datasets with poor performance the
reduction has been limited to less than 40%. When using RF
classifiers, the scheme works well for all datasets, saving more
than 90% of the recomputation overhead. Subsequently,
another scheme (referred to as k+1 NNs) has been proposed as
an alternative, targeting the cases in which the extended VM
scheme is not very efficient for kNNs classifiers. In the k+1
NNs scheme, the classification is the same as the original kNNs
algorithm, but once all distances are established, the k+1th NN
is also retained. Then the distances for all k+1 neighbors are
recomputed to check with those kept from the first time to
detect errors. To correct errors and have a correct classification
result, distance recomputation for a third time is required when
an error is detected. The proposed scheme can deal with all
errors that move an element that was not in the set of kNNs and
now is included; this scheme provides good protection for
kNNs classifiers, because the correctable errors account for
most of the cases. This has been corroborated by the simulation
results, showing that the percentage of elements that can
modify the classification results, is lower than 1%; for some
datasets, it can be 0. The computation overhead is also
significantly reduced compared with the extended VM scheme.
Overall, in single voter classifiers such as kNNs, the extended
VM scheme (k+1 NNs scheme) is the best option for datasets
with good (poor) classification accuracy. In ensemble
classifiers such as RF, the extended VM scheme always has
good performance.

REFERENCES
[1] S. Das, A. Dey, A. Pal, et al., “Applications of Artificial Intelligence in

Machine Learning: Review and Prospect”, International Journal of
Computer Applications, vol.115, no.9, pp.31-41, 2015.

[2] V. Sze, Y.H. Chen, J. Emer, et al., “Hardware for Machine Learning:
Challenges and Opportunities”, IEEE Custom Integrated Circuits
Conference (CICC), pp. 1-8, 2017.

[3] Z. Ma, H. Yu, W. Chen, et al., “Short Utterance Based Speech Language
Identification in Intelligent Vehicles With Time-Scale Modifications and
Deep Bottleneck Features”, IEEE Trans. on Vehicular Technology, vol.
68, no. 1, pp. 121-128, 2019.

[4] Z. Ma, D. Chang, J. Xie, et al., “Fine-Grained Vehicle Classification With
Channel Max Pooling Modified CNNs”, IEEE Trans. on Vehicular
Technology, vol. 68, no. 4, pp. 3224-3233, 2019.

[5] F. Tang, Z. M. Fadlulah, N. Kato, et al., “AC-POCA: Anticoordination
Game Based Partially Overlapping Channels Assignment in Combined
UAV and D2D-Based Networks”, IEEE Trans. on Vehicular Technology,
vol. 67, no. 2, pp. 1672-1683, 2018.

TABLE VII
PERFORMANCE OF DIFFERENT SCHEMES

kNNs classifiers RF classifiers

VM k+1 NNs VM
Error correction rate 100% Above 99% 100%

Recomputation
overhead

Dependent on
the dataset

Very low Low

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

[6] D. Chang, Y. Ding, Y. Xie, et al., “The Devil is in the Channels:
Mutual-Channel Loss for Fine-Grained Image Classification”, IEEE
Trans. on Image Processing, vol. 29, pp. 4683-4695, 2020.

[7] G. B. Huang, H. Zhou, X. Ding, et al., “Extreme Learning Machine for
Regression and Multiclass Classification”, IEEE Trans. on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 513-529, 2011.

[8] A. Liaw and M. Wiener, “Classification and Regression by Random
Forest”, R news, vol.2, no.3, pp.18-22, 2002.

[9] Q. Hu, D. Yu and Z. Xie, “Neighborhood Classifiers”, Elsevier, Expert
Systems with Applications, vol. 34, no.2, pp. 866-876, 2008.

[10] S. Zhang, X. Li, M. Zong, et al., “Efficient kNN Classification with
Different Numbers of Nearest Neighbors”, IEEE Trans. on Neural
Networks and Learning Systems, vol. 29, no. 5, pp. 1774-1785, 2018.

[11] L. Breiman, “Random Forests”, Springer, Machine Learning, vol.45, no.1,
pp.5-32, 2001.

[12] G. Gui, F. Liu, J. Sun, et al., “Flight Delay Prediction Based on Aviation
Big Data and Machine Learning”, IEEE Transactions on Vehicular
Technology, vol. 69, no. 1, pp. 140-150, 2020.

[13] M. Nicolaidis, “Soft Errors in Modern Electronic Systems”, Springer
Science & Business Media, 2010.

[14] T. Karnik, P. Hazucha, “Characterization of Soft Errors Caused by Single
Event Upsets in CMOS Processes”, IEEE Trans. on Dependable and
Secure Computing, vol. 1, no. 2, pp. 128-143, 2004.

[15] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine
Learning Methods for Cyber Security Intrusion Detection”, IEEE
Communications Surveys & Tutorials, vol.18, no. 2, pp. 1153-1176, 2016.

[16] I. Cara, and E. d. Felder, “Classification for Safety-Critical Car-Cyclist
Scenarios Using Machine Learning”, IEEE 18th International Conference
on Intelligent Transportation Systems, pp. 1995-2000, 2015.

[17] Y. Xun, J. Liu, N. Kato, et al., “Automobile Driver Fingerprinting: A
New Machine Learning Based Authentication Scheme”, IEEE Trans. on
Industrial Informatics, vol. 16, no. 2, pp. 1417-1426, 2020.

[18] P. Koopman, M. Wagner, “Autonomous Vehicle Safety: An
Interdisciplinary Challenge”, IEEE Intelligent Transportation Systems
Magazine, vol. 9, no. 1, pp. 90-96, 2017.

[19] “ISO 26262: Road Vehicles-Functional Safety”, International Standard,
2011.

[20] M. Augustin, M. Goessel, R. Kraemer, “Reducing the Area Overhead of
TMR-Systems by Protecting Specific Signals”, IEEE 16th International
On-Line Testing symposium, pp. 268-273, 2010.

[21] K. Chen, L. Chen, P. Reviriego, et al., “Efficient Implementations of
Reduced Precision Redundancy (RPR) Multiply and Accumulate
(MAC)”, IEEE Trans. on Computers, vol. 68, no. 5, pp. 784-790, 2019.

[22] P. J. Mabey, “Mobile Radio Data Transmission-Coding for Error Control,
IEEE Trans. on Vehicular Technology, vol. 27, no. 3, pp. 99-109, 1978.

[23] S. Lin and D. J. Costello, “Error Control Coding”, 2nd ed. Englewood
Cliffs, NJ, USA: Prentice-Hall, 2004.

[24] C. Borchert, H. Schirmeier, and O. Spinczyk, “Generic Soft-Error
Detection and Correction for Concurrent Data Structures”, IEEE Trans.
on Dependable and Secure Computing, vol.14, no. 1, pp. 22-36, 2017.

[25] D. Ravi, C. Wong, B. Lo, et al., “Deep Learning for Human activity
Recognition: A Resources Efficient Implementation on Low-Power
Devices”, IEEE 13th International Conference on Wearable and
Implantable Body Sensor Networks, 2016.

[26] D. Ravi, C. Wong, B. Lo, et al., “A Deep Learning Approach to no-Node
Sensor Data Analytics for Mobiles or Wearable Devices”, IEEE Journal
of Biomedical and Health Informatics, vol. 21, no. 1, pp.56-64, 2017.

[27] S. Liu, P. Reviriego, J.A. Hernández, et al., “Voting Margin: A Scheme
for Error-Tolerant k Nearest Neighbors Classifiers”, IEEE Trans. on
Emerging Topics in Computing, 2019 (Early Access).

[28] T. Li, C. Zhang and M. Ogihara, “A Comparative Study of Feature
Selection and Multiclass Classification Methods for Tissue Classification
Based on Gene Expression”, Bioinformatics, vol.20, no.15, pp.2429-2437,
2004.

[29] M. Aly, “Survey on Multiclass Classification Methods”, Neural Networks,
vol.19, pp.1-9, 2005.

[30] M. Khun and K. Johnson, “Applied Predictive Modeling”, Springer 2013.
[31] D. Dua and C. Graff, “UCI Machine Learning Repository”, Irvine, CA:

University of California, School of Information and Computer Science,
2019.

[32] S. Hussain, N.A. Dahan, F.M. Ba-Alwib, et al., “Educational Data
Mining and Analysis of Students, Academic Performance Using WEKA”,
Indonesian Journal of Electrical Engineering and Computer Science,
vol.9, no.2, pp. 447-459.2018.

[33] B. Johnson, R. Tateishi and Z. Xie, “Using Geographically-Weighted
Variables for Image Classification”, Remote Sensing Letters, vol.3, no.6,
pp. 491-499, 2012.

[34] J. P. Siebert, “Vehicle Recognition Using Rule Based Methods”, Turing
Institute Research Memorandum TIRM-87-018, 1987.

[35] C. Higuera, K.J. Gardiner and K.J. Cios, “Self-Organizing Feature Maps
Identify Proteins Critical to Learning in a Mouse Model of Down
Syndrome”, PLOS ONE, vol.10, no.6, 2015.

[36] P. Cortez, A. Cerdeira, F. Almeida, et al., “Modeling Wine Preferences by
Data Mining from Physicochemical Properties”, Elsevier, Decision
Support Systems, vol.47, no.4, pp.547-553, 2009.

APPENDIX
The dependency of the classification accuracy on the number

of neighbors used in the kNNs algorithm and the number of
trees in the Random Forest is shown in the next two figures for
the datasets considered in this paper.

Figure 1 Classification accuracy of different datasets when using kNNs at
different number of neighbors k.

Figure 2 Classification accuracy of different datasets when using Random
Forest at different number of trees T.

1.0

0.6

0.8

0.4

0.2

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy

3 5 7 9 11 13 15 17
Number of Neighbors k

19

Iris
Student academic performance
Forest type mapping
Statlog(Vehicle sihouettes)
Mice protein expression

CNAE-9
Wine quality
Thyroid disease
Nursery

1.0

0.6

0.8

0.4

0.2

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy

50 60 70 90 100 110 120 140
Number of Trees T

Iris
Student academic performance
Forest type mapping
Statlog(Vehicle sihouettes)
Mice protein expression

CNAE-9
Wine quality
Thyroid disease
Nursery

15080 130

