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Abstract

An innovative analog-to-digital converter (ADC) architecture is proposed, with the aim of acquiring an input signal according to
the Compressed Sensing (CS) paradigm and without the need for dedicated active analog blocks. Its core is the capacitive array
employed in traditional successive-approximation-register (SAR) ADCs. Introducing only a few additional switches, the array can
compute the linear combination of consecutive signal samples, as required by the CS encoding.

To manage the presence of leakage currents, which may impair signal reconstruction, a compensation circuit is considered,
allowing close-to-ideal performance of the system when properly designed. A neural network-based decoding strategy is also
analyzed, with up to 20 dB of additional reconstruction quality with respect to standard algorithms. Synthetic electrocardiogram
signals are used to validate optimizations both at the hardware level in the encoding block and at the software level in the decoder.

Keywords: Compressed Sensing, sub-Nyquist sampling, Successive Approximation Register, Analog-to-Digital conversion,
Leakage Compensation, Deep Neural Networks

1. Introduction

Compressed Sensing (CS) is a signal processing technique
[1, 2] aimed at representing a broad family of signals with fewer
scalar quantities than what the Nyquist-Shannon theorem sug-
gests. It effectively allows sub-Nyquist sampling in scenarios
where energy and bandwidth are heavily constrained.

Practical applications of the CS theory have emerged in par-
ticular in the biomedical field [3, 4]. More recently, circuital
implementations of ultra-low power biosensor nodes have been
proposed [5–9]. Specifically, in [6] the authors propose an in-
tegrated circuit based on CS for multi-lead implantable neural
recording, while in [8] CS is exploited for the efficient wireless
transmission of neural signals. The circuit in [7] is a low-power
CS-based acquisition system for electrocardiograph (ECG) sig-
nals and in [9] a CS-based architecture with effective hardware-
software optimization is presented. Other applications can be
found among radio-frequency (RF) signal receivers [10, 11] and
current sensors [12].

The major issue of all the aforementioned solutions is the
need for dedicated active circuital elements in the signal pro-
cessing chain, such as continuous-time [10, 11] or switched-
capacitors integrators [6, 7, 9]. As a consequence, the potential
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energy saving enabled by a sub-Nyquist-rate conversion is hin-
dered by the energy requirements of the additional active ele-
ments, which are generally dominant with respect to one of the
analog-to-digital converter (ADC).

The main innovative feature of the solution proposed here
is based on the observation that the speed and accuracy re-
quirements for the conversion of the measurements gener-
ated by a CS system are generally satisfied by a successive-
approximation-register (SAR) ADC. In fact, the sub-Nyquist
operation typical of CS relaxes the speed constraint, whereas a
low resolution is in general sufficient because of the lossy com-
pression mechanism, achieved at the cost of reducing the sig-
nal reconstruction quality. Therefore we propose to use the ca-
pacitive array already found in traditional charge-redistribution
SAR converters (with suitable modifications involving a few
additional switches) to enable the CS-based processing. The
advantage is to have additional hardware that is passive, i.e., it
does not require any power-hungry circuit like an active inte-
grator or an operational amplifier. In this way, with the same
structure it is possible to: i) sample the modulated input signal
at different time steps; ii) hold several sampled values simul-
taneously until the end of the acquisition window; iii) evaluate
the linear combination of the values being held; and iv) convert
the result into a digital word.

In this paper we describe the working principle of the pro-
posed architecture, we analyze its drawbacks (both at the hard-
ware and system level) and we discuss effective techniques to
cope with them. As an example, the limited hold-time allowed
by the (small) capacitive cells of the array results in a degra-
dation of the performance for long acquisition windows, poten-
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tially requiring compensation of the leakage currents.
Some preliminary results on the proposed architecture have

already appeared in [13]. With respect to that work, we pro-
pose here a better description of the hardware architecture,
with particular emphasis on the circuit used to compensate the
leakage-induced discharge of the hold capacitances. Further-
more, thanks to a new decoding strategy we are able to intro-
duce an additional level of optimization. The proposed decoder
relies on a deep neural network (DNN) and is based on the
Trained CS with Support Oracle (TCSSO) technique that has
recently appeared in the literature [14]. It has been adapted
to the specific features of the hardware architecture discussed
here, and shows extremely good results.

The paper is organized as follows. Section 2 introduces the
basic theoretical framework of CS. In Section 3 we discuss the
main issues of an analog CS implementation and, among the
known solutions to mitigate them, we identify the most suitable
ones for the proposed architecture. Section 4 describes the pro-
posed circuit, while in Section 5 we focus on the compensation
of of leakage currents. In Section 6 we introduce the innova-
tive approach for signal decoding, that reveals to be particularly
well suited to work with the proposed circuit. Finally, we draw
the conclusion.

2. Compressed Sensing Fundamentals

Compressed Sensing is an encoding/decoding strategy appli-
cable to signals that are compressible, i.e., with an informative
content much lower than what their bandwidth would suggest.
Specifically, the number of scalars (measurements) needed to
correctly represent a compressible signal is much smaller than
the number of samples required by a straightforward applica-
tion of the Nyquist-Shannon theorem.

The typical application of a CS based acquisition system is
schematized in Figure 1. The input signal x (exemplified by
an ECG signal) is encoded and compressed in a set of mea-
surements y, that can be stored in a local memory, transmit-
ted to a receiver, or sent to the cloud for further processing.
The main difference with respect to a traditional compression
scheme [15] is that, when using CS, encoding and compression
are obtained as a single and very simple operation, transferring
complexity to the decoding stage. The approach fits perfectly
the scenario where signal acquisition has to be performed by
a small, battery-powered sensor node, while reconstruction is
completed in the cloud.

From a more formal point of view, let us define x ∈ Rn as
the discrete-time representation of the input signal over a time
window made of n consecutive samples. Each signal sample is
identified as xk, with k = 1, 2, . . . , n. Let also D ∈ Rn×n be an
arbitrary basis, and ξ ∈ Rn the representation of x in terms of
D, i.e. a vector such that x = Dξ. Finally, let the support of
x be the vector s ∈ {0, 1}n such that its generic element s j = 0
if ξ j = 0, and s j = 1 otherwise. The assumption on which CS
relies is that the input signal is sparse in D. A signal is κ-sparse
if, for any possible x, its representation ξ in terms of D has at
most κ � n non-null elements, i.e., ‖ξ‖0 ≤ κ, or equivalently,
the support of x is such that ‖s‖1 ≤ κ, where the notation ‖·‖p

x

y = Ax

CS encoder

CS recovery

ECG

compressed data

BPDn/DNN

1
Figure 1: Typical application of a CS based acquisition system.

refers to the standard `p norm. The matrix D is also known as
sparsity basis.

In the CS framework, a signal is encoded into a set of m
measurements, arranged in the vector y ∈ Rm. Such a vector is
obtained by a linear projection of x on the m rows of a sensing
matrix A ∈ Rm×n

y = Ax + ν = ADξ + ν, (1)

where ν ∈ Rm accounts for noise and non-idealities in the acqui-
sition process. Since m < n, the acquisition is compressive as
expressed quantitatively by the Compression Ratio CR = m/n.

Recovering x from y (i.e., signal reconstruction) is an ill-
posed problem, since many vectors ξ exist generating the same
measurement vector. According to the standard CS theory
[1, 16], correct reconstruction is guaranteed if: i) the number of
measurements is sufficient, with m = O

(
κ log(n/κ)

)
, hence de-

pending both on κ and on n; ii) the elements of A are instances
of independent and identically distributed (i.i.d.) Gaussian ran-
dom variables. Given these assumptions, we have theoretical
guarantees that the correct solution ξ̂ is the sparsest among all
possible ξ satisfying equation (1).

Looking for the sparsest solution is indeed a computation-
ally intractable problem, involving the counting of the non-zero
components of ξ, as given either by ‖ξ‖0 or ‖s‖1. However,
a nontrivial consequence of the previous assumptions is that
sparsity can be promoted by looking at ‖ξ‖1 instead, favoring
the convergence of the recovery algorithm. Such an approach
is called basis pursuit with denoising (BPDn), and is equivalent
to solving the optimization problem

ξ̂ = argmin
ξ∈Rn

‖ξ‖1 s.t. ‖ADξ − y‖2 < ε, (2)

where ε accounts for the effects of ν. The input signal is then
reconstructed as x̂ = Dξ̂.

Many algorithms have been proposed to solve problem (2)
either in an exact or an approximated way [17–21]. In this paper
we refer to the SPGL1 procedure [21], freely available at [22].

3. Reducing Complexity of the CS Acquisition Stage

The CS paradigm was originally introduced to reduce the en-
ergetic requirements of the encoder stage in a signal processing
chain. Hence, any possible additional reductions in terms of
circuital complexity is fundamental.
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One of them is to constrain the admissible values of the en-
tries in the sensing matrix A. This method requires less re-
sources to compute (1), and is adopted by almost all hardware
implementations of CS-based acquisition systems proposed in
the literature [6, 8–11].

As an example, antipodal values, i.e. A ∈ {−1,+1}m×n, re-
duce multiplications to simple sign inversions, that come almost
for free in a differential implementation and shows no perfor-
mance loss [23].

Binary matrices, i.e. A ∈ {0, 1}m×n, or ternary, i.e., A ∈
{−1, 0,+1}m×n, allow further energy saving since the zero en-
tries of A do not contribute to the whole energy cost. Several
classes of matrices A belong to the latter class have been in-
vestigated in the literature [24–27]. Authors of [27] explore the
trade-off between zeroing at random the entries of A and the CS
performance in terms of signal recovery. The same topic is also
discussed in [28], where the position of the non zero entries is
not anymore randomly drawn, but tuned according to the sta-
tistical characterization of the class of acquired signals. In that
case, authors did not observe any performance degradation even
when 87.5% of the entries in the sensing matrix A are zeroed.

In this section we will go through a few other techniques de-
veloped in the literature to ease the hardware implementation
of (1) and that are of relevance in the proposed architecture. In
particular, we focus on two complementary approaches. The
first one is focused on effectively reducing the complexity of
the circuitry required to implement the linear projection. In the
second one we instead aim at improving the performance of the
CS system. This may be interpreted either as increasing recon-
struction quality at a given CR, or as increasing CR at a given
reconstruction quality. The latter corresponding to a reduction
the number of measurements m and therefore of the complexity
of the encoder generating y.

3.1. Reducing encoding complexity: short windowing

In a CS-based acquisition, the signal is processed in batches
of n consecutive samples. If the total length of the signal is
N > n, it has to be partitioned into N/n contiguous and non-
overlapping time windows, each containing n samples1. CS is
then applied separately to each window.

To reduce the computational complexity of the encoder, the
system should be designed to operate with the smallest possi-
ble n. To understand why, we have to consider that the applica-
tion of (1) to a single time window requires O (n · m) multiply-
and-accumulate operations. Extending the computation over all
N/n time windows, the total number of operations increases to
O (n · m · N/n) = O(n · N/CR).

If CR is chosen to guarantee a target reconstruction qual-
ity and assuming, reasonably, that the input signal length N is
a constraint, the computational complexity increases linearly
with n.

1We are implicitly assuming that N is an integer multiple of n in order to
keep the description simple. This assumption holds for the rest of the paper.

nb

mb

A =

1
Figure 2: Example of a block-diagonal sensing matrix A, with n = 24, nb = 6,
m = 12 and mb = 3. White blocks correspond to zeroes.

However, some other effects have to be considered as well.
Let us reformulate (1) component-wise as

y j =

n∑
k=1

A j,k xk + ν j, j = 1, . . . ,m (3)

where A j,k is the element of A at the intersection of the j-th row
and k-th column, and ν j the j-th component of ν.

First, the hardware resources needed to compute (3) are in-
creasing2 with m, and a large n implies a large m = n · CR.

At the same time, the noise on y j increases, since detrimental
effects such as clock feedthrough or charge injection cause a
degradation that depends linearly on n.

Finally, as the individual xk are available at different times,
they must be sampled and held by the circuit to allow the com-
putation of y j. For slowly varying signals, leakage currents be-
come a concern, as their effect increases with the hold time,
which is proportional to n.

Regrettably, in many CS applications a straightforward re-
duction of n is not a valid option, since the sparsity properties
(hence the ability of correctly retrieving the original signal) are
only observed for values of n sufficiently large [14].

A workaround is the design of A as an antipodal block-
diagonal matrix as in Figure 2, i.e. where the mb × nb blocks
lying on the main diagonal of A have antipodal-valued entries,
while the rest are set to zero. The aspect ratio of the blocks is
the same of the original matrix, with mb/m = nb/n or, in terms
of compression ratio, mb = CR · nb.

With this, there are only nb non-null elements in every row
of A, and they are consecutive. This reduces to nb the effec-
tive number of terms in (3). Furthermore, non-null elements in
different blocks do not overlap, so that the corresponding mea-
surements can actually be computed reusing the same hardware.
As a consequence, the number of physical channels required to
compute all measurements is reduced to mb.

The effectiveness of this matrix structure is confirmed by the
empirical results published in the literature [5, 12]. For an ex-
haustive discussion on the consequences of employing a block-
diagonal sensing matrix, we refer to [29].

2This is certainly true when the circuit to compute y j is replicated m times.
A possible alternative to the simple hardware replication is to use the same
circuit in an interleaved way to compute all m measurements [6]. In this case,
the speed (hence the power consumption) has to be increased by a factor m,
leading again to an increase in the required resources.
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Table 1: Summary of the tradeoffs involving n or, equivalently, nb, indicating
the section where the topic is discussed. Whenever possible, an estimate of the
dependence is given.

Tradeoff Dependency Section

Encoder computational complexity O (n · m)

Sec. 3.1
No. of encoder hardware channels O(n · N/CR)
Noise injected in measurements O(n)

Extension of the acquisition window O(n)
Observed signal sparsity ↑ with n

Achievable reconstruction quality ↑ with nb Sec. 3.4
Leakage-induced degradation ↑ with nb

Compensator dissipated power ↑ with nb Sec. 5
Number of leakage compensators O(nb)

Yet, this approach actually introduces a tradeoff. Values of
nb too low result in structured sensing matrices having a large
number of structured zeroes, violating the requirements of the
standard CS theory for some classes of signals [23]. There-
fore, even if noise and degradation of the measurements are
reduced, also the theoretical performance achievable by the CS
reconstruction decreases. An example of this trade-off will be
provided in Section 3.4.

As a convenient aid to the reader, Table 1 collects all the
parameters and properties having a dependence on n and nb de-
scribed in the text.

3.2. Improving performance by adaptation: Rakeness CS

Many optimization techniques have been proposed with the
aim of improving CS performance by adapting the statistical
properties of A to those of the signals under consideration [30–
32]. For an overview of these techniques, we refer the reader
to [33] and we focus here on the approach known as rakeness
[28, 32].

To the best of the authors’ knowledge, this technique ensures
a large performance improvement in comparison with other op-
timization approaches when applied in a realistic setting [33].
Due to this, we will consider a rakeness-based CS system as a
reference case for all the analyses conducted in this paper.

The rakeness approach exploits an additional prior on the in-
put signal named localization. Intuitively speaking, the higher
the localization of a signal, the farther is the generating process
from being white. Formally, x is localized if the n × n matrix
Cx describing the correlation profile of the instances of x, com-
puted as E

[
xxT

]
, is not the n × n identity matrix In.

Let us indicate with a ∈ Rn the generic row of A. Accord-
ing to the rakeness approach, the elements of a are not drawn
as instances of i.i.d. Gaussian or sub-Gaussian (e.g., Bernoulli
distributed, as in the antipodal case) random variables, but us-
ing instead a multivariate random process defined by a n × n
correlation matrix Ca, computed as follows:

Ca =
1
2

(
Cx

tr(Cx)
−

In

n

)
,

where tr(·) is the trace operator.

The generation of the rows of A according to such a corre-
lation profile maximizes the expected value of the energy col-
lected by each measurement, ρ = E [ax], as well as the perfor-
mance of the CS system.

A method to generate rows of A according to the rakeness
approach under the constraint of random ternary values can be
found in [28]. Both the case of non-structured zeroing (i.e.,
when the position of the zero elements is a degree of freedom)
and of structured zeroing (when the position of the zero ele-
ments is constrained a priori) are considered. The latter ap-
proach fits perfectly the use of the antipodal block-diagonal ma-
trices depicted in Figure 2.

3.3. Improving performance through DNNs: TCSSO
Joint use of DNNs and CS can be found in many recent works

[34–41]. Typically, DNNs replace the classic BPDn approach
of reconstructing the input signal either as x̂ or as ξ̂ directly
from the measurement vector y.

Several examples are focused on compressed images, such
as the 3-layer neural network proposed in [38], or the DNN
described in [42]. As for other application fields, fast recovery
and improved reconstruction quality of videos is obtained in
[39], while a joint optimization of the encoding and decoding
stages in the CS-based acquisition of EEG signals is presented
in [41].

Interestingly, in some works (e.g. [41]) the training process
of the DNN also generates the sensing matrix A, ensuring opti-
mal results when applied to the signals contained in the training
set, and also when using the DNN for signal reconstruction.

Here, we focus on the innovative approach introduced in
[14], where the reconstruction process is split in two consec-
utive steps. First, a DNN is used to divine the signal support ŝ
of the reconstructed signal. After that, standard linear algebra
is employed to get x̂ and ξ̂ from ŝ and y. The training process
of the support oracle network also determines the optimal sens-
ing matrices A to be used for signal acquisition. According to
the results presented in [14], the approach ensures a largely im-
proved reconstruction quality. However, the application to an-
tipodal block-diagonal matrix as that in Figure 2 is not straight-
forward, and requires a major modification of the DNN training
algorithm. Details on how to make TCSSO work with antipo-
dal block-diagonal matrices, as well as numerical results on its
performance, will be provided in Section 6.

3.4. Case study: synthetic ECG signals
The numerical evaluation of the solutions previously dis-

cussed has been carried out on synthetic ECG signals. The
generator employed is thoroughly described in [43]3 and the
experimental setup is the following.

The heart-beat rate is randomly selected from a uniform dis-
tribution between 60 beats/min and 100 beats/min. Signals are
generated as noiseless waveforms, sampled at 256 samples/s
and split into chunks of length n.

3The MATLAB code is freely available for downloaded from the Physionet
website at http://physionet.org/content/ecgsyn/
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Figure 3: Example of a synthetic ECG with its sparsified version (κ = 24).
The separation in consecutive time windows of length 0.5 s (i.e., n = 128 at
256 samples/s) is also highlighted.

Moreover, in order to obtain a better fit of the signal prop-
erties with respect to the requirements imposed by CS, each
signal window is modified as follows. i) The sparsity level is
set to κ = 24 by zeroing the less energetic components of ev-
ery signal instance, under the assumption of an orthonormal
Symlet-6 wavelet sparsity basis D [44]. This operation intro-
duces a sparsification-induced noise between 30 dB and 55 dB.
An example is given in Figure 3, where a 32.4 dB signal-to-
noise ratio (SNR) is observed. ii) In order to define a target for
an ideal reconstruction, we superimpose white Gaussian noise
to the sparsified signal so that its SNR is 50 dB.

Our benchmark is a CS system with nb = n = 128, i.e. full
antipodal sensing matrix, in which A is drawn according to the
rakeness approach and where the signal is reconstructed by a
standard BPDn technique through the SPGL1 algorithm as in
[22]. In Figure 4 we compare the benchmark results with those
obtained for block-diagonal matrices A with different values of
nb, as a function of the desired CR. The figure of merit under
consideration is the reconstruction SNR (RSNR), defined as

RSNR[dB] = 20 log10

(
‖x‖2
‖x̂ − x‖2

)
The plot shows the average value of the RSNR (ARSNR) ob-
served over 1000 Monte-Carlo trials.

According to the data depicted in the figure, a full sensing
matrix (i.e., nb = 128), for values of CR ≈ 2 achieves per-
formance close to the theoretical limit of 50 dB. As nb is de-
creased, the number of zeroes in the matrix grows and less en-
ergy is collected from the signal. As a consequence, perfor-
mance noticeably drops.

A significant decrease is also observed when the degradation
problems addressed in Section 3.1 concerning the analog im-
plementation of the CS encoder are considered. Targeting the
sensing of low-frequency biomedical signals, leakage currents
are indeed the predominant source of noise. In the example,
using nb = 128 with a sampling frequency fs = 256 Hz implies
that the value of A j,1x1 in (3) has to be sampled and preserved
for a time period of almost 0.5 s, a hold time typically unafford-
able even for pF-range hold capacitances.

1
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Figure 4: Performance of a CS-based signal processing chain for synthetic ECG
signals at approx 60 beats/s, with fs = 256 Hz and n = 128. Solid lines refer to
an ideal system; dashed lines to measurements corrupted by a constant-current
leakage discharge.

In Figure 4, the solid lines obtained by an ideal system where
no measurement degradation is considered are compared with
the dashed curves, representing an acquisition process affected
by a constant-current discharge of the hold capacitors due to
leakage currents. The discharge model is based on actual data
from a 180 nm CMOS technology. It considers a realistic con-
figuration of four minimum size switches for each hold capac-
itor, leading to a 300 pA discharge current in the unfavorable
condition of 85 ◦C. Moreover, the total sampling capacitance
Ctot of the SAR array is kept constant to emulate equal area oc-
cupation and conversion power. Each hold capacitance is there-
fore equal to Ch = Ctot/nb. For a fair comparison with respect
to the solution proposed in [9], the value of Ctot has been set to
16 pF.

It is clear from the observation of the dashed curves in Fig-
ure 4 that block size has an opposite effect on reconstruction
quality as compared to the ideal setup: a lower nb shortens the
acquisition window, reducing the degradation of measurements,
with a positive effect on the reconstruction performance. How-
ever, it is also evident that performance is not sufficient for a
decent reconstruction, requiring ad-hoc measures to counter the
leakage-induced discharge (Section 5).

4. Proposed Architecture

The proposed architecture is based on a traditional charge-
redistribution SAR ADC [45], suitably modified to hold differ-
ent signal samples at the same time. Both the original SAR and
the proposed modifications are illustrated in Figure 5.

A straightforward implementation of a l-bit SAR converter
requires capacitors ranging from Cu to 2l−1Cu. In more conve-
nient realizations, the binary-weighted array is used only for
the most significant bits (MSBs), while the least significant
ones (LSBs) are computed exploiting either a secondary binary-
weighted array, with an attenuation capacitor in between, or a
C-2C sub-array [46]. The figure refers to an implementation
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Figure 5: (a) Schematic and working principle of a traditional charge-redistribution SAR ADC with a 4-bit binary-weighted array, and a 2-bit C-2C array. Notice
that, having the comparator reference in the middle of the range [−Vre f ,+Vre f ], the overall ADC gains an extra bit, reaching a total of 7 bits. (b) Schematic and
working principle of the CS-based acquisition system, based on a charge-redistribution SAR ADC, proposed in this paper. The structure has Ctot = 16Cu, nb = 8
and Ch = 2Cu. The +Vre f and −Vre f levels in the timing diagrams are not to scale.

where the binary-weighted array and the C-2C structure com-
pute 4 bits and 2 bits, respectively.

The behavior of the architecture, either when working as
a SAR converter or as a CS-based acquisition system, is de-
scribed in the following.

4.1. Traditional SAR converter

The schematic of a traditional switched-capacitor SAR ADC
is illustrated in Figure 5(a). The figure also includes a timing-
diagram highlighting the behavior of the converter. Note
that the time-domain dynamics of a SAR (hence the timing-
diagram) are, to first order, independent of the array imple-
mentation, and would be unchanged if considering a binary-
weighted secondary array, or even a single main array exclu-
sively.

To sample the input, the top plates of the capacitors are
grounded by SW0, while the bottom plates are all connected
to the input signal Vin, tracking it. Then, SW0 opens, so that
the input voltage is sampled, and the total charge accumulated
in the capacitors is fixed and remains constant until the end of
the conversion. Also, all other switches move to the ground
position and the opposite of the sampled voltage is observed
at the non-inverting input of the comparator. At this point, all
switches from SW1 to SW6 move sequentially either to +Vre f or
−Vre f , depending on the output of the comparator. By means of
capacitive voltage division, the variations observed on the top
plates become increasingly smaller, either because the capaci-

tors involved are inherently smaller, or, in the case of the C-2C
subarray, because the attenuation from each input depends on
the position within the array. Over time, the voltage at the non-
inverting input of the comparator tends towards its reference
voltage. This way, the converter finds the best digital approxi-
mation of the sampled input voltage.

4.2. CS-based converter

The proposed architecture modifies the behavior of the tra-
ditional converter when sampling occurs, as shown in Fig-
ure 5(b). Through additional switches, allowing a finer-grained
control of the largest array capacitors, and the presence of SWin

at the input, equation (3) can be implemented directly in the
analog domain. The structure depicted in the figure corre-
sponds to one row of the sensing matrix A and is used to com-
pute the j-th measurement y j.

Let us consider the case nb = 8, as in Figure 5(b), i.e., it is
necessary to acquire 8 samples from the input, each modulated
by a ±1 coefficient. Their values have to be stored until the end
of the acquisition window, and then summed to compute y j.

The modulation is achieved by the switch SWin, which se-
lects either +Vin or −Vin, inherently available in differential im-
plementations. At the same time, the original capacitive array
can be used as nb identical sampling capacitors, each of size
Ch = Ctot/nb, so that nb samples of the modulated input can be
stored independently (in the figure, with Ch = 2Cu we are able
to obtain 8 hold cells). This operation requires the decomposi-
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tion of the largest capacitors in Figure 5(a), i.e., 8Cu = 4 × 2Cu

and 4Cu = 2 × 2Cu, into smaller elements, hence the require-
ment for additional switches. At the same time, the smallest
capacitors have to be driven simultaneously, so that their com-
bined sampling capacitance is equal to Ch.

Before each sampling instant, only one among the switches
SWA to SWH connects the input to a sampling capacitor. By the
end of the acquisition window, each of them will hold a value
equal to A j,kV[k], with k = 1, 2, . . . , 8, in agreement with the
notation of the figure.

Finally, SW0 opens, and all other switches move to the
ground position. All the sampling capacitors are thus connected
in parallel, sharing the accumulated charge and generating a
voltage level at the input of the comparator equal to

Vy[ j] = −

nb∑
k=1

ChA j,kV[k]
nbCh

= −
1
nb

nb∑
k=1

A j,kV[k]

Apart from the scaling factor −1/nb, this is equivalent to the
measurement y j described by (3).

The acquisition phase is now complete and the A/D conver-
sion can start by logically reconfiguring the capacitive array in
its original shape. The largest of the binary-weighted capaci-
tors, initially split into smaller elements, can be re-obtained by
driving them simultaneously. Equivalently, the smallest capac-
itors, jointly driven during acquisition, can be controlled inde-
pendently.

Note that, without entering into details, the C-2C sub-array
requires particular care because of its sensitivity to parasitic
loading of the internal isolated nodes. Hence it is preferable
not to change its topology during the acquisition phase, using
it as a whole. This determines a minimum value for Ch, which
has to be Ch ≥ Cu.

4.3. Comparison with previous solutions

The main difference with respect to previously proposed inte-
grated CS solutions is the lack of additional active devices such
as operational amplifiers or integrators, or any other block re-
quiring active biasing, with respect to a Nyquist-rate converter.
The proposed circuit, in fact, only requires additional switches
to drive independently the elements of the largest capacitors.

A summary comparing integrated solutions recently pro-
posed in the literature is included in Table 2. For each archi-
tecture considered, a simplified schematic highlights the addi-
tional hardware blocks required with respect to a straightfor-
ward Nyquist-rate approach, given by the direct A/D conversion
of the input signal samples.

In [10] a sub-Nyquist rate receiver for radar pulse signal
is presented. Authors of [11] presented a data acquisition
front-end for RF communication assuming a multi-tone input
signal. Both solutions embed a passive mixer that exploits
A j,k ∈ {−1, 1} by exchanging the two wires of the differen-
tial input signal. However, they also require a power-hungry
continuous-time integrator.

Solutions designed for lower bandwidths typically rely on
a switched-capacitors integrator architecture. In [7] an analog
front-end for ECG signals is presented, with a passive mixer

designed for approximating A j,k ∈ R. It exploits the differential
architecture to implement the sign change, and a 6-bit multi-
plying DAC embedded in the integrator. In [6] the target ap-
plication is given by intracranial EEG signals, and also in this
case a passive mixer is adopted, implementing A j,k ∈ {0, 1} by
means of simple pass-transistors. The last considered architec-
ture is that described in [9], where a passive mixer is obtained
constraining A j,k ∈ {−1,+1} and exploiting the fully differential
architecture for sign inversion via pass-transistors. Anyway, all
these solutions require an operational amplifier as additional ac-
tive circuit to execute the integration.

In Table 2, we included the energy required by the additional
active elements to compute a single measurement. We have
also indicated the signal bandwidth and the circuit noise perfor-
mance (estimated as the resolution of the ADC used to sample
the signal). Of course, a fair comparison would look also at
other CS-related capabilities (mainly, the possibility to work
at different levels of compression, controlling m, that indeed
depends on the architecture). The aim of this comparison is
only to identify, in several architectures, the additional power
required with respect to the that of a mere A/D converter cir-
cuit.

The last row in the table highlights the fact that the architec-
ture only requires the presence of the ADC, with the addition
of a few switches and their driving logic. The advantage is the
implementation not only of the mixer, but also of the integrator
using exclusively passive circuitry, leading to negligible addi-
tional energy.

As a reference case, a 10-bit SAR converter [47] in a 90 nm
technology, employing the conversion technique described in
the previous section (also known in the literature as VCM-based
method), shows a power consumption of 3 mW at 100 MS/s,
equivalent to 30 pJ per conversion, with more than 9 effective
bits. This energy is almost negligible when compared with the
additional energy required by all previous solutions in Table 2.

Since, in the proposed architecture, the logic of the conver-
sion is unchanged and the only difference is that of a counting
mechanism to keep track of the samples to be acquired in a win-
dow, it is reasonable to assume that the extra energy per conver-
sion is negligible with respect to that of the original ADC.
5. Compensation of Leakage Currents

When the target application involves low-frequency signals,
a major source of noise in (3) is given by leakage currents dis-
charging the hold capacitors. Since the intermediate modulated
samples have to be stored until the end of the acquisition win-
dow this leads to a degradation of their linear combination, i.e.,
the measurement. Components of such currents origin both
from the reverse-biased drain/source diffusions of the transis-
tors used as switches, and from subthreshold conduction.

Indeed, this drawback has to be considered in any analog im-
plementation of a CS-based acquisition chain, especially for the
proposed architecture where the goal is to have the capacitive
array as small as that embedded in a typical SAR ADC.

Coping with the discharge by a straightforward increase of
Ch is unfeasible, as highlighted in Table 3. The values show the
total array capacitance that, for a given nb (hence a given du-
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Table 2: Summary of solutions proposed to implement a CS encoder exploiting (3), highlighting the additional hardware required with respect to a straightforward
Nyquist approach (i.e., A/D conversion of the input signal), along with the power consumption of this additional hardware only. To allow a fair comparison, the
energy per measurement and the energy per measurement normalized for n (or nb) has been also indicated. The resolution has been estimated by the effective
resolution of the connected ADC.

Ref. Schematic Brief description Figures of Merit Res. Tech.

[10]
(2012)

LNA gm

Aj,k

ADC

(external)

C

Continuous-time gmC integrator with
passive mixer (A j,k ∈ {−1, 1} exploit-
ing fully differential implementation)

2 GHz BW, 506.4 mW
(n = 100, m = 8)

1.58 nJ/conv
15.8 pJ/conv/n

–1 90 nm

[11]
(2012)

gm

Aj,k

ADC

(dig. oscilloscope)

C

Continuous-time gmC integrator with
passive mixer (A j,k ∈ {−1, 1} exploit-
ing fully differential implementation)

500 MHz BW, 30 mW
0.083 nJ/conv

(nb = 22, mb = 8)2

3.75 pJ/conv/nb

8 bit2 90 nm

[6]
(2014)

AFE

Aj,k

ADC

(SAR, 10 bit)

Cf

Cs

Switched-capacitors integrator with
passive mixer (A j,k ∈ {0, 1} with sim-
ple pass-transistors implementation)

10 kHz/m BW3, 8.4 µW
(n = 16)

0.42 nJ/conv
9.2 bit 180 nm

[7]
(2014)

|Aj,k|
ADC

(SAR, 10 bit)

Cf

C-2C array
Cs

sgn(Aj,k)

Switched-capacitors integrator with
passive mixer (A j,k ∈ R, sign of A j,k
implemented by exploiting differen-
tial implementation, module via C-
2C modulation of sampling capaci-
tance)

1 kHz BW, 1.8 µW
(n = 256, m = 64)

3.58 nJ/conv
14 pJ/conv/n

6.5 bit 130 nm

[9]
(2016)

Aj,k

ADC

(SAR, 11 bit)

Cf

Cs

Switched-capacitors integrator with
passive mixer (A j,k ∈ {−1, 1} exploit-
ing fully differential implementation)

60 kHz BW, 430 µW
(n = 128, m = 16)

13.2 nJ/conv
216 pJ/conv/n

9.0 bit 180 nm

This
work

Integration by passive charge redistri-
bution in the capacitive array of the
ADC. Passive mixer (A j,k ∈ {−1, 1}
exploiting fully differential imple-
mentation)

Negligible extra energy - -

1An external ADC is used, whose resolution is not indicated.
2A block-diagonal approach is used. Furthermore, a digital oscilloscope is used for sampling data, so that a standard 8 bit resolution is assumed.
3Due to resource sharing, the maximum bandwidth of the input signal decrease with the number m of measurements. The architecture do not integrate over
time but over space, so the energy of the measurement do not depend on n.
4Includes the power consumption of the ADC (power consumption of the analog block only not declared by authors).
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Table 3: Total array capacitance Ctot guaranteeing a degradation of the ARSNR
of less than 3 dB with respect to ideal sensing (solid lines in Figure 4), when a
constant-current leakage discharge is considered. The values are computed for
CR=2 and the leakage parameters are the same of Figure 4. The capacitance is
approximately proportional to (n/nb)−2.5.

nb n/nb Ctot

128 1 500 µF
32 4 25 µF
16 8 3 µF
8 16 350 nF

Figure 6: (a) Leakage-compensation circuit, to be placed around every hold
capacitor in Figure 5(b). The resistor and current source model the effect of
turned-off switches and do not correspond to real components. (b) Uncom-
pensated hold cell. (c) Waveforms obtained using the parameters indicated in
Section 5.

ration of a single measurement), guarantees 3 dB of loss with
respect to the corresponding ideal ARSNR (where no degra-
dation is considered in the signal acquisition). The values are
indeed impractical and ask for some other means to limit the
loss of charge.

A robust solution for the compensation of leakage currents is
proposed in [48]. Therein the authors describe and validate the
topology depicted in Figure 6, achieving a 9.5 mV/s residual
drift of the voltage sampled on a 0.5 pF capacitor with a total
current absorption of the active blocks around 38 nA.

The circuit should be placed around every hold capacitor of
the array, with the exclusion of the one made by the simultane-
ous driving of the LSB capacitors, since A/D conversion starts
immediately after their sample is acquired. As a result, nb − 1
replicas are required.

Without compensation, once a sample has been stored in a
capacitor, its bottom-plate switch is opened. Being it imple-
mented by several MOS transistors, the accumulated charge
starts to flow through the node because of their leakage, with
a direction which depends on the exact topology of the switch.
The discharge is modeled by placing a current source IL and the
switch off-resistance R in parallel to every hold capacitor.

The compensator works by recreating the same switch topol-
ogy around a down-scaled replica of the hold capacitor, having
value kCh. Being smaller, the rate-of-change of its voltage will
be higher. The resulting difference vh − vrep determines a cur-
rent, injected equally in both capacitors by means of a couple of
identical transconductors. Such a compensating current reduces

1

2 2.5 3 3.5
´10

10

30

50

CR

A
R

SN
R

(d
B

)

Leakage: nb:
compensated 128
none 32

16
8

Figure 7: Performance of a CS-based signal processing chain for the considered
synthetic ECG signals, when leakage compensation is included. Solid lines
refer to the proposed architecture with leakage compensation; dashed lines to
an ideal system with no leakage.

the leakage-induced variation.
Neglecting for a moment the resistive component, the behav-

ior of the compensator can be described as follows. With ref-
erence to Figure 6(a), let us consider positive leakage currents,
discharging both capacitors over time. Since both cells sample
the same voltage, their voltage difference is initially null. As
this difference increases linearly with time, the injected com-
pensation current increases as well. The net current flowing in
each capacitor is therefore decreased until an equilibrium con-
dition is reached. At this point the leakage currents are canceled
exactly by the action of feedback and the sampled voltage is
held indefinetly.

The complete model accounting for the effects of R actually
shows that vh, the voltage across the hold cell, decays over time:

vh(t) = vh(0) exp
(
−

t
τ

)
u(t)

−RIL

[
1 − exp

(
−

t
τ

)
u(t)

]
(4)

with τ = GmR2Ch(1−k) and u(t) the unitary step function. Since
the initial voltage in any case cannot be preserved, the elements
of the feedback loop have to be sized to constrain the drop to an
acceptable value. The discharge time constant depends in fact
on the gain factor GmR(1 − k), which can be designed to slow
down the variation as much as required, as exemplified in Fig-
ure 6(c). Considering that the hold time is not equal among the
capacitors, the values of Gm can be tuned individually, leading
to some power savings.

As a final comment, like in any feedback loop, stability has
to be guaranteed. The complete analysis will not be presented
here, suffice it to say that the hold and replica cells behave as a
low-pass filter whose pole frequency depends on 1/k. Consid-
ering the singularities in the transconductor transfer function, a
small k, desirable to minimize the overhead introduced by the
replica cell, may indeed lead to instability.

Figure 7 compares the reconstruction quality obtained for an
ideal sensing to the one where the acquisition process suffers
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Figure 8: Architecture the TCSSO framework, including the CS encoder since
it is optimized along with the support oracle DNN during the training phase.
The recovered signal x̂ is computed using the estimated ŝ.

from leakage, with the presence of the compensators. The dis-
charge is modeled as in (4), with parameters Gm = 100 µS,
R = 1 GΩ, k = 0.1 and IL = 300 pA. Notice that, for simplicity,
the transconductance is equal for all compensators.

Considering a constant total array capacitance of 16 pF, in-
deed Ch for nb = 128 is too small to preserve the sampled val-
ues even in presence of the compensator. As nb is decreased, the
structure can better manage the signal window and performance
matches more closely the ideal one. In particular, the curves for
nb = 8 and nb = 16 are quite close to the reference ones, with
the latter obtaining slightly better results. Such values of nb are
indeed valid options for the design of the capacitive array.

6. Decoding by TCSSO with Short Windowing

The application of the TCSSO approach proposed in [14] to
the architecture considered in this paper is not straightforward.
In this section we first introduce the original method, then we
show how to modify it to handle antipodal block-diagonal sens-
ing matrices. Finally we apply the modified TCSSO to the case
study introduced in section 3.4 and provide numerical results.

6.1. The TCSSO approach
The architecture of the TCSSO approach is depicted in Fig-

ure 8 and is described in the following.
The computation of the reconstructed signal x̂ starts from a

set of measurements y coming from the CS encoder. The vector
y is fed into a DNN, named “support oracle”, trained to predict
the support ŝ of the input signal that generated y. Once the
support ŝ has been estimated, it is possible to reconstruct the
original input signal from y ,i.e., to invert (1), using standard
linear algebra.

Consider ξ|ŝ ∈ Rκ as the vector containing only the non-null
elements of ξ, whose positions are identified by ŝ. Similarly,
we can define D|ŝ ∈ Rn×κ as the matrix containing only the
columns of D selected by ŝ. Neglecting the noise term ν, the
sensing equation (1) can be rewritten as

y = AD|ŝ ξ|ŝ (5)

While the inversion of (1) gives rise to an underdetermined
system of equations whose solution is a complex task involving
a minimization problem (2), the inversion of (5) corresponds
to an overdetermined system. Several known methods, such as
the least-squares based ones, can be used to find its approxi-
mate solution. In [14] the authors consider the Moore-Penrose
pseudoinverse operator (·)†, so that

ξ̂|ŝ =
(
AD|ŝ

)† y (6)

and the original signal is finally reconstructed either as x̂ =

D|ŝ ξ̂|ŝ or as x̂ = Dξ̂.
Figure 8 also details the internal structure of both the CS en-

coder and the support oracle DNN. The encoder is considered
as part of the neural network only during the training phase, to
generate the optimal A. It emulates the linear projection y = Ax,
having n inputs (i.e., the dimensionality of x) and m outputs
(dimensionality of y). With no bias, using as interconnection
weights the actual elements of A, and employing a linear acti-
vation function, its behavior is equivalent to (1).

The actual oracle starts from the second layer of nodes,
which are shared with the encoder during training. It is built
with m inputs and three hidden layers with 2n, 2n and n neu-
rons each, and ReLU activation functions. The n outputs use
a sigmoid activation function α(a) = 1/ (1 + e−a) and generate
the output vector ô ∈ Rn, which can be interpreted as the prob-
abilities of the coefficients of ξ being non-zero. The divined
support ŝ is obtained from ô by simply thresholding it element-
wise, so that (ideally) its κ largest elements are set to 1 and the
rest to 0 4.

6.2. TCSSO with antipodal block-diagonal matrices
In the TCSSO approach, as well as in many other frameworks

where the CS reconstruction relies on a DNN which is jointly
trained with the sensing matrix A [38, 41], the key point is to
model the matrix-vector product required by the CS acquisition
in (1) as an extra layer of the DNN.

It is evident that any constraint on A (e.g., forcing it to be an-
tipodal, ternary or block-diagonal) corresponds to an equivalent
constraint on such a layer. In reality, when the neural network
is used for inference, sensing matrices of any kind can be used
with the support oracle. However, during the training phase,
obtaining an optimized A with a specific structure requires par-
ticular care.

In the original TCSSO framework [14], a full antipodal sens-
ing matrix A± ∈ {−1,+1}m×n is considered. The algorithm used
for the optimization of the neural network is the Stochastic Gra-
dient Descent (SGD), which consists of two phases, namely
forward- and back-propagation. The convergence of the SGD
algorithm requires tiny variations of A, which are not possi-
ble if training is performed directly on the antipodal matrix
A±, whose values are either -1 or 1. Therefore a real valued
AR ∈ Rm×n sensing matrix is employed since, during back-
propagation, its values can be finely adjusted to minimize the

4In practice the number of ones in the recovered support is on average no
less than κ.
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Figure 9: Equivalent views of the CS encoder in the case of block-diagonal sensing. (left) Antipodal block-diagonal sensing matrix A. (right) DNN layer modeled
as several parallel, independent, fully-connected sub-layers. Each block A±(l) is mapped to the weight matrix of a sub-layer. The latter description is used for the
optimization of the sensing matrix during the training phase of the support oracle. In the example, nb = 6 and mb = 3, with CR = 2.

error at the output. In the forward-propagation phase, the cor-
responding antipodal matrix A± is extracted from AR by evalu-
ating the sign of each matrix element.

At the same time, if the sensing matrix has to be block-
diagonal, we may actually observe that such a matrix can be
split into smaller antipodal matrices A±(l) ∈ {−1, 1}mb×nb as in
Figure 9, where l is the index of the l-th block. Each elemen-
tary block acts only on a portion of the input signal x(l) ∈ R nb ,
contributing to a subset y(l) ∈ Rmb of the measurements vector
y. Hence, the sensing operation becomes

y(l)
j =

nb∑
k = 1

A±(l)
j,k x(l)

k . for
{

l = 1, . . . , n/nb

j = 1, . . . , mb

In other words, we have decomposed the encoding process (3)
into n/nb independent and parallel operations, each of them de-
fined by an antipodal matrix A±(l). This is illustrated in Figure 9.
From the point of view of the DNN, the input layer is no more
a single, fully-connected layer, but it is the composition of n/nb

mutually independent, fully-connected sub-layers. All the ze-
roes of the sensing matrix and the corresponding interconnec-
tions between neurons are thus neglected altogether.

Equivalently to what is done in the original framework, here
the SGD algorithm is applied to multiple full-precision matrices
AR(l) ∈ Rm×n. The corresponding antipodal sensing matrices
A±(l) are obtained by extracting the sign from each element of
every AR(l). Finally, the desired antipodal block-diagonal ma-
trix A± is composed by a proper arrangement of the individual
blocks on the main diagonal.

6.3. Numerical results with the modified TCSSO

Simulations using the same input signals defined in Sec-
tion 3.4 prove that the TCSSO approach is extremely effective.
When properly modified to work with antipodal block-diagonal
sensing matrices, it ensures better performance with respect to
the BPDn approach boosted by the rakeness optimization. A
time-domain comparison of the two decoding is shown in Fig-
ure 10, where the techniques are applied to the signals depicted
in Figure 3. The behavior is noticeably improved at the window
boundaries, which are the largest noise contributors.
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Figure 10: Reconstruction of the sparsified ECG waveform depicted in Fig-
ure 3, using an ideal setup (no leakage) with nb = 8 and CR = 2.7. The different
decoders result in a 16 dB RSNR for SPGL1 and 31 dB for the TCSSO.

The ideal setup without the effects of the leakage currents
is considered in details in Figure 11(a). Similarly to what is
shown in Figure 4 for the BPDn reconstruction, a higher value
of nb results in an improved performance. Furthermore, for all
considered values of CR, reconstruction quality using the TC-
SSO is higher with respect to the reference case given by the
SPGL1 algorithm with rakeness-optimized sensing matrices.

In Figure 11(b) measurements are degraded by leakage. It
can be readily observed that TCSSO achieves up to 20 dB of in-
creased ARSNR with respect to the reference case. As already
described for the curves Figure 7, the value of nb sets a trade-
off. However, whereas for a BPDn-based reconstruction the
optimal performance is obtained for nb = 16, using TCSSO the
optimum is found for nb = 8. This is extremely important from
the hardware point of view, since it allows at the same time an
improvement in performance and a reduction of the complex-
ity of the architecture, requiring a coarser decomposition of the
SAR capacitive array (reduced number of hold capacitors Ch).

7. Conclusion

An innovative switched-capacitor SAR architecture for CS-
based acquisitions in the analog domain has been presented.
Two techniques to make it practical have been analyzed, namely
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Figure 11: Performance of a CS-based signal processing chain expressed in terms of ARSNR as a function of CR, for synthetic ECG signals at approx 60 beats/s,
with fs = 256 Hz and n = 128. Solid lines refer to the TCSSO reconstruction, dashed lines to the SPGL1 algorithm. (a) Ideal sensing (b) Sensing corrupted by
leakage, with the presence of the compensator introduced in Section 5 and the same parameters used to obtain Figure 7.

using an antipodal block-diagonal sensing matrix and introduc-
ing a hardware leakage compensator. Performance gains of
such techniques have been validated through algorithmic sim-
ulations with real-world parameters, highlighting their impor-
tance for the feasibility of the architecture. Furthermore, it has
been shown that the recently proposed TCSSO technique al-
lows a significant boost in reconstruction performance and a
reduction of the hardware complexity.
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