Supporting Information

Vinyl ethers and epoxides photoinduced copolymerization with perfluoropolyalkylether

monomers

Giuseppe Trusiano,^{†,*} Alessandra Vitale,^{†,*} Céline Bonneaud,[‡] Diego Pugliese,[†] Sara Dalle Vacche[†], Christine Joly-Duhamel,[‡] Chadron M. Friesen,[§] Roberta Bongiovanni[†]

⁺ Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24,

10129 Torino, Italy

[‡] Institut Charles Gerhardt Montpellier , University of Montpellier, CNRS, ENSCM, Cedex 5,

34296 Montpellier, France

[§] Department of Chemistry, Trinity Western University, 7600 Glover Road, V2Y 1Y1 Langley, BC, Canada

* Corresponding authors: gluseppe.trusiano@polito.it ; alessandra.vitale@polito.it ; a

List of Figures

Fig. S1 ATR FT-IR spectra of the PFPAE-EGVE + TVE copolymer:	.3
Fig. S2 ATR FT-IR spectra of the PFPAE-BGVE + TVE copolymer:	.3
Fig. S3 ATR FT-IR spectra of the PFPAE-DEGVE + TVE copolymer:	.4
Fig. S4 ATR FT-IR spectra of the PFPAE-MO + TGE copolymer:	.4
Fig. S5 ATR FT-IR spectra of the PFPAE-EO + TGE copolymer:	.5
Fig. S6 ATR FT-IR spectra of the PFPAE-PO + TGE copolymer:	.5
Fig. S7 Water contact angle hysteresis measurements, on air and glass sides, of the UV-cured copolymers:	.7

List of Tables

Table S1 Number of repeat units, average molecular weight (M _n), difunctional content, (from ¹⁹ F-NMR spectra)
of the functionalized PFPAE monomers, and composition details and fluorine content of the investigated
copolymers
Table S2 Degradation temperatures of the UV-cured hydrogenated resins and copolymers 7

Fig. S1 ATR FT-IR spectra of the PFPAE-EGVE + TVE copolymer:

R_{*h*}: peak ~1780 cm⁻¹ C=O bond; ~1620 cm⁻¹ C=C; peak ~1100 cm⁻¹ C-O-C ethers;

R_f: peak ~1240 cm⁻¹ stretching C-F bond, and peak ~1100 cm⁻¹ C-O-C ethers;

Photoinitiator: peak ~2950 cm⁻¹ stretching C=C-H; peak ~1780 cm⁻¹ C=O bond; peak ~1600-1320 cm⁻¹ C₆H₆ bonds; peak ~1100 cm⁻¹ C-O-C ethers

Fig. S2 ATR FT-IR spectra of the PFPAE-BGVE + TVE copolymer:

R_b: peak ~1780 cm⁻¹ C=O bond; ~1620 cm⁻¹ C=C; peak ~1100 cm⁻¹ C-O-C ethers;

R_f: peak ~1240 cm⁻¹ stretching C-F bond, and peak ~1100 cm⁻¹ C-O-C ethers;

Photoinitiator: peak ~**2950** cm⁻¹ stretching C=**C**-**H**; peak ~**1780** cm⁻¹ **C**=**O** bond; peak ~**1600-1320** cm⁻¹ **C**₆**H**₆ bonds; peak ~**1100** cm⁻¹ **C**-**O**-**C** ethers

Fig. S3 ATR FT-IR spectra of the PFPAE-DEGVE + TVE copolymer:

R_h: peak ~1780 cm⁻¹ C=O bond; ~1620 cm⁻¹ C=C; peak ~1100 cm⁻¹ C-O-C ethers;

R_f: peak ~1240 cm⁻¹ stretching C-F bond, and peak ~1100 cm⁻¹ C-O-C ethers;

Photoinitiator: peak ~2950 cm⁻¹ stretching C=C-H; peak ~1780 cm⁻¹ C=O bond; peak ~1600-1320 cm⁻¹ C₆H₆ bonds; peak ~1100 cm⁻¹ C-O-C ethers

Fig. S4 ATR FT-IR spectra of the PFPAE-MO + TGE copolymer:

R_h: peak ~1780 cm⁻¹ C=O bond; ~1620 cm⁻¹ C=C; peak ~1100 cm⁻¹ C-O-C ethers; peak ~910 cm⁻¹ epoxides;

R_f: peak ~1240 cm⁻¹ stretching C-F bond, and peak ~1100 cm⁻¹ C-O-C ethers;

Photoinitiator: peak ~**2950** cm⁻¹ stretching C=**C**-**H**; peak ~**1780** cm⁻¹ **C=O** bond; peak ~**1600-1320** cm⁻¹ **C**₆**H**₆ bonds; peak ~**1100** cm⁻¹ **C-O-C ethers**

Fig. S5 ATR FT-IR spectra of the PFPAE-EO + TGE copolymer:

R_{*h*}: peak ~1780 cm⁻¹ C=O bond; ~1620 cm⁻¹ C=C; peak ~1100 cm⁻¹ C-O-C ethers; peak ~910 cm⁻¹ epoxides;

R_f: peak ~1240 cm⁻¹ stretching C-F bond, and peak ~1100 cm⁻¹ C-O-C ethers;

Photoinitiator: peak ~2950 cm⁻¹ stretching C=C-H; peak ~1780 cm⁻¹ C=O bond; peak ~1600-1320 cm⁻¹ C₆H₆ bonds; peak ~1100 cm⁻¹ C-O-C ethers

Fig. S6 ATR FT-IR spectra of the PFPAE-PO + TGE copolymer:

R_{*h*}: peak ~1780 cm⁻¹ C=O bond; ~1620 cm⁻¹ C=C; peak ~1100 cm⁻¹ C-O-C ethers; peak ~910 cm⁻¹ epoxides;

R_f: peak ~1240 cm⁻¹ stretching C-F bond, and peak ~1100 cm⁻¹ C-O-C ethers;

Photoinitiator: peak ~2950 cm⁻¹ stretching C=C-H; peak ~1780 cm⁻¹ C=O bond; peak ~1600-1320 cm⁻¹ C₆H₆ bonds; peak ~1100 cm⁻¹ C-O-C ethers

Table S1 Number of repeat units, average molecular weight (M_n), difunctional content, (from ¹⁹F-NMR spectra) of the functionalized PFPAE monomers, and composition details and fluorine content of the investigated copolymers.

Copolymer	m	PFPAE molecular weight (g/mol)	PFPAE difunctional content (mol%)	PFPAE/Resin weight ratio	F content in copolymer (wt%)	F content in copolymer (mol%)
PFPAE-EGVE + TVE	6	1740	56	0.32	18.45	0.97
PFPAE-BGVE + TVE	8	2130	88	0.32	18.93	1.00
PFPAE-DEGVE + TVE	7	2000	43	0.32	16.46	0.87
PFPAE-MO + TGE	12	2720	63	0.32	17.06	0.90
PFPAE-EO + TGE	8	2130	41	0.32	16.06	0.85
PFPAE-PO + TGE	10	2530	58	0.32	16.08	0.85

Fig. S7 Water contact angle hysteresis measurements, on air and glass sides, of the UV-cured copolymers:

- PFPAE-EGVE + TVE, - PFPAE-BGVE + TVE, - PFPAE-DEGVE + TVE,

- PFPAE-MO + TGE, - PFPAE-EO + TGE, - PFPAE-PO + TGE.

System	T _{onset} (°C)	Т (°С)	T _{max2} (°C)	Т _{90%} (°С)
TVE	188	-	398	428
PFPAE-EGVE + TVE	137	181	397	427
PFPAE-BGVE + TVE	150	192	366	429
PFPAE-DEGVE + TVE	136	182	375	429
TGE	185	-	378	405
PFPAE-MO + TGE	130	156	381	413
PFPAE-EO + TGE	132	159	361	410
PFPAE-PO + TGE	140	159	385	413

Table S2 Degradation temperatures of the UV-cured hydrogenated resins and copolymers