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Abstract. In the perspective of Industry 4.0, the contemporary presence of 

workers and robots in the same workspace requires the development of human 

motion prediction algorithms for a safe and efficient interaction. In this context, 

the purpose of the present study was to perform an operation of sensor fusion, 

by creating a collection of spatial and inertial variables of human upper limbs 

kinematics of typical industrial movements. Spatial and inertial data of ten 

healthy young subjects performing three pick and place gestures at different 

heights were measured with a stereophotogrammetric system and Inertial 

Measurement Units, respectively. Elbow and shoulder angles estimated from 

both instruments according to a multibody approach showed very similar 

trends. Moreover, two variables of the database were identified as distinctive 

features able to differentiate among the three gestures of pick and place. 
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1 Introduction 

Technological developments of Industry 4.0 are strongly leading to automate work-

ers’ gestures with the support of robots. Consequently, the concept of interaction be-

tween human and robot is gaining an increasingly central role in manufacturing. The 

team of human and robot cooperating in the same environment with a common plan 

guarantees, security ensured, a more successful and efficient execution of tasks [1–3]. 

However, this collaboration cannot be considered optimal unless it occurs on the basis 

of a prediction operation. In fact, by predicting human activity, the robot can identify 

actions, paths and timing that will result in a safer and more efficient interaction [4, 

5]. Several literature works based on human motion tracking have already addressed 

the concept of human activity prediction. Some studies have structured their predic-

tion methods on data collected with different motion capture instruments such as ste-

reophotogrammetric systems [6, 7] and RGB-D cameras [8, 9]. Other works used 
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existing databases of human motions to define and train their prediction algorithms 

[10, 11]. Most of the adopted databases are composed of 3D joints coordinates ac-

quired with optical and stereophotogrammetric systems during movements of the total 

body [12–15]. Other databases contain both spatial and inertial data, but they do not 

track upper limbs in a complete way [16] or they do not analyse typical manufacturing 

gestures [17, 18]. Consequently, the aim of the present work was to perform an opera-

tion of sensor fusion, by creating a collection of spatial and inertial variables of typi-

cal industrial gestures, like pick and place, performed by ten healthy young subjects.  

2 Materials and Methods 

For the experimental test of this study, ten subjects performed a sequence of pick and 

place of three boxes positioned at different heights. Motion tracking of participants’ 

upper body was made with both a stereophotogrammetric system and Inertial Meas-

urement Units (IMUs). 

2.1 Participants  

Ten healthy young subjects (6 males, 4 females) with no musculoskeletal or neurolog-

ical disease gave their written informed consent to participate in the study. Subjects 

anthropometric data were estimated (mean ± standard deviation): age 24.7 ± 2.1 

years; BMI 22.3 ± 3.0 kg/m2; upper arm length 27.8 ± 3.2 cm; arm length 27.9 ± 1.5 

cm; trunk length 49.1 ± 5.2 cm; acromions distance 35.9 ± 3.6 cm. 

2.2 Instrumentation  

The instrumentation involved an inertial system and a stereophotogrammetric system. 

Inertial system. A chain of 7 MTx IMUs (Xsens, The Netherlands) was connected to 

a PC via Bluetooth. Data were acquired through the Xsens proprietary software MT 

Manager at 50 Hz. A first IMU (TAB) was fixed on a table (Fig. 1.A), the other six 

IMUs were fixed on participants’ upper body (Fig. 1.B): right forearm (RFA); right 

upper arm (RUA); shoulders (RSH, LSH); sternum (THX) and pelvis (PLV).  

Stereophotogrammetric system. It was composed of a self-contained and pre-

calibrated V120:Trio bar (OptiTrack, USA) and 17 markers (14 mm of diameter). 

Data acquisition was made through the software Motive at 120 Hz. A global coordi-

nate reference system was constructed from markers A, B and C on the same table 

(Fig. 1.A). Fourteen markers were positioned on participants’ upper body (Fig. 1.B):  

styloid processes (WMR, WLR, WML, WLL); elbow condyles (EMR, ELR, EML, 

ELL); acromions (ACR, ACL); between suprasternal notches (IJ); spinal process of 

the 8th thoracic vertebra (T8); on inertial sensors RFA (SFA) and RUA (SUA). 

2.3 Protocol 

Subjects were asked to sit at a table on which the silhouettes of right and left hands 

were drawn, with thumbs 12 cm apart. For the calibration and temporal synchroniza-



tion of inertial and stereophotogrammetric systems, participants were asked to hit the 

table with their right wrist and to stand still for 10 s with hands on silhouettes (neutral 

position). Subsequently, participants performed pick and place tasks composed of 7 

operations: 1) stay in neutral position; 2) pick a box; 3) place the box between hands 

silhouettes; 4) return to neutral position; 5) pick the same box again; 6) place the box 

on initial position; 7) return to neutral position. The task was repeated with three box-

es of the same size placed on the table at different heights (Fig. 1A): on the table 

(white), at a height of 18 cm (black) and at a height of 28 cm (red). Each subject per-

formed 15 gestures, 5 for each box, in a random order. 

 

Fig. 1. A) Top view of table with hands silhouettes, boxes, IMU and markers glob-

al reference systems. B) IMUs and markers placement on participants’ upper body. 

2.4 Data analysis 

Data analysis was conducted with Matlab® routines. The right wrist hit on the table 

was used for the temporal synchronization of data from both acquisition systems [19]. 

Then, markers coordinates were resampled at 50 Hz and data were expressed with 

respect to the global reference frame. 

Anatomical reference systems of right forearm (Fig. 2.A) and right upper arm (Fig. 

2.B) were defined from markers: x-axis was longitudinal to the segment; z-axis was 

perpendicular to the plane defined by x-axis and support s-axis; y-axis was obtained 

as the cross product between z-axis and x-axis. Trunk anatomical reference system 

was composed of a vertical x-axis, a horizontal y-axis and a z-axis obtained as their 

cross product (Fig. 2.C). IMUs data were referred to these anatomical axes by consid-

ering a constant transformation between IMUs and markers reference frames identi-

fied during the initial calibration in neutral position. The consistency of sensor fusion 

operation was verified by estimating elbow and shoulder angles from both IMUs and 

markers systems [20, 21] and calculating Root Mean Square Error (RMSE) values.  

Finally, signals of x-acceleration of RUA-IMU and y-coordinate of WMR marker 

have been analysed to identify the presence of features characterizing the pick and 

place gesture performed by subjects and to discriminate which box was managed. In 

both signals, a double peak identifies “pick and place” gesture of the box. Signals 

trends then showed 15 couples of peaks related to the 15 pick gestures. For both sig-

nals of all subjects, the amplitude of each couple of consecutive peaks was averaged. 
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Then, mean (m) and standard deviation (σ) of the obtained 15 mean values were used 

to define a band (m ± σ/2). Each gesture was identified as the “pick and place” of a 

box which was in low, medium or high position, depending if the peaks fell below, 

inside or above the band, respectively. The accuracy of gesture recognition was esti-

mated for all participants for both signals. 

 

Fig. 2. Anatomical reference systems of A) forearm; B) upper arm; C) trunk. 

3 Results and discussion 

Fig. 3 shows joints angular trends estimated for one subject with both systems. The 

left panel contains elbow flexion-extension (FE) and pronation-supination (PS); the 

right panel shows shoulder FE, abduction-adduction (AA) and intra-extra rotation 

(IE). Angular trends are very similar, testifying the accuracy of the performed sensor 

fusion operation.  

 

Fig. 3. Joints angular trends estimated with both markers and IMUs. 

Table 1 contains RMSE values quantifying the correspondence of angular trends 

calculated using markers and IMUs data. Except in some cases, (elbow FE of subject 

6, elbow AA and PS of subject 8, shoulder IE of subject 1), RMSE values lower than 

9.8° reflect this correspondence in line with literature [22]. Errors can be due to skin 
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artefacts and IMUs magnetic disturbances. Fig. 4 shows the distinction between pick 

and place of a low, a medium and a high box (grey, black and red dots, respectively), 

considering both x-acceleration of RUA-IMU and y-coordinate of WMR marker. The 

inertial feature had an accuracy of 98.7%, by mismatching medium and high gestures 

in only 2 cases out of 150. 

Table 1.  RMSE values of elbow FE and PS and shoulder FE, AA and IE angles (°).  

Sub Elbow FE Elbow PS Shoulder FE Shoulder AA Shoulder IE 

1 3.5 5.3 3.9 6.3 11.9 

2 3.0 2.9 8.2 3.8 4.6 

3 3.9 5.8 3.0 2.8 9.8 

4 4.0 4.0 2.4 2.3 7.3 

5 3.7 6.3 3.3 4.1 4.4 

6 13.3 5.5 2.7 1.6 5.9 

7 3.8 5.9 2.2 1.9 9.0 

8 4.2 12.8 6.4 8.4 7.5 

9 3.4 3.8 3.1 1.9 3.8 

10 4.7 6.4 2.6 2.3 8.1 

This could be justified by the smaller height difference between black and red box-

es. Instead, as expected, the accuracy of the spatial feature was of 100%. Overall, both 

signals were suitable for distinguishing among the three gestures for all subjects. 

In conclusion, the present database appears to be congruent, complementary and 

suitable for features identification. Hence, future plans are first to identify other mo-

tion features able to distinguish among gestures. Then, these features could be used 

for development and training of a prediction algorithm of human upper limbs kine-

matics in an industrial context. 

 

Fig. 4 The algorithm adopted to distinguish among low, medium and high gestures. 

Two signals: x-acceleration of RUA-IMU (left); y-coordinate of WMR marker (right). 
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