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Abstract: Plasmonic organic hybrid electro/optic modulators are among the most innovative
light modulators fully compatible with the silicon photonics platform. In this context, modeling
is instrumental to both computer-aided optimization and interpretation of experimental data.
Due to the large computational resources required, modeling is usually limited to waveguide
simulations. The first aim of this work to investigate an improved, physics-based description
of the voltage-dependent electro/optic effect, leading to a multiphysics-augmented model of
the modulator cross-section. Targeting the accuracy of full-wave, 3D modeling with moderate
computational resources, the paper presents a novel mixed modal-FDTD simulation strategy that
allows us to drastically reduce the number and complexity of 3D-FDTD simulations needed to
accurately evaluate the modulator response. This framework is demonstrated on a device inspired
by the literature.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Short range, high-speed communications probably are the most critical issue for the formulation
of the forthcoming ICT strategies. Indeed, the present zettabyte age has been possible thanks
to the centralized computation paradigm based on data centers, which has been enabled by
high-speed, low-power optical interconnects [1]. This is why short-range communications are
becoming as important as their consolidated long-haul counterparts, still necessary to deliver
services at the end users [2]. Silicon photonics (SiPh) is one of the most viable platforms towards
the hypothetically-coming yottabyte age, with its promise of the synergistical, low-cost and
CMOS-compatible integration of electrical and optical systems [3].
Remarkable examples of SiPh-compatible devices are plasmonic-organic hybrid (POH)

electro/optic (E/O) devices such as Mach-Zehnder [4] or ring [5] modulators for 1.3 µm and
1.55 µm communications, or disk resonators [6] for optical neural networks for deep learning.
Focusing on Mach-Zehnder modulators (MZMs), the non-diffraction limited characteristics of
the plasmonic waveguide enable nanoscale cross-sections and microscale total lengths, allowing
chip-scale integration [7,8]. Such small cross-sections lead to very large radiofrequency (RF)
electric fields with reduced driving voltages, enhancing the E/O effect and allowing for sub-
THz bandwidths. These exceptional features are paid with the very strong propagation losses
characterizing plasmonic modes, which are about 1 dB/µm. Nevertheless, the extremely compact
achievable footprints enable an energy consumption of the order of fJ/bit, making these devices
attractive for low-power communication systems [9–11].

In POH modulators, the E/O material is based on chromophore molecules dispersed in a host
polymer medium, that are previously oriented by a static poling electric field [12–14]. Modulation
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of the material refractive index is enabled by applying a RF electric field to the poled material.
This material fills the phase shifters slots, which are designed to support plasmonic modes [15].

It is therefore clear how a comprehensive model should predict the electro-optic modulation
from RF electrical simulations, whose results are used to obtain a complex, position-dependent
refractive index profile as the input of the optical model. A simplified model based on this
principle could exploit 2D modal simulations to obtain the modulator static/dynamic response
[16], 1D [17] or 2D [18] modal simulations. Yet, such an approach cannot account some effects,
such as slot coupling and power losses related to surface plasmons pertinent to the top/bottom
waveguide walls. Describing these details would require a 3D full-wave model of the entire
geometry, which is very challenging because of the extremely severe memory and computational
requirements.

The aim of this work is to present a critical appraisal of the available simulation approaches for
POH MZ modulators. In Section 2 a reference device inspired to the literature is described (with
the geometry details reported in Appendix A) and waveguide-only simulations are presented
for both the cold regime (no applied RF input voltage) and electro/optic operation, opening
a discussion of advantages and shortcomings of semi-analytic approaches compared to more
sophisticated mode simulations, and emphasizing the importance of a multiphysics simulation
framework. The only way to overcome the limitations of waveguide-based models is to move
towards 3D full-wave modeling, leading however to huge computational costs and times. To
mitigate the issue of CPU intensity, Section 3 presents an efficient multiphysics 3D approach
based on a mixed modal-FDTD (MFDTD) simulation strategy, yielding accurate simulations
with a drastic reduction of the computational burden, also made possible by the mode-matching
technique formulated in Appendix B. Section 4 draws some final remarks on this work.

2. Multiphysics waveguide simulations

The device under analysis, sketched in Fig. 1, is a POH E/O MZM similar to the one presented
in [19]. The structure is fabricated on a SiO2 layer 3 µm thick, grown on a Si substrate (not
shown in the figure but included in the electrical simulations). The two arms of the MZM are the
slot waveguides embedded between the central gold island and the two lateral gold rails. The
optical input signal is assumed to be the fundamental mode of the input (left) Si waveguide.
This mode reaches a splitter, consisting of a couple of facing tapers (left in Si, right in Au),
which convert the dielectric waveguide mode into the plasmonic modes supported by the slots.
The device is symmetrical with respect to the central z section (the center of the gold island),
so that, after propagating in the slots, the plasmonic modes are recombined and couple to the
output Si waveguide. The device is immersed in the DLD-164 non-linear optic (NLO) material,
with thickness hNLO. Modulation is achieved through the electro/optic effect induced by the
RF voltage, which is applied to the central island contact. The RF field changes the effective
refractive index of the plasmonic modes in the phase shifters, leading to a voltage-dependent
interference at the output combiner, which ranges from constructive (ON state) to destructive
(OFF state).

Table 1. Geometrical parameters of the cross-section shown in
Fig. 1 (right).

Quantity wslot,1 wslot,2 hslot hNLO wisland wrail

Value, unit 90 nm 100 nm 220 nm 300 nm 400 nm 520 nm

The phase modulators are driven in push-pull operation by a single signal, using the coplanar
ground-signal-ground transmission line sketched in Fig. 1 (right) [8,20–22]. This is obtained by
aligning the poling field for the E/O polymer to the modulation RF field, the latter having opposite
polarity in each modulator arm. By inspecting the geometrical details reported in Table 1, one
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Fig. 1. Left: 3D representation of the device under test, including all the relevant geometrical
and material details, whose values can be found in Tables 1–2. Right: sketch of the (x, y)
cross-section of the device under test, including the RF voltage circuit.

Table 2. Parameters of the geometry shown in Fig. 1 (left) not reported in
Table 1.

Quantity Lmod Lrail Lt,Au dt Lt,Si LWG hWG wWG

Value, unit 6µm 12µm 1µm 500 nm 1µm 4µm 200 nm 440 nm

can notice that the two slot widths are different. This comes from a precise choice, as it allows to
tune the MZM to operate around the quadrature point (where linearity is maximum) at zero bias
voltage [19].

2.1. Cold (zero voltage) device simulations

A preliminary investigation of these aspects can be performed on the basis of Fig. 2 (top),
which shows the effective index of a slot waveguide, at zero applied voltage, as a function of
the slot width. Here, the results of two models are presented at λ = 1.55 µm. The blue curve
has been obtained by simulating the 2D cross-section of an isolated slot (i.e., simulating the
(x, y) cross-section shown in Fig. 1 (right), just for x ≥ 0). The simulation of plasmonic slot
waveguides has been widely addressed in the literature, with a broad spectrum of techniques
including the effective index method [23], circuit approaches [24,25], finite difference schemes
either in time [26] or in frequency [27] domains, finite elements [28], Fourier modal methods [29],
and integral-equation schemes [30]. In this work, waveguide simulations have been performed
with an in-house electromagnetic mode solver based on the finite element method (FEM) [17].
On the other hand, the red curve has been obtained with a much simpler and widely-available
model, based on approximating the slot geometry as a metal-insulator-metal waveguide (therefore,
y-invariant) and using semi-analytical expressions from [18, Ch. 10]. From the top panel one
could deduce that the simpler model, even though capturing the general trend vs. the slot width, is
inadequate for design purposes. This is partially contradicted by the analysis in the bottom panel.
Here, recalling that the phase shift of a single MZM arm at 0V applied voltage is Φ = k0neffLmod,
we plot the phase difference between the two arms (where one of the arms is 100 nm wide), as a
function of the width of the other arm:

∆Φ(wslot) = k0Lmod |neff(wslot) − neff(100 nm)| , (1)

where k0 = 2π/λ, and the phase modulator lengths are assumed to be Lmod = 6 µm. Obviously,
∆Φ = 0◦ at wslot = 100 nm, which corresponds to the symmetric MZM case. While the
semi-analytic model fails to predict ∆Φ for wider slots, it is pretty accurate for narrower cases.
Targeting at ∆Φ = 90◦, i.e., setting the half-power point at VRF = 0V, both models predict
wslot ' 85 nm (indicated with the blue and red open bullets), with a deviation smaller than 1 nm.
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Intuitively, this partial success of the semi-analytic approach could be ascribed to the slot aspect
ratio (hslot = 220 nm). Being the slots narrow, they are quite similar to metal-insulator-metal
(MIM) waveguides, justifying the partial validity of the simplification that results useful to
perform preliminary optical characterizations of passive plasmonic slots before their electro-optic
implementation in a POH MZM [31].

Fig. 2. Top: effective index of an isolated slot waveguide versus slot width performed with
no E/O effect (VRF = 0V). Bottom: 0V phase shift of a MZM with Lmod = 6 µm with one
slot width fixed to 100 nm and varying the other. The simulations have been performed
at λ = 1.55 µm. The blue curve has been simulated with an electromagnetic mode solver
based on FEM [17], including all the geometrical details presented in Fig. 1 (right) for x ≥ 0.
The red curve has been obtained approximating the geometry as a metal-insulator-metal
waveguide and using semi-analytical expressions from [18, Ch. 10].

2.2. Multiphysics-augmented waveguide simulations

The results discussed in the previous subsection pertain cold device operation; because of the
absence of the modulating radiofrequency field, optical-only simulations are sufficient in this
case. Modulation is enabled by imposing an RF electric field, which causes the optical dielectric
permittivity of the E/O material to change according to

εNLO(x, y, z) = (nNLO + ∆nmat(x, y, z))2 =

' (nNLO + ∆nmat(x, y))2,
(2)

where εNLO is the element of the permittivity matrix relating the optical electric field along
the poling direction with the displacement field along the same direction. To achieve Eq. (2),
we neglected the z-dependence of the electro-optic coefficient. This is acceptable in the
splitter/recombiner, where the electric field profile is much weaker than in the slots. It is to
be remarked that, even if the device under study is simplified (vertical slot walls, isotropic
permittivity), in the transverse (x, y) plane this model can describe complex geometries, e.g.,
including slanted walls such as in [32, Fig. 10(c)], and sophisticated electromagnetic properties,
e.g., position-dependent anisotropic permittivity. On the other hand, Eq. (2) ignores a possible
z-dependence of the poling field, which could arise for example from fluctuations of the slot
width/height. The experimental characterizations (see the SEM image from [32, Fig. 10(b)])
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suggest that it is reasonable to simulate an average slot width. With this hypothesis, the device
geometry can be designed on the basis of parametric simulation campaigns, and only the final
design verification could be performed by a full 3D electro-opto simulation, limiting the overall
computational cost. Because the modulator length is much shorter than the RF wavelength, its
frequency response can be reasonably approximated with that of a RC circuit, R being the device
and driver total equivalent resistance and C its static capacitance. This allows to reduce the
electrical analysis to a quasi-static problem in the 2D cross-section, as shown in Fig. 1 (right),
and to introduce this z-independent E/O effect only in the phase modulators. Here, ∆nmat can be
evaluated as [33]:

∆nmat =
1
2
r33n3NLO sign (x)

√��Ex,RF
��2 + ��Ey,RF

��2, (3)

where r33 is the component of the E/O tensor (in contracted index notation) that affects nmat
due to an RF electric field applied along the poling direction (consider that in a quasi-TEM
approximation the RF and DC field patterns coincide), and sign (x) takes into account that it has
opposite signs in the two slots (refer to the RF circuit sketched in Fig. 1 (right)). It is understood
how Eq. (3) leads to a multiphysics treatment, since the position-dependent Ex,RF, Ey,RF field
components should be assessed through electrical simulations. Then, they should be interpolated
on the optical problem mesh to evaluate ∆nmat in its cross-section (the one simulated to produce
Fig. 2), thus requiring a coupled, multiphysics approach.
To avoid this sort of complications, recalling that in MIM waveguides plasmonic modes are

TM, with a dominant transverse component of the optical field, and that the RF field in the slots
is mainly orthogonal to the slot walls, i.e., only the perpendicular (x) component survives, the
following approximation is sometimes adopted (see, e.g., [31]):

∆nmat '
1
2
r33n3NLO sign (x)

��Ex,RF
��2

'
1
2
r33n3NLO sign (x)

VRF
wslot

,
(4)

yielding a constant, non-zero ∆nmat only in the slot.
Figure 3 shows the effective refractive index versus the RF voltage VRF. There are three

groups of curves, obtained with different degrees of approximations. The green dashed curves
are obtained simulating the two slot waveguides separately, treating them as isolated just like in
Fig. 2, and the approximated E/O refractive index variation model in Eq. (4) has been adopted.
These curves clearly are straight lines, intersecting at VRF ' 4V, which corresponds to the MZM
ON state (i.e., the two slot line optical fields are in phase, having the same optical path length).

Still within the approximation Eq. (4), the dash-dotted red curves have been obtained simulating
a cross-section including both slots. Rather than being straight lines, these curves exhibit an
almost-parabolic behavior in the proximity of the ON state, and become linear far from it, with
almost the same slope of the dashed green lines. Because the two neff curves are not intersecting,
the corresponding phase shift is not zero, suggesting that operation at VRF ' 4V should be
a quasi-ON state, characterized by an excess loss; this point is further discussed in Section
3.3. Finally, the solid blue curves have been obtained including mode coupling and the full
description of the E/O effect from Eq. (3). Here, the RF fields have been simulated with our
in-house quasi-static (QS) FEM electric solver [34]. Compared to the dash-dotted red curve, the
multiphysics simulation result exhibits a higher slope, which makes the ON voltage to be shifted
at about 3.5V. In this view, it is clear that Eq. (4) underestimates the E/O effect.

The parabolic behaviour of the red and blue curves is caused by coupling effects between the
two slot modes. Despite in the device under study the slots are quite far away, separated by the
gold island, mode coupling is fostered by the surface plasmons of its top/bottom walls. Such
behaviour, commonly referred to as anticrossing, is indicative of coupling between two modes
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Fig. 3. Effective refractive index versus RF voltage VRF. The green dashed curves are
obtained simulating two isolated slots (just like in Fig. 2) and the red dash-dotted curves
considering in the cross section both the slots; both these simulations have been performed
under the approximation Eq. (4). The solid blue curves have been performed including mode
coupling effects and the multiphysics description Eq. (3) of the E/O effect.

[35]. This occurs in several EM structures, such as dielectric and photonic crystal waveguides
[36,37] and high-contrast gratings [38–40], but also in semiconductor crystals where coupling
between waveparticle modes is present [41].

The strong losses of the top surface plasmonic mode make the anticrossing strongly dependent
on the slot separation wisland. This is investigated in Fig. 4. In particular, the left panel shows the
neff(VRF) characteristics curves for three different island widths. Here, the blue curve corresponds
to the reference (wisland = 400 nm) case reported with the same color in Fig. 3. Instead, the
red curve (wisland = 200 nm) exhibits a much broader neff splitting, ∆neff (definition in the
figure), as a consequence of the increased mode coupling. On the other hand, the orange curves
(wisland = 600 nm) are almost intersecting, therefore tending to the isolated slot case of Fig. 3.
A more quantitative information is provided by the right panel, showing ∆neff as a function of
wisland.

Waveguide simulations can be tentatively used to perform preliminary estimates of the MZM
performance. To this aim, in Fig. 5, the electro/opto simulation results from Fig. 3 have been
used to obtain a first estimate of the modulator Vπ . To this aim, the top panel shows the phase
shift ∆Φ(VRF) between the two MZM modes at the recombiner section computed as

∆Φ(VRF) = k0Lmod
��neff,1(VRF) − neff,2(VRF)

�� , (5)

where neff,1, neff,2 come from the effective index curves reported in Fig. 3. The Vπ has been
approximated as the difference between the OFF voltage, at which ∆Φ(VOFF) = 180◦, and the
ON voltage, at which ∆Φ(VON) is minimum (zero, in the isolated slots case). Remarkably, the
estimate obtained with the multiphysics-augmented simulation (blue curve) are very close to the
experimental findings discussed in [19,31].
To further clarify the importance of a multiphysics treatment, the bottom panel of Fig. 5

shows Vπ as a function of the modulator length Lmod, evaluated as in the top panel. From these
results it is not possible to appreciate significant differences between the isolated (green dashed)
and coupled (red dash-dotted) slot cases. Instead, it appears that the multiphysics simulation
might lead to relevant variations of Vπ , which can reach almost 4V for short modulators. These



Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29259

Fig. 4. Left: neff(VRF) curves for the device under analysis, for different central island
widths; the red, blue and orange curves are obtained for wisland = 200 nm, 400 nm (nominal
device) and 600 nm, respectively. The plot shows the definition of ∆neff , i.e., the difference
of the effective indexes at the ON voltage VON. Right: ∆neff as a function of wisland. These
simulations have been performed with the multiphysics model.

Fig. 5. Top: ∆Φ(VRF) characteristics evaluated with Eq. (5) using the waveguide simulations
shown in Fig. 3, assuming Lmod = 6 µm. The green dashed, red dash-dotted and blue
solid curves are obtained considering the slots isolated, coupled, and coupled including
multiphysics effects, respectively. The horizontal arrows indicate the Vπ definitions for the
three simulations. Bottom: the curves show the behaviour of Vπ versus Lmod using the
definition indicated in the top panel.
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differences can be understood by analyzing the results reported in Fig. 6 (left), showing the
magnitude of the electric field simulated the the QS solver.

Fig. 6. Left: RF electric field map simulated with the QS solver. The black lines are
used to indicate the device geometry, to assist the direct comparison with Fig. 1 (right).
The three dashed horizontal lines intersect the slot center (blue, y = 110 nm), the slot top
(red, y = 220 nm), the end of the NLO material (orange, y = 300 nm). Right: cuts of the
maps on the left (the small oscillations result from the interpolation of the different meshes,
necessary to perform the multiphysics coupling, see Eq. (3)). The three cuts correspond
to the horizontal lines intersecting the slot center (blue, y = 110 nm), the slot top (red,
y = 220 nm), the end of the NLO material (orange, y = 300 nm).

The slots can be identified as the regions where the electric field is stronger (tending to red).
Moreover, it could be noticed that the field level is slightly higher in the left slot (i.e., the narrower
one). The electric field is non-vanishing also out of the slots, which cannot be taken into account
by Eq. (4). This can be better appreciated in Fig. 6 (right), which shows field cuts performed
in the slot center (blue, y = 110 nm), at the slot top (red, y = 220 nm), and the end of the NLO
material (orange, y = 300 nm). From the blue curves it can be seen that the estimate of Eq. (4) is
very accurate inside the slot (considering VRF = 1V, the left slot field is 11.1V/cm, the right
one is 10V/cm). Looking at the red curve, one could notice that the optical field diverges at the
slot corners [42,43]. However, the most relevant effect in this context is the non-vanishing field
corresponding to the island, which is related to a residual y field component associated to the
island surface plasmons. This is even more evident at the end of the NLO material.

3. Efficient comprehensive 3D simulation

In the previous section, theVπ voltage has been estimated only on the basis of the effective refractive
indexes obtained from waveguide simulations, emphasizing how a multiphysics-augmented
framework is instrumental to reproduce the experimental findings. Simple system-level models
for the slot optical fields interference at the output combiners, also accounting for the plasmonic
loss in each slot (see, e.g., [16, Sect. 6.4]), are customarily exploited to provide an estimate
of other important device figures of merit, as the modulator insertion loss (IL) and extinction
ratio (ER). However, such simple models neglect a number of effects related to both slot mode
coupling and the detailed description of the splitter and recombiner sections, which feed the
plasmonic phase modulators and extract the signal from it.
From this viewpoint, the maximum realism is provided by 3D full-wave simulations of the

entire device, which in principle can be carried out by commercially-available electromagnetic
simulators implementing the finite-difference time-domain method (FDTD), such as RSoft
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FullWave [44] and Lumerical FDTD Solutions [45] (all the 3D-FDTD simulations used in this
work have been performed with the latter). Lumerical, starting from a defined input field source
(in this case the Si waveguide mode in the input splitter), returns the position-resolved 3D profile
of the vector electromagnetic field on the entire device. The MZM response can be defined
by post-processing this information. Because the modulator is embedded within a complex
optical system featuring grating couplers and other components which can filter out spurious
contributions, it is reasonable to base this definition on the fundamental mode of the output
waveguide. By projecting the total (3D) field on it, a mode transmission coefficient S21 can be
defined, whose absolute value squared can be interpreted as a Pout/Pin.

3.1. Introducing mixed modal-FDTD simulation and cold splitter characterization

Even though the compact footprint of POH MZMs makes such an all-in-one approach not
impossible, it is rather prohibitive, considering that each RF voltage level requires a different
3D-FDTD simulation. By inspecting the top view of the device in Fig. 7, one can imagine an
intermediate strategy between all-in-one 3D-FDTD and waveguide-only simulations: instead of
modeling numerically the entire device, it is possible to focus the 3D-FDTD simulations only on
the splitter/recombiner (which are actually equal, just mirrored), and the central part by means
of waveguide simulations and transmission line theory. Since the phase modulators consist of
two waveguides, this device resembles a bimodal Fabry-Pérot interferometer (BFPI) [46], whose
concept is sketched in the bottom part of Fig. 7. Here, the cavity transmission lines describe
the plasmonic modes supported by the MZM, whose voltage-dependent dispersion properties
have been presented in Section 2 and now are be re-used to avoid to simulate by 3D-FDTD the
phase modulators, minimizing the simulation number and cost, and are coupled mutually and
to the outer ports (fundamental Si waveguide modes) by the scattering matrices describing the
splitter/recombiner. Then, the device response can be computed as the cascade of the splitter,
cavity and recombiner transmission matrices.
The first step of this mixed modal-FDTD (MFDTD) strategy requires simulating, with the

3D-FDTD, only the section sketched in Fig. 7 (right), at VRF = 0V. This starts from the input
waveguide, and is terminated after a length Lport from the splitter end, as indicated by the dashed
vertical line; this transmission line segment is introduced just to avoid problems that originate
from terminating the device too close to metal corners. This simulation provides by itself
interesting data, such as an estimate of the coupling losses due to photonic-plasmonic interference
(PPI) (see [31, Fig. 11]). In the following sections it will be discussed how, combining this
simulation to the waveguide-only analysis presented in Section 2, it is possible to perform a
full-device simulation, similar to that presented in [31, Fig. 8(b)], but including also 3D effects
such as mode coupling through the surface plasmons of the top island walls.
Considering only 2 internal modes to describe the modulator response, Lumerical allows

to compute, through the S-parameter sweep functionality, a 3 × 3 matrix where, e.g., port 1
indicates the fundamental mode of the Si waveguide, and ports 2 and 3 the two plasmonic modes
considered for the slot waveguides. This matrix can be re-arranged as

SL
=


SL

oo SL
oi

SL
io SL

ii

 =

S11 S12 S13

S12 S22 S23

S13 S23 S33


. (6)

Coherently with Fig. 7 (left), the subscripts “o” and “i” are used to indicate the ports located
outside and inside the modulator cavity, respectively. In Eq. (6), the superscripts “L” are used to
remark that the scattering matrix blocks include the transmission line segment long Lport indicated
in Fig. 7 (right). In order to obtain the final 0 volt splitter matrix S0

, one should de-embed such
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Fig. 7. Top-left: (z, x) view of the device under study, where the splitter and the
modulator+recombiner blocks have been emphasized with red and blue dashed boxes.
Bottom-left: schematic representation of a bimodal Fabry-Pérot interferometer, indicating
the correspondence with the blocks of the MZM on top. Right: top view of the 3D model of
the splitter to be simulated for the MFDTD strategy, where colors are equal to Fig. 1, and the
orange walls indicate the end of the simulation domain; below it, the S′ splitter scattering
matrix is sketched (both figures present a dashed red line, indicating the splitter end; at its
right a transmission line section with length Lport is included to enhance the simulation
stability, to be de-embedded with Eq. (7).

Fig. 8. Cuts of the real part of Ex in the slot center (y = 110 nm) reported for the two modes.
The top and bottom panels show mode 1 (antibonding-like) and mode 2 (bonding-like),
respectively, for three VRF values: 0V (green dash-dotted curves: cold regime), VON = 3.5V
(blue dashed curves), and 8V (red solid curves).
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transmission lines, requires defining (at VRF = 0V) the phase shift matrix Eport as:

Eport = diag
i=1,2

{
exp

(
−jk0(neff,i − jκi)Lport

)}
,

where neff,i, κi can be obtained from (possibly multiphysics) waveguide simulations analogous to
those shown in Fig. 3. Finally, de-embedding is performed by applying:

S0oo = SL
oo

S0
io = E−1port SL

io

S0
oi = SL

oi E−1port

S0
ii = E−1port SL

ii E−1port.

(7)

3.2. Voltage-dependent mode coupling effects

The superscript “0” in Eq. (7) indicates that the matrices Eq. (7) are computed and valid only for
VRF = 0V. Even under the hypothesis (stated at the beginning of Section 2) of introducing the
E/O effect in the phase modulators only, the splitter/recombiner scattering matrix depends on
voltage, since the ports and transmission line parameters are defined starting from modal basis of
the phase modulators, whose elements are voltage-dependent.
This is shown in Fig. 8, which reports the cuts of the real part of Ex in the slot center

(y = 110 nm) for the two modes. Invoking the molecular orbital taxonomy, the coupled slots
supermodes 1 and 2 are antibonding- and bonding-like, respectively. Three VRF values are
considered: 0V (green dash-dotted curves: cold regime), VON = 3.5V (blue dashed curves),
and 8V (red solid curves). The mode topographies are clearly voltage-dependent. In fact, at
VRF = 0V modes are mostly localized in the left and right slots, respectively. At VRF = 8V,
modes are still localized, but with switched order. Instead, at VON modes tend to assume odd
and even parities. This is a signature of mode coupling, just like the parabolic-like behaviour
of neff(VRF) in Fig. 3: coupling is strongest at VON and decreases at smaller or lower applied
voltages. For this reason, the matrix S0

from Eq. (7) differs from the S′ii indicated in Fig. 7, as it
does not take into account such mode coupling. Therefore, obtaining the voltage-dependent S′

from S0
still requires a change of basis matrix W(VRF) from the modes computed for the cold

device to those with a non-zero E/O effect:

S′oo(VRF) = S0
oo

S′io(VRF) =WH(VRF)S
0
io

S′oi(VRF) = S0
oi W(VRF)

S′ii(VRF) =WH(VRF)S
0
ii W(VRF),

(8)

Computing the 2 × 2 change of basis matrix W(VRF) in principle requires a mode-matching
technique, where the field continuity at the interface between cold and biased waveguide sections
should be performed including the complete mode spectrum. This is the case occurring, e.g., in
high-contrast gratings: even if their operation can be described just by 3 × 3 scattering matrices,
computing their entries requires a mode-matching with a large number of modes to expand/project
the fields at the bar-air discontinuities [47]. In the case of dielectric waveguides this is even
more troublesome, since the electromagnetic problem is theoretically unbounded, and one should
include also the continuum part of the mode spectrum. A possibility is mimicking free-space by
closing the problem within a very large computational box, whose modal expansion is known
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analytically [48]. A handier, still very general approach is through 3D-FDTD simulations of
a discontinuity between a plasmonic slot without/with E/O effect. In practice, this could be
achieved by simulating two short transmission line segments, and then de-embedding the lines in
a similar fashion to Eq. (7).
As it could be appreciated in the cuts reported in Fig. 8, the mode topographies are very

localized, which is a signature of their plasmonic character. Moreover, voltage introduces just a
mild dielectric discontinuity within the slots, without introducing any other significant change in
the geometry. This explains why the mode topographies without/with voltage are so similar. In
this view, in these devices, one can approximate the mode basis at a given voltage as a linear
combination of the elements of the basis at a different voltage. This consideration allows the
matrix W(VRF) to be derived from the coefficients of this linear combination, which can be
obtained solving a least-squares problem, whose formulation is reported in Appendix B. It
has been verified that the change-of-basis matrices obtained with the two methods agree well,
enabling to use both approaches with similar results.
The effect of the voltage-dependent mode coupling on the plasmonic modulator feed can be

appreciated in Fig. 9. Here, the dashed curves are obtained plotting S′oi(VRF), which corresponds
to the case of a very long modulator (Lmod ≥ 40 µm). The solid curves are obtained plotting
(I − S′iiS

′′

ii )
−1S′io for Lmod = 6 µm, i.e., including cavity effects (which are instead negligible

in long interferometers due to the high plasmonic losses). In both cases, the curves can be
interpreted as the excitation coefficients of the modes (being, more specifically, the magnitudes
of the progressive waves) at the onset of the modulator section, with/without cavity effects. It
should be noticed how two groups of curves exhibit similar trends for every VRF, and are almost
equal in the VON region. This suggests that in opposite to VOFF, which is strongly affected by
the modulator length, the VON and the corresponding mode excitation coefficients are quite
independent on it.

Fig. 9. Excitation coefficients at the onset of the modulator section (end of the splitter)
versus voltage; the solid and dashed curves are obtained for Lmod = 6 µm and for a very long
modulator (Lmod>40 µm).
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3.3. Evaluating the modulator response

Once S′ is determined, it can be used to find the matrix S′′ as:

S′′oo(VRF,Lmod) = S′oo(VRF)

S′′io(VRF,Lmod) = Emod S′io(VRF)

S′′oi(VRF,Lmod) = S′oi Emod(VRF)

S′′ii (VRF,Lmod) = Emod S′ii(VRF)Emod,

(9)

where Emod depends both on VRF and on the modulator length Lmod:

Emod = diag
i=1,2

{
exp

(
−jk0(neff,i(VRF) − jκi(VRF))Lmod

)}
.

Finally, the modulator reflection (S11) and transmission (S21) coefficients can be obtained by
cascading the two matrices from Eqs. (8) and (9):

S11 = S′oo + S′oiS
′′

ii (I − S′iiS
′′

ii )
−1S′io

S21 = S′′oi(I − S′iiS
′′

ii )
−1S′io.

(10)

The validation of the MFDTD is performed versus the all-in-one 3D-FDTD results, as shown
in Fig. 10. Each of the all-in-one simulations (one different 3D-FDTD simulation for each RF
voltage) consist of 144 millions Yee nodes, requiring about 7 hours on a HP ProLiant DL560
Gen9 computer (featuring 512 GB RAM), parallelizing on all the Intel Xeon E5-4627 v3 (10-core)
four CPUs. On the other hand, MFDTD requires a single 3D-FDTD simulation performed at
VRF = 0V, involving just the splitter section (48 millions Yee nodes), which are combined to the
multiphysics-augmented waveguide simulations to trace the full (voltage-dependent) modulator
response.
The responses simulated with the two methods are reported with solid red and dashed black

curves. The 3D-FDTD simulations (both all-in-one and splitter-only) have been performed using
a uniform mesh (5 nm step in all directions) within the modulator section (central island, slots,
part of the rails and gold tapers), and with the Lumerical auto non-uniform setting, with mesh
accuracy parameter set to 5 (high accuracy). In the phase modulators, the E/O effect is evaluated
from 2D quasi-static analyses (multiphysics approach) just like in Fig. 3, blue curve. The figure
shows also the definitions of extinction ratio (ER) and insertion loss (IL), which are about 14.5 dB
and 4.7 dB, agreeing qualitatively with the experimental findings from [19,31] (measured ER is
20 dB, measured IL is 5 dB).

The remarkable agreement between the two curves, even at −18 dB levels is validating not just
the MFDTD algorithm, but demonstrates also the bimodal character of the MZM under study. It
is to be remarked that the MFDTD algorithm could be extended, in a straightforward fashion, to
devices whose operation involves a higher number of modes. In such cases, the rightmost matrix
in Eq. (6) would be larger than 3 × 3, but it could be still possible grouping the parameters as SL

oo,
SL

oi, SL
io, and SL

ii . Even though these blocks would have different dimensions, Eqs. (7)–(10) could
be still applicable.
This method allows parametric investigations versus the modulator length at no additional

computational cost. As an example, Fig. 11 (left) shows the modulator responses obtained for
Lmod = 3 µm, 5 µm, and 7 µm (blue, red, and orange curves, respectively). Considering the
longer modulators (smaller Vπ), it appears that the curves are almost periodic. It is to be remarked
that neither the orange nor the purple curves exhibit appreciable differences between the ILs
evaluated at the two ON states, which instead could be expected from the waveguide simulations
reported in Fig. 3. This could be understood from the analysis of Fig. 9: at the first ON voltage
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Fig. 10. Modulator response simulated with the all-in-one 3D-FDTD model (solid red
curve), and with the MFDTD approach (dashed black curve). The 3D-FDTD and MFDTD
curves have been evaluating |S21 |2 from Eq. (10). The figure reports also the definitions of
extinction ratio (ER) and insertion loss (IL).

(about 3.5V) the first, antibonding-like supermode, which in this case is quasi-odd (see Fig. 8,
top), is weakly excited. On the other hand, the bonding-like supermode is strongly excited. Being
one supermode almost suppressed, no interference between the supermodes takes place at the
recombiner, and the field propagates in both slots only according to the lower neff from Fig. 3.
This is why no excess loss can be observed. At the higher VON, the modes are strongly decoupled,
i.e., localized in the single slots (as one can infer from Fig. 8), and the output power results from
their constructive interference at the recombiner, which in this situation can be estimated with
Eq. (5).
A synthetic representation of the relation between the three fundamental figures of merit is

reported in Fig. 11 (right): Vπ , ER, IL. Focusing on the abscissas, Fig. 5 (bottom) suggests that it
can be, in first approximation, interpreted as 1/Lmod, as reported on the upper horizontal axis.
(Indeed, according to a simplified modulator model, the product VπLmod is constant). The thinner
curves exhibit an oscillatory behaviour, which is particularly evident in the ER curve, whose
calculation involves the logarithm (dB) of small quantities. These oscillations can be ascribed to
cavity effects (also visible in the results of Fig. 9); as a matter of fact, their amplitude decreases
at increasing Lmod (and therefore at increasing losses in the phase modulators). Focusing on
the average trends (thicker curves), the lower plasmonic losses in shorter modulators lead to
reduced insertion loss. The interpretation of the trend of the ER (generally decreasing with Vπ
and correspondingly increasing with Lmod) is less obvious. Longer modulators are characterized
by lower Vπ , therefore closer to VON, which is independent of Lmod. In this case, the excitation of
the even mode at Vπ increases (approaching the mode 2 peak at 3.5V in Fig. 9), thus deteriorating
field extinction.

This analysis provides some guidelines towards the design of these devices. In MZMs, mode
coupling is a detrimental effect, impacting in particular on the ER. As suggested by Fig. 4,
which characterizes mode coupling on the basis of ∆neff at VON, better performance could be
achieved for large wisland. As an example, the device presented in [49], exhibiting ERs greater
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Fig. 11. Left: plot of the MZM response for different modulator lengths: the blue, red,
and orange curves refer to Lmod = 3 µm, 5 µm, and 7 µm, respectively. Right: plot of the
extinction ratio (ER, thinner blue curve, referred to the left axis) and insertion loss (IL,
thinner red curve, referred to the right axis) as a function of Lmod, obtained from S21 from
the simulated modulator response Eq. (10). The thicker curves are used to emphasize the
average trends. The top abscissas axis shows the corresponding Vπ .

than 20 dB, falls in this situation (slot separation of about 100 µm). In order to achieve good
ERs without increasing the transverse footprint, Fig. 11 suggests to sacrifice Vπ and design short
interferometers. In this way the resulting modulator will have good IL, due to the moderate
plasmonic losses, and reduced mode coupling at Vπ . As a different route, one could investigate
coupler modulators where, as opposite to MZMs, mode coupling is the enabling physical
mechanism [50]. Future works will deal with a comparison of the performance achievable by
optimum MZM and coupler modulator designs.

4. Conclusions

The aim of the paper is to present a hierarchy of models for plasmonic-organic-hybrid electro/optic
Mach-Zehnder modulators, applied to the simulation of a device inspired by the literature. The
importance of a multiphysics approach has been investigated post-processing the results of
waveguide mode simulations. Augmenting these models with electrical simulations of the RF
field enables accurate predictions of Vπ , which are sufficient to characterize the E/O performance
of the modulator.
Estimating the insertion loss and extinction ratio requires moving towards computationally-

intensive full-wave simulations of the entire device. The all-in-one simulations produce results
compatible with the experimental findings. Further refinements of the model would require
detailed and accurate descriptions of the device, as well as of the material parameters (in particular,
metal), which are not available at present and out of the scope of this work.

Aiming to reduce the number of 3D-FDTD simulations and their cost, a mixed modal-FDTD
strategy has been formulated, invoking the analogy of the POHMZMwith a bimodal Fabry-Pérot
interferometer. The remarkable agreement between 3D-FDTD and MFDTD results demonstrates
the bimodal character of the investigated device. In this work, the MFDTD has been applied to a
specific device, but it could describe any Mach-Zehnder modulator. More in general, the method
can in principle be extended to simulate modulators based on plasmonic rings. In fact, ring
modulators can be divided into blocks (directional couplers and a ring phase shifter consisting
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in a single plasmonic slot), to be characterized either by a scattering matrix (the couplers) or
through “azimuthal” (rather than standard) transmission line theory.

Appendix A. Geometry and material parameters

This appendix provides details about the geometry and material parameter used in this work.
More specifically, Tables 1–2 contain the parameters of the geometry sketched in Fig. 1.

The refractive indexes adopted in the simulations, mostly coming from typical literature values,
are listed in Table 3. In particular, Au in the electrical simulation is treated as an impedance
boundary condition, with conductivity σ = 4.1 × 107 S/m. Even though not visible in Fig. 1
(right), the Si substrate has been included in the electrical simulations. The complex dielectric
constant used for Au has been taken from [19], valid at λ = 1.55 µ. Also the DLD-164 polymer
optical refractive index has been taken from the same reference. However, to the best of our
knowledge no information is provided about its radiofrequency response (all the details we have
found come from [32, Fig. 4]), so we assumed nNLO = 1.83, with no dielectric losses, also in the
quasi-static RF problem.

Table 3. Refractive indexes used in the
simulations.

Material nelectrical noptical

Au – 0.2524 − j10.4386

Si 3.42 3.5

SiO2 1.97 1.44

DLD-164 1.83 1.83

Appendix B. Voltage-dependent change of basis: least-squares formulation

The approach described in this appendix could be seen as a mode-matching technique, where
only two modes are used to represent the transverse field at the discontinuity. In other words, the
modes of a waveguide subjected to E/O effect, |V1〉, |V2〉, are expressed as a linear combination
of the zero-voltage modes |Z1〉, |Z2〉 (the situation at which the splitter 3D-FDTD is simulated):

|V1〉 = W11 |Z1〉 +W12 |Z2〉
|V2〉 = W21 |Z1〉 +W22 |Z2〉.

(11)

Because this equation involves four coefficients Wij, their determination requires formulating
a 4 × 4 linear system, which is obtained projecting these two equations on two functions. In
standard mode-matching techniques great attention is put on the projectors’ definitions. In this
case, being the system quite small, it is sufficient that the projecting modes are independent. For
this reason, we choose to project the equations on 〈Z1 | and 〈Z2 |, leading to

〈Z1 |V1〉 = W11〈Z1 |Z1〉 +W12〈Z1 |Z2〉
〈Z2 |V1〉 = W11〈Z2 |Z1〉 +W12〈Z2 |Z2〉
〈Z1 |V2〉 = W21〈Z1 |Z1〉 +W22〈Z1 |Z2〉
〈Z2 |V2〉 = W21〈Z2 |Z1〉 +W22〈Z2 |Z2〉

, (12)

where the bra-ket notation indicates the dot product

〈A|B〉 =
∫
S

At · B∗t dσ,
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where, as in the standard mode-matching, S is the (x, y) cross-section of the waveguide discon-
tinuity, the star superscript indicates complex conjugation, and At, Bt are the transverse fields,
which must be continuous to satisfy the boundary conditions of Maxwell’s equations.

It can be noticed that the first and last groups of two equations are independent, leading to two
uncoupled linear systems: 

〈Z1 |Z1〉 〈Z1 |Z2〉

〈Z2 |Z1〉 〈Z2 |Z2〉



W11

W12

 =

〈Z1 |V1〉

〈Z2 |V1〉

 , (13)


〈Z1 |Z1〉 〈Z1 |Z2〉

〈Z2 |Z1〉 〈Z2 |Z2〉



W21

W22

 =

〈Z1 |V2〉

〈Z2 |V2〉

 . (14)

The solutions of the systems reported in Eqs. (13) and (14) are the elements of the matrix W in
Eq. (8).

Funding

HiSilicon (HIRPO2017030805 - Modelling of integrated Mach-Zehnder electrooptic modulators:
from materials to system-level design).

Disclosures

The authors declare no conflicting interests.

References
1. “Cisco global cloud index: forecast and methodology, 2016–2021,” Tech. rep., Cisco Systems (2018).
2. K. Schmidtke, “Hyperscale data center applications of optoelectronics,” Proc. SPIE 10946, 1094602 (2019).
3. V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards

CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express
21(22), 27326–27337 (2013).

4. M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C.
Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,”
Science 358(6363), 630–632 (2017).

5. C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha,
D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted
electro-optic modulator,” Nature 556(7702), 483–486 (2018).

6. C. Haffner, A. Joerg, M. Doderer, F. Mayor, D. Chelladurai, Y. Fedoryshyn, C. I. Roman, M. Mazur, M. Burla, H. J.
Lezec, V. A. Aksyuk, and J. Leuthold, “Nano–opto-electro-mechanical switches operated at CMOS-level voltages,”
Science 366(6467), 860–864 (2019).

7. C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. L. Giesecke, M. Lauermann, A. Melikyan, S.
Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala,
R. Palmer, D. Korn, L. Alloatti, P. C. Schindler, D. L. Elder, T. Wahlbrink, and J. Bolten, “Silicon-organic hybrid
(SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightwave Technol. 34(2), 256–268 (2016).

8. W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S.Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack,
L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon-organic and
plasmonic-organic hybrid photonics,” ACS Photonics 4(7), 1576–1590 (2017).

9. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic
modulators,” Nano Lett. 9(12), 4403–4411 (2009).

10. S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P.
C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic
modulation using a silicon-organic hybrid device,” Light: Sci. Appl. 4(2), e255 (2015).

11. F. Mirlou and H. Soofi, “Hybrid plasmonic–photonic–organic modulators with low insertion loss and high modulation
depth,” J. Lightwave Technol. 36(12), 2471–2477 (2018).

12. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the art and
future prospects,” Chem. Rev. 110(1), 25–55 (2010).

13. D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic
bridge-disubstituted organic NLO chromophores,” Chem. Mater. 26(2), 872–874 (2014).

https://doi.org/10.1117/12.2518569
https://doi.org/10.1364/OE.21.027326
https://doi.org/10.1126/science.aan5953
https://doi.org/10.1038/s41586-018-0031-4
https://doi.org/10.1126/science.aay8645
https://doi.org/10.1109/JLT.2015.2499763
https://doi.org/10.1021/acsphotonics.7b00224
https://doi.org/10.1021/nl902701b
https://doi.org/10.1038/lsa.2015.28
https://doi.org/10.1364/JLT.36.002471
https://doi.org/10.1021/cr9000429
https://doi.org/10.1021/cm4034935


Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29270

14. C. Haffner, W. Heni, D. L. Elder, Y. Fedoryshyn, N. Dordevic, D. Chelladurai, U. Koch, K. Portner, M. Burla, B.
Robinson, L. R. Dalton, and J. Leuthold, “Harnessing nonlinearities near material absorption resonances for reducing
losses in plasmonic modulators,” Opt. Mater. Express 7(7), 2168–2181 (2017).

15. A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J.
Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4),
276–283 (2015).

16. G. Ghione, Semiconductor Devices for High-Speed Optoelectronics (Cambridge University Press, Cambridge, U.K.,
2009).

17. F. Bertazzi, O. A. Peverini, M. Goano, G. Ghione, R. Orta, and R. Tascone, “A fast reduced-order model for the
full-wave FEM analysis of lossy inhomogeneous anisotropic waveguides,” IEEE Trans. Microwave Theory Tech.
50(9), 2108–2114 (2002).

18. S. J. Orfanidis, “Electromagnetic waves and antennas,” https://www.ece.rutgers.edu/orfanidi/ewa/ (2016).
19. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten,

U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J.
Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,”
Nat. Photonics 9(8), 525–528 (2015).

20. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz,
“Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219
(2011).

21. L. Chen, C. R. Doerr, P. Dong, and Y. kai Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and
100-GHz spacing,” Opt. Express 19(26), B946–B951 (2011).

22. P. Dong, L. Chen, and Y. kai Chen, “High-speed low-voltage single-drive push-pull siliconMach-Zehnder modulators,”
Opt. Express 20(6), 6163–6169 (2012).

23. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14(20), 9467–9476
(2006).

24. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance
matching,” Opt. Express 15(11), 6762–6767 (2007).

25. H. Nejati and A. Beirami, “Theoretical analysis of the characteristic impedance in metal-insulator-metal plasmonic
transmission lines,” Opt. Lett. 37(6), 1050–1052 (2012).

26. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650
(2005).

27. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25(9), 2511–2521
(2007).

28. Y. Ma, J. Li, and H. Maeda, “Polarization-independent hybrid plasmonic coupler based on T-shaped slot waveguide,”
AIP Adv. 10(3), 035121 (2020).

29. A. Taghizadeh and T. G. Pedersen, “Plasmons in ultra-thin gold slabs with quantum spill-out: Fourier modal method,
perturbative approach, and analytical model,” Opt. Express 27(25), 36941–36952 (2019).

30. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface
plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005).

31. C. Haffner, W. Heni, Y. Fedoryshyn, A. Josten, B. Baeuerle, C. Hoessbacher, Y. Salamin, U. Koch, N. Dordevic,
P. Mousel, R. Bonjour, A. Emboras, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J.
Leuthold, “Plasmonic organic hybrid modulators–scaling highest speed photonics to the microscale,” Proc. IEEE
104(12), 2362–2379 (2016).

32. W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B.
Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale
slots and implications for the optimum modulator design,” Opt. Express 25(3), 2627–2653 (2017).

33. R. W. Boyd, Nonlinear optics (Academic Press, Orlando, FL, 2008).
34. F. Bertazzi, G. Ghione, and M. Goano, “Efficient quasi-TEM frequency-dependent analysis of lossy multiconductor

lines through a fast reduced-order FEM model,” IEEE Trans. Microwave Theory Tech. 51(9), 2029–2035 (2003).
35. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335

(1972).
36. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983

(1994).
37. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, “Coupled-mode theory and

propagation losses in photonic crystal waveguides,” Opt. Express 11(13), 1490–1496 (2003).
38. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3),

379–440 (2012).
39. R. Orta, A. Tibaldi, and P. Debernardi, “Bimodal resonance phenomena–part II: high/low-contrast grating resonators,”

IEEE J. Quantum Electron. 52(12), 1–8 (2016).
40. A. Tibaldi, P. Debernardi, and R. Orta, “Bimodal resonance phenomena–part III: high-contrast grating reflectors,”

IEEE J. Quantum Electron. 54(6), 1–8 (2018).
41. W. Shan, W. Walukiewicz, J. W. I. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band

anticrossing in GaInNAs alloys,” Phys. Rev. Lett. 82(6), 1221–1224 (1999).

https://doi.org/10.1364/OME.7.002168
https://doi.org/10.1109/JSTQE.2014.2382293
https://doi.org/10.1109/TMTT.2002.802323
https://www.ece.rutgers.edu/orfanidi/ewa/
https://doi.org/10.1038/nphoton.2015.127
https://doi.org/10.1364/OE.19.017212
https://doi.org/10.1364/OE.19.00B946
https://doi.org/10.1364/OE.20.006163
https://doi.org/10.1364/OE.14.009467
https://doi.org/10.1364/OE.15.006762
https://doi.org/10.1364/OL.37.001050
https://doi.org/10.1364/OPEX.13.006645
https://doi.org/10.1063/1.5140842
https://doi.org/10.1364/OE.27.036941
https://doi.org/10.1364/OPEX.13.000256
https://doi.org/10.1109/JPROC.2016.2547990
https://doi.org/10.1364/OE.25.002627
https://doi.org/10.1109/TMTT.2003.815875
https://doi.org/10.1063/1.1661499
https://doi.org/10.1364/JOSAA.11.000963
https://doi.org/10.1364/OE.11.001490
https://doi.org/10.1364/AOP.4.000379
https://doi.org/10.1103/PhysRevLett.82.1221


Research Article Vol. 28, No. 20 / 28 September 2020 / Optics Express 29271

42. J. van Bladel, Singular electromagnetic fields and sources (IEEE Press, New York, 1991).
43. J. Meixner, “The behavior of electromagnetic fields at edges,” IRE Trans. Antennas Propag. 20(4), 442–446 (1972).
44. Synopsys, Inc., Inc., Optical Solutions Group, Ossining, NY, RSoft FullWAVE User Guide, v2017.03 (2017).
45. Lumerical Inc. (2019).
46. R. Orta, A. Tibaldi, and P. Debernardi, “Bimodal resonance phenomena–part I: generalized Fabry–Pérot interferome-

ters,” IEEE J. Quantum Electron. 52(12), 1–8 (2016).
47. A. Tibaldi, P. Debernardi, and R. Orta, “High-contrast grating performance issues in tunable VCSELs,” IEEE J.

Quantum Electron. 51(12), 1–7 (2015).
48. R. Mittra, Y.-L. Hou, and V. Jamnejad, “Analysis of open dielectric waveguides using mode-matching technique and

variational methods,” IEEE Trans. Microwave Theory Tech. 28(1), 36–43 (1980).
49. W. Heni, C. Haffner, B. Baeuerle, Y. Fedoryshyn, A. Josten, D. Hillerkuss, J. Niegemann, A. Melikyan, M. Kohl, D.

L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “108 Gbit/s plasmonic Mach–Zehnder modulator with > 70-GHz
electrical bandwidth,” J. Lightwave Technol. 34(2), 393–400 (2015).

50. M. Ghomashi, A. Tibaldi, F. Bertazzi, M. Vallone, M. Goano, and G. Ghione, “Simulation of electro optic modulators
based on plasmonic directional couplers,” in 20th International Conference on Numerical Simulation of Optoelectronic
Devices (NUSOD 2020), (Torino, 2020).

https://doi.org/10.1109/TAP.1972.1140243
https://doi.org/10.1109/JQE.2015.2502903
https://doi.org/10.1109/JQE.2015.2502903
https://doi.org/10.1109/TMTT.1980.1130003

