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Abstract: Net fences are among the most widespread passive protective measures to mitigate the risk
from rockfall events. Despite the current design approach being based on partial safety factors,
a more efficient time-dependent reliability approach has been recently introduced by the authors.
This method is influenced by various parameters related to the geometry and the kinematics
of the block, i.e., the uncertainty related to the distribution of the size of the impacting block,
its occurrence probability, and the shape of the right-tail of the distributions of its velocity and
trajectory height at the location of the net fence. Furthermore, the block size distribution of the deposit
greatly affects the results. The present work focuses on the possible range of such parameters to
encompass the great majority of real events. The obtained results are compared with the current
design approaches based on fixed partial safety factors. It emerges that the choice of the characteristic
mass of the block and the failure probability greatly influence the results. Moreover, if a set of partial
safety factors is assigned to different sites, an intrinsic variability in the failure probability has to be
accepted. Suggestions for an accurate procedure and future developments are provided.

Keywords: rockfall; reliability; partial safety factors; net fences

1. Introduction

Rockfalls are among the most hazardous landslide phenomena, due to their abrupt occurrence
and the very high involved energies [1–4]. Consequently, effective mitigation measures are required
for reducing the hazard and, thus, the risk. This need especially holds for high valuable and
vulnerable elements at risk as transportation routes [5–7], railways [8] or even urban settlements [9].
In recent decades, the knowledge and the technology on passive mitigation measures have been
significantly improved, with particular reference to rockfall flexible barrier, also called net fences [10,11].
A considerable number of new devices and assembly methods have been designed, differing
not only for the resistant static scheme and the way of dissipating and transferring impact
loads [12–14], but aiming also at increasing the effectiveness of the protection and the efficiency
during the expected working life [15]. Since the eighties, net fences have been considered as
protection kits, whose performance has to be assessed in relation to their essential characteristics,
e.g., energy absorption capacity, height, and maximum elongation [16,17]. For this purpose,
a European codified method for the assessment of net fences as rockfall protection kits was developed,
first in ETAG 027 [18] (”Guideline for European Technical Approval of Falling Rock Protection Kits”), and
now in EAD 340059-00-0106 [19] (“Falling Rock Protection Kits”).
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The common design relies on a performance based procedure. In other words, from the results of
the rockfall propagation analyses, an appropriate commercial product is selected [17] among the ones
whose energy absorption capacity and the nominal height, evaluated with standard procedure [19],
are greater than the correspondent impact energy and passing height of the simulated blocks.
This approach considers two possible failure modes: the falling block trajectory is higher than barrier
height, or because its energy is larger than the barrier capacity. Nevertheless, the procedure does not
directly consider the impacting conditions, e.g., the position and the angle of impact with respect
of the net or the posts, as well as the shape of the impacting block [20,21]. To encompass all these
uncertainties, each protection kit is classified according to energy absorption categories. More complex
analyses and studies, performed through FEM (Finite Element Method) or DEM (Discrete Element
Method) modelling approaches [22–28], provide an enhancement in understanding the dynamic
interaction between the block and the structure, and the transfer load process. Nonetheless, these
computationally demanding approaches offer profitable solutions for the design of more efficient
devices or the assembly of the single components, resulting more useful for the producer rather than
being affordable for the designer. Similarly, meta-models techniques [21,29] requiring outputs derived
from either accurate numerical models or experiments are tailored on specific products and, hence,
can be inconvenient for general design purposes.

At the base of any modern design code, such as the European standards EN 1990:2002 [30],
the design value of the effects of the action Ed has to be lower or equal to the design value of
the effects of the resistance Rd. The standardised performance-based design procedure defined
within the national recommendations UNI 11211-4 [31] in Italy and ONR 24810 [32] in Austria suggest
to evaluate the design parameters of the actions from a single characteristic value of the distribution of
the impacting energy (or velocity) and height, resulting from the trajectory analyses [10,33–35]. In the
framework of the previously mentioned national recommendations, these design values are the product
between characteristic values and partial safety factors. In particular, the UNI 11211-4 [31] considers
the 95th percentile of the distribution for both velocity and height, and the related partial safety factors
depend on the quality of the adopted trajectory model type and input parameters. The characteristic
value of the impacting block mass is defined as a percentile (95th or larger) of the distribution of
the masses. The ONR 24810 [32] adopts the 99th percentile for the energy and the 95th for the height,
and the partial safety factors are related with the occurrence probability of a rockfall event and
the consequence class of the elements at risk. A distribution of possible falling blocks has to be defined
and a percentile of this distribution has to be considered as the characteristic value.

Some critical aspects in the application of the European standards EN 1990:2002 [30] for
the design of rockfall net fences have been recently highlighted and fixed through a time-integrated
reliability based approach [36]. Choosing a suitable failure probability, the design kinetic energy and
passing height of the impacting block are determined from the results of the performed trajectory
analyses. The reliability approach allows to consider the random nature of the parameters affecting
the performance and the safety of a system [37] providing, in this specific case, probability distributions
of the parameters of the impact and, theoretically, of the resistance. The method also accounts for
the variability in the magnitude and the temporal occurrence probability of an impact, which are
thoroughly site specific [1,38,39].

In a tentative to merge the time-integrated reliability based approach with the current practice,
the calculation can be simplified by considering the values of the CE certified maximum energy level
absorption capacity (MEL) EB, the nominal height hB, and the tolerance t as Dirac-δ distributions [36].
If more information derived from field tests or numerical modelling would be available, different
probability distributions could be assigned to the variables. With the aim of providing a compelling
solution for the designer, De Biagi et al. [36] implemented their approach into the current practice [30]:
equivalent partial safety factors for the impacting block energy, mass, velocity, and height were derived,
and properties and the affecting variables were analysed.
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Starting from the evidence that rockfall phenomena are extremely variable in terms of magnitude
and kinematics, i.e., type and direction of motion, velocities, and height, in the present paper
the Authors investigate the possible scenarios which can occur in a real case. The results lead to
the identification of a range of values of partial safety factors for each of the two failure modes.

The paper is structured as follow. Section 2 summarises the reliability-based design approach,
considering the possible failure mechanisms. Section 3 explains the adopted procedure to investigate all
the possible rockfall scenarios, while the results of the parametric analyses are introduced in Section 4.
Section 5 provides an attempt to find a range of values of partial safety factors to adopt. Finally,
the suggestions and future possible development are discussed in Section 6.

2. Basics of Reliability of Rockfall Protection Structures

As mentioned in Section 1, the possible failure modes can be related to the height hb and the energy
Eb of the impacting block, which can be higher than the barrier intercepting height hB and absorption
capacity EB. Lower case b stands for block, while capital B for the barrier. The failure probability
of the system p f can be considered as the sum of the failure probabilities related to each of the two
scenarios, i.e., Fh and Fk, for excessive height and for excessive kinetic energy, respectively. The failure
probability Fh is assumed to be equal to the probability that a block has a trajectory higher than barrier
height, disregarding its kinetic energy. Similarly, the failure probability Fk is assumed to be equal to
the probability that a block impacts with a kinetic energy greater than the barrier capacity, disregarding
its height. This assumption allows to obtain a conservative value of p f and, thus, a precautionary
design procedure [36].

Each failure mode accounts for a specific failure scenario, which can be mathematically described
through a limit function representing the boundary between failure and safety, through which
the reliability can be assessed. The two limit functions are derived as solutions, i.e., imposing to
zero, of a state functions, which describe if the system is in a safe or unsafe condition. For a specific
value of the reliability, i.e., a failure probability, the design values of the variables (denoted with
subscript d) composing the state function are obtained.

The proposed approach is time-integrated, considering that all the statistical properties of
the variables have to be related to a time period. This is particularly important since the possible rockfall
impacting impacting mass is associated to a temporal occurrence. According to De Biagi et al. [36],
for a given return period T, it is assumed that the mass is normally distributed with a mean value
m50(T) computed through a power-law rule, as suggested in [40]:

m50 (T) = Mth (λT)1/α , (1)

where α represents the shape coefficient of a Pareto Type I distribution and accounts for
the heterogeneity of the size of the blocks, Mth is the threshold mass whose occurrence frequency is λ.
The spread of the distribution is determined through the coefficient of variation, COVm, i.e., the ratio
between the standard deviation and the mean value.

2.1. Failure Due to Excessive Height

This section deals with the failure due to excessive height. In the proposed approach, the state
function accounting for the exceeding of the barrier height, hB, is [36]:

H (h) = H

hb
hB
t

 = (hB − t)− hb, (2)
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where hb is the height of the trajectory in the position in which a net fence is supposed to be installed,
and t is the tolerance due to the block size [31], considering that hb is measured in the centre of mass
of the impacting block. The failure probability p f a,h, related to height state function, is computed as:

p f a,h = P (H (h) ≤ 0) =
∫∫∫

H(h)≤0
fH (h) dhb dhB dt, (3)

where fH is the joint probability density function of the trajectory, of the barrier height, and of
the tolerance. This expression is consistent with a lumped-mass assumption for the trajectory analyses,
i.e., absence correlation between the size of the falling block and its trajectory. The failure probability
due to excessive height during the period of analysis τ, e.g., the lifetime of the system or one year, is
obtained as [36]:

Fh (τ) = p f ,h (τ) ≈ 1− exp
(
−ντp f a,h

)
, (4)

where ν is the mean rate of occurrence of an event, which can be assumed equal to λ. As already
mentioned, a Dirac-δ distribution at the value of the CE (marking) certified nominal height hB is
assumed. For sake of simplicity, the same assumption holds for the tolerance t.

2.2. Failure due to Excessive Kinetic Energy

The failure due to excessive kinetic energy has to account for the variability of the impacting block
size, which differs from event to event. The relationship between the rockfall block mass, to which
the kinetic energy is proportional, and its temporal frequency, i.e., its return period T, is expressed by
Equation (1).

Given the occurrence of an event, the probability of failure due to excessive kinetic energy p f a,k
considers that the maximum energy depends on the occurrence of certain values of the mass and of
the velocity, chosen inside their probability distributions as representative (or characteristic) as [36]:

p f a,k =
∫ ∞

0

∫ ∞

0
p f e| (mk = µ and vk = ω) fmk ,vk (µ, ω) dµ dω, (5)

where fmk ,vk (µ, ω) is the joint probability density function of the characteristic values of the mass and
the velocity, defined through the random variables µ and ω, respectively. Under the lumped-mass
assumption, the velocity and the mass are independent and, thus, the joint probability density function
is the product of the single probability density functions, i.e., fmk and fvk . Since the lumped-mass
propagation analysis outputs a single distribution of the velocities, the characteristic value of
the velocity is unique: fvk is a Dirac-δ distribution at vk. Hence, Equation (5) turns into:

p f a,k =
∫ ∞

0
p f e| (mk = µ) fmk (µ) dµ. (6)

Conversely, for each return period T a normal distribution centred in the mean value m50(T)
computed through Equation (1) can be evaluated, and the probability density function fmk (µ) related
to the characteristic value of the mass, variable with T, can be described through a Pareto Type I
distribution according to De Biagi et al. [39] as:

fmk (µ) =

0 µ < Mth

α
Mth

(
µ

Mth

)−α−1
µ ≥ Mth

. (7)



Geosciences 2020, 10, 280 5 of 24

The conditional failure probability p f e| (mk = µ) is studied introducing the state function
accounting for the exceeding of barrier energy capacity EB, expressed as:

K (e) = K

EB
m
v

 = EB −
1
2

mv2, (8)

where m and v are the impacting block mass and velocity, respectively. The conditional failure
probability p f e| (mk = µ) related to the state function is computed as:

p f e| (mk = µ) = P (K (e) | (mk = µ) ≤ 0) =
∫∫∫

K(e)≤0
fE| (mk = µ) (e) dEB dm dv, (9)

where fE| (mk = µ) is the joint probability density function of the mass (with a characteristic value
equal mk = µ) the velocity of the impacting block, and the capacity of the barrier. As reported in [36],
the failure probability in the chosen time period τ due to excessive kinetic energy is obtained as:

Fk (τ) = p f ,k (τ) ≈ 1− exp
(
−ντp f a,k

)
. (10)

As in Equation (4), ν can be assumed equal to λ.

2.3. From the Reliability Design Approach to the Semi-Probabilistic Method: Equivalent Partial
Safety Coefficients

Similarly for other structural engineering design problems, the reliability approach can be
alternatively considered both for the design, and, for a given reliability, for finding the partial safety
factors to be adopted in the current semi-probabilistic methods (code calibration procedure [37]). In the
present problem, three partial safety factors, namely, γh, γm and γv, can be defined. The safety factors
are the ratios between the design values of the parameter and their characteristic values referred with
the subscript k, in accordance with EN 1990:2002 [30]. Referring to the Italian recommendation UNI
11211-4 [31], the 95th percentiles of velocity and passing height are considered as characteristic values,
i.e., vk = v95 and hk = h95. To evaluate the partial safety factor γm it is necessary to consider a reference
return period Tk, according to which a characteristic value of the mass mkT is computed as the mean
value mkT = m50(Tk). Hence, it results:

γh =
hbd
hk

, (11)

γm =
md
mkT

, (12)

γv =
vd
vk

. (13)

The previous can be combined into an energy partial safety factor:

γE = γm γ2
v. (14)

The design values of height, mass and velocity are obtained applying the proposed time dependent
reliability approach, once defined a failure probability.

3. Methodology

Rockfall events are extremely variable, and their random nature is affected by the geometrical and
mechanical characteristics of both the falling block and the slope [35,41]. Among them, the topography
and the size of the block are the most important [42–44]. In the lumped-mass approach assumption,
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the variability of the mass of the block does not affect its kinematics but it directly influences its
kinetic energy.

The current semi-probabilistic design method accounts only for a single characteristic value and
thus, the correspondent γs (Equations (11)–(13)) have to encompass this variability. In a previous
paper, the Authors [36] highlighted the extreme variability in the shapes of the cumulative probability
functions of velocity and height. Consequently, two values were adopted to characterise the trend
of the distributions, namely the 95th and the 99th percentiles and a normal-tail approximation was
performed. The Authors proved that the resulting γs are affected by the ratios between these two
percentiles, i.e., h99/h95 and v99/v95, rather than by each single value (95th or 99th percentile).

Furthermore, (12) and (13) are affected by multiple variables: (i) the dispersion around
mkT , i.e., COVm, (ii) the probability density function fmk (µ) of the possible impacting masses,
and (iii) the mass-return period relationship. The parameters are highly site specific through
the parameter α. In detail, the parameter α refers to the heterogeneity of the sizes of the blocks
masses: small values of α relate to a large ratio between large and small blocks (large heterogeneity).
For a given design energy, the value of mkT is inversely proportional to γE.

The following approaches were adopted to investigate the range encompassing for the great
majority of real cases of the above mentioned parameters:

• The possible ranges of h99/h95 and v99/v95 were investigated with a procedure widely adopted
in the literature [42,45,46]: a synthetic slope was considered and parametric simulations performed;

• The possible values of α were derived from a set of surveys performed by the Authors
in the Northwestern Italian Alps;

• COVm was investigated through an uncertainty-based analytical approach related to the rockfall
volume frequency now proposed by De Biagi et al. [40].

This activity represents a first step of a complete code calibration for a semi-probabilistic design
approach [37].

3.1. Height and Velocity

A series of 2D numerical simulations with a lumped mass software were performed. RocFall
software [47] was used for the analyses. A double slope profile was adopted to mimic a typical
topography of a rock face, as depicted in Figure 1, with a global height H of 210 m.

H

1
3H

2
3H

C

ϑ1

ϑ2

Blocks seeder

10 m

Figure 1. Sketch of the synthetic double slope profile adopted for the simulations.
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The leading idea is that the topography is the parameter that mostly affects the results [42,48–50].
This is why, aiming at representing all the most frequent rockfall hazardous situations, the simulations
were performed varying only the slope profile, keeping constant the material parameters of both slope
and rock blocks, and the model settings. A linear profile, i.e., without any topographic roughness,
representing the worst scenario in terms of runout, was considered. The slope angles ϑ1 and ϑ2 of
the lower and the upper sections of the profile, respectively, were varied, one by one, between 45◦ and
90◦, with an interval of 15◦, in order to consider typical rockfall prone configurations. A vertical line
seeder above the upper section was used to specify a set of source locations for all the simulated rock
falls. The source locations were generated with a uniform distribution along the length of the seeder,
equal to 10 m. The initial velocity of the falling rocks was set as a deterministic quantity equal to 1 m/s
in the vertical downward direction. The assumption of an initial velocity is assumed as precautionary,
to consider possible different triggering situations, i.e., earthquake-triggered rockfall, or a complex
phenomenon of sliding evolving in free fall of one or more blocks, or detachment due to the impact of
blocks from upslope. Normal distributions were adopted for the normal (Rn) and the tangential (Rt)
coefficients of restitution, with mean values of 0.35 and 0.85, respectively, and standard deviation of
0.04 both. On the contrary, the friction coefficient was set as a deterministic quantity equal to tan 30◦.
All the adopted parameters were chosen to represent a typical rock slope, according to Bar et al. [51],
following the suggestion provided by Pfeiffer and Bowen [52] and Hoek and Bray [53] for bedrock or
boulders with little soil or vegetation or just for bedrock in case of lumped mass models. As specifically
tailored, the adopted coefficients take into account the limitation in the model kinematics evaluation,
e.g., the rotational velocity of the impacting block. These assumptions entail the worst case in terms
of propagation, i.e., larger runout distance and lower energy absorption during impact. To increase
the accuracy of the results, the number of rocks thrown was set equal to 10,000 with a Monte Carlo
sampling technique around the distributions of the restitution coefficients. A collector (C) was
positioned at the slope toe, assumed as a flat deposit area, normal to ϑ1, as to take representative and
comparable values of height and velocity.

3.2. Alpha

Several surveys were performed for searching the possible range of the parameter α.
The parameter is an index of the spread of the block sizes distribution in the location of the net
fence: the more heterogeneous the deposit, the lower α. The nature of the deposit largely depends
on the lithology, the degree of fracturing of the rock mass, and the topography, i.e., slope angle and
presence of obstacles on the path [54]. All these aspects influence the kinematics and the possible
fragmentation of the blocks. Eight test sites located in the in the Northwestern Italian Alps and
characterised by different lithology, exposure, and mean altitude of the source zone were investigated,
as reported in Table 1. The surveys were performed manually by counting the size of the blocks,
according to the procedure reported in [55,56].

Table 1. Main characteristics of the test sites and correspondent α values.

Lithology Exposure Altitude (m a.s.l.) α

Site 1 [57] Metagabbros SW 800 0.995
Site 2 Metabasalts SW 1750 1.412
Site 3 Prasinite S 620 0.746
Site 4 Limestones S 700 0.691
Site 5 Gneiss SW 1350 1.242
Site 6 Gneiss W 1100 1.533
Site 7 Gneiss W 1150 1.252
Site 8 [55] Polimetamorphic complex S 1530 1.019

Figure 2 shows the views of the deposit area of test sites No.3 and No.6 as representative of two
opposite situations in terms of heterogeneity in block sizes of the deposit. The figure highlights a wide
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size variability in test site No.3, while test site No.6 is characterised by a deposit quite homogeneous.
The value of α was determined through the maximum likelihood estimator [58]:

α = N

[
N

∑
i=1

ln
(

mi
Mth

)]−1

, (15)

where N is the number of surveyed blocks and mi is the mass of each block.

Figure 2. Views of the test sites No.3 and No.6 for the determination of the parameter α. Test site No.3
is characterised by an heterogeneous deposit in terms of block sizes, resulting in α = 0.746. Test site
No.6 is characterised by a quite homogeneous deposit in terms of block sizes, resulting in α = 1.533.

3.3. Coefficient of Variation of the Mass

The coefficient of variation COVm is the ratio between the standard deviation and the mean value
of a distribution. In the present discussion, this value was considered representative of the spread of
the distribution of the block mass at a given return period T, whose relationship follows Equation (1).
The parameters of Equation (1), namely α and Mth are determined through the observation of
past events and by means of a detailed survey of the masses of the blocks where the rockfall net
fence is expected to be installed. An uncertainty can be associated to the value of α depending
on the number of surveyed blocks N. Following Malik [59], the real value of the parameter follows
a Chi-square distribution with (2N − 2) degrees of freedom [60]. In other words, given the number of
surveyed blocks, the maximum likelihood estimator (m.l.e.) provides a “best” value of the parameter,
see Equation (15), that, in reality, is distributed as:

α̌ ∼ α

2N
χ2

2N−2, (16)

where α̌ is the variate, i.e., the value of the shape parameter, and α is the estimate through the m.l.e.
Asymptotic normality is proven for α̌, see [60].

A distribution of masses can be associated to each return period, determined from α̌ and
Equation (1). The left plot in Figure 3a shows, in black, the distribution of the masses obtained
with the procedure previously described for a return period equal to T = 20 years (α = 1.2,
λ = 0.1 events/yr, N = 1000, Mth = 1350 kg). The red curve is the normal distribution that
best fits the obtained values. A good agreement between the real distribution of the masses at a given
return period and a normal distribution is proven for other return periods, as shown in Figure 3b.
This similarity is the hypothesis at the base of the proposed methodology for computing the coefficient
of variation of the mass COVm at a given return period. Furthermore, assuming a normal distribution
centred in the mean value, instead of a right-skewed Chi-squared distribution, overestimating
the impacting block mass, is considered by the authors as precautionary.
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To this purpose, (i) the cumulative distribution of the masses was determined, as shown
in Figure 4. (ii) Two percentiles were identified, namely 15.87th and 84.13th, which represent
the bounds of the mean± one standard deviation of an equivalent normal distribution. (iii) The masses
corresponding to those percentiles are identified, say m0.1587 and m0.8413. (iv) The standard deviation
of the equivalent normal distribution was computed as:

σeq =
m0.8413 −m0.1587

2
. (17)

(v) Supposing that the mean value of the equivalent normal distribution is the mass computed through
Equation (1), COVm was computed as

COVm =
σeq

Mth (λT)1/α
. (18)
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Figure 3. In (a): distribution of the volume at 20 years return period and normal distribution fit. In (b): normal
probability plot with the distributions of the volumes corresponding to three return periods (20 years, 100 years
and 500 years). The simulations were performed with α = 1.2, λ = 0.1 events/yr, N = 1000, Mth = 1350 kg.
Normally distributed data are identified with a straight line in the probability plot.

2σ

Figure 4. Cumulative probability distribution of the masses at T = 20 years (α = 1.2, λ = 0.1 events/yr,
N = 1000, Vth = 0.5 m3). The dots mark the masses corresponding to percentiles 15.87 and 84.13.
The difference between the corresponding masses is twice the standard deviation of the equivalent
normal distribution.
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4. Results and Discussion

In this section, the results of the performed analyses are shown and the identified range of
parameters is discussed. At the end, the obtained results are adopted to evaluate a range of γ values
associated to different failure probabilities.

4.1. Height and Velocity

Figures 5a,b plot the empirical cumulative distribution of the values of the passing heights and
the velocities normalised to the 95th percentile of each parameter. In analogy with what highlighted
in Section 3, the results, in terms of both velocity and height, display a huge variety of probability
distributions shapes, generally far from a normal one. A large sort of trends is displayed. As a limit
situation, in the case in which no rebound occurs (the parabolic solving equation relates to deterministic
parameters, only), the cumulative probability density functions of both height and velocity tend to
a step curve at h/h95 = 1 or v/v95 = 1 (a Dirac-δ distribution), respectively.

Figure 5. (a) Cumulative probability distribution function of h/h95 and the boxplot of h99/h95,
(b) Cumulative probability distribution function of v/v95 and the boxplot of v99/v95.
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Furthermore, to deeply investigate the statistics of h99/h95 and v99/v95, Figures 5a,b display
the boxplot of both variables. These representations graphically reveal the variation in samples
of the statistical populations neglecting their distributions, highlighting the degree of dispersion,
the skewness in the data, and showing the outliers. The central red mark indicates the mean,
and the bottom and the top edges indicate the 25th (Q1) and 75th (Q3) percentiles, respectively.
The top of the upper whisker is located at Q3 + 1.5 (Q3 −Q1). Larger values are considered as outliers
(red cross). A different trend can be observed between the considered variables: the height displays
right-skewed boxplots, i.e., a positive skew, while the velocity boxplot a slightly left-skewed, i.e.,
a negative skew. This aspect highlights that both h99/h95 and v99/v95 cannot be related to normal
distributions. Each boxplot exhibits an outlier: 2.5 for h99/h95 and 1.27 for v99/v95. Ignoring the outliers,
the 75th percentile of h99/h95 and v99/v95, are 1.364 and 1.025, respectively. The upper whiskers
are located at 1.870 and 1.06 for h99/h95 and v99/v95, respectively. Considering all the conservative
assumption made in modelling the synthetic profiles, the Authors suggest to consider the upper quartile
(75th percentile) of each set of ratios as a conservative reference value of h99/h95 and v99/v95.

4.2. Alpha

Table 1 reports the values of the parameter α for each test site. The results span from about 0.7 to
1.6, revealing a great site specificity of this parameter. Nevertheless, comparing the results with those
found in [61–63], this range encloses the great majority of the cases. Figure 6 plots the complementary
cumulative distributions of block volumes related to the eight study cases (left) and the best fitting
power law (right).
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Figure 6. Empirical complementary cumulative distributions of the surveyed block volumes and
the best fitting power laws.

4.3. Coefficient of Variation of the Mass

The procedure proposed in Section 3.3 was applied to define the value of COVm for different
T, α, λ and N. Besides, since the coefficient of variation is a ratio, it can be proved that it does not
depend on Mth. With reference to the case reported in Figure 4, it results that m0.1587 = 2364 kg
and m0.8413 = 2453 kg, from which it results σeq = 44.5 kg. Substituting into Equation (1), one gets
m50 (20 years) = 2405 kg. Thus, the coefficient of variation of the mass is:

COVm =
44.5 kg
2405 kg

= 0.0185. (19)
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The same procedure was repeated for various values of T, α, λ and N. Table 2 reports the values
of COVm corresponding to different combinations of the aforementioned parameters. It is shown
that the variability of COVm is large and the coefficient is affected by all the four parameters.
By interpolation, an approximate expression for COVm was found:

COVm ≈ 1.3606
(λT)0.3

N0.525α
. (20)

Table 2. Values of COVm (Coefficient of variation of the mass) for various T, α, λ and N.

α = 0.7 N α = 1.0 N

λT 100 1000 10,000 100,000 λT 100 1000 10,000 100,000

10 0.367 0.105 0.033 0.010 10 0.249 0.073 0.023 0.007
100 0.830 0.213 0.066 0.021 100 0.537 0.148 0.046 0.015
1000 1.456 0.324 0.099 0.031 1000 0.884 0.224 0.069 0.022

α = 1.25 N α = 1.5 N

λT 100 1000 10,000 100,000 λT 100 1000 10,000 100,000

10 0.197 0.059 0.018 0.006 10 0.163 0.049 0.015 0.005
100 0.416 0.118 0.037 0.012 100 0.340 0.098 0.031 0.010
1000 0.667 0.178 0.055 0.017 1000 0.537 0.148 0.046 0.015

5. Towards a Range of Gamma Values

The values of the equivalent partial safety factors are affected by the ratios v99/v95 and h99/h95,
which are related to the slope and rockfall propagation, the parameter α, which is related to
the impacting block mass distribution, and the coefficient of variation of the mass COVm, which
directly depends on the number of surveyed blocks.

The range of such parameters was investigated in the previous section (Section 4). The upper
quartiles of the obtained distributions of h99/h95 and v99/v95, i.e., 1.364 and 1.025, respectively,
were considered as representative of the great majority of the propagation kinematics variability.
The analysed block mass distributions lead to assume that α spans between 0.7 and 1.6. A variable
COVm computed according to Equation (20), given the number of surveyed blocks N and λ,
was implemented in the reliability calculations, in particular in computing the failure probability
p f e| (mk = µ).

Within the above mentioned ranges, the partial safety factors corresponding to various failure
probabilities were computed accounting for Fh = Fk = 0.5p f , i.e., a failure probability equally
distributed between a failure related with the excessive height and a failure related to excessive
kinetic energy. In the present comparative study, p f extends from 1.3× 10−6 per year to 10−2 per
year. The lower probability corresponds to the annual reliability index (4.7) adopted for civil ordinary
structures with a consequence class CC2, according to [30]. To calculate an annual failure probability,
τ was set equal to 1 year.

The simulations were performed considering a mean frequency of events λ in the range 0.1 and
1 events per year, while the number of surveyed blocks N spans between 200 and 1000. It is assumed
that a number of surveyed blocks smaller than 200 does not constitute a statistically representative
sample, while larger than 1000 is difficult to achieve. The threshold mass was set to Mth = 2700 kg.
Although the common definition of threshold mass, i.e., the minimum value of the fallen block mass
that has always been observed and recorded in the location in which the net fence is expected to be
installed [60], this quantity can also be associated to the minimum mass of the impacting block which
can be relevant for the design. Two different reference block masses were adopted to compute γm, i.e.,
the expected mean masses at a return period of Tk = 50 and Tk = 200 years, respectively.



Geosciences 2020, 10, 280 13 of 24

Referring to the failure due to excessive kinetic energy, Figures 7 and 8 depict the value of γE
obtained through Equation (14). The values of γm and γv are reported in the Appendix A. It clearly
emerges that the value of γE increases as soon as a more safe condition is considered, i.e., the annual
failure probability decreases. The heterogeneity of the size of the blocks that can impact the barrier
largely affects the value of the coefficients. For α in the range 0.7 to 1.0, large values of γE are
observed. This is due to heterogeneity of the impacting blocks sizes resulting in stricter conditions
in evaluating the failure probability. On the contrary, a less abrupt, but similar, trend is shown for
α in the range 1.0 to 1.6. The trend is marginal for Tk = 200 years. For a given failure probability,
the larger the α the smaller the γE. The influence of the average rockfall frequency λ is highlighted
and it is similar to the effect of the number of surveyed blocks N. The increase of the safety coefficient
when the database of a surveyed blocks has low cardinality (i.e., reduced number) can be attributed
to the inverse proportionality between N and the coefficient of variation of the mass, COVm. Thus,
increasing N, COVm reduces. Similar trends can be observed on both γm and γv. The effects of N
and λ are more emphasised on the values of the coefficient of the mass rather than of the velocity.
As already mentioned, such trend is a consequence of the influence of N and λ on COVm. This variation
presupposes that a unique value of each partial safety factor cannot be identified, but the problem is
strictly site dependent.

Comparing the results obtained with different return periods Tk through which the characteristic
mass mkT is defined, it clearly emerges that higher partial safety factors are obtained for Tk = 50 years.
A rough comparison between the γE associated to Tk = 50 years and the ones related to Tk = 200 years
highlights that the latter is more or less 5 or 6 times smaller than the former. The higher rate of
decrease is observed for smaller p f and α. The same trend emerges for γv, while γm halves its value at
Tk = 200 years, almost independently from α and p f .

Focusing on the value, in the case of Tk = 50 years, the plots show values of γm, γv, and,
consequently of γE, larger if compared to those proposed by the Italian and the Austrian national
standards. On the contrary, for Tk = 200 years, p f equal to 0.01, the correspondent coefficient γE is
close to one, independently from α, N, and λ.

It is worth mentioning that the suggested values of the above mentioned national standards
do not explicitly refer to a failure probability, while they account for a specific time period
in which the net fence has to be considered safe, i.e., service life time equal to 25 years [19].
On the contrary, the suggested approach requires to define an annual failure probability not to be
exceeded. Furthermore, the standards do not provide any suggestion related to the reference period for
the characteristic mass (Tk), computed as a conservative value in the UNI 11211-4 [31] or as a percentile
of the cumulative block size distribution in ONR 24810 [32], independently from the occurrence
frequency. It reveals that increasing the return period for the characteristic mass the coefficients γm, γv,
and, consequently, γE decrease.

Referring to the failure due to excessive height, Figure 9 depicts the values of γh obtained through
Equation (11) as a function of the failure probability p f . Accounting for the uncertainty on the height
of the trajectory of the impacting block, the value of γh is independent from α, as, for the present
approach, the tolerance t was assumed as a separate variable, with a Dirac-δ distribution. The obtained
range spans from 1.50 to 2.73, increasing p f .

From all these results, it emerges that a unique value of each partial safety factor cannot be
identified. Nevertheless, as a first approximation, to partially avoid some uncertainties, the use of
a block mass referred to a return period of almost 200 years can be suggested, as well as a minimum
number of surveyed blocks N of about 500.
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Figure 7. Partial safety factor related to the energy, γE, for variable failure probabilities considering a reference block mass having a return period Tk = 50 years.
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Figure 8. Partial safety factor related to the energy, γE, for variable failure probabilities considering a reference block mass having a return period Tk = 200 years.
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Figure 9. Partial safety coefficients γh, as function of the failure probability p f .

6. Conclusions

A novel time-dependent reliability approach was introduced for the design of rockfall net
fences [36]. This method takes into account the variability in time of the the potential impacting
mass, as well as the uncertainties related to the size and the kinematics of the impacting block.
These parameters were treated as statistical quantities to which a frequency distribution was associated.
This design approach was compared to the current practice based on partial safety factors applied
to the characteristic values of the impacting block mass, velocity, and height. In De Biagi et al. [36],
four variables related to the impacting block were identified as the most influencing parameters,
i.e., the ratios h99/h95 and v99/v95, COVm, and the parameter α. Different types of analyses were
performed in order to evaluate the possible ranges of the above mentioned parameters representative
of the great majority of situations that can be observed in a real rockfall prone area. Rockfall trajectory
analyses on synthetic profiles were conducted to investigate h99/h95 and v99/v95, while onsite surveys
served to evaluate the α parameter. The coefficient of variation of the mass COVm was investigated
assuming a normal distribution of the mass at a given return period. The range of COVm was studied
as a function of the number of surveyed blocks N in the area on which the net fence has to be installed,
the frequency of the events λ, and α, resulting in an approximate expression, Equation (20).

The obtained results were adopted to evaluate the correspondent γ values for different failure
probabilities. The Authors suggest to adopt h99/h95 = 1.364 and v99/v95 = 1.025, i.e., the 75th
percentile of their distributions, while a range spanning from 0.7 to 1.6 was considered for α.
The calculations have been performed for annual failure probability p f from 1.3× 10−6 to 10−2.

It emerges that the partial safety factor γh spans from 1.50 to 2.73 according to the failure
probability, while, γE stringently depends on α, N, λ, and on the return period Tk on which the mass
mkT is evaluated. Decreasing α from 1.0 to 0.7 the rate of change of γE increases significantly. For a given
failure probability, the larger the α, the smaller the γE. A less abrupt, but similar, trend is shown for α

in the range 1.0 to 1.6. The trend is marginal for Tk = 200 years. It can be observed that for α greater than
1.1, in case of Tk = 200 years, the influence of the failure probability is quite negligible. The influence
of λ is present and it is similar to the effect of the number of surveyed blocks N: the lower the λ and
the higher the N, the lower the γE. Comparing the results obtained for different return periods Tk,
higher partial safety factors are obtained for Tk = 50 years: the γE associated to Tk = 50 years are more
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or less 5 or 6 times higher than the ones related to Tk = 200 years. At Tk = 50 years, the plot shows
values of γm, γv, and, consequently of γE, very high compared to those proposed by the Italian and
the Austrian national standards, which do not account for an annual failure probability or for another
target value.

The obtained results highlights that the design value for the height of the block can be several
times the characteristic value. The same can be observed for the energy in case of short reference return
period Tk, and for low value of α. This is justified with the fact that the value of the mass changes with
the return period.In addition, the number of surveyed blocks N affects the uncertainties related to
the characteristic mass and, consequently, the γ values.

All these considerations result in the fact that, for a given failure probability, quantifying a set
of partial safety factors valid for different sites is not possible since they are strictly site dependent.
On the contrary, if a set of partial safety factors is assigned to different sites, an intrinsic variability
in the failure probability is accepted. As a first suggestion, to partially avoid some uncertainties,
the use of a block mass referred to a return period of almost 200 years can be suggested, as well
as a surveyed block number N of about 500. Referring to the ratios between velocities and heights,
namely v99/v95 and h99/h95, the Authors suggest to adopt the values herein proposed, which are
representative of the 75% of the simulated synthetic profiles. The provided results should be accurately
used, accordingly with the required degree of safety. Further developments should be done in order to
consider the influence of the mass in the evaluation of the design height, i.e., introducing the block
size in the applied tolerance value. Additional scenarios for the trajectory analyses related to different
slope profile or input parameters, e.g., restitution coefficients, would be analysed in future researches.
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Appendix A. Partial Safety Coefficients Related to the Mass and the Velocity

The partial safety coefficients related to the mass and the velocity for reference masses with return
periods 50 and 200 years are reported in the following figures.
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Figure A1. Partial safety factor related to the mass, γm, for variable failure probabilities considering a reference block mass having a return period Tk = 50 years.
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Figure A2. Partial safety factor related to the mass, γm, for variable failure probabilities considering a reference block mass having a return period Tk = 200 years.
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Figure A3. Partial safety factor related to the velocity, γv, for variable failure probabilities considering a reference block mass having a return period Tk = 50 years.
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Figure A4. Partial safety factor related to the velocity, γv, for variable failure probabilities considering a reference block mass having a return period Tk = 200 years.
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