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Abstract  

The paper presents a locking-free four-node element for laminated composite and sandwich plates based on Refined 

Zigzag Theory (RZT). Initially, two RZT-based plate elements are derived using four-node and eight-node configurations, 

achieved by way of standard C0 isoparametric shape functions. In addition, with a view on improving the modelling of 

extremely thin plates, an anisoparametric four-node element is developed in which the transverse deflection variable is 

interpolated using quadratic polynomial shape functions, whereas the remaining kinematic variables are bilinear. A 

straightforward transverse-shear edge-constraint procedure gives rise to a four-node anisoparametric element. A further 

enhancement is achieved using an Element Shear Correction (ESC) factor that is derived from a strain-energy matching 

procedure. The resulting four-node element (ZQ4c) uses full Gauss quadrature, consistent load vector, and mass matrix. 

Furthermore, the ZQ4c stiffness matrix has no spurious zero-energy modes, and the element is extremely robust when 

modelling ultra-thin plates. Several numerical studies are carried out to demonstrate the predictive capabilities of the 

four elements examined in this investigation.  It is concluded ZQ4c is a highly accurate element over a wide range of 

material systems and span-to-thickness ratios, and is the best performing element of the four elements examined in this 

study.  
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1. Introduction 

 

Multi-layered composite and sandwich structures, used extensively in civil, defense, marine and aerospace structures, 

require accurate models to describe the structural behaviour. Due to the complex nature of anisotropic and heterogeneous 

material systems, the analytical models require inclusion of transverse-shear deformability in order to achieve relatively 

accurate predictions of their structural response. In the framework of the displacement-based theories, three general 

approaches are commonly used [1,2]: the Equivalent Single Layer theories (ESL), the Layer-Wise (LW) theories and the 

Zigzag (ZZ) theories. In the ESL theories, a smoothly continuous through-the-thickness distribution of the displacement 

field is assumed across the entire laminate thickness; with these assumptions resulting in discontinuities of the transverse 

stresses along layer interfaces. Among these theories, Classical Plate Theory (CPT),  First-order Shear Deformation 

Theory (FSDT) and Third-order Shear Deformation Theory (TSDT) are commonly used [1,2]. For thin plates, CPT is 

generally accurate to predict such global response quantities as deflections, buckling loads, and lower vibrational 

frequencies and their mode shapes. FSDT is the simplest shear-deformation theory using the concept of independent 

bending-rotation variables. For multi-layered composite plates, the theory gives rise to thickness-wise constant 

distributions of the transverse-shear strains, and piecewise-constant transverse-shear stresses, thus requiring the use of 

appropriate shear correction factors [3,4].  

To achieve more accurate predictions, Higher-order Shear Deformation theories (HSDT, [5–7]), of which TSDT is a 

special case, have been developed. Many of these theories generally provide improved global response predictions without 

the use of shear correction factors. As in FSDT, however, the interface transverse stresses cannot achieve continuity using 

such theories. Finite elements derived on the basis of such theories require C1 continuity for the transverse displacement 

whereas FSDT requires only C0 continuity.  

In LW theories, each layer has its own independent displacement field, which leads to a quasi-3D description of the 

structure. This aspect assures a high degree of accuracy, but for laminates with many layers in complex structures, the 

computational cost is prohibitively high; for further details the reader is referred to the review article of Liew et al. [8]. A 

reasonable compromise between the computationally efficient FSDT and the highly accurate LW theories is represented 

by the zigzag theories (ZZ). In ZZ theories, the displacement kinematic field is assumed as a superposition of the global 

laminate behaviour and a local (layer scale) kinematic refinement. This improved kinematic description generally results 

in predicting more accurate piecewise behaviour through the laminate thickness, resembling those of three-dimensional 

(3D) elasticity solutions. Similar to ESL theories, zigzag theories have a fixed number of kinematic variables and they 

are independent on the number of material layers in a laminate. Generally, zigzag theories provide accurate response 
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predictions for relatively thick laminated-composite and sandwich structures, comparable in accuracy to LW theories. In 

the pioneering zigzag theories of Di Sciuva, the kinematics of FSDT are augmented using piecewise linear [9–11] and 

cubic [12,13] functions. Using a similar concept, Murakami [14] proposed zigzag functions for periodic laminated 

structures; Icardi [15,16] developed a 3D zigzag theory for the analysis of composite beams. Averill developed linear [17] 

and cubic [18] zigzag beam models from Timoshenko-beam assumptions. 

Recently, Tessler and co-workers proposed the Refined Zigzag Theory (RZT) for beams [19], plates [20] and shells [21]. 

The relative accuracy and performances of RZT have been extensively investigated. The interested reader is referred to 

this non-exhaustive list: Tessler et al [22] investigated the use of homogeneous material and RZT; the effect of external 

weak layers was assessed by Gherlone [23]; Iurlaro et al [24] assessed RZT for the static, dynamic and stability analysis 

of multi-layered composites and sandwich structures; Iurlaro et al [25] and Di Sciuva et al [26,27] performed RZT analysis 

of functionally graded plates; Groh et al [28,29] applied RZT to modelling and studying highly heterogeneous and 

delaminated beams; Dorduncu [30] used RZT in combination with the peridynamic operator to study heterogeneous 

beams. A recent application of RZT is represented by work of Tessler [31] in which it combined the kinematic assumption 

of RZT and the Reissner’s Mixed Variational Theorem (RMTV) to satisfy a priori the transverse shear stress continuity. 

This new approach named RZT(m) has been used by Groh et al [32] for beam and by Iurlaro et al [33] for plates analysis. 

Similar to FSDT, RZT is computationally attractive because (1) the theory has a small, fixed number of kinematic 

variables regardless of the number of material layers, and (2) its kinematic finite element approximations need not exceed 

C0 continuity. Thus, using RZT as a theoretical basis, various computationally efficient and highly accurate finite elements 

have been developed for beam [32,34–37], plate [38–42] and shell [21,43] analyses. 

One detrimental effect commonly associated with C0-continuous shear-deformable finite elements is known as shear 

locking – an overly stiff response prediction of thin-to-ultra thin structures undergoing bending deformations. This 

phenomenon has been widely investigated using low-order isoparametric approximations of Timoshenko beam and 

Mindlin plate finite elements, i.e., elements derived from a class of FSDT.  The shear locking effect can also detrimentally 

affect RZT-based finite elements based on low-order isoparametric interpolations even for moderately thin beams and 

plates [35,38,41]. In the open literature, different approaches have been explored to remedy the shear locking effect. The 

most widely used technique is called reduced integration. Essentially, the transverse shear strain energy is “under 

integrated”  [44] using a lower-order Gauss quadrature formula. Even though reduced integration can often overcome 

shear locking, the element generally requires ad hoc stabilization techniques to suppress undesirable spurious energy 

modes [45–48]. Other strategies adopted to overcome the transverse shear locking problem have been exposed in details 
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in Ref. [41]. For the Timoshenko beam element, Tessler and Dong [49] identified the reason for shear-locking effect in 

the Kirchhoff constraints of the shear strain measure for very thin structures. As a possible solution, they proposed to use 

the anisoparametric interpolation, where the transverse deflection is approximated by a polynomial with one order degree 

higher than the others used for the remaining kinematic variable (bending rotations). These elements, named 

unconstrained anisoparametric elements by Tessler and Dong [49], have one extra node in the middle beam point having 

only the transverse degree of freedom (dof). The same strategy has been implemented by Tessler and Hughes [50,51] for 

quadrilateral and triangular Mindlin plate elements. To achieve the simplest configuration (two-node for beam element, 

three-node for triangular plate element or four-node for quadrilateral plate element), the edge-constrained strategy is 

adopted, in which the mid-side dof’s (transverse displacement dof) are made dependent of the vertex dof’s. This strategy 

was successfully implemented to the formulation of  beam [49,52], plate [50,51] and shell [53,54] elements. Gherlone et 

al [34] and Di Sciuva et al [37] formulated RZT beam elements in conjunction with the constrained anisoparametric 

strategy. Moreover, Versino et al [40] applied this strategy to the triangular plate elements and Gherlone [42] to three and 

four-node elements based on RZT(m).  Recently Di Sciuva and Sorrenti  [41] compared the linear four-node, the serendipity 

eight-node and the four-node constrained element based on RZT, showing that the constrained anisoparametric technique 

alleviates the shear locking problem up to thin plates (span-to-thickness ratio a/h=103) without solving it. To avoid the 

shear-locking problem definitively, Tessler and Hughes [50,51] introduced a new finite element appropriate shear 

correction factor to use in combination with the shear correction factor used for Mindlin theory. Using the deflection 

matching technique [50] or the minimization of the total potential energy method [51], for FSDT it has been possible to 

obtain well-conditioned element stiffness matrix for over the entire range of the thickness-to-length ratios, guaranteeing 

rapid convergence solutions.  

The purpose of this work is to provide robust four-node finite element based on RZT, derived from the constrained 

anisoparametric strategy, capable to describe the behaviour of sandwich and multi-layered composite structures with 

good accuracy and reliability for various thickness-to-length ratios without incurring the problem of shear locking. 

The present work is organized as follow. 

In Section 2, the kinematic assumptions of RZT are presented, and the discretized equations of motion are obtained for 

laminated composite and sandwich plates using the dynamics principle of virtual work. In Section 3, the RZT finite 

element formulations are discussed, together with a derivation of the element shear correction factor. In Section 4, 

numerical studies are performed to critically examine the predictive capabilities of the new RZT elements over a wide 

range of thickness-to-span plate ratios. Finally, in Section 5, conclusions are presented highlighting the main findings of 

this research. 
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2. Theoretical basis of Refined Zigzag Theory for plate 

In this Section, the kinematic assumptions of RZT are presented, and the discretized equations of motion are obtained for 

laminated composite and sandwich plates using the dynamics principle of virtual work. 

2.1 Displacement and zigzag kinematic 

We consider a multilayered flat plate made of a finite number NL of perfectly bonded layers. V is the volume of the plate, 

h the thickness. The thickness of each layer, as well as of the whole plate, is assumed to be constant, and the material of 

each layer is assumed to be linearly elastic and orthotropic with a plane of elastic symmetry parallel to the reference 

surface and whose principal orthotropy directions are arbitrarily oriented with respect to the reference frame. The points 

of the plate are referred to an orthogonal Cartesian coordinate system  ( 1,2,3)jx jX , where  ( 1,2)xx

is the set of in-plane coordinates on the reference plane, here chosen to be the middle plane of the plate, and 𝑥3 ≡ 𝑧 is the 

co-ordinate normal to the reference plane (Fig. 1); the origin of the reference frame is fixed at the middle plane of the 

plate, so that, 𝑥3 is defined in the range 𝑥3 ∈ [−
ℎ

2
, +

ℎ

2
].  We denote with Ω𝑚 the set of points of the middle-plane of the 

plate. The intersection between the middle-plane and the lateral surface of the plate gives the total perimeter, Γ, 

surrounding the region Ω𝑚. 

If not otherwise stated, in the paper the superscript (k) is used to indicate quantities corresponding to the kth layer (k=1,NL), 

whereas the subscript (k) defines quantities corresponding to the kth interface (k=1,NL-1) between the k and (k+1) layer. 

So, in the following, the symbol ( )(.) k stands for (.) valued at 3 ( )kx z= , i.e., at the k-th interface. Also, we use the 

subscript b and t to indicate the top and bottom surfaces of the plate; specifically,  (0) bz z  and ( )LN tz z denote the 

coordinates of the bottom and top surfaces of the whole plate; thus, t bh z z is the plate thickness and 

( )

( ) ( 1)  ( 1,2,..., )k L

k

kh z z k N ,  the thickness of the kth layer (see Figure 1). 

The plate is subjected to a transverse load zq  applied on the midplane surface of the plate (Ω𝑚) and defined as positive 

in the positive z direction and boundary transverse load per unit-length (𝐹̅𝑧)applied along the perimeter of the plate (Γ) 

(see, Figure 1). The symbol ,

( )
( ) i

ix
 refers to the derivative of the function ( )  with respect to the coordinate ix , 

i.e., ,

( )
( ) .i

ix
 In the paper, if not otherwise specified, the Einsteinian summation convention over repeated indices is 

adopted, with Latin indices ranging from 1 to 3, and Greek indices ranging from 1 to 2.  
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Figure 1 - Plate and layers notation, geometry and coordinate system. 

As usual in the axiomatic approach of theories of plate and shells, the law of variation of the 3-D displacement field at 

time t for a point within the kth layer is a-priori assumed along the thickness. Thus, in general we can write 

 
( ) ( )( , ) ( ) , )(k k

jx t z tx=u Z d   (1) 

where 

 2

1

( )

3

( , )
( , )

( , ) ( , )
( , )

( , )

j

jk

j j

j

j

u x t
x t

x t u x t
w x t

u x t

 
    

= =   
   

 

u
u   (2) 

is the vector of displacement components of the generic point belonging to the kth layer; ( ),txd is the vector of the 

generalized displacements, independent of the z-coordinate, and 
( ) ( )k zZ  is the matrix of the assumed thickness-wise 

distributions. Both ( ),txd  and 
( ) ( )k zZ are plate/shell theory dependent. With reference to RZT (see, Refs. [20,22,55]), 

the transverse displacement is assumed to be constant through-the-thickness, i.e. 

 3 3(( , ) , ) ( , )j xu x t u t w x t = =  (3) 

The in-plane kinematic is based on the superposition of a global (G) first-order kinematic (from FSDT plate theory) and 

a local (L) layer-wise correction of the in-plane displacements (continuous with respect to z, but with jumps in the first 

derivative at the interface between adjacent layers), (see, Fig. 2). Thus,  

 
( )

1 1 1 1 1 1 1

( )
2 2 2 2 2 2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( ) ( , )
( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( ) ( , )

G L k
j j j

j G L k
j j j

u x t u x t u x t u x t z x t z x t
x t

u x t u x t u x t u x t z x t z x t

  

  

  

  

         +         
= = + = +         

+                 
u  (4) 

In Eq. (4), 𝑢1 and 𝑢2  are the uniform displacements along the 𝑥1 − and 𝑥2 − axis (coincident with those of a point 

belonging to the middle plane of the plate, for symmetric laminate); 𝜃1  and 𝜃2 are the bending rotations of the normal to 
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the middle surface along with the directions +𝑥2 and −𝑥1, respectively, and w is the transverse deflection, assumed to be 

constant along the thickness.  𝜓1  and  𝜓2 represent the spatial amplitudes of the zigzag functions 𝜙1
(𝑘)

 and  𝜙2
(𝑘)

, 

respectively (see Figure 1). It can be easily found that FSDT is a special case of RZT, i.e. when in Eq.(4) 

( ) )0  ( 1 ,2  L ku  == . 

 

Figure 2 - Contributions to the in-plane RZT kinematic for a three-layered laminate. 

Substituting Eqs. (3)-(4) in Eq. (1), gives 

 1 2 3 1 2 1 2

T u u u    =   d  (5) 

 

( )

( )2

( )

1 ( )

( ) ( )

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0 0 0
1

k

k

k k z
z z

z z




 
 

 
 

= =




 



I 0 I
Z

0 0 0


  (6) 

For the 𝑘th layer of thickness ℎ
(𝑘)

, the refined zigzag functions have the following expressions [55]: 

 

(1) 4

(1)

(1) 5

(1)

55

( ) ( 1)4 4

( ) ( 1) ( )

1

44

2

4

1

44 44 44

2

2

( )

( ) 1             ( 1)
2

( ) 1             ( 1)
2

( ) 1             ( 2

( )

( )

( )

( )

,..., )
2

(

k
k q

Lk q k
q

k

Gh
z k

Q

Gh
z k

Q

G G Gh
z h k

z

z

z

z

N
Q Q Q

z









−

−
=

 
= + − = 

 

 
= + − = 

 

 
= + − + − = 

 

= +

 
 
 



( 1)5 5 5

( ) ( 1) ( )
255 55 55

) 1             ( 2,..., )
2

k
q

Lk q k
q

G G Gh
h k N

Q Q Q

−

−
=

 
− + −

 
 


=

 


 (7) 

where 

 
( )

( )

1

( )
1

1 kL
t

k
b

N
z

j kz
k jj

G
dz

h Q

−

=

 
=  
 
 
    (𝑗 = 4,5)     (8) 
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and 𝑄̅𝑗𝑗
(𝑘)

 is the transformed reduced transverse shear stiffness modulus of the kth layer (see, Eq. (16)). 

 Eqs. (7) and (8) show that the refined zigzag functions 𝜙𝛼
(𝑘)

 are a-priori known piecewise continuous functions of z, 

depend only on the thickness and transverse shear mechanical properties of the constituent layers and vanish on the bottom 

(𝑧 = −
ℎ

2
) and top (𝑧 = +

ℎ

2
) surfaces of the plate (see, Figure 2).  

In Eq. (6) and in the body of the paper, I stands for the identity matrix and 0 for the null rectangular matrix, which 

dimensions follow from the rule of the matrix product and partitioning. 

 

2.2 Strains, stresses and constitutive relations 

From the displacement field expressed by Eqs. (1), the linear strain expressions for the kth layer can be obtained from 

the relationships 

 

1,1
( )( )

( )2,2 ( )

1,3 ,1( ) ( )

11 1,1

22 2,2

12 1,

,

2

( ) 13
1,2 2,1 (

1

)

23
, 21,3 3 1

3 2

,

2 3 ,

,   ,   

kk

k
k

k k kp

pk

u

u u
u w

u u u

u u u u

u u









 
 

       +        
+= = = = = =         

           + +    
+  

ε
ε ε γ

γ

( )

2,3 ,2

k

u w

  
 

+  

  (9) 

These can be written in compact form as 

 ( )( )k

  = =ε Z ε Z d   (10) 

where 

 

1,1

1,1 1,1

2,2 ,1

2,2 2,2

1,2 ,2

1,2 2,1 1,2

1(0)

2(0)
2,1

2,1

,   ,   ,   ,   

m

b

m b

u
w

u
w

u u






 


 
 



 
  

       +         
= = = = =         

+         + +      
   

ε

ε

ε

ψ

ε ε ε γε

γ

  (11) 

 

( )

1

(

( )

( )

2

( )

) ( ) 1

( )( )

( ) ( )

1 2

2

0 0 0
0

,    0 0 0 ,    
0

0 0

k

k

k k

kk

k k

k

kz








 

 
    

= = =     
    

 

I I 0 0
Z

0 0
β

0 I β


   (12) 

where ( )( ) ( )

, 1,2  k k

z    == .  



9 

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

2

2

1

1

2

2

1

1

1

1

2

2

2

, ,

, ,

, ,

, ,

, ,

, ,

, ,

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

x x

x x

x x

T

x x

x x

x x

x x



 
 
 
 
 
 

=  
 
 
 
 
 
 

   (13) 

By taking into account the assumed displacement field, Eq. (1), and assuming, as usual in plate theory, 
33 0 = , yields 

 

( )

( )11( )

( ) ( ) ( ) 13

22( )

23

12

,   ,   

k

k
k

k k kp

p tk

t









 
       

= = =     
       

 

σ
σ σ σ

σ
  (14) 

The constitutive equations for a generally orthotropic layer are 

 
( ) ( ) ( )k k k=σ Q ε   (15) 

where  

 

( )

( )11 12 16( )

( ) ( ) ( ) 44 45

12 22 26( )

45 55

16 26 66

,   ,   

k

k
k

k k kp

p tk

t

Q Q Q
Q Q

Q Q Q
Q Q

Q Q Q

 
    

= = =    
    

 

Q 0
Q Q Q

0 Q
  (16) 

                                                                                                                              

and 𝑄̅𝑖𝑗
(𝑘)

 (i,j=1,2,6) and and 𝑄̅𝑖𝑗
(𝑘)

 (i,j=4,5) are the plane stress transformed stiffness moduli of the kth layer, that are 

functions of the z-coordinate. Typically, for orthotropic materials, 𝑄̅45
(𝑘)

= 0. 

2.3 Principle of Virtual Work and equations of motion 

The discretized equations of motion are obtained using the dynamics principle of virtual work, also known as 

D’Alembert’s principle 

 ext inU W W  − =   (17) 

where   is the variational operator, U  is the virtual work done by the internal forces (stresses); 
inW  is the virtual 

work done by the inertial forces, and 
extW is the virtual work done by the applied forces.  

The virtual work done by the internal stresses can be expressed as 

 ( ) ( ) ( ) ( )  

m

k k k k

p p

T

t

TU d 


= + ε σ γ σ   (18) 
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where 

 
3

3

( )

3
( 1)

1

( )
LN

x s

x s
s

dx
−

=

• = •   (19) 

The virtual work done by the inertial forces is given by 

  

m

T

inW d  


= −  d d   (20) 

where 3( )x  is the material mass density; the over dot indicates differentiation with respect to time, and an overbar the 

prescribed value of a quantity (for static problems, 0inW = ). 

The virtual work done by the applied transverse pressure zq (with reference to the plate’s mid-plane), and the transverse 

load (per unit-length) 
zF  applied along the plate’s edge (see Figure 1) is given by 

 

m

ext z z wq wd F dsW 
 

= +     (21) 

It is also assumed that the top and bottom surfaces of the plate are free of shear tractions.  

Substituting Eqs. (9), (10) and (14) into Eq. (18), the internal virtual work  takes on the form 

 ( )( ) ( ) ( ) ( ) d  =

m m

T
k k k k

p p t

T TU d   
 

= +  ε σ γ σ d R   (22) 

where 

 
T

=R Z σ   (23) 

 

is the vector of the stress and moment stress resultants for unit length, 

 
( )T ( )T T T T T  =  R N M M T T   (24) 

 ( ) ( )

( )

11

11 11 ( )

( ) ( ) ( )22

22 22 ( )

12

12 12 ( )

21

, , , , 1, , k k

p

M

M
z

M

M










 

 

 

  
     
      

= =      
      
     

  

N M M σ   (25) 

 ( ) ( )
( )

( ) 1 1

(

2

(

)

2

), , 1, t

kT T

T T






       
= =            

T T β σ   (26) 

Substituting Eqs. (12) and (15) in Eq. (23) and by taking into account (10), yields the plate constitutive equations 
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 ( )T p

t

 
= = 

 

Q 0
R Z Z S S d

0 Q
    =    (27) 

With 

 T p T T

T

t

t t

T

t t





  



 

 
 
  
 = = 
  
 
 
 

A B A 0 0

B D B 0 0
Q 0

S Z Z A B D 0 0
0 Q

0 0 0 A B

0 0 0 B D

 
  (28) 

 

( ) ( ) ( )

( ) ( ) )

2 ( ) ( ) ( ) (

( ) (

)

)) ( (( )

, , (1, , ) ,  , , 1, ,

, 1, ,  

k k T k k

k k

p p

k k

t t t t

k

t

T

z z z  

 

= =

= =

A B D Q A B D Φ Q Φ

A B Q Dβ β βQ

  (29) 

Substituting Eq. (1) into Eq. (20) yields 

  

m

T

inW d 


− =  d md   (30) 

where 

 

(0) (1) (0)

(0)

(1) (2) (1)

(0) (1) (2)

T

T

T

T

T

T Tm





  



 
 
 = =
 
 
  

m
0 0

m 0 m m

Z Z
m m

0m m

0

m0

m

  (31) 

 ( )(0) (1) (2) (0) (1) (2) 2 ( ) ( ) ( ) ( ), , , , , ( , , , , ,k k k T kz z z   =m m m m m m I I I        (32) 

Due to the difficulty to obtain closed-form solutions, we search for an approximate solution.  

3. Finite element formulation 

The accuracy of the finite element solution depends on the ability of the assumed shape functions to accurately model the 

deformation modes of the structure.  

In the following Sections, C0 quadrilateral plate elements are presented using the displacement approach in conjunction 

with RZT summarized in the previous Section. More specifically, the constrained technique in conjunction with an 

appropriate Element Shear Correction (ESC) factor can solve the shear-locking problem. 

 

 



12 

 

 

3.1 Discretized equations of motion 

Let us consider a quadrilateral plate element with NN surrounding nodes. A generic four-node (NN=4) and a generic 

eight-node (NN=8) quadrilateral plate element is shown in Figure 3. The reference plane is the physical plane (𝑥1, 𝑥2). 

From a computational point of view, each element can be mapped in a conventional square element on the natural plane 

(𝜉, 𝜂) where (𝜉, 𝜂) ∈ [−1,1], thus the numerical integration using the Gaussian quadrature can be easily implemented. 

 

Figure 3 - Four-node and eight-node quadrilateral plate element in physical plane (a) and in natural plane (b).  

The element kinematic variables in Eq. (5) can be expressed in the usual manner in terms of the shape functions ( ) ( , )e  N  

and nodal degrees-of-freedom ( ) ( )e tq , as  

 
( ) ( ) ( )( , ; ) ( , ) ( )e e et t   =d N q   (33) 

In expanded form, these relations are given by 

 

(a) (b) 
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1 1

2 2

1 1

2 2

1

2

( )

( ) (0) ( ) ( )

(

(0)

) ( )

( )

( , )

             

e

m

e e e

r

w

r

u

w

e e

m m

w

u

r

e

u u

w

w

 









 

    
    

= = =    
    
    

 
 
 
 
 
 

= = 
 
 
 
 
  

d N 0 0 q

d N q 0 N 0 q

d 0 0 N q

d N 0 0 0 0 0 0

d 0 N 0 0 0 0 0

0 0 N 0 0 0 0

d 0 0 0 N 0 0 0

d 0 0 0 0 N 0 0

d 0 0 0 0 0

d

1

2

1

2

1 1

2 2

( ) ( )

u

u

e e

w





 

 

   
   
   
   
   

    
   
   
   
   
      

q

q

q

q

q

N 0 q

0 0 0 0 0 0 N q

  (34) 

where 
1 2 1 2

)

2

(

1( ) ( , , , , , , )e

i t i u u w    q . 

Substituting Eq. (33) into Eqs. (22) and (30), yields 

 ( ) ( ) ( ) ( )  e e T e eU = q K q    (35) 

 ( ) ( ) ( ) ( )e e T e e

inW = − q M q   (36) 

 ( ) ( ) ( )e e T e

extW = q P   (37) 

where the element stiffness and mass matrices are given by  

 ( ) ( )
1 1

( ) ( ) ( ) ( )

1 1

T
e e e e Jd d   

+ +

− −
=  K N S N    (38) 

 
1 1

( ) ( ) ( ) ( )

1 1

e e T e e dJd 
+ +

− −
=  M N m N   (39) 

and the consistent load vector has the form 

 
( )

( ) () )
1 1

(

1 1
  

e
p

e
T T

e

z

e

w z w

T q Jd F dd
+ +

− −


   = +      0 0 0P N N0 0 0 0 0 0 0 0 0    (40) 

where the transverse load (per unit-length) zF  if applied along the element’s edges gives 

 

( )

( )

( )

1

23 23

( )
( ) ( ) ( )

(
(

1

1

13 13

)
( ) )

1

( , 1) ( , 1) ( ,1) ( ,1)
2

                   ( 1, ) ( 1, ) (1, ) (1, )
2

p
e

e
e T e T e T

w w w

e
e T e T

z

w w

a
F d F F d

b
F F d

    

    

+

−


+

−

 = − − + +

+ − − +

 



N N N

N N

  (41) 

where J  denotes the determinant of the Jacobian matrix.  
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Substituting Eq. (35), (36) and (37) into Eq. (17), taking into account that the virtual variations are arbitrary independent 

variations, yields the following equations of motion for the element (e) 

 ( ) ( ) ( ) ( ) ( )e e e e e+ =M q K q P   (42) 

For the static problems, Eq. (42) reduces to 

 ( ) ( ) ( )e e e=K q P   (43) 

And for free vibration problems 

 ( ) ( ) ( ) ( )e e e e+ = 0M q K q   (44) 

 

 

3.2 Shape functions and the interpolation strategy 

From the variational statement used to derive the element governing equation, Eq. (17), only the first derivatives of the 

kinematic variables appear in the virtual variation of the strain energy expression. To formulate consistent finite elements, 

for RZT, only C0 continuous shape functions are required. 

The first two elements are the isoparametric quadrilateral plate elements: the RZTQ4 and the RZTQ8. RZTQ4 is a four-

node element with bi-linear shape functions; RZTQ8 is an eight-node element with bi-quadratic, otherwise known as 

serendipity, shape functions. Each node has seven dof’s: 3 displacements (u1, u2, w), two bending rotations (θ1, θ2) and 

two amplitudes of the zigzag functions, (ψ1, ψ2) (see, Table 1). For these elements, the same set of shape functions is used 

for approximating all the generalized displacements vector,  

 
11 2 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )e e e e e e e

u u w    = = = = = =N N N N N N N   (45) 

The behaviour of RZTQ4 and RZTQ8 has been deeply investigated by Di Sciuva and Sorrenti [41] and these elements 

exhibit the transverse shear-locking effect when applied to model thin and very thin plates. The improvements to alleviate 

this undesirable effect are the anisoparametric interpolation and the anisoparametric constrained-edge strategies. These 

have been analysed and compared in Ref. [41]. The developed anisoparametric constrained element by Di Sciuva and 

Sorrenti [41], here called ZQ4, is used in next Section as base for a further improvement to avoid the transverse shear-

locking effect.  

Appendix A gives details of the quadrilateral unconstrained anisoparametric element and the edge-constrained technique 

to obtain the ZQ4 element. 
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Furthermore, the ZQ4 element has bi-linear shape functions for all the variables, with a modification for the transverse 

displacement in which appear coupling contributes with the bending rotation and spatial amplitude dof’s. Eq. (46) gives 

the shape functions matrix for the ZQ4 element. 

 

1 2

(

21

)

L

L

L

e

L

L

L

L

   

 
 
 
 
 

=  
 
 
 
 
 

N 0 0 0 0 0 0

0 N 0 0 0 0 0

0 0 N S S S S

N 0 0 0 N 0 0 0

0 0 0 0 N 0 0

0 0 0 0 0 N 0

0 0 0 0 0 0 N

  (46) 

 

3.3 Element-appropriate shear correction (ESC) factor for RZT elements  

By advancing the concept of Element-appropriate Shear Correction (ESC) factors, Tessler and Hughes [50,51]  developed 

a number of effective Timoshenko and Mindlin elements that are devoid of shear locking. To derive such element factors 

(element-dependent coefficients that multiply the transverse-shear strains), the authors used the Strain Energy Matching 

approach (herein referred as SEM).  Although especially effective to model laminated composite structures, the recently 

developed RZT elements (RZTQ4, RZTQ8, and ZQ4), Di Sciuva and Sorrenti [41], have been shown to suffer from shear 

locking in the thin regime. To resolve the shear locking deficiency of these elements, the SEM approach is applied herein 

to derive the ESC factors for RZT elements. Specifically, the new ESC factors will be applied to the ZQ4 element. The 

new element will be referred to as ZQ4c. 

Consider a plate which is discretized using NE plate finite elements. Each element has the strain energy, U(e), which is 

composed of the bending strain energy, Ub
(e), and the transverse shear strain energy, Us

(e), i.e., 

 
( ) ( ) ( )e e e

b sU U U= +  (47) 

The classical shear correction factor used in FSDT multiply the transverse shear stiffness coefficient. We consider a 

quadrilateral ZQ4 element and in this case, we multiply the element shear forces resultants with the element-appropriate 

shear correction factor 
2

( )e  to correct the solution from the shear-locking error: 

 

( )( ) (0)

( ) 2 2 ( )

( ) ( )( )

ee

e et t

e e tT

t t



  
 

    
= = =    
    

T A B γ
T A γ

T B D ψ
 (48) 

Inverting Eq. (48) we can express the transverse shear strains as follow 
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 ( ) 1 ( )

2

( )

1e e

t

e

−=γ A T  (49) 

Substituting the new form of the transverse shear strain (Eq. (49)) into the expression of the strain energy (Eq. (47)) we 

obtain the new expression of the strain energy of the improved element ZQ4c: 

 ( )2

(

( ) ( )

1

)

E

e

N
e e

b s

e

U UU  −

=

= +  (50) 

In Eq. (50) appears the bending strain energy (𝑈𝑏
(𝑒)

)  and the corrected transverse shear strain energy (𝜙(𝑒)
−2𝑈𝑠

(𝑒)
) where 

the ESC factor (𝜙(𝑒)
−2) is yet unknown. It is important to note that the 𝑈𝑠

(𝑒)
 strain energy is the uncorrected one computed 

using the ZQ4 formulation. 

Now we consider the same plate, with the identical mesh pattern. For this plate, we use higher-order elements, that do not 

require the element shear correction factor and it is supposed that they give the exact strain energy. Thus, we can write: 

 ( )
( ) ( )

( ) ( )

( )

1

E

ho ho

N

s

e

e e

ho bU U U
=

= +  (51) 

We enforce the strain energy matching between the strain energy of ZQ4c element and the strain energy coming from the 

higher-order elements: 

 ( )hoU U=  (52) 

Eq. (52) can be read substituting Eqs. (50) and (51): 

 ( ) ( )
( ) ( )

( ) ( ) 2( ) ( )

1

( )

1

E E

ho ho

N N
e e

s b s

e e

e e

b eU U U U
=

−

=

+ = +   (53) 

Eq. (53) can be rewritten by grouping the two terms under the same summation symbol: 

 ( )
( ) ( )

( ) ( ) ( ) 2 ( )

( )

1

0
E

ho ho

e
N

s

e e e

e

e

b b sU U U U
=

−− + − =  (54) 

The Eq. (54) leads to having NE independent equations in terms of the NE unknowns, the element shear correction factors, 

𝜙(𝑒)
2 . 

For each equation, we can write: 

 
( ) ( )

( ) ( ) ( ) 2 ( )

( ) 0
ho ho

e e e e

b b e ssU U U U−− + − =  (55) 
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From Eq. (55) the ESC factor can be easily found: 

 
( ) ( )

1
( ) ( )( )

2

( ) ( ) ( ) ( )
1

ho hos b

e

b

s s

e ee

e e e

b

U UU

U U U


−

  
  = + −

    

 (56) 

Assuming that the higher-order bending and transverse shear strain element energies are proportional to the others, two 

proportional coefficients can be introduced: 

 
( ) ( )

( ) ( ) ( ) ( )

( ) ( );                  
ho ho

e b e e s e

b e b s e sU C U U C U= =  (57) 

The ratio between the element bending strain energy and the element transverse shear one can be seen as an element 

material-geometrical parameter, 𝛼(𝑒): 

 
( )

( ) ( )

b

s

e

e e

U

U
 =  (58) 

The element strain energies shown in Eq. (58) are those computed using the ZQ4 formulation. In particular, Eq. (58) can 

be displayed for the four-node quadrilateral element showing the bending and transverse shear stiffness coefficients. 

 

28

13

28

1

( )

3

s

ii

i

e

i

b

i

i

K

K

 =

=

=



 (59) 

In the 𝛼(𝑒) parameter, there are involved the summation of bending and shear stiffness diagonal coefficients associated 

with the rotational and spatial amplitude degrees of freedom. It should be noted that in Eq. (59) it can be easily found the 

expression of the material-geometrical parameter of FSDT (see the improved Mindlin three-node element Ref. [51])  if 

the enhancements of RZT are neglected.  

Substituting Eqs. (57) and (58) into Eq. (56), the element shear correction factor can be rewritten: 

 ( )
1

2

( ) ( ) ( ) ( ) 1s b

e e e eC C 
−

 = + −
   (60) 

In general, the proportional coefficients 𝐶(𝑒)
𝑠  and 𝐶(𝑒)

𝑏  are the same for all the elements, thus it can be used 𝐶(𝑒)
𝑠 = 𝐶𝑠 and 

𝐶(𝑒)
𝑏 = 𝐶𝑏. Introducing the new coefficient 𝐶−1 = 𝐶𝑏 − 1, Eq. (60) can be rearranged: 

 2

( )

( )

1

/
e s

eC C



=

+
 (61) 
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In Eq. (61) there are two coefficient that need to be determined. The first one (Cs) can be obtained from the following 

considerations. When the element is used for very thin plates (ℎ → 0), the 𝛼(𝑒) parameter is very high, thus the Cs 

parameter has little influence on the value of element shear correction factor 𝜙(𝑒)
2 . For thick plates, the element correction 

factor is no needed, because the ZQ4 element works very well as shown by Di Sciuva and Sorrenti [41]. Furthermore, the 

material-geometrical parameter (𝛼(𝑒)) in thick regimes it is expected to have low values. This results in having 𝜙(𝑒)
2 →

1/𝐶𝑠. To assure the same remarkable accuracy of ZQ4 element for the new ZQ4c element, it needs to have 𝜙(𝑒)
2 → 1 in 

thick regimes. The only one acceptable value for Cs is Cs=1. The other parameter (C) can be determined numerically and 

its value can be chosen to improve the convergence rate of solution for static and free vibration problems. 

Relying on these last considerations, the final form of element shear correction factor is reached: 

 2

( )

( ) /

1

1
e

e C



=

+
  (62) 

In Table 1 are resumed the elements herein presented and their main characteristics. 

Table 1 – Acronyms, topologies, dof’s and shape functions of quadrilateral elements formulated in this study. 

Element Type Nodal Configuration 

Degrees  

of  

freedom 

Shape Functions Note 

RZTQ4 

 

28 Bi-linear Lagrange - 

RZTQ8 

 

56 Eight-node serendipity - 

ZQ4 

 

28 
Anisoparametric constrained  

interpolation 

Edge constraints 

Eq. (A.6) 

ZQ4c 

 

28 
Anisoparametric constrained 

 interpolation 

Edge constraints 

Eq. (A.6) 

+ 

ESC ( )2

( )e   
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4. Numerical results 

In order to assess the numerical performances of this new locking free element (ZQ4c) when applied to the linear analysis 

of bending and free vibration problems for rectangular thick, thin and very thin laminated composite and sandwich plates, 

several numerical tests have been carried out. The numerical investigation has been conducted on various sample 

problems for which the analytical solution is available or it can be obtained using the Ritz method as it is implemented 

by Di Sciuva and Sorrenti [26]. A comparison of the 4 elements (RZTQ4, RZTQ8, ZQ4 and ZQ4c) is made to test the 

elements regarding the shear locking problem. The behaviour of the new element ZQ4c, convergence rate, ESC effect, 

global quantities (maximum displacement, fundamental frequency, shear force and bending moment distributions) and 

local quantities (through-thickness strain and stress distributions) are evaluated considering different boundary and 

loading conditions. Figure 4 shows the plate dimensions, boundary conditions and load cases considered in this numerical 

analysis. The letter S refers to simply supported edge, the letter C refers to clamped edge and the letter F refers to free 

edge. For load acronyms, letter B means bi-sinusoidal load pressure, letter U means uniform load pressure and letter E 

means constant edge load. 

 

Figure 4 – Rectangular plate dimensions, boundary conditions and load distributions; b) simply supported under bi-

sinusoidal load (SSSS-B); c) fully clamped under uniform load pressure (CCCC-U); d) Cantilever under uniform edge 

load (CFFF-E). 
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If not otherwise specified, the results presented in this Section refer to center non-dimensional deflection, 
3
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The non-dimensional in-plane displacements and stresses are defined as follows (
0q is the maximum intensity of the 

applied transverse pressure, a is the length of the plate b is the width, E2 is Young’s modulus in x2 direction of the first 

layer) 
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Table 2 gives the mechanical characteristics and material density of the unidirectional layers constituting the laminated 

composite and sandwich plates investigated in this study, number and thickness of the layers, lamina orientation of the 

principal material direction 1, material of the single layer, are given in Table 3. 

Table 2 - Mechanical characteristics and material density of the unidirectional layers. 

  𝐸1 [𝑀𝑃𝑎] 𝐸2 [𝑀𝑃𝑎] 𝐸3 [𝑀𝑃𝑎] 𝐺12 [𝑀𝑃𝑎] 𝐺13 [𝑀𝑃𝑎] 𝐺23 [𝑀𝑃𝑎] 𝜈12 𝜈13 𝜈23 𝜌 [
𝐾𝑔

𝑚3] 

A 300000 12000 12000 6000 6000 2400 0.25 0.25 0.25 1000 

CE 110000 7857 7857 3292 3293 1292 0.33 0.33 0.49 1600 

R 40.3 40.3 40.3 12.4 12.4 12.4 0.30 0.30 0.30 60 

 

Table 3 - Laminate composites and sandwich plates. 

Laminate Name h(k)/h Lamina orientation Materials 

L1 0.3333/0.3333/0.3333 0/90/0 A/A/A 

L2 0.05/0.05/0.8/0.05/0.05 0/90/core/90/0 CE/CE/R/CE/CE 

 

4.1 RZT analytical performances 

The accuracy and reliability of RZT plate theory to predict global and local quantities are here briefly compared with an 

exact elasticity solution. We consider a symmetric thick (span-to-thickness ratio, a/h=5) cross-ply (L1) square plate 

simply supported on all edges, under bi-sinusoidal transverse pressure of intensity 
0q . Figure 5 shows the thickness-wise 

distribution of the non-dimensional displacement 𝑢̅1, maximum transverse displacement, 𝑢̅3, bending stresses, 𝜎11 and 

𝜎22, transverse shear stress, 𝜎13 compared with the exact elasticity solution obtained using Pagano approach [56]. RZT, 

as expected, has remarkable accuracy and does not need any shear correction factor. Furthermore, it is also interesting to 

note that the linear RZT is very close with the cubic variation of in-plane displacement  𝑢̅1, and in-plane stress 𝜎11. 

Improvements on RZT to consider higher zigzag functions can be used for a better through-the-thickness description and 
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can be found in the works of Barut et al [57] and Iurlaro et al [58]. Iurlaro et al [34] Sorrenti and Di Sciuva [35] also 

demonstrated how it is possible using the linear RZT to obtain more complex variations of the previous variables without 

increase the number of unknowns.  

It is also shown that the transverse shear stresses recovered via the equilibrium equations are very close with 3D exact 

solution. The transverse shear stresses obtained by the constitutive relations are sufficiently accurate in the average sense. 

In the remaining part of the numerical analysis, for a comparison purpose of new element performance will be considered 

only the transverse shear stresses obtained from equilibrium equations.  
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Figure 5 - Bending of a square cross-ply plate (L1), simply supported on all edges under transverse sinusoidal pressure 

(a/h=5); in e) RZT-const. stands for the values evaluated using the constitutive equations and RZT-equil. stands for the 

values coming from the integration of the local equilibrium equations. 

 

4.2 Shear locking problem 

In order to investigate the shear locking phenomenon of the four plate elements, Figure 6 shows the results for the non-

dimensional maximum deflection (𝑟𝑤) as a function of the span-to-thickness ratio (a/h). The plate considered is the square 

cross-ply (L1) plate, simply supported on all edges and under bi-sinusoidal transverse pressure. We consider a regular, 

i.e. the elements in the physical plane are square, 8x8 mesh (see Figure 9) considering only a quarter of plate. The ZQ4c 

element uses the numerical coefficient determined in the following subsection 4.3. 

 

Figure 6  - Non-dimensional maximum displacement vs span-to-thickness ratio for square simply supported cross-ply 

(L1) plate (8x8 a quarter of plate). 
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As expected, from Figure 6, the RZTQ4 element has already been affected by the shear locking problem for moderately 

thin plates (a/h=50). RZTQ8 has better results because it has been formulated using bi-quadratic shape functions for all 

the kinematic variables, but the cost computational is higher than the isoparametric four-node. However, the RZTQ8 

element is still affected by shear locking phenomenon. The ZQ4 element, with the constrained technique, has a good 

behaviour till a/h=103 but for very thin span-to-thickness ratios the shear-locking effect is very evident. Only the new 

element ZQ4c with the combination of the constrained technique and the new ESC factor has very good performance, 

using the full integration, for static problem and all the span-to-thickness ratios considered (from very thick plate to very 

thin ones).  

Because the RZTQ4, the RZTQ8 and ZQ4 elements have been assessed in Ref. [41], in the remaining part of this work 

we focus our attention to the analysis of this new improved element, the ZQ4c element. 

 

 

4.3 The role of Element Shear Correction Factor 

In this Section, we investigate the properties of the new Element Shear Correction Factor. The ESC factor is depending 

on the material-geometry parameters, and on the arbitrary coefficient (𝐶) that can improve the convergence rate of the 

solution, see Eqs. (59) and (62). To use the new ESC factor, it requires an optimal choice for the coefficient 𝐶. To obtain 

this value we compare the errors of strain energy computed using a regular mesh (8x8 elements, a quarter of plate) 

considering the following cases: 

• Simply supported square cross-ply (L1) and sandwich (L2) plates under bi-sinusoidal transverse pressure for 

a/h=103 

• Fully clamped square cross-ply (L1) and sandwich (L2) plates under uniform pressure for a/h=103 

We define the strain energy error as follows: 

 1 100%FEM
U

analytical

U
E

U

 
= −  
 
 

 (63) 
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Figure 7 – Percent error of strain energy for thin plates (a/h=103): a) Cross-ply L1 and b) Sandwich L2. 

Figure 7 shows the percent errors of the strain energy varying the parameter C. For each case, the best-fit curves are 

computed using a logarithmic regression. For the cross-ply (L1) plate, the average value is C=8.79, while for the sandwich 

(L2) plate the average value is C=94.40. A compromise between the two values can be considered as C=50.00 and this 

value is adopted in the remaining part of the numerical assessment of the ZQ4c element. 

Figure 8 shows the influence of the element geometrical and material properties of the element for the ESC, 𝜙2. The 

behaviour of this new ESC factor is very similar to those presented by Tessler and Hughes [50].  



25 

 

  

Figure 8 – Element shear correction factor 𝜙2 versus span-to-thickness ratio (a/h). a) Effect of element geometry for 

cross-ply (L1) and b) effect of material properties for laminate L1 and sandwich L2. 

4.4 Spectral analysis 

The ZQ4c element has the correct rank of stiffness matrix because the “full” gaussian quadrature is used. As expected, 

no spurious zero-energy modes are present. Also, the other elements, RZTQ4, RZTQ8 and ZQ4, when the full integration 

is performed no extra spurious energy have seen. Typically, in commercial FEM codes, the Reduced Integration is used 

to solve the shear locking problem. Even though this solution could solve the shear locking phenomenon it leads to the 

appearance of the extra zero strain energy modes that need to be solved using appropriate stabilization technique to avoid 

the hourglass effect. Table 4 gives the number of rigid body modes for the various plate elements (3 rigid translations 

and 3 rigid rotation) expecting for the RZTQ4 with reduced integration, where an extra zero-energy appears. 

Table 4 – Number of rigid-body modes 

Element Type of integration N° of rigid body modes 

RZTQ4 Full 6 

RZTQ4 Reduced 7 

RZTQ8 Full 6 

ZQ4 Full 6 

ZQ4c Full 6 

4.5 Convergence analysis 

In this Section, the convergence of ZQ4c element is investigated considering both static and free vibration problems.  

Due to geometry, boundary conditions and loading symmetry with respect to the reference axes, if not otherwise specified, 

all FEM results have been obtained meshing only one-quarter of the plate with a regular mesh, i.e., all the elements in the 

physical plane are square elements. Thus, the number of elements indicated below refers to the number of elements along 

the side of one-quarter of the full-plate. In Figure 8, the mesh discretization used in this analysis. 



26 

 

 

Figure 9 – Regular mesh distributions employed for convergence analysis. 

In this analysis, we consider a square cross-ply (L1) plate with various boundary conditions (simply supported and fully 

clamped plate) and with different load distributions (bi-sinusoidal and uniform transverse pressure). 

To show the convergence characteristics of the finite element solution Figures 10 and Figures 11 give plots of the ratios 

;           FEM FEM
w f

analytic analytic

f

f

w
r r

w
= =  

where (.)FEM  and (.)analytic  stand for the FEM solution and the analytic one, respectively. The analytic solution is obtained 

with a trigonometric expansion for the simply supported case or using the Ritz method [26] in which 11 Gram-Schmidt 

functions for the other boundary conditions. 

 

Figure 10 – Convergence results for static problems cross-ply (L1) plate (a/h=10, a/h=103, a/h=106). 
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Figure 11 – Convergence results for free vibration. Cross-ply (L1) plate (a/h=10, a/h=103, a/h=106). 

 

Figures 10 and Figures 11 show good monotonic convergence rates for both static and free undamped vibrations. With 

an 8x8 mesh pattern, we have very close results with the analytical ones with an error not higher than the 2%. For this 

reason, the ZQ4c element is very interesting from a computational point of view due to its accuracy with few elements. 

Now we consider a rectangular (a/b=0.5) cross-ply (L1) plate simply supported under bi-sinusoidal transverse pressure, 

we analyse the convergence rate for thick plate (a/h=8) and for very thin (a/h=106) plate. Figure 12 shows the good 

performance of ZQ4c element to predict the maximum deflection also for rectangular elements guaranteeing an error 

below 3% also for 4x4 mesh. 

 

Figure 12 – Convergence rates for rectangular (a/b=0.5) cross-ply (L1) plate simply supported under bi-sinusoidal 

transverse pressure. 
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We compare the maximum deflection results and the fundamental undamped frequency for square cross-ply (L1) and 

sandwich (L2) plates considering three combinations of boundary conditions and load cases for various span to thickness 

ratios: 

• Simply supported on all edges under bi-sinusoidal transverse pressure (SSSS-B) 

• Fully clamped under uniform transverse pressure (CCCC-U) 

• Cantilever and uniform tip edge pressure (CFFF-E) 

Table 5 shows the percent errors of maximum deflections and fundamental undamped frequencies defined as 

% 1 100%
ANALYTIC

M
e

AL

FE
rr

 
= − 
 

 

The analytical solutions have been obtained using the Ritz method [26] (as shown in Ref. [26], 11 orthogonal polynomials 

in both x1 and x2 directions guarantee the converged Ritz solution). The previous convergence studies, it is shown that 

16x16 mesh for a quarter of plate guarantees very accurate results, but in this case, for load conditions motivation, we 

have to consider a 32x32 mesh for the entire plate. 

Table 5 – Percent error of maximum deflection and fundamental undamped frequencies for cross-ply (L1) and 

sandwich (L2) plates for various span-to-thickness ratios (a/h). 

 L1 L2 

 SSSS-B CCCC-U CFFF-E SSSS-B CCCC-U CFFF-E 

a/h 𝑤 𝑓 𝑤 𝑤 𝑓 𝑤 𝑤 𝑓 𝑤 𝑓 𝑤 𝑓 

8 -0.05 0.06 -0.33 0.18 -0.04 0.04 0.00 0.01 -0.28 0.16 -0.05 0.06 

10 -0.05 0.04 -0.39 0.21 -0.04 0.04 0.01 0.00 -0.30 0.18 -0.05 0.06 

10
2

 -0.06 0.03 -0.31 0.19 -0.02 0.02 0.28 -0.14 1.51 -0.30 0.08 -0.06 

10
3

 -0.17 0.09 -0.32 0.26 -0.02 0.01 0.27 -0.13 1.17 -0.65 0.09 -0.07 

10
4

 -0.22 0.11 -0.35 0.29 -0.02 0.01 0.23 -0.12 1.09 -0.62 0.09 -0.07 

10
6

 -0.22 0.11 -0.35 0.30 -0.02 0.01 0.23 -0.11 1.09 -0.62 0.09 -0.06 

 

It is evident that the ZQ4c element is capable to predict with very accuracy the global quantities in the full range of span-

to-thickness ratio. 

 

4.6 Regular and distorted mesh analysis 

As well know, the performances of the plate finite elements depend also on their skewness ratio, i.e., on the degree of the 

distortion of their plan form geometry. For this purpose, Figure 13 shows the regular (a) and distorted (b) 16x16 mesh for 

a quarter of plate. To assess the relative performance of the ZQ4c element when used in distorted geometry, simply 
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supported and fully clamped square cross-ply (L1) and sandwich (L2) plates under bi-sinusoidal and uniform transverse 

pressure are considered.   

  
Figure 13 – Regular (a) and distorted (b) 16x16 mesh. 

Table 6 gives the percent errors of FEM results on the undamped fundamental frequency parameter for regular and 

distorted mesh patterns. 

Table 6 – Percent errors of FEM results on the maximum deflection and undamped fundamental frequencies for cross-

ply (L1) and sandwich (L2) plate regular and distorted 16x16 mesh (Figure 13). 

 Regular mesh (16x16) Distorted mesh (16x16) 

 L1 L2 L1 L2 

 SSSS-B CCCC-U SSSS-B CCCC-U SSSS-B CCCC-U SSSS-B CCCC-U 

a/h w f w f w f w f w f w f w f w f 

6 -0.04 0.08 -0.23 0.14 0.00 0.02 -0.26 0.15 -0.03 0.09 -0.32 0.20 -0.01 0.02 -0.33 0.20 

8 -0.05 0.06 -0.33 0.18 0.00 0.01 -0.30 0.16 -0.05 0.07 -0.47 0.26 0.00 0.01 -0.38 0.21 

10 -0.05 0.04 -0.39 0.21 0.01 0.00 -0.35 0.18 -0.06 0.06 -0.59 0.32 0.01 0.00 -0.45 0.23 

102 -0.06 0.03 -0.31 0.19 0.28 -0.14 -0.46 -0.09 -0.09 0.05 -0.50 0.28 0.26 -0.14 -0.60 -0.02 

103 -0.17 0.09 -0.32 0.26 0.27 -0.13 1.12 -0.64 -0.25 0.16 -0.47 0.37 0.17 -0.09 1.23 -0.71 

104 -0.22 0.11 -0.35 0.29 0.23 -0.12 1.09 -0.62 -0.30 0.19 -0.51 0.40 0.10 -0.06 1.19 -0.68 

105 -0.22 0.10 -0.35 0.30 0.23 -0.12 1.09 -0.62 -0.30 0.19 -0.51 0.42 0.10 -0.06 1.19 -0.67 

106 -0.22 0.11 -0.35 0.30 0.23 -0.11 1.09 -0.62 -0.30 0.19 -0.51 0.42 0.10 -0.06 1.19 -0.67 

 

Very good results are obtained, as expected for regular mesh, and also for distorted mesh, that makes the ZQ4c very 

competitive not only for its low computational cost but also for its excellent performance under elements distortion. 

4.7 Strain and stress distributions 

After validation of the ZQ4c elements for global quantities (maximum deflection and undamped fundamental frequency), 

the local behaviour (strain and stress distributions) is investigated in this Section. A simply supported square cross-ply 

(L1) plate under bi-sinusoidal transverse pressure is considered. Figure 14 shows the position of the points where the 

local quantities have been evaluated. We consider only a quarter of plate with a fine mesh of 32x32 elements. 
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Figure 14 – Points on 32x32 mesh where the local quantities are evaluated. 

 

The corrected values of transverse shear strains are computed from Eq. (48). In particular, the shear element correction 

factor can be applied directly to the computation of the element transverse shear strain, obtaining the following formulas: 
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In Figures 15, 16, 17 and 18 it is shown the in-plane and transverse shear strains and the non-dimensional stresses as 

defined previously. 
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Figure 15 – Strain quantities evaluated in points A, B and C (see Figure 14 for thick (a/h=6) cross-ply (L1) simply 

supported square plate under bi-sinusoidal load. 

  

  

Figure 16 – Stress quantities evaluated in point A, B and C (see Figure 14) for cross-ply (L1) simply supported square 

plate under bi-sinusoidal load. 
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Figure 17 – Strain quantities evaluated in points A, B and C (see Figure 14) for thin (a/h=106) cross-ply (L1) simply 

supported square plate under bi-sinusoidal load. 
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Figure 18 – Stress quantities evaluated in points A, B and C (see Figure 14) for thin (a/h=106) cross-ply (L1) simply 

supported square plate under bi-sinusoidal load. 

 

The ZQ4c element is very accurate to predict the distributions for strains and stresses. Exceptionally good results have 

been obtained in thick regime when the transverse shear contribute is more pronounced. Furthermore, in thin regime, the 

distributions for transverse shear strains and stresses are very close with the analytical ones. Finer mesh patterns could 

improve the solution for the transverse shear strains and stresses in thin regime.  

4.8 Bending moment and shear force distributions 

To further assess the performance of ZQ4c, the bending moment and the transverse shear force distributions along the 

midline of the plate are compared with the corresponding analytic solutions. Two square plates (L1) are considered: a 

simply supported plate with the bi-sinusoidal load, and a cantilevered plate subjected to a uniform constant edge load 
13F

. The plate models use the 17x17 element discretization: (i) a thick plate (a/h=6; a/b=1); (ii) a very thin plate (a/h=106 ; 
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a/b=1). The analytic solutions have been obtained using the Ritz method [26] with 10 orthogonal functions in x1 direction 

and 8 orthogonal functions in x2 direction. The shear force and bending moment computed using the finite element 

correspond to the centroid of each element on the midline of the plate. The shear force and bending moment are 

normalized as follows, 

a) bi-sinusoidal load condition: 
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b) uniform constant edge load condition: 
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It should be noted that the integration of the transverse shear stresses as defined in the previous Section produces the 

following expressions for the element transverse shear force resultants (for symmetrical lamination): 
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  (65) 

 Note that Eq. (65) is the same as Eq. (48). 

 

Figure 19 – Simply supported cross-ply (L1) square plate under bi-sinusoidal transverse pressure. Transverse shear 

force (a) and bending moment (b) distribution for span-to-thickness ratio (a/h=6). 
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Figure 20 – Simply supported cross-ply (L1) square plate under bi-sinusoidal transverse pressure. Transverse shear 

force (a) and bending moment (b) distribution for span-to-thickness ratio (a/h=106). 

 

 

Figure 21 – Cantilever cross-ply (L1) square plate under constant edge transverse pressure. Transverse shear force (a) 

and bending moment (b) distribution for span-to-thickness ratio (a/h=6). 

 

Figure 22 – Cantilever cross-ply (L1) square plate under constant edge transverse pressure. Transverse shear force (a) 

and bending moment (b) distribution for span-to-thickness ratio (a/h=106). 
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Figures 19-22 clearly demonstrate the high accuracy of ZQ4c predictions of transverse shear force and bending moment 

distributions for various span-to-thickness ratios, boundary conditions, and load cases. 

5. Concluding remarks 

The development of a robust, locking-free, four-node quadrilateral plate element for laminated composite and sandwich 

plates based on Refined Zigzag Theory has been presented. Initially, four- and eight-node isoparametric elements were 

examined. As expected, these elements demonstrated the detrimental effects of transverse shear locking in relatively thin 

and extremely thin plates. Subsequently, with the aim of alleviating the shear locking effect, the constrained 

anisoparametric interpolation strategy was adopted to formulate a simple and efficient four-node element. In addition, 

the element was further enhanced using the Element Shear Correction (ESC) factor, which was derived by way of a strain 

energy matching method. The resulting element, labeled ZQ4c, is free of locking even for extremely thin plates.  

The element formulation uses the full Gauss quadrature to integrate the element stiffness matrix, consistent mass 

matrix, and consistent load vector, thus avoiding the spurious zero-energy modes that commonly arise when reduced 

integration is used to integrate the transverse shear strain energy. The effect of ESC is such that the element stiffness 

matrix is well-conditioned over the entire range of span-to-thickness ratios. 

The ZQ4c element has demonstrated fast and monotonic convergence for moderately thick and extremely thin 

plates without suffering from transverse shear locking, verified up to a/h=106.  Owing to the intrinsic properties of RZT, 

the element is capable of predicting accurate distributions of strains and stresses across the laminate thickness.  The 

element is somewhat sensitive to geometric distortions, however, remarkably accurate results were consistently obtained 

for the transverse displacements, transverse shear resultants, bending moments, and natural frequencies, for various 

boundary conditions and load cases.  

Further enhancements of the presented element can be achieved by extending the formulation to shell analysis, 

invoking the mixed-field RZT(m) formulation (based on Reissner’s Mixed Variational Theorem), and by including von 

Karman’s geometrically nonlinear effects.  Finally, the present element may be viewed as an excellent candidate for 

inclusion into general-purpose finite element codes. 
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Appendix A: ZQ4c element shape functions 

The unconstrained quadrilateral element is based on anisoparametric interpolations. The shape functions for the variables 

(𝑢1, 𝑢2, 𝜃1, 𝜃2, 𝜓1, 𝜓2) are bi-linear, whereas the deflection, 𝑤, is interpolated using the eight-node serendipity shape 

functions. See Figure A.1 for RZT- unconstrained quadrilateral element geometry and nodal configuration.  

 
 

Figure A.1 – RZT-unconstrained quadrilateral plate element.  

 

The shape functions are cast in the row-vector form as (refer to Eq. (34)) 
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where the bi-linear Lagrange and eight-node serendipity shape functions are given, respectively, as 
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To achieve a four-node element configuration, a one-dimensional edge-constraint strategy is adopted, following the 

original ideas of Tessler and Dong [49] and Tessler and Hughes [50,51]. For RZT elements, a viable edge-constraint 
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strategy is to insist that the transverse shear strain measure, which involves both the bending rotation and zigzag amplitude 

variables,  

 
, nsz s nw  = + −  (A.5) 

be constant along the element edge, with s denoting the local edge coordinate; and where 𝜃𝑛, 𝜓𝑛 are the normal 

components of the edge bending rotation and zigzag amplitude, respectively (see Figure A.2). The key step in computing 

Eq. (A.5) is that the deflection w is first evaluated along the element edge and then differentiated with respect to s.   

 
Figure A.2 - Nodal dof’s (transverse deflection, bending rotations and zigzag amplitudes) and edge co-ordinate, s. 

The constant edge-constraint condition can be expressed as 

 
, 0sz s =  (A.6) 

The above constraint equation is preferred over a similar requirement on the effective transverse shear strain, previously 

examined in [40–42]. This is because if two adjacent elements with different transverse shear stiffness properties meet at 

a common edge, two incompatible deflection fields would have resulted along the common edge. The bending rotations 

and zigzag amplitude functions in Eq. (A.5) can be computed using appropriate orthogonal transformations, as  

 11 2 2sin ;   cos cos sin  n n         += = +   (A.7) 

where 𝛼 is the angle between the s and 𝑥1 axes. 

Substituting Eq. (A.7) in Eq. (A.5) and applying Eq. (A.6) results in 

 
, , 1, 1,2, 2,sin 0cos cos sinsz s ss s ss sw        + −= − =+   (A.8) 

Enforcing the above constraint condition along each element edge, the mid-edge deflection dof’s are condensed out, 

resulting in the coupled form for the deflection variable, which is given in terms of the vertex nodal dof’s of the deflection, 

bending rotations and zigzag amplitudes, as 

 
1 2 1 2

( )
( )

1 2 1 2

e T
e

L ww        
  =    N S S S S q q q q q  (A.9) 

 



39 

 

where 
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are the new shape functions given in terms of the edge projections defined as  (see Figure A.1)  
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Note that the shape functions in Eq. (A.10) are the same as those derived by Tessler and Hughes [50] for a Mindlin-type 

four-node quadrilateral element called MIN4. 
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