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Abstract—The advancement of low power technologies and design strategies for integrated 
circuits, together with the improvement of wireless communication systems and infrastructures, 
enabled a massive deployment of smart IoT sensors able to sense the physical world. Meanwhile, 
thanks to the recent breakthroughs in Artificial Intelligence (AI), Convolutional Neural Networks 
(ConvNets) in particular, computers took a further step towards the human intelligence, acquiring 
skills like autonomous learning and decision making. 

The integration of such AI technologies into the end-nodes of the IoT is the premise for a new 
paradigm—Artificial Intelligence of Things (AIoT)—where sensors will evolve from passive data 
collectors to active intelligent devices able to infer the meaning of data locally. This shift will thus 
enable the design of more efficient, scalable, and secure digital ecosystems. 

The migration from the cloud to the edge devices poses several issues due to the complexity of 
modern ConvNet models. The quest for high accuracy has brought the design of ConvNets with 
billions of hidden parameters and millions of arithmetic operations, thus preventing their deployment 
on resource-constrained, low-power devices. To tackle this problem, there is a wide consensus that 
the design of portable ConvNets needs a proper understating of the hardware resources available from 
the early stage of the training process. Specifically, the optimization of ConvNets should encompass 
a multi-objective problem formulation, involving extra-functional metrics like memory, energy, and 
power, besides accuracy. Rather than improving accuracy, the goal is to identify the trade-off frontiers 
in the design space to pick the best solution meeting the resource constraints. In practice, this can be 
achieved with algorithmic transformation built upon compression methods that exploit the intrinsic 
resiliency of neural networks to identify and remove those parts of the model with less contribution 
to accuracy. 

The search for optimality, however, gets challenging due to several reasons. Just like for training, 
the lack of a closed-form solution to describe the dynamics of the learning flow makes the 
optimization loop slow and uncertain. Moreover, the high number of dimensions to explore 
introduced an additional level of complexity overlooked by most of the existing works. A problem 
formulation neglecting these aspects might result too weak, or unsuited, for real-life applications. 

This optimization problem recalls the design of digital integrated circuits (ICs), where multiple 
conflicting constraints should be addressed, like area, power, and performance. Which of these 
dimensions gets the highest priority depends on the use-cases, the cost requirements, and in general 
on the design specifications. For instance, some use-cases require fast processing, whereas those 
applications with relaxed timing constraints are often limited in area and power consumption. To 
serve this purpose, the EDA tools for the IC segment have been engineered in a modular way, 
providing a collection of computer-aided methods with specific goals and formulations. Designers 
are free to build their own pipeline, integrating the most suited tools depending on their needs. 

Applying the same approach to the optimization of ConvNets seems a natural choice and it is 
exactly the main topic of this dissertation. Indeed, a one-size-fits-all solution does not exist due to the 
diversity of applications and the hardware back-end. Rather, dedicated solutions are needed for the 
analysis and optimization of memory, energy, and power, and their integration undergoes a vertical 
implementation, from software to hardware. 



Moreover, compression methods originally applied at design-time can be operated at run-time, 
leading ConvNets to become dynamic algorithms that modulate the resource usage  depending on 
external triggers raised at the application level (e.g. the battery level or the severity of the task). Once 
again, whereas the adaptive/dynamic control of resources is a well-known standard in hardware 
design (e.g. dynamic power management), it is a less explored field in the optimization of ConvNets. 
For this reason, special attention is devoted to this topic, demonstrating that algorithmic knobs for 
run-time reconfiguration introduce additional degrees of freedom in the optimization space.  

This dissertation is organized into three main parts, each of them focusing on a specific design 
goal. In the first part, it focuses on aggressive memory optimization which is particularly suited for 
devices with extreme memory constraints (<1MB). It first presents Prune and Quantize, a smart 
heuristic to explore the memory-accuracy space when neural network compression is pushed towards 
the deep memory region. Then, it introduces Encoding-Aware Sparse Training, a novel training 
technique for sparse ConvNets designed to maximize the compression rate of standard encoding 
algorithms. 

In the second part, the energy optimization problem is addressed elaborating the idea of Adaptive 
ConvNets, a solution that allows ConvNets to trade accuracy for energy at run-time. Two different 
implementations conceived for software-programmable neural accelerators with mixed-precision 
arithmetic are discussed and validated.  

In the third part, the focus shifts on power optimization, with emphasis on dynamic power and 
thermal management. A novel power distribution scheme named FINE-VH is presented, together with 
an automatic design methodology and the integration in a standard EDA flow, which enables a more 
efficient Dynamic-Voltage-Frequency Scaling (DVFS) policy. At last, the efficacy of ConvNets 
under thermal and accuracy constraints is assessed using DVFS as the main control knob. 

Overall, the technical contributions described in this dissertation offer a collection of 
design&optimization tools for ConvNets to (i) assess at the design-time both functional and extra-
functional metrics, (ii) explore different dimensions of the design-space (iii) identify the optimal 
solution that can meet the  hardware requirements. 


