
Doctoral Dissertation
Doctoral Program in Computer and Control Enginering (32.nd cycle)

Optimization Tools for
ConvNets on the Edge

Valentino Peluso
* * * * * *

Supervisors
Prof. Enrico Macii, Supervisor

Prof. Andrea Calimera, Co-supervisor

Doctoral Examination Committee:
Prof. Rene van Leuken, Referee, Delft University of Technology
Prof. Francesco Regazzoni, Referee, Università della Svizzera italiana
Prof. Nicola Bombieri, Università degli Studi di Verona
Prof. Maurizio Martina, Politecnico di Torino
Prof. Fabrizio Lamberti, Politecnico di Torino

Politecnico di Torino
September 3, 2020

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Valentino Peluso

Turin, September 3, 2020

www.creativecommons.org

Summary

The advancement of low power technologies and design strategies for integrated
circuits, together with the improvement of wireless communication systems and
infrastructures, enabled a massive deployment of smart IoT sensors able to sense
the physical world. Meanwhile, thanks to the recent breakthroughs in Artificial
Intelligence (AI), Convolutional Neural Networks (ConvNets) in particular, com-
puters took a further step towards the human intelligence, acquiring skills like au-
tonomous learning and decision making. The integration of such AI technologies
into the end-nodes of the IoT is the premise for a new paradigm-—-Artificial Intel-
ligence of Things (AIoT)-—-where sensors will evolve from passive data collectors
to active intelligent devices able to infer the meaning of data locally. This shift will
thus enable the design of more efficient, scalable, and secure digital ecosystems.

The migration from the cloud to the edge devices poses several issues due
to the complexity of modern ConvNet models. The quest for high accuracy has
brought the design of ConvNets with billions of hidden parameters and millions of
arithmetic operations, thus preventing their deployment on resource-constrained,
low-power devices. To tackle this problem, there is a wide consensus that the
design of portable ConvNets needs a proper understating of the hardware resources
available from the early stage of the training process. Specifically, the optimization
of ConvNets should encompass a multi-objective problem formulation, involving
extra-functional metrics like memory, energy, and power, besides accuracy. Rather
than improving accuracy, the goal is to identify the trade-off frontiers in the design
space to pick the best solution meeting the resource constraints. In practice, this
can be achieved with algorithmic transformation built upon compression methods
that exploit the intrinsic resiliency of neural networks to identify and remove those
parts of the model with less contribution to accuracy.

The search for optimality, however, gets challenging due to several reasons.
Just like for training, the lack of a closed-form solution to describe the dynamics
of the learning flow makes the optimization loop slow and uncertain. Moreover, the
high number of dimensions to explore introduced an additional level of complex-
ity overlooked by most of the existing works. A problem formulation neglecting
these aspects might result too weak, or unsuited, for real-life applications. This

ii

optimization problem recalls the design of digital integrated circuits (ICs), where
multiple conflicting constraints should be addressed, like area, power, and per-
formance. Which of these dimensions gets the highest priority depends on the
use-cases, the cost requirements, and in general on the design specifications. For
instance, some use-cases require fast processing, whereas those applications with
relaxed timing constraints are often limited in area and power consumption. To
serve this purpose, the EDA tools for the IC segment have been engineered in a
modular way, providing a collection of computer-aided methods with specific goals
and formulations. Designers are free to build their own pipeline, integrating the
most suited tools depending on their needs.

Applying the same approach to the optimization of ConvNets seems a natural
choice and it is exactly the main topic of this dissertation. Indeed, a one-size-fits-
all solution does not exist due to the diversity of applications and the hardware
back-end. Rather, dedicated solutions are needed for the analysis and optimiza-
tion of memory, energy, and power, and their integration undergoes a vertical
implementation, from software to hardware.

Moreover, compression methods originally applied at design-time can be oper-
ated at run-time, leading ConvNets to become dynamic algorithms that modulate
the resource usage depending on external triggers raised at the application level
(e.g. the battery level or the severity of the task). Once again, whereas the adap-
tive/dynamic control of resources is a well-known standard in hardware design
(e.g. dynamic power management), it is a less explored field in the optimization
of ConvNets. For this reason, special attention is devoted to this topic, demon-
strating that algorithmic knobs for run-time reconfiguration introduce additional
degrees of freedom in the optimization space.

This dissertation is organized into three main parts, each of them focusing on
a specific design goal. In the first part, it focuses on aggressive memory opti-
mization which is particularly suited for devices with extreme memory constraints
(<1 MB). It first presents Prune and Quantize, a smart heuristic to explore the
memory-accuracy space when neural network compression is pushed towards the
deep memory region. Then, it introduces Encoding-Aware Sparse Training, a novel
training technique for sparse ConvNets designed to maximize the compression rate
of standard encoding algorithms. In the second part, the energy optimization
problem is addressed elaborating the idea of Adaptive ConvNets, a solution that
allows ConvNets to trade accuracy for energy at run-time. Two different imple-
mentations conceived for software-programmable neural accelerators with mixed-
precision arithmetic are discussed and validated. In the third part, the focus shifts
on power optimization, with emphasis on dynamic power and thermal manage-
ment. A novel power distribution scheme named FINE-VH is presented, together
with an automatic design methodology and the integration in a standard EDA

iii

flow, which enables a more efficient Dynamic-Voltage-Frequency Scaling (DVFS)
policy. At last, the efficacy of ConvNets under thermal and accuracy constraints
is assessed using DVFS as the main control knob.

Overall, the technical contributions described in this dissertation offer a col-
lection of design&optimization tools for ConvNets to (i) assess at the design-time
both functional and extra-functional metrics, (ii) explore different dimensions of
the design-space (iii) identify the optimal solution that can meet the hardware
requirements.

iv

Acknowledgements

I would like to thank Prof. Enrico Macii, for giving me the opportunity to join
the EDA research group.

I am extremely grateful to prof. Andrea Calimera, for its valuable advice and
the countless hours devoted to discuss my ideas and support my research.

I also acknowledge the project “SENSEI - Sensemaking for Scalable IoT Plat-
forms with In-Situ Data-Analytics: A Software-to-Silicon Solution for Energy-
Efficient Machine-Learning on Chip,” funded by Compagnia di San Paolo, with
Università di Bologna as academic partner and ST Microelectronics as non-academic
partner.

vi

It is not his possession of knowledge, of
irrefutable truth, that makes the man of
science, but his persistent and recklessly
critical quest for truth.

Karl Raimund Popper
The Logic of Scientific Discovery

Contents

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Context & Motivation . 1
1.2 Towards Edge Inference . 3

1.2.1 Software Optimization: the Evolution of ConvNet Architec-
tures . 3

1.2.2 Hardware Optimization: Platforms for Edge Inference 5
1.3 Objectives & Contribution . 8

2 Memory-Driven Optimization 11
2.1 Background on Neural Network Compression 12

2.1.1 Pruning . 12
2.1.2 Quantization . 14
2.1.3 Pruning and Quantization 15

2.2 PaQ: Prune and Quantize . 16
2.2.1 Framework Overview . 17
2.2.2 Evaluation of PAQ . 22
2.2.3 Discussion . 32

2.3 EAST: Encoding-Aware Sparse Training for Deep Memory Com-
pression of ConvNets . 32
2.3.1 Motivation . 34
2.3.2 Flow overview . 35
2.3.3 Experimental Results . 37

3 Energy-Driven Optimization 41
3.1 Taxonomy of Adaptive ConvNets 45

3.1.1 Control Knob . 45
3.1.2 External Trigger . 46

viii

3.1.3 Optimization and search engine 47
3.1.4 Training . 48

3.2 Mixed-precision ConvNets . 48
3.2.1 Fixed-Point Quantization 48
3.2.2 Training Mixed-Precision ConvNets 49

3.3 Energy-Driven Adaptive ConvNets via On-line Precision Scaling . . 50
3.3.1 Design and Optimization . 51
3.3.2 Runtime implementation . 57
3.3.3 Experimental Results . 59
3.3.4 Discussion . 66

3.4 Scalable-Effort ConvNets for Multilevel Classification 68
3.4.1 Motivation . 68
3.4.2 Multilevel Classification . 69
3.4.3 Precision Scalable Arithmetic 72
3.4.4 Fixed-point Quantization & Fine-Tuning 76
3.4.5 Precision Assignment Heuristic 77
3.4.6 Experimental Results . 79
3.4.7 Discussion . 84

4 Power-Driven Optimization 87
4.1 Power optimization on ASICs: FINE-VH 88

4.1.1 Background . 91
4.1.2 Implementing FINE-VH . 94
4.1.3 Simulation and Emulation 99
4.1.4 Evaluating FINE-VH . 100
4.1.5 Discussion . 108

4.2 Power optimization on CPUs: Voltage-Scaled ConvNets 109
4.2.1 Thermal-Aware Power Management in embedded

CPUs: Reactive vs. Proactive DVFS 111
4.2.2 Thermal-Aware Performance Optimization and Characteri-

zation Framework . 115
4.2.3 Experimental Setup and Results 116
4.2.4 Discussion . 121

5 Conclusions 124

List of publications 126

Bibliography 129

ix

List of Tables

2.1 Hardware figures of the Cortex-M IoT MCUs by ARM. 12
2.2 List of abbreviations. 23
2.3 Benchmark overview. Convolutional layer with shape (cout, kh, kw),

fully-connected layer with shape (cout) and max-pooling layer with
shape (kh, kw); kh and kw are the height and width of input planes
in pixels, while cout refers the number of output channels. 24

2.4 Hardware specification of the boards adopted as test-bench. 25
2.5 Optimal vs. hardware-compliant solutions under different memory

constraints Mt: column Pareto lists the Pareto points P as for the
plots of Fig. 2.2; columns PaQ-8 and PaQ-16 refer to solutions
genereted by the PaQ flow using 8- and 16-bit respectively(red lines
in Fig. 2.2); column ∆ reports the distance (the lower is better)
between optimal and hardware-compliant solutions for both PaQ-
8 and PaQ-16 in terms of accuracy. Cells corresponding to those
solutions with a top-1 accuracy ≪50% have not been filled. 28

2.6 Average number of fine-tuning epochs to achieve the maximum top-
1 accuracy on the test set. 32

2.7 Top-1 classification accuracy on CIFAR-10 and weight memory of
the dense ResNet-9 after 32-bit floating-point training (FP32), after
quantization (Q8), and after LZ4 compression (Q8+LZ4). 38

2.8 Sparsity (S) and Top-1 Accuracy (A) of weight pruning (WP) and
EAST on ResNet-9 at different memory constraint Mt (KB). CR is
the compression ratio w.r.t. the floating-point ConvNet. 39

3.1 Schematic classification of different implementations of Adaptive
ConvNets. 44

3.2 Top-1 classification accuracy of five state-of-the-art ConvNets on the
ImageNet validation-set at different precision: 32-bit floating-point
(FP32), 16-bit fixed point (FX16), 8-bit fixed-point with truncation
(FX8-T), 8-bit fixed-point with rounding (FX-R). 52

3.3 Benchmark ConvNets overview. Top-1 accuracy refers to the 32-bit
floating-point model. 60

x

3.4 Hardware configuration of the adopted ConvNet accelerator. 61
3.5 Optimization parameters NSGA-II* 62
3.6 Figure of merits of the Pareto fronts for the selected benchmarks. . 63
3.7 Upper bound of the energy cost for weight re-configuration. Values

are normalized to the energy of a full-precision inference. 65
3.8 Figure of merits of the Pareto fronts for the selected benchmarks

using weight re-configuration with truncation. 65
3.9 Normalized computational effort (#Operations) at different preci-

sion settings (1 Operation = 1 MAC 4x4). 75
3.10 List of benchmarks. 79
3.11 Top-1 accuracy difference (∆Accuracy) with respect to fp-32 after

quantization (Q-fx) and after fine-tuning at full precision (Fine-
fx:full). 80

3.12 Top-1 Accuracy in multilevel classification at different levels (L) of
abstraction. The test set is composed by 40k images. 82

3.13 AlexNet results. 85
3.14 SqueezeNet results. 85
3.15 MobileNet results. 86
4.1 Figures of merit of the RI5CY after FINE-VH 102
4.2 Memory, accuracy, and nominal latency of the selected benchmarks. 117
4.3 Thermal headroom of different ConvNets in continuous inference.

Nsafe and tsafe are the maximum number of consecutive inferences
and the execution time at safe temperature values (i.e., T < Tmax). . 118

4.4 Nominal inference latency at 3 thread execution vs. worst case la-
tency under DVFS based proactive management at 4 thread execution.120

xi

List of Figures

1.1 Schematic view of a ConvNet Architecture for Image Classification. 2
1.2 Top-1 Accuracy vs. Number of Parameters of open-source ConvNets

on the Imagenet dataset. 4
1.3 Schematic view of the the dissertation outline. 9
2.1 Framework overview. 18
2.2 Solutions of PaQ in the memory-accuracy space for the three tasks

under analysis (a) IC, (b) KWS, (c) FER. The solution with the
best accuracy (Px) is marked with the green cross. The hatched
area (enclosed by the white dotted curve) covers the plateau (T)
collecting all solutions s.t. the accuracy loss L ≤ 0.5 w.r.t Px. The
yellow line (Q) highlights the solutions where only b-quantization
applies. The red dash-dotted lines (PaQ-8 and PaQ-16) highlights
the solutions generated by PaQ using 8- and 16-bit respectively, i.e.
the solutions compliant with the target hardware. The green dotted
line indicates the Pareto points (P) in the memory-accuracy space,
i.e. all the solutions more accurate than all the other points with
the same target memory Mt. The right box reports the absolute co-
ordinates of Px and each Pareto point in the format (target memory,
bit-width, top-1 accuracy). 27

2.3 Top-1 accuracy vs. memory footprint for KWS. 30
2.4 Average inference time per sample of PaQ-8 solutions on KWS. . . 31
2.5 Sparsity vs. Accuracy trade-offs of a compressed 9-layer ResNet

under different memory constraints (the labeled numbers). The net
is trained on CIFAR-10, then compressed via weight pruning and
encoding. The blue dash-dotted line marks the accuracy of the
original dense version (140 KB). 33

2.6 Weight Pruning (a) vs Group Pruning (b). Colored weights denotes
zero-values . 36

2.7 Epochs vs. Memory in weight pruning (blue line) and EAST (red
line) for Mt = 32 KB (dashed line). The dots indicates when the
group size increases. 40

xii

3.1 Abstract template for Adaptive ConvNets. At run-time, a control-
knob changes the configuration of the processing elements (PEs)
and of the ConvNet to switch among different operating point in the
energy-accuracy space. In this work, the control-knob is precision
scaling. 42

3.2 Design-Flow Overview . 53
3.3 Schematic view of design-time optimization flow. 54
3.4 Abstract execution flow and PE configuration at 16-bit (3.4a) and

8-bit (3.4b). 58
3.5 Weight (Wi) re-configuration with truncation (3.5a) and rounding

(3.5b). 59
3.6 Pareto fronts of the selected benchmark. The x-axis is the normal-

ized energy with respect to the full-precision ConvNet (all layers
at FX16). The y-axis is the Top-1 Accuracy loss with respect to
the full-precision ConvNet. The crosses (×) indicate the operat-
ing points returned by Algorithm 2. The dot (•) denotes the full-
precision ConvNet. 63

3.7 Energy vs Accuracy of topology and precision scaling. Energy is
normalized with respect to ResNet50 at full-precision (green dot). . 64

3.8 Pareto curve of MobileNet v2 with standard NSGA-II and our
NSGA-II* implementation with penalty score. 66

3.9 Population evolution across different iterations for MobileNet v2
with NSGA-II (a) and NSGA-II* (b). 67

3.10 Schematic view of a WordNet-like graph. 69
3.11 Multilevel classification with ConvNets. 71
3.12 Iterative product procedure to compute the dot-product between

two vectors. 73
3.13 Structural view of the scalable-precision processing element. 75
3.14 SqueezeNet Top-1 Accuracy during fine-tuning. Black line (dashed):

fp-32.; Red line (◦) Fine-fx:full (8x8); Green line (⋄): Fine-
fx:mixed (8x4); Blue line (▽): Fine-fx:half (4x4) 81

3.15 Operation Savings vs. Top-1 Accuracy trade-off for SqueezeNet
with calibration set size equal to 10000. 83

3.16 Variation of Aaccuracy Difference vs Calibration-Set Size for SqueezeNet. 84
4.1 Schematic view ideal-DVFS and dual-Vdd power management. . . . 89
4.2 Performance-Power trade-off curves of existing DVFS schemes. . . . 91
4.3 Classification of low-power knobs granularity. From coarse-grained

architectural level (a), up to fine grained solutions like row-based
(b) and tile-based (c) partitioning. 93

4.4 Tile-based partitioning and tile organization 95

xiii

4.5 Intra-tile leakage current (a) and its mitigation via poly-biasing (b) 97
4.6 Optimal poly-bias assignment through local re-synthesis 98
4.7 Average slow-down factors for the different poly-bias options. 98
4.8 Layout partitioning of A RI5CY core after standard-cell placement

(49 tiles). 101
4.9 Poly-bias distribution across the interface-cells 103
4.10 Comparative analysis among four DVFS schemes: i) ideal-DVFS, ii)

Vdd-Hopping, iii) Vdd-Dithering, iv) FINE-VH (49 tiles); ∆Vdd=200 mV
(left), ∆Vdd=100 mV (right). 103

4.11 Power savings of the proposed FINE-VH (49 tiles) with respect to
ideal-DVFS and Vdd-Hopping; ∆Vdd=200 mV (left), ∆Vdd=100 mV
(right). 104

4.12 Percentage of standard cell area @VddL for different number of tiles. 105
4.13 Power savings with respect to ideal-DVFS before and after PB op-

timization for ∆Vdd=100 mV and ∆Vdd=200 mV (49 tiles) 106
4.14 Voltage Assignment (25 tiles) . 106
4.15 Power comparison between Vdd-Hopping and FINE-VH for a PE

partitioned into 400 tiles (after place&route). 108
4.16 Qualitative trends of temperature (above) and inference latency (be-

low) over time under reactive thermal management. 112
4.17 Inference latency in reactive (red) and proactive (blue) thermal

management. 113
4.18 Average latency (Lavg) under reactive and proactive thermal man-

agement strategies. 114
4.19 Schematic view of the proposed characterization flow. 115
4.20 Percentage of execution time at V Flow = 900 MHz over a runtime

of 100 s. 120
4.21 Results of the characterization flow. 122
4.22 Temperature gradient (top) and inference latency (down) of contin-

uous inference for 100 s. The annotations reports the occurrence of
the first thermal throttling event. 123

xiv

Chapter 1

Introduction

1.1 Context & Motivation
Deep Convolutional Neural Networks (ConvNets hereafter) are brain-inspired

computational models that have brought breakthroughs in many fields, such as
computer vision [1], speech recognition [2] and natural language processing [3].
In its more general embodiment, a ConvNet consists of a sequence of processing
stages commonly called layers. At each layer, transformations learned during the
training phase project raw data over a multi-dimensional space where standard
classifiers can outperform the accuracy of humans [4]. From a computational
viewpoint, ConvNets are nothing more than matrix multiplications between pre-
trained parameters (the synaptic weights of the hidden neurons) and the input
data.

The most common use-case for ConvNets is image classification where a multi-
channel image (e.g. RGB) is processed producing as output the probability that
the subject depicted in the picture belongs to a specific class of objects or concepts
(e.g. car, dog, airplane, etc.). One can see this end-to-end inference process as
a kind of data compression: high-volume raw-data (the pixels of the image) are
compressed into a highly informative tag (the resulting class). In this regard,
the adoption on the Internet-of-Things (IoT) is disruptive: distributed smart-
objects with embedded ConvNets may implement data-analytics at the edge, near
the source of data [5], with advantages in terms of predictability of the service
response time, energy efficiency, privacy and, in general, scalability of the IoT
infrastructure.

Starting from the astounding results obtained by Krizhevsky et al. [1] in 2012,
ConvNets evolved quickly achieving impressive results. However, it is possible to
recognize some basic characteristics common to many models. The organization
of a ConvNet reflects the hierarchical structure of the primary sensory areas of

1

1.1 – Context & Motivation

the visual cortex [6]. The rationale is the same implemented by the human brain,
indeed: extract, evaluate, and combine features that have been learned to be
common among the majority of samples belonging to the same class. The feature
extraction is hierarchical, namely, low-level features are extracted first and then
used to extract features at a higher level. Intuitively, edges may form shapes, which
in turn may form objects. Features at the higher levels are then used to classify
the content of the picture. This sequential procedure is built through a chain of
computational layers that implement algebraic operations on matrices. Fig. 1.1
shows the topology of a generic ConvNet. Convolutional layers run matrix-matrix
convolution between their local filters and the multi-dimensional map generated
by previous layers; filters correspond to different features to extract. Activation
layers (blue blocks) introduce non-linearity in the feature space applying specific
functions, e.g. Rectified Linear Unit (ReLU), on the output map produced by the
convolutional layers; non-linearity helps to amplify semantic differences. Finally,
reduction layers apply a sub-sampling of the activation maps using functions like
max-pooling or average pooling; sub-sampling helps in reducing the cardinality of
the features, increase the level of abstraction and make classification less sensible
to geometrical distortions. Once all the features have been extracted, the last
stages of a ConvNets implement the actual classification. Fully connected layers
serve this purpose using multi-layer perceptrons that apply geometric separation.
At the very last stage, a softmax function is used to score the available labels; the
one with the highest probability identifies the class.

Conv1
Pool1 Conv2

Pool2 Conv3
Pool3 Conv4

Pool4 Conv5
Pool5

fc6 fc7

fc8+ Soft max

Cat

Figure 1.1: Schematic view of a ConvNet Architecture for Image Classification.

The design of ConvNets encompasses a training stage during which the synaptic
weights of the hidden neurons are learned using a back-propagation algorithm (e.g.
the Stochastic Gradient Descent [7]). The learning is supervised and accuracy-
driven, namely, it adjusts the weights such that an accuracy loss function evaluated
over a set of labeled samples is minimized. Although the basic theory is known
since long time, only the advent of GPUs made ConvNets evolving from pure
mathematical models to practical solutions. Indeed, the learning stage involves a

2

1.2 – Towards Edge Inference

brute-force search that can be afforded only by massively parallel processing, just
what GPUs offer.

Since a proper design and optimization methodology does not exist yet, today’s
ConvNets are typically oversized in terms of both computational and memory
resources. Even small networks require billions of multiplications and millions of
weights to be stored. This prevents their use on low-power embedded platforms
which offer low storage capacity, low computational power, and limited energy
budget. How to design ConvNets that fit the stringent resource constraints while
preserving classification accuracy is an open issue.

Specifically, the processing of ConvNets under resource constraints is a techno-
logical challenge at the intersection between the theories of machine learning and
those of computer engineering, where vertical strategies spanning from the de-
sign of highly efficient circuits and systems to algorithmic optimization and model
training must be brought together.

The research community is attacking the problem from two opposite directions.
At the software level, with the design of more compact network architectures
and optimization techniques reducing the cardinality of ConvNets, yet preserving
competitive prediction accuracy. At the hardware level, with the design of custom
accelerators [8], or reconfigurable spatial architectures [9]. The achieved results
are impressive: performance close to the TOPS with power consumption of few
hundreds of µW [10].

In this chapter, we first review the relevant trends in this context (Section 1.2):
Section 1.2.1 focuses on the software level, summarizing the main advancements
in neural network design; Section 1.2.2 focuses on the hardware level, presenting
a brief overview of the available hardware platforms for edge inference. Then, we
introduce the goals and the main contributions of our research, together with the
overall organization of the dissertation (Section 1.3).

1.2 Towards Edge Inference

1.2.1 Software Optimization: the Evolution of ConvNet
Architectures

In the early years of life, ConvNets were mainly optimized to improve accuracy,
without any concern on their computational complexity. Since higher accuracy can
be afforded increasing the number of parameters and the operations, the evolu-
tion of ConvNets experienced an exponential increase in the resources needed for
inference. This trend is clearly depicted in Fig. 1.2, which shows the accuracy-
complexity trade-off achieved by the most common open-source ConvNets trained
on the Imagenet dataset. The rise of accuracy from 50.6% (bottom-left MobileNet)

3

1.2 – Towards Edge Inference

to 84.4% (top-right EfficientNet) comes at the cost of 132× more parameters.

10
0

101 102

Number of Parameters (M)

50

55

60

65

70

75

80

85
T
o
p
-1

A
cc
u
ra
cy

(%
)

AlexNet (2012)

VGGs (2014)

ResNets (2015)

DenseNets (2017)

MobileNets (2017)

FBNet (2018)

MnasNets (2018)

EfficientNets (2019)

Figure 1.2: Top-1 Accuracy vs. Number of Parameters of open-source ConvNets
on the Imagenet dataset.

The growing need of portability pushed designers to consider hardware related
metrics besides accuracy. Rather than searching for the most accurate solution,
designers soon focused on a wider exploration of the design space, aiming to offer
a set of solutions in the accuracy-complexity space from which the user can pick
the best configuration meeting the hardware constraints. To this purpose, modern
ConvNets follow a common characteristic: they are built upon an architectural
template that can be resized depending on memory and performance requirements.
This can be observed in Fig. 1.2, which reports the different existing versions of
each network. The different versions are generated through the implementation
of different scaling knobs: depth, width, and resolution. Their joint application
enables to span the design space. The depth indicates the number of processing
layers; its adoption as scaling knob was introduced by VGG [11]. The width
refers to the number of filters of each convolutional layer; one standard practice
is to define a multiplicative factor—the width multiplier—that indicates the ratio
of filters related to the baseline implementation. The resolution represents the
spatial dimension of the input data, which also affects the cardinality of the inner
tensors. Width and resolution scaling were pioneered by MobileNet [12] and are
still adopted by more recent networks like EfficientNet [13]. The latter introduced
the concept of compound scaling, which seeks the optimal balance between the
three knobs. Regardless of the knob adopted, lower resources imply lower accuracy.
The challenge is to identify Pareto fronts in the design space.

In this context, Neural Architecture Search (NAS) [14] has emerged as the
most promising technology to discover novel topology configurations. The basic
principle of NAS is to integrate the network hyper-parameters, like the number of
layers, the filter shapes, and the kind of operations, in the training loop besides the

4

1.2 – Towards Edge Inference

network weights. This enables to fully automate the search for new architectures,
but at the cost of much longer training time, from few hours up to several days of
GPU processing. FBnet, MnasNet, and EfficientNet (see Fig. 1.2) are some rep-
resentative networks generated by NAS, achieving better trade-offs than previous
hand-crafted designs.

Although the impressive advancements, there is still room for further optimiza-
tion. In this regard, this dissertation investigates orthogonal strategies to lower
the complexity of ConvNets, generated either by manual or automatic design. Our
contribution is threefold. First, with compression methods that remove redun-
dant information (i.e. pruning) and/or exploit the resiliency of ConvNets through
low-precision arithmetic (i.e. quantization). Second, with the design of dynamic
models that can modulate their resource requirements at run-time. Third, with a
joint co-operation between software and hardware optimizations, especially when
dealing with power minimization. A thorough overview of existing compression
strategies related to our works is presented throughout the dissertation.

1.2.2 Hardware Optimization: Platforms for Edge Infer-
ence

Despite the research efforts towards the development of optimized and com-
pressed models, the deployment of ConvNets remains an open problem. Besides
complexity, one of the major obstacles is the diversity of the existing hardware ar-
chitectures for edge inference. The main candidate solutions include (but are not
limited to) (i) custom accelerators based on application-specific designs (ASICs)
(ii) general-purpose embedded CPUs, and (iii) ultra low-power microcontroller
units (MCUs). These options are not in competition, rather the optimal choice
depends on the application, as each use case has different compute, area, and
cost requirements. This heterogeneity prevents the development of a one-size-fits-
all optimization pipeline. Moreover, the hardware can offer additional degrees of
freedom in the optimization, providing specific features and/or knobs that enable
to achieve a better quality of results with smaller and faster models. A compre-
hensive optimization of edge ConvNets should therefore include a set of different
algorithmic solutions, each of them tailored to the underlying hardware. Whereas
this aspect is often overlooked by current research, it receives particular attention
in this dissertation. In this section, we summarize the pros and cons of the al-
ternative hardware architectures, highlighting the opportunities and challenges of
each case.

5

1.2 – Towards Edge Inference

Application Specific Integrated Circuits

Custom ASICs for neural network inference are today integrated into many
system-on-chips for the mobile segment. Their success lies in their performance
stability and power efficiency, thanks to the availability of memory logic and func-
tional cores dedicated to host only deep learning workloads. They consist of a
processing unit, usually built as an array of processing elements (PEs), assisted
by a distributed memory hierarchy that helps to improve the bandwidth and to
avoid frequent accesses to large and energy-hungry off-chip memories (DRAM).
The processing unit is an array of tightly coupled processing elements (PEs) that
receive the incoming operands from the main inputs or the upstream nodes and
produce partial results that are locally stored and/or passed downstream follow-
ing a pre-defined data-flow. Thanks to the distributed communication among PEs,
an array of N×N elements consumes N+N inputs and produces N×N outputs at
each cycle, thereby enabling massive parallel computation. Systolic units are a
particular class of such processing arrays that leverage the intrinsic locality of the
convolution operation and enable efficient data reuse. Architectural templates of
this kind can be re-scaled to fit the requirements of both cloud [15] and edge [16]
systems.

Due to the success of low-precision ConvNets, custom ASICs often integrate
multi-precision arithmetic units, which enable to exploit the resilience of neural
networks to arithmetic errors in favor of higher compression ratio. Since the degree
of resilience, hence the precision, depends on the network and the application, the
trend is to develop flexible arithmetic units that support a fine-grain control on
the bit-width [17].

The architecture presented in [18] is one of the most representative examples
with hardware support for mixed-precision computing. The core is built using an
array of multi-precision PEs that can deliver 1 × 16-bit MAC or 2 × 8-bit MAC per
cycle. Running to low-precision, the PEs can operate at a lower voltage-frequency
level, which means lower power consumption, keeping the same throughput of
the full-precision. Hence, the joint application of voltage and precision scaling
improves the overall energy efficiency. More recent architectures offer additional
degrees of freedom with a finer selection of the bit-width: BitFusion [19] is an
ASIC accelerator with support of 2-, 4-, 8-, and 16-bit operations; BISMO [20] is
a time-scheduled design for FPGAs that implements a bit-serial matrix multipli-
cation algorithm; UNPU [21] is an ASIC accelerator that provides an arithmetic
instruction set with arbitrary bit-widths from 1- to 16-bit. Different solutions for
variable precision are available also in commercial products, like the NVIDIA Tur-
ing GPU [22] (4- and 8-bit) and the PowerVR Series 2NX by Imagination [23]
(arbitrary bit-width from 4 to 16-bit).

However, standard ConvNets do not exploit efficiently the reconfigurability of

6

1.2 – Towards Edge Inference

the hardware. The bit-width is a fixed parameter, selected at design-time such that
the prediction quality keeps the same level of the full-precision model. ConvNets
are therefore designed and implemented as static models. Instead, the design of
Adaptive ConvNets that can self-tune their arithmetic precision at run-time could
enable dynamic trade-offs between accuracy and complexity. To this purpose,
there is a strong need to develop novel algorithmic optimizations. In Chapter 3,
we address this need, presenting two different strategies for the design and imple-
mentation of Adaptive ConvNets.

Embedded CPUs

Embedded CPUs represent the most attractive solutions to deploy ConvNets
on mobile platforms like smartphones. Indeed, today most mobile devices inte-
grate high-performance multi-core system-on-chips, which can become intelligent
systems through a software update. Moreover, CPUs offer higher flexibility than
custom hardware, as they can run also other tasks than inference, such as driving
peripherals and sensors, and therefore host comprehensive sensing environments.

An example is the Cortex-A family by ARM. It comes with the NEON unit,
an advanced single-instruction multiple-data (SIMD) architecture that supports
float and integer vector operations. Proper use of such a module allows to maxi-
mize the parallelism, reduce the memory accesses, and hence achieve substantial
performance boost [24].

The success of CPUs in the field of embedded ConvNets is demonstrated by
the growing number of inference engines [25]. These tools provide an abstract user
interface coupled with specialized deep learning libraries that collect handwritten
kernels built with NEON intrinsics and/or assembly code. The most advanced and
stable solutions include Arm NN by Arm, ncnn by Tencent, and TensorFlow Lite
by Google.

Due to the integration of high-performance components in small form-factor,
the primary bottleneck of CPU-based platforms is their limited thermal design
power. Indeed, the execution of intensive workloads like ConvNets raises several
concerns related to power dissipation. This problem is often neglected by stan-
dard optimization pipelines, which evaluate the inference performance in nominal
operating conditions, a too optimistic choice not reflecting actual use-cases. To
provide a more realistic analysis, Section 4.2 presents a thorough characterization
of the achievable power-performance trade-offs in embedded CPUs.

Microcontreller Units

To sustain the scalability of the IoT, there is an increasing demand to deploy
ConvNets on ultra low-power sensing systems powered by tiny MCUs. Coupled

7

1.3 – Objectives & Contribution

with low-power sensors (e.g. MEMS), MCUs are extremely popular in several
fields, spanning from battery-powered applications (e.g. wearable technologies) to
high-end devices for navigation and positioning, predictive maintenance in indus-
try, and augmented virtual reality components.

However, the migration towards such tiny devices introduces several challenges.
ConvNets previously processed in the cloud with plenty of resources shall be pro-
cessed in a mW power envelope using processor cores with tight resource budgets
and low storage capacity. As an example, the RISC-based MCUs designed by
ARM for the IoT segment (i.e. the Cortex-M family) integrate limited integer
arithmetic options (16- and 8-bit) and very small on-chip memories (few hundreds
of KB). Clearly, this limits the complexity of ConvNets that can be hosted.

As will be discussed in Chapter 2, MCUs poses additional constraints besides
low performance and memory, originating from the limited instruction set. Due
to the lack of proper hardware components, most of the existing compression
strategies turn out to be inefficient when implemented on MCUs. Considering the
actual constraints is therefore paramount when devising algorithmic optimizations.
To answer this need, we present two novel compression strategies tailored to port
ConvNets in memory-bounded MCUs.

1.3 Objectives & Contribution
Due to the growing diversity of applications and devices, a one-size-fits-all

approach to optimize and deploy ConvNets might generate sub-optimal solutions.
Instead, there is an urgent need for a comprehensive collection of dedicated tools,
responding to different design goals and tailored to different use-cases. In this
context, the objective of this dissertation is threefold:

• Develop cross-layer optimizations for software-to-silicon mapping of Con-
vNets, with vertical strategies aware of the opportunities and the limitations
of the hosting systems in order to maximize the portability and the efficiency.

• Offer a collection of methods for the analysis and the compression of Con-
vNets, addressing different design goals: memory, energy, and power. De-
signers can adopt the most suited solutions depending on their needs.

• Devise dynamic knobs to extend the achievable accuracy-complexity trade-
offs. Whereas ConvNets are built as static computational graphs, they can
leverage software-based (e.g. arithmetic precision) and/or hardware-based
(e.g. power management) knobs to adapt at run-time their computational
effort depending on context variables, e.g. the available resource budget.

8

1.3 – Objectives & Contribution

Figure 1.3 summarizes the organization of the thesis, which is split in three
main chapters, one for each of the optimization metrics/objectives.

• Prune and Quantize
• Encoding-Aware

Sparse Training

• On-line Precision
Scaling

• Scalable-Effort
ConvNets

• FINE-VH
• Voltage-Scaled

ConvNets

Memory
Chapter 2

Energy
Chapter 3

Power
Chapter 4

Figure 1.3: Schematic view of the the dissertation outline.

Chapter 2 focuses on memory-driven optimizations. We first review existing
algorithmic compression techniques, with emphasis on their applicability on real
use-cases. The conducted analysis reveals the limits of state-of-the-art techniques,
which either cannot be ported on tiny IoT devices like micro-controllers or yield
poor performance due to the lack of proper hardware support. We therefore present
Prune and Quantize, an efficient heuristic to explore the memory-accuracy design
space, assessing the figure of merits of theoretic vs. practical implementations.
Second, we introduce a novel training procedure, referred to as Encoding-Aware
Sparse Training, aiming at reducing the memory footprint of network weights.
As demonstrated by the collected results, our proposal outperforms the accuracy-
compression trade-offs of existing reduction strategies based on a sparse represen-
tation of data.

Chapter 3 deals with energy-driven optimizations, with emphasis on run-time
scaling strategies for dynamic energy-accuracy trade-offs. The chapter first presents
a taxonomy of Adaptive ConvNets, with a review and classification of related tech-
niques. As key contributions, the chapter introduces two novel implementations
of Adaptive ConvNets: On-line Precision Scaling and Scalable-ConvNets. The for-
mer is a design&optimization flow that makes use of per-layer precision scaling
strategy to modulate energy and accuracy at run-time. The latter brings the dy-
namic nature of the human reasoning to static ConvNets, leveraging the concept of
multilevel classification. Just like as humans, we show that ConvNets intrinsically
learns to classify at different abstraction layers, spanning from coarse categories to
fine details. Clearly, high-level classification is easier than low-level classification,
creating the opportunity to either reduce the effort or improve the accuracy.

Chapter 4 addresses power-driven optimizations. The most common strategy
to reduce power consumption is to design custom hardware components dedicated
to run a specific task, inference in our case. Intuitively, architectures tailored
to a single task can reach higher performance at lower power consumption than

9

1.3 – Objectives & Contribution

general-purpose cores. Rather than focusing on architectural design, our con-
tribution investigates an orthogonal direction, i.e. power management. First, we
propose a novel power distribution scheme called FINE-VH, aiming to bring power
management at an ultra-fine granularity, i.e. within the functional units. Through
an optimization&emulation framework fully integrated in a standard EDA flow,
we demonstrate that FINE-VH pushes power savings beyond the theoretical limits
of standard DVFS strategies. Second, we explore the power-performance trade-offs
of voltage-scaled ConvNets running on general-purpose systems, e.g. embedded
CPUs, where limited cost budgets prevent the adoption of dedicated architectures
or custom power distribution schemes. Our study reveals interesting trends, sug-
gesting (i) new directions for thermal-aware training procedures and (ii) useful
guidelines for a better co-operation between hardware and software knobs.

Finally, Chapter 5 concludes the dissertation, summarizing the main findings
of our research.

10

Chapter 2

Memory-Driven Optimization

An efficient deployment of ConvNets on the network edge requires smart opti-
mizations to fit large models into memory-limited cores. In this chapter, we focus
on low-cost IoT applications [26, 27], where small form-factor and limited energy
budget are the major bottlenecks. In these cases, the software stack runs on tiny
RISC cores mounted on-board of off-the-shelf embedded platforms. Without loss
of generality, we consider as a case study the microcontroller units (MCUs) of the
Cortex-M family by ARM1, reported in Table 2.1. Low-power MCUs integrate
small on-chip RAM memories (from 4 to 32 KB for the M0, from 256 to 512 KB
for the M7—depending on the chip-set). Off-chip memories are often not inte-
grated as they degrade several metrics, like performance, energy, integration cost,
endurance, and reliability. The instruction set architecture (ISA) supports only
few 16- and 8-bit integers operations (16- and 8-bit) and often no floating-point.
Furthermore, they lack parallel units to accelerate vector operations. A tiny 2-
lane Single Instruction Multiple Data (SIMD) unit is available in the M4 and
M7 cores only. These hardware figures prevent the deployment of ConvNets of
some practical use. Even the most compact topology involves the processing of
multidimensional tensors of a size that impedes full on-chip storage and real-time
processing. A pragmatic solution is to play with algorithmic optimizations, e.g.
through compression techniques that shrink the size of the inner tensors. Among
the available options [28], pruning and quantization have emerged as the most
adopted techniques. Both applied during or after training, they aimed to remove
redundant information, namely, those components of the ConvNet with low impact
on the prediction quality. Pruning removes less important parameters. Quantiza-
tion reduces the bit-width of the arithmetic representation of the parameters. As
demonstrated by the latest advancements, a joint combination of the two achieves

1https://os.mbed.com/platforms/

11

2.1 – Background on Neural Network Compression

state-of-the-art [29]. Compressed ConvNets show fewer parameters to store, hence
fewer operations to run.

Cortex-M Power RAM Floating Integer SIMD Unit
(µW/MHz) (KB) (32b) (16b,8b) (#lane)

M0 5.3 4-32 No Yes No
M3 11.0 32-128 No Yes No
M4 12.3 128-256 No/Optional Yes 2
M7 33.0 256-512 No/Optional Yes 2

Table 2.1: Hardware figures of the Cortex-M IoT MCUs by ARM.

In the first part of this chapter (Section 2.1), we summarize the existing strate-
gies to alleviate the memory requirements of ConvNets. As will be discussed later,
they are based on theoretic studies overlooking the constraints of real hardware.
For this reason, they might returns solutions centered on specific configurations
that result difficult to be ported on tiny general-purpose cores.

To address this limitation, we present two novel strategies to deploy Con-
vNets on memory-bounded cores, namelyPrune and Quantize (Section 2.2) and
Encoding-Aware Sparse Training (Section 2.3). The former is a two-stage frame-
work that efficiently explores the memory-accuracy space using a lightweight,
hardware-aware heuristic optimization. The latter is a novel memory-constrained
training procedure that brings quantized ConvNets towards deep compression.

The content of this chapter is a revised version of our previous works found
in [30, 31, 32].

2.1 Background on Neural Network Compres-
sion

With the advent of edge computing, memory and storage capacity have be-
come the main design constraints to consider in order to guarantee the portability
of ConvNets. For this reason, many compression methods have been conceived and
validated on different platforms [28]. However, only a few of them can be imple-
mented on tiny MCUs. This section reviews prior works in this topic, motivating
the choices implemented in our proposals.

2.1.1 Pruning
Based on the assumption that ConvNets are over-parameterized, pruning tech-

niques aim to identify and remove those parameters that less contribute to the

12

2.1 – Background on Neural Network Compression

expressive power of the model. The pruning can operate at different degrees of
spatial granularity. Weight-pruning is the finest level, filter-pruning the coarsest.
As a general rule of thumb, a finer grain enables better trade-offs between accu-
racy and compression. Regarding the implementation on-board of general-purpose
cores, a coarse grain achieves better performance, as it keeps regular memory and
resource allocation.

Weight-pruning [33] follows an unstructured pattern, i.e. every single weight
can be removed, both from fully-connected layers and convolutional layers. To
preserve the regular structure of the multi-dimensional tensors, weights are simply
zeroed. Unstructured sparsity does not reduce the memory footprint directly but
generate long sequences of zero values that can be encoded with standard com-
pression schemes [33]. As the regular structure may get lost, many techniques
to accelerate the processing of dense matrices can no longer be applied, e.g. ma-
trix tiling [34]. The efficient processing of sparse data requires dedicated hardware
components supporting advanced indexing mechanisms. Examples of this kind can
be found in the Texas Instruments TDAx processor [35] family or the custom ASIC
described in [36]. Unfortunately, low power budgets impede the integration of such
components on MCUs. Even though an equivalent software implementation based
on compressed sparse row storage formats could be adopted, the latency over-
head due to extra operations is mitigated only when sparsity overcomes a certain
threshold [34].

Group-pruning removes bunches of adjacent weights. The group-size is a pa-
rameter tuned to maximize the utilization of parallel processing units [34]. Clearly,
cores without a parallel unit do not benefit from this approach incurring the same
limitations of weight-pruning. As will be discussed in Section 2.2, we present a
novel training procedure based on group pruning. However, in our procedure, the
group size is tailored to minimize memory rather than improve performance.

Filter-pruning [37] follows structured patterns: neurons (in the fully-connected
layers) or entire convolutional filters (in the convolutional layers) are removed re-
ducing both memory footprint and number of operations. Thanks to its regularity,
its implementation is straightforward in RISC cores integrating an SRAM memory
controlled with a standard indexing mechanism. One potential downside is the risk
of a higher accuracy loss, because the information is drained out at a much faster
pace (than weight-pruning). However, short few incremental training iterations
help to recover the information lost.

Due to the lack of formal methods to identify the weakest filters, different prox-
ies have been studied to determine the filter priority during the pruning process:
(i) the ℓn-norm of the kernel weights, (ii) some statistics on the layers output, like
mean or standard deviation, (iii) the mutual information between intermediate

13

2.1 – Background on Neural Network Compression

outputs and final predictions, (iv) a combination of them. Yet, there is no consen-
sus on which is the most efficient. The comparative evaluation conducted in [38]
proves that the ℓ1-norm [37] guarantees a good compromise between accuracy and
convergence time.

2.1.2 Quantization
While training needs single-precision floating-point (FP) to achieve conver-

gence, inference can reach the same prediction quality even with lower precision
representation. The main benefit of quantization is the memory reduction of
network weights and activations, which gets stored with fewer bits. In this re-
gard, fixed-point (FX) arithmetic is the most adopted representation, thanks to
its straightforward implementation on general-purpose cores. However, fixed-point
quantization is not just an option, but it is mandatory for MCUs without support
for floating-point arithmetic.

Seminal works like [39] showed 16-bit and 8-bit FX ConvNets reach the same
prediction quality of the original FP representation. More recent methods ex-
plored extreme quantization down to ternary [40] or binary [41] representations,
yet incurring a significant accuracy drop. The benefits of quantization go beyond
memory reduction. The bit-width scaling alleviates the memory bandwidth uti-
lization as multiple operands can be processed within single access. This benefit
holds if the bit-width is compliant with the memory indexing scheme. In addi-
tion, since low-power cores support few FX instructions, e.g. 8- and 16-bit for
the Cortex-M processor family, intermediate and lower widths are not viable. For
instance, a 32-bit SRAM line can host four 8-bit weights that can be easily fed
to the execution units, while the use of 9-bit weights incurs in memory under-
utilization and it requires additional unpacking routines that affect latency [42].
Custom arithmetic units supporting arbitrary bit-widths are integrated in Con-
vNet accelerators like [43, 19, 20]. However, they dissipate more power than the
MCUs targeted in this chapter (≥ 300 mW vs. tens of mW).

The literature presents plenty of schemes and techniques for accuracy-driven
quantization. The following text provides a broad classification which highlights
the key aspects related to techniques presented in this chapter. Quantization is
defined as fixed if the same bit-width is shared among the layers, or variable if the
bit-width can vary across the layers [44].

Two conversion schemes do exist: linear or non-linear. The linear scheme [39]
makes use of a uniform distance among all the quantized weights. This is a straight-
forward solution, yet the most adopted for generic hardware architectures thanks
to its simplicity. The quantization range can be symmetric, if centered around zero,
or asymmetric if shifted by a given offset. The choice is driven by the shape of
the weights distribution, but in general asymmetric quantization guarantee higher

14

2.1 – Background on Neural Network Compression

accuracy, at the cost of additional processing stages [45]. Moreover, it is possible
to quantize the weights using a binary radix-point scaling, or an arbitrary linear
scaling. The former can be implemented through simple bit-shift operations, the
latter might result more accurate but it requires additional operations and hence
more latency [45]. The non-linear scheme makes use of custom conversion func-
tions which map the full precision parameters onto irregularly interleaved ranges.
It achieves higher accuracy than linear schemes as it enables to fit distribution with
irregular shapes. The most common examples are based on logarithmic representa-
tions [46] or clustering [33]. Overall, non-linear schemes are based on complex hash
functions, which can be implemented by dedicated hardware units to accelerate
their processing [46] or by equivalent software routines that affect latency.

Our qualitative analysis reveals a simple yet important consideration, i.e. there
is a trade-off between flexibility and complexity: sophisticated schemes (e.g. lin-
ear with asymmetric/arbitrary scaling or non-linear) guarantee higher accuracy as
they can best fit the original weights distribution, lightweight schemes (e.g. lin-
ear with binary/symmetric scaling) guarantee faster processing, especially when
implemented on general-purpose cores with limited hardware resources. The de-
ployment of ConvNets on MCUs follows the simple rule lighter is better, hence the
second class of methods is preferred.

2.1.3 Pruning and Quantization
Pruning and quantization affect different sources of information: the trainable

parameters and their arithmetic precision, respectively. As they are orthogonal
strategies, their joint application can achieve higher compression. Intuitively, mul-
tiple combinations of pruning rate and bit-width reach the same memory com-
pression, but with a substantial difference in terms of accuracy. Identify the most
accurate settings in this huge search space is extremely challenging. The authors
of [29] showed that Bayesian optimization could be a promising strategy. Even
though they overlook the hardware constraints, it is fair to assume that their
method can be extended to a more hardware-friendly version. The contribution
of our proposals differ. Rather than identifying the most accurate configuration,
we aim to run an extensive exploration of the memory-accuracy space, pushing
our analysis towards the extreme memory region (<1 MB). In this regard, the de-
velopment of the most efficient optimizer practically fades, whereas extending the
coverage towards a more comprehensive exploration gets higher priority. Clearly,
the size of the search space impede an exhaustive search, calling for the develop-
ment of smart heuristics.

15

2.2 – PaQ: Prune and Quantize

2.2 PaQ: Prune and Quantize
Most of the methods discussed in the previous section are accuracy-driven,

namely, they try to identify the model setting that achieves the highest memory
compression with minimum accuracy loss, ideally zero. Model settings have a
relative meaning here: it is the largest selection of weak parameters for pruning, the
smallest bit-width of the arithmetic representation for quantization, the optimal
pruning-to-quantization ratio for joint methods.

Intuitively, accuracy cannot be the only metric that drives the optimization.
An optimization loop unconstrained in terms of memory may return configurations
still not meeting the requirements of the target hardware. Moreover, since quanti-
zation and pruning are lossy methods, they get controlled through a user-defined
accuracy threshold. Since the cost function is unknown, the selection of such an
accuracy threshold is blind. Solutions with similar accuracy, namely equivalent in
terms of quality, might have very different memory footprint. Furthermore, finding
the right balance between pruning and quantization still remains an open problem,
suggesting that design space exploration is more reliable than multi-objective opti-
mization. Obviously, the large number of possible model settings makes exhaustive
exploration unpractical, which demands smart heuristics. Not least, quantization
below the 8-bit mark (e.g. from 7- to 2-bit [29]) remains a theoretic study as it
requires custom hardware components which are not an option in low-power cores,
e.g. integer units with flexible bit-widths and/or dedicated memory architectures.
Some low-power IoT cores support 4-bit instructions, e.g. the GAP8 [47] powered
by the PULP core [48], but up to now there are no ready-to-use IoT solutions
for arbitrary bit-width scaling. Specialized neural accelerators, like the Imagina-
tion Series 2NX [43], offer variable bit resolutions, yet with a power budget of
few Watts. Other custom solutions, programmable [20] or hard-wired [19], are a
too costly design option for the IoT domain. A patch for general cores is the use
of software-based allocation strategies to pack multiple weights within the same
word and then properly feed the execution units. However, the additional oper-
ations needed to manage the data might generate an unacceptable performance
overhead [42]. As an additional source of inefficiency, storing data with irregular
bit-widths lowers memory utilization. These observations raise a natural question,
whether accuracy-driven, unconstrained compression methods can meet the needs
of real-life use-cases.

In this section, we aim to benchmark theoretical against practical ConvNet im-
plementations. The overall outcome of the assessment enables three main achieve-
ments. First, demonstrate that the practical implementation of ConvNets is gov-
erned by the actual memory constraint, and not just the model accuracy. Second,
enumerate the optimal configurations in the memory-accuracy space when the op-
timization is conducted under very tight memory constraints. Lastly, assess the

16

2.2 – PaQ: Prune and Quantize

accuracy difference between optimal (theoretical) configurations and the closest
implementations that can be ported on low-power MCUs.

The analysis is conducted through a novel two-stage pipeline driven by con-
current pruning and quantization: Prune-and-Quantize (PaQ). The optimization
is hardware-aware, namely, it involves a smart selection of techniques tailored to
meet the hardware specifications. As a key feature, the framework is built upon
a lightweight memory-driven heuristic which enables efficient exploration of the
memory-accuracy space. It also makes use of a memory allocation model for bare
metal environments together with an arithmetic emulator which does ensure accu-
rate and fast evaluation. Existing training frameworks do not offer these features.
We validated PaQ on three realistic tasks which find application in the IoT do-
main: Image Classification (IC) on CIFAR-10 [49], Keyword Spotting (KWS) [50]
and Facial Expression Recognition (FER) [51]. As hardware test-benches, we
adopted two commercial boards integrating Cortex-M cores: NUCLEO-F412ZG
(M4-256 KB), NUCLEO-F767ZI (M7-512 KB).

The remaining of the section is structured as follows. Section 2.2.1 presents
the hardware-aware compression framework adopted to collect the experimental re-
sults, with particular emphasis on the memory-driven PaQ heuristic. Section 2.2.2
collects the main results and it drives the readers towards a proper understand-
ing of memory-bounded ConvNets and their deployment, in particular: (i) the
actual hardware requirements and how to judge the need of custom accelerators
against general-purpose cores; (ii) the efficacy of the proposed framework and its
scalability. Finally, Section 2.2.3 summarizes our findings.

2.2.1 Framework Overview
The memory size Mc of a ConvNet depends on the number of trainable pa-

rameters Np (weights and biases) and the arithmetic precision adopted, i.e. the
bit-width b. We define the target memory Mt as the available memory that can
be used to store and run the ConvNet. Note that Mt can be lower than the total
memory size of the hosting device, as part of the memory is dedicated to other
routines, e.g. drivers to manage sensors. The original floating-point ConvNet un-
dergoes a compression process in order to generate a memory-bounded ConvNet,
i.e. a smaller version with Mc ≤Mt. A memory-bounded ConvNet can be defined
through a pair {Np, b}. Intuitively, for each Mt there exists a set P of pairs {Np, b}
matching Mt. Within P , a pair {Nopt

p , bopt} defines the optimal solution, i.e. the
pair that minimizes L. A pair {N ′

p, b′} defines the hardware-compliant solutions,
i.e. the pairs that can be ported on the target device. As mentioned, a pair is
hardware-compliant if b′ is supported by a proper instruction set, i.e. b′ ∈ {8, 16}
for the Cortex-M processors adopted as case study. However, bopt} might be of
any integer value. Therefore, an optimal pair is hardware-compliant if bopt turns

17

2.2 – PaQ: Prune and Quantize

Q-aware Pruning
- Filter Selection
- Fine-Tuning

b-Quantization
− Fixed-Point Conversion
− Fine-Tuning

Porting

PaQ

CMSIS-NN

Mt [KB]

.c { }

RAMalloc

</>

HW model

Constraint

𝓟
{𝑵𝒑′, 𝒃′}

ISA

Emulator{𝑵𝒑, 𝒃}

bit-width b

Figure 2.1: Framework overview.

out to be 8- or 16-bit.
The exploration of the memory-accuracy design space requires an evaluation

framework to (i) implement a memory-constrained combination of pruning (to
reduce Np) and quantization (to reduce b), and (ii) measure the accuracy of the
returned memory-bounded ConvNets (iii) and deploy memory-bounded ConvNets
on the target device.

To answer these needs, we developed a novel framework, which is illustrated
in Fig. 2.1. The framework takes as input a floating-point ConvNet (FP) trained
with standard machine learning platforms (e.g. PyTorch, TensorFlow) and it pro-
duces as output (i) the accuracy evaluation of the compressed ConvNets that
meet the memory constraint (i.e. those with {Np, b} ∈ P) and (ii) the .C code
of the compressed ConvNets that are hardware-compliant ({N ′

p, b′} ∈ P). The
.C code is assembled using a neural network library (the CMSIS-NN by ARM)
optimized for inference on MCUs, then compiled and flashed on the target device.
The assessment of those compressed ConvNets not compliant with the hardware
(i.e. those with {Np, b} ∈ P , b /= b′) is conducted through an in-house fixed-point
emulator. The same emulator drives the fine-tuning stages (more details will be
presented later in the text). The core engine of the framework is called Prune and
Quantize (PaQ hereafter) and it involves two main components: (i) quantization-
aware (Q-aware) pruning; (ii) model quantization using a FX representation of

18

2.2 – PaQ: Prune and Quantize

b bits (b-Quantization. Both stages receive the parameter b as an internal con-
straint. All the layers of a ConvNet share the same bit-width. This latter aspect
affects the compression speed, that is, quantization removes information at a faster
pace. Intuitively, removing a single filter on a layer is less intrusive than reducing
the bit-width of all the weights of all the layers. Clearly, there exists a circular
dependence between pruning and quantization which further complicates the op-
timization. Specifically, the value of b determines the number of filters that must
be removed to match the memory constraint.

To estimate the physical RAM needed by inference, the framework integrates
a model file containing the memory allocation strategy of the target architecture
(RAMalloc). As long as both the HW-model and the neural network library are
available, the framework can be extended to any hardware platform.

Memory Model

The amount of on-chip RAM allocated during inference depends on the software
implementation of the neural network layers, which in turn is tightly coupled with
the hosting hardware. The following text describes the memory allocation policy
adopted in the Cortex-M cores through the open-source CMSIS-NN library [45].
The same model can be extended to other architectures and/or libraries. The
description refers to the convolution layers, which are the most expensive in terms
of memory utilization2, but the model also includes fully-connected layers.

Cortex-M MCUs are provided with a flash memory used to permanently store
the ConvNet weights. At run-time, the same weights are block-loaded in a portion
of the RAM referred to the Weight Buffer (WB). Most of the remaining RAM
is devoted to the Activation Buffer (AB), which stores partial results produced
by intermediate layers. Within a ConvNet, layers come with different topology,
namely different number of filters, each of a different size. Therefore, each layer
requires a different amount of memory, which is proportional to the dimension of
its input and output tensors. Since ConvNets are executed layer-by-layer, AB can
be time-shared, therefore its size is defined by the largest layer. Finally, a region
of RAM is dedicated to temporary data structures internally used by the convolu-
tional routines. To guarantee an accurate assessment of the memory requirements,
the memory model includes their contribution. Specifically, the CMSIS-NN im-
plements a tensor convolution as a matrix multiplication; this encompasses the
conversion of multi-dimensional tensors to bi-dimensional arrays. The matrix, re-
ferred to as the Toeplitz matrix [52], is generated by the im2col routine, which

2State-of-the-art ConvNet designs rationed the number of fully connected layers in order to
reduce the memory accesses.

19

2.2 – PaQ: Prune and Quantize

stores the result in a dedicated region of the RAM, the im2col buffer (I2CB).
Similarly to AB, the I2CB is time-shared among layers and its size is defined by
the largest layer as well. In memory-constrained cores, a partial im2col routine
is commonly adopted. It expands a selected portion of the input thus generating
two columns of the Toeplitz matrix at a time. This allows reducing the size of the
I2CB at the cost of some performance overhead.

The sum of the three buffers gives the overall RAM footprint, Mc = WB +
AB + I2CB. Equation 2.1 gives the analytical model for a ConvNet of L layers
represented with a physical bit-width b:

Mc = b×
[︃
Np + max

i∈L
(Ii + Oi) + max

i∈L
(im2coli)

]︃
(2.1)

The first term (Np) refers to the WB buffer. It reflects the total number of
parameters of the ConvNet. The number of weights is the product between the
number of filters, the number of input channels, and the size of kernels, while
the number of biases equals the number of filters. For fully connected layers the
number of weights is the product between the input dimension and the output
dimension, while that of biases equals the dimension of the activation. The second
term (max(Ii+Oi)) refers to the AB buffer, with Ii and Oi the size of the activations
(input and output respectively) of the largest layer. The last term (max (im2coli))
is for the I2CB buffer. The im2col processes one filter at a time, hence the size
for a convolutional layer is the product of the three dimensions of a filter (height,
width, and depth), multiplied by 2 (two columns of the Toeplitz matrix); also in
this case, the max operator takes the largest contribution among all the layers. As
a side note, the contribution of I2CB is usually limited, while WB is dominant.
However, for compact ConvNets like those adopted in IoT applications, AB is not
negligible (ranging from 15% to 30% the overall RAM).

Q-Aware Pruning

In PaQ, filters are dropped until Mc ≤Mt. Since Mc depends on the arithmetic
precision, the pruning stage should be aware of b to minimize the number of pruned
filters. Removing a filter at the i-th layer simultaneously affects several parameters
of eq. 2.1: the size of the i-th and i+1-th convolutional layers (hence WB), the
size of the output activations of the i-th layer Oi (hence AB), the memory taken
by the im2col for the (i+1)-th layer (hence I2CB).

The iterative procedure of the Q-aware pruning is described in the pseudo-code
of Algorithm 1. At each iteration, the least important filter from the least impor-
tant layer (lines 3–5) is removed. The importance metric adopted to determine the
filter priority is the ℓ1-norm of the weights. The ℓ1-norm is a good proxy to iden-
tify those filters with marginal impact on the final output of the ConvNet [37], yet

20

2.2 – PaQ: Prune and Quantize

Algorithm 1: Q-aware Pruning algorithm
Input: ConvNet [FP-32], Target Memory Mt, Bit-width b
Output: Compressed ConvNet

1 Mc = RAMalloc(ConvNet[FP-32], b)
2 while Mc > Mt do
3 Layer = Pick layer with lowest ℓ1-norm
4 Filter = Pick filter of Layer with lowest ℓ1-norm
5 Remove Filter
6 Update Mc

7 Fine-Tuning
8 return Compressed ConvNet

ensuring efficient processing, as it does not require the statistics on the activations
of the intermediate layers. Overall, it guarantees a good trade-off between quality-
of-results and complexity of the optimization loop. However, the framework can
work with any kind criteria.

The loop iterates until the memory constraint Mt is met (line 2). The mem-
ory estimation leverages the memory model introduced in the previous section
(embedded into the RAMalloc procedure). Even though the memory footprint is
estimated on the base of the physical bit-width b, the model is not quantized yet
at this stage. This gives the pruning stage proper awareness of quantization.

After pruning, the network may experience a substantial accuracy loss. This
loss is however recovered (totally or partially depending on the actual constraint)
through fine-tuning (line 7). The latter involves a re-training stage (50 epochs
in our experiments) during which the weights are tuned using a standard error
back-propagation scheme.

B-Quantization

After the Q-aware pruning, the model undergoes the quantization to a b-bit
representation. As already motivated in Sec. 2.1, the choice fell upon the most
hardware-friendly option: (i) symmetric scheme, (ii) linear intervals [39], (iii) per-
layer power-of-two scaling. Adopting a per-layer radix-point scheme brings higher
accuracy without performance overhead. The optimal radix-point is found through
an iterative optimization, where different positions of the radix-point are tried.

The accuracy drop induced by quantization can be recovered (totally or par-
tially depending on the actual constraints) through a dedicated fine-tuning stage
that implements an incremental training procedure (iterated over 50 epochs in
our experiments). The latter has the following main characteristics: the forward-
propagation is run with fixed-point emulation; during back-propagation weights

21

2.2 – PaQ: Prune and Quantize

are kept in a floating-point format thus allowing small weight updates; weights are
quantized at the end of every epoch using stochastic rounding.

To emulate fixed-point arithmetic on GP-GPUs, an in-house emulator leverages
the fake-quantization method introduced in [53]. It consists of a software wrapper
that converts activations and weights (stored in fixed-point) to the 32-bit floating-
point; after processing, results are converted back to fixed-point.

Porting and Emulation

After compression, the hardware-compliant ConvNets are translated in C code
using the neural network library optimized for the target device. We adopted the
CMSIS-NN [45] library developed by ARM. The CMSIS-NN offers a collection of
optimized routines implementing the most common layers of deep neural networks
and targeting the Cortex-M architecture. As already mentioned, the porting is
possible only for those bit-widths and memory budgets meeting the hardware
constraints ({N ′

p, b′}). The framework provides emulation for every bit-width and
memory constraint thus to estimate the distance between optimal and hardware-
compliant solutions, which is one of the objectives of this work. The emulator is
the same used within the PaQ flow.

2.2.2 Evaluation of PAQ
We used the proposed PaQ flow to run a design space exploration across the

memory-accuracy space. This analysis aims to assess the optimality of hardware-
compliant implementations and quantify their distance (i.e. the accuracy differ-
ence) from theoretical solutions. This section is organized as follows. First, we
introduce the ConvNets selected as benchmarks, together with the datasets used
for training and evaluation. Second, we describe the hardware boards employed to
validate PaQ. Third, we report the collected results and discuss the main achieve-
ments. Finally, we present further insights to validate PaQ and justify the our
optimization choices. For the convenience of the reader, in Table 2.2 we define the
notations used throughout the text.

Benchmarks, Datasets and Training

For our experiments, we considered three different tasks: Image Classification
(IC), Keyword Spotting (KWS), Facial Expression Recognition (FER). All of them
find application in many practical use-cases, like robotics, human-machine inter-
face, and retail. Each task is powered by a different ConvNet model which has been
carefully selected among those that can be realistically deployed on IoT devices.
Table 2.3 reports the topology of the models together with the top-1 classification

22

2.2 – PaQ: Prune and Quantize

Table 2.2: List of abbreviations.

Notation Description

Mc Memory footprint of the ConvNet
Mt Target memory
Np Number of network parameters (weights and biases)
b Bit-width (ranging from bmin = 2 to bmax = 16, step one bit)
Mb Memory footprint of the ConvNet quantized with b-bit and w/o pruning
P Set of pairs {Np, b} that matches Mt

L Top-1 accuracy loss
Lmax Top-1 accuracy loss boundary (= 0.5%)
T Pleateau area collecting the {Np, b} pairs s.t. L ≤ Lmax
Px Best-accuracy point
Pn Pareto points in the memory-accuracy space (n ∈ N)
PaQ-8 PaQ solutions with 8-bit
PaQ-16 PaQ solutions with 16-bit
∆ Accuracy difference between optimal and hardware-compliant solutions

accuracy achieved using a floating-point representation (w/o any further optimiza-
tion). Results are consistent with those available in the recent literature. Both
training and testing are run in PyTorch, version 0.4.1. The training is iterated
over 150-epochs using the Adam algorithm [54] with the following settings: learn-
ing rate 1e-3, linear decay 0.1 every 50-epochs, batch size of 128 samples randomly
picked from the training set. Test set and training set are fully disjointed.

Image Classification (IC). For this task, we adopted the popular CIFAR-10
dataset. It is composed by 32×32 RGB images [49] evenly split in 10 classes, each
class with 50000 and 10000 samples for the training set and test set, respectively.
Like in [45], the adopted ConvNet is taken from the Caffe framework [55]. It
consists of three convolutional layers interleaved with max-pooling and one fully-
connected layer.

Keyword Spotting (KWS). This task is a common application in the field of
speech recognition, which is hard to deploy on low-power devices. However, when
the problem is simplified to simple command detection (used as triggers), the task
achieves an affordable level of complexity. The reference dataset is the Speech
Commands Dataset [50]; it counts of 65k 1s-long audio samples collected during
the repetition of 30 different words by thousands of different people. The goal is to
recognize 10 specific keywords, i.e. “Yes”, “No”, “Up”, “Down”,“Left”, “Right”,
“On”, “Off”, “Stop”, “Go”, out of the 30 available words. Samples that not be-
longing to the 10 categories are labeled as “unknown”. An additional “silence”
label is assigned to background noise samples (i.e. pink noise, white noise, and

23

2.2 – PaQ: Prune and Quantize

Table 2.3: Benchmark overview. Convolutional layer with shape (cout, kh, kw),
fully-connected layer with shape (cout) and max-pooling layer with shape (kh, kw);
kh and kw are the height and width of input planes in pixels, while cout refers the
number of output channels.

Application IC KWS FER
Dataset CIFAR-10 [49] Speech Commands [50] FER2013 [51]
Input 3× 32× 32 1× 32× 40 1× 48× 48

C
on

vN
et

To
po

lo
gy

Conv (32,5,5) Conv (64,20,8) Conv (32,3,3)
MaxPool (3,3) MaxPool (1,3) Conv (32,3,3)
Conv (32,5,5) Conv (64,10,4) Conv (32,3,3)
MaxPool (3,3) MaxPool (1,1) MaxPool (2,2)
Conv (64,5,5) FC (32) Conv (64,3,3)
MaxPool (3,3) FC (128) Conv (64,3,3)
FC (10) FC (12) Conv (64,3,3)

MaxPool (2,2)
Conv (128,3,3)
Conv (128,3,3)
Conv (128,3,3)
MaxPool (2,2)
FC (7)

Top-1 Acc. 82.80% 86.75% 66.48%

human-made sounds). The training set and test set include 56196 and 7518 sam-
ples, respectively. For the classification, we picked the model called cnn-trad-fpool3
described in [56]. It is made up of two convolutional layers, two max-pooling layers,
and three fully-connected layers. The ConvNet takes as input the Mel-frequency
cepstral coefficients of the spectrogram of the recorded signal in [56] (input shape
is time× frequency = 32× 40 inputs).

Facial Expression Recognition (FER). It is about inferring the emotional
state of people from their facial expression. Quite popular in the field of visual
reasoning, this task is extremely challenging as many face images might convey
multiple emotions. The reference dataset is the Fer2013 from the Kaggle com-
petition [51]. It collects 32297 48×48 grayscale facial images organized into 7
categories: “Angry”, “Disgust”, “Fear”, “Happy”, “Sad”, “Surprise”, “Neutral”.
The training set counts of 28708 samples, while the remaining 3589 are kept as
the test set. The ConvNet model shows nine convolutional layers evenly spaced
by three max-pooling layers and one fully-connected layer.

24

2.2 – PaQ: Prune and Quantize

Hardware Set-up and Toolchains

The presented framework (Fig. 2.1) is validated on two commercial boards
integrating Cortex-M cores by ARM. As reported in Table 2.4, the selected boards
host different chip-sets (M4 and M7), hence they differ in memory capacity (RAM
and Flash) and performance (Frequency). The deployment on the target board is
powered by the CMSIS-NN software library (v.5.4.0) developed by ARM. The .C
description of the ConvNet is compiled using the GNU Arm Embedded tool-chain
(version 6.3.1.).

Table 2.4: Hardware specification of the boards adopted as test-bench.

Board Core RAM Flash Frequency

NUCLEO-F412ZG Cortex-M4 256 KB 1 MB 100 MHz
NUCLEO-F767ZI Cortex-M7 512 KB 2 MB 216 MHz

Within the PaQ flow, the prediction accuracy is evaluated through the emu-
lator mentioned in Sec. 2.2.1. The emulator is tailored to replicate the behavior
of the ARM Cortex-M integer unit. Experiments were conducted on a GP-GPU
workstation powered with a Titan GTX-1080 Ti by NVIDIA. Extensive testing
revealed 100% of accuracy between the outputs produced by the emulator and
those collected on-board . The same emulator is adopted for the accuracy assess-
ment of those compressed ConvNets that cannot be ported to the ARM cores,
whereas the hardware-compliant ConvNets are evaluated on-board (see the flow
depicted in Fig. 2.1). The RAMalloc memory model is cross-validated with the
results produced by the gcc linker (all the variables are statically allocated) and
those returned by tracking the memory usage at run-time (feature available with
the mbed-os operating system3, version 5.11.0).

Exploration of the Memory-Accuracy Space

We conducted an extensive exploration for a discrete set of memory constraints,
i.e. Mt ∈ [Mbmin , Mbmax], bmin=2, bmax=16, step one bit; Mb denotes the memory
footprint of the ConvNet quantized with b bits w/o any pruning (e.g. M2 is
the memory after a 2-bit quantization). For intermediate memory constraints,
i.e. Mt ∈ (Mbi

, Mbi+1), the accuracy is interpolated (more details will be dis-
cussed later). The collected results of the three applications are illustrated in
Fig. 2.2a, 2.2b and 2.2c. The plots show the top-1 accuracy for every pair be-
longing to the design space, i.e. {Np, b} ∈ P . The yellow line highlights the

3https://os.mbed.com/blog/entry/Tracking-memory-usage-with-Mbed-OS/

25

2.2 – PaQ: Prune and Quantize

implementations where only the b-Quantization (label Q) applies, i.e. no filters
pruned. Since the Q-aware pruning skips the filter pruning as soon as the Mt is
met, there might be memory-compliant solutions which belong to this line, e.g. in
Fig 2.2a the 2-bit quantization alone meets the memory constraint of 33 KB. The
region above the yellow line (light transparency) covers trivial implementations
dominated by quantization, i.e. those for which Mt > Mb, while the exploration
of the region below is the focus of our analysis, which brings the following consid-
erations.

Weakness of accuracy-driven optimizations. We observed that many
configurations reach an accuracy very close to that of the FP baseline, namely,

Target M
emory M

t [k
B]

33
49

66
82

98
115

131
147

164
180

196
213

229
245

262

Bit-width b
2345678910111213141516

Top-1 Accuracy

45%
50%
55%
60%
65%
70%
75%
80%

85%

Q
PaQ-8
PaQ-16
Pareto-curve

Px: (245, 15, 83.10)
P1: (115, 7, 82.64)
P2: (98, 7, 81.99)
P3: (82, 6, 81.49)
P4: (66, 6, 80.42)
P5: (49, 5, 78.17)
P6: (33, 5, 71.85)

Px

P1P2
P3

P4
P5

P6
55

60

65

70

75

80

(a) IC

Target M
emory M

t [k
B]

76
114

152
190

228
266

304
342

380
418

456
494

531
569

607

Bit-width b
2345678910111213141516

Top-1 Accuracy

60%

65%

70%

75%

80%

85%

Q
PaQ-8
PaQ-16
Pareto-curve

Px: (494, 13, 86.80)
P1: (266, 8, 86.32)
P2: (228, 8, 85.87)
P3: (190, 7, 85.46)
P4: (152, 8, 84.52)
P5: (114, 6, 83.51)
P6: (76, 6, 81.51)

Px

P1P2
P3P4

P5
P6

65

70

75

80

85

(b) KWS

26

2.2 – PaQ: Prune and Quantize

Target M
emory M

t [k
B]

164
246

327
409

491
572

654
736

817
899

981
1062

1144
1226

1307

Bit-width b
2345678910111213141516

Top-1 Accuracy

20%

30%

40%

50%

60%

Q
PaQ-8
PaQ-16
Pareto-curve

Px: (1062, 14, 66.84)
P1: (899, 12, 66.45)
P2: (572, 11, 65.90)
P3: (491, 7, 65.53)
P4: (409, 9, 65.17)
P5: (327, 8, 64.86)
P6: (246, 7, 63.22)
P7: (164, 5, 55.17)

Px

P1

P2

P3P4
P5
P6

P7 30

40

50

60

(c) FER

Figure 2.2: Solutions of PaQ in the memory-accuracy space for the three tasks
under analysis (a) IC, (b) KWS, (c) FER. The solution with the best accuracy (Px)
is marked with the green cross. The hatched area (enclosed by the white dotted
curve) covers the plateau (T) collecting all solutions s.t. the accuracy loss L ≤ 0.5
w.r.t Px. The yellow line (Q) highlights the solutions where only b-quantization
applies. The red dash-dotted lines (PaQ-8 and PaQ-16) highlights the solutions
generated by PaQ using 8- and 16-bit respectively, i.e. the solutions compliant
with the target hardware. The green dotted line indicates the Pareto points (P)
in the memory-accuracy space, i.e. all the solutions more accurate than all the
other points with the same target memory Mt. The right box reports the absolute
coordinates of Px and each Pareto point in the format (target memory, bit-width,
top-1 accuracy).

pruning and quantization incur marginal accuracy degradation. These configu-
rations shape a large flat area (hatched in white), referred to as the plateau T .
Without loss of generality, we assume that a pair {Np, b} belongs to T if the ac-
curacy difference compared to the best-accuracy point (Px, marked with the green
cross in the plots and reported in the first row of Table 2.5) is less or equal than
0.5%. The existence of T is nothing new as significant parameter redundancy
exists in ConvNets [33]. The area of T may depend on the complexity of the task
or the network topology.

Most of the existing accuracy-driven compression pipelines, e.g. [29], seek an
unique combination of pruning and quantization which maximizes compression
within a given accuracy loss Lmax. Assuming a realistic constraint, e.g. Lmax =
0.5%, which is the same value used to define T , the solution they return can be
identified in our formulation as {Np, b} ∈ T s.t. Mc is minimized. This solution

27

2.2 – PaQ: Prune and Quantize

Table 2.5: Optimal vs. hardware-compliant solutions under different memory
constraints Mt: column Pareto lists the Pareto points P as for the plots of Fig. 2.2;
columns PaQ-8 and PaQ-16 refer to solutions genereted by the PaQ flow using
8- and 16-bit respectively(red lines in Fig. 2.2); column ∆ reports the distance
(the lower is better) between optimal and hardware-compliant solutions for both
PaQ-8 and PaQ-16 in terms of accuracy. Cells corresponding to those solutions
with a top-1 accuracy ≪50% have not been filled.

Mt
Pareto PaQ-8 PaQ-16

P b Top-1 b Top-1 ∆ b Top-1 ∆
245 Px 15 83.10 8 82.85 0.25 16 82.86 0.24
115 P1 7 82.64 8 82.44 0.20 16 77.31 5.33
98 P2 7 81.99 8 81.40 0.59 16 72.52 9.47

IC 82 P3 6 81.49 8 80.79 0.70 16 65.21 16.28
66 P4 6 80.42 8 78.85 1.57 16 54.85 25.57
49 P5 5 78.17 8 71.64 6.53 16 53.00 25.17
33 P6 5 71.85 8 54.68 17.17 16 50.00 21.85
494 Px 13 86.80 8 86.38 0.42 16 86.20 0.60
266 P1 8 86.32 8 86.32 0.00 16 83.80 2.52
228 P2 8 85.87 8 85.87 0.00 16 83.48 2.39

KWS 190 P3 7 85.46 8 85.28 0.18 16 81.60 3.86
152 P4 8 84.52 8 84.52 0.00 16 73.11 11.41
114 P5 6 83.51 8 83.00 0.51 16 70.42 13.09
76 P6 6 81.51 8 75.16 6.35 16 70.78 10.73

1062 Px 14 66.84 8 65.34 1.50 16 65.23 1.61
899 P1 12 66.45 8 65.34 1.11 16 65.59 0.86
572 P2 11 65.90 8 65.48 0.42 16 63.47 2.43

FER 491 P3 7 65.53 8 64.75 0.78 16 58.43 7.10
409 P4 9 65.17 8 64.61 0.56 16 55.92 9.25
327 P5 8 64.86 8 64.86 0.00 16 - -
246 P6 7 63.22 8 63.03 0.19 16 - -
164 P7 5 55.17 8 - - 16 - -

represents the bottom-right corner of the plateau T , denoted with P1 (second row
of each benchmark in Table 2.5).

An accuracy-driven, memory-unconstrained optimization of this kind might
return ConvNets not meeting the memory budget of the target device. In FER
for instance, the optimal implementation needs 899 KB of RAM using 12-bits, a
configuration which is larger than the available physical memory (512 KB in the
best case) . Instead, we focus on the region below such theoretic optimum (referred

28

2.2 – PaQ: Prune and Quantize

to as deep memory space). We built our framework specifically to explore this
region. One may argue that other meta-heuristics, like Bayesian Optimization,
can be guided towards this region of interest by integrating the memory footprint
in the cost function. Even though this is true, those methods perform better in
optimization rather than extensive exploration. Moreover, the multi-objective cost
function may result biased by the importance weights adopted.

Memory-accuracy Pareto curve. The green dotted line in the plots con-
nects the configurations in the deep memory space belonging to the Pareto front.
As already mentioned, P1 corresponds to the pair {Np, b} inside T with minimum
memory size. Instead, the remaining Pareto points lay outside T and represent
those implementations that meet lower memory constraints at the cost of larger
accuracy loss L > 0.5% (with respect to Px). The existence of these points is
somehow intuitive, but a quantitative analysis may reveal interesting trends. The
exact values of target memory Mt and bit-width b of the Pareto solutions are re-
ported in Table 2.5 together with the top-1 accuracy they achieve. As the numbers
suggest, for many configurations the obtained accuracy is still close to the best ac-
curacy, yet ensuring substantial memory reduction. For instance: KWS shows a
small accuracy drop of 1.34% (from 86.80% to 85.46%) with 62% of memory com-
pression (from 494 KB to 190 KB); FER goes even better by showing 46% memory
reduction (from 1062 KB to 572 KB) within an accuracy loss < 1% (from 66.84%
to 65.90%). Similar conclusions can be inferred from the comparison among the
other Pareto points.

Optimality of hardware-compliant solutions. A more interesting anal-
ysis concerns the distance (measured as difference in accuracy) between the im-
plementations on the Pareto curve and the implementations which are hardware-
compliant, i.e. the pairs {N ′

p, b′} with b′ ∈ [8, 16] highlighted with the red dash-
dotted curves in the plots (labels PaQ-8 and PaQ-16 respectively). The top-1
accuracy for PaQ-8 and PaQ-16 are reported in Table 2.5, together with the dis-
tance from the Pareto curve (column ∆). The results show that PaQ-8 outperforms
PaQ-16 (smaller ∆). There are only two exceptions, i.e. IC at Mt = 245 KB and
FER at Mt = 899 KB, yet with a mere distance (0.25% in the worst case). The
actual reason is that under the same memory budget, the 8-bit model has more re-
maining filters, hence the accuracy of 8-bit model is higher than the corresponding
16-bit one. In other words, the 8-bit models stop pruning earlier than 16-bit. This
can also be proved by looking at numbers collected in Table 2.5, FER benchmark
under a memory constraint Mt = 327 KB: the 16-bit model is so highly pruned
that the accuracy falls down to impractical values, while the 8-bit model meets the
memory constraint with less filters pruned and hence lower accuracy loss. These
findings are in line with previous works and provide additional evidence that 8-bit
is more efficient than 16-bit. However, the key insight is that a bit-width below

29

2.2 – PaQ: Prune and Quantize

the 8-bit mark is needed only for extreme constraints. For instance, KWS with
memory constraint Mt = 76 KB, where the PaQ-8 implementation shows ∆ ≥ 1%,
or FER with memory constraint Mt = 164 KB, where the PaQ-8 solution shows
unacceptable accuracy degradation. Overall, arbitrary bit-widths are needed in
few specific corner cases and the need of custom arithmetic units must be assessed
carefully.

Validation of PaQ

Efficacy of the proposed memory-driven compression. As described in
Algorithm 1, the filter pruning procedure integrated in PaQ is memory-constrained,
i.e. the compression ends as soon as the memory constraint is met. To justify this
stopping criteria, we performed a comparative analysis with a pruning procedure
where the constraint is given in a direct form, i.e. number of filters to be pruned.
After pruning, the ConvNets undergo a quantization stage and then fine-tuning
to recover accuracy. Using the number of filters as a control knob, it is therefore
possible to span the entire memory range. Fig. 2.3 shows the results for KWS;
the plot collects the top-1 accuracy achieved with 8- and 16-bit. The lines fol-
low a pseudo-monotone trend: the lower the memory, the lower the classification
accuracy. Negligible ripples are due to the noise introduced by fine-tuning. The
observed trend motivates our choice: stopping the pruning procedure as soon as
the constraint Mt is met ensures the highest accuracy for that specific Mt. The
same trend holds for every bit-width used in our experiments (for the sake of
readability other bit-widths are not shown in the figure). Furthermore, these find-
ings also validate the linear interpolation adopted to estimate the accuracy when
Mt ∈ (Mbi

, Mbi+1) . Indeed, the plot shows that accuracy is a piece-wise linear
function of memory. The same considerations hold for the other benchmarks.

0

3
8

7
6

1
1

4

1
5

2

1
9

0

2
2

8

2
6

6

3
0

4

3
4

2

3
8

0

4
1

8

4
5

6

4
9

4

5
3

1

5
6

9

6
0

7

Memory Mc [KB]

60%

70%

80%

T
o
p
-1

 A
c
c
u
ra

c
y

Filter-Pruning, b=8

Filter-Pruning, b=16

Figure 2.3: Top-1 accuracy vs. memory footprint for KWS.

On the scalability of the proposed hardware-driven optimization. The
adopted PaQ scheme is hardware-friendly, namely, memory compression improves
latency too. We refer to this kind of schemes as latency proportional. Fig. 2.4

30

2.2 – PaQ: Prune and Quantize

shows the average latency for one feed-forward pass of the ConvNet used in KWS.
The analysis is conducted under different memory constraints (the same reported
in Table 2.5).

As PaQ-8 outperforms PaQ-16 (please refer to the previous section), the re-
ported results are for 8-bit only. The execution time is measured using the timer
API provided by the mbed-os operating system and averaged over the entire test
set. Experiments were conducted on the boards reported in Table 2.4, indicated
with the labels NUCLEO-F4 and NUCLEO-F7 for brevity. Since the total RAM
of the NUCLEO-F4 board is 256 KB, larger models cannot be ported.

The use of pruning and quantization schemes that preserve the regularity of
the ConvNet topology is paramount to achieve a direct proportionality between
inference time and memory footprint. The choices implemented in the proposed
framework go in this direction as they have been conceived to (i) reduce the number
of memory accesses, (ii) alleviate the cost of the im2col procedure, and (iii) reduce
the number of operations as the memory footprint gets smaller. The result is
the favorable linearity shown in the plot. The same trend holds for the other
benchmarks.

76 114 152 190 228 266 304

Target Memory Mt [KB]

0

50

100

150

200

250

300

L
a
te

n
c
y
 [

m
s
]

48

92

141

185

235

10
23

37
50

66
79

94

NUCLEO-F4

NUCLEO-F7

Figure 2.4: Average inference time per sample of PaQ-8 solutions on KWS.

Execution Time. The PaQ flow takes a few minutes for each fine-tuning
stage (50 epochs each). Execution time may vary depending on the complexity of
the ConvNet and the memory constraint. The worst case is the largest benchmark
(FER): 25 minutes on average for each {Mt, b} pair, 80% spent for the fine-tuning
stages. The execution time can be significantly reduced by limiting the number of
retraining epochs without incurring any significant accuracy loss. Early stopping
policies may be introduced to serve this purpose as it was done in other works to
prevent over-fitting [57] or accelerate the training stage [58]. While the accelera-
tion of the PaQ flow is left as future work, Table 2.6 supports our claim showing
the number of fine-tuning epochs after which PaQ reaches the highest top-1 ac-
curacy. Reported numbers refer to the average over all the pairs {Mt, b} of the

31

2.3 – EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets

Table 2.6: Average number of fine-tuning epochs to achieve the maximum top-1
accuracy on the test set.

Task Q-aware Pruning b-Quantization

IC 30.7 22.1
KWS 27.7 15.4
FER 18.7 13.5

exploration space. For the three benchmarks, both pruning and quantization con-
verge much earlier than the 50-epoch threshold we set for safety, thereby revealing
the optimization room of smart heuristics.

2.2.3 Discussion
We presented a thorough study of memory-bounded ConvNets. The study was

conducted through an assessment framework that enables a hardware-aware explo-
ration of the memory-accuracy design space. This represents a distinctive factor
with respect to existing optimization flows. Thanks to the proposed framework,
we demonstrated that optimal solutions could show similar accuracy than those
that can be effectively implemented on general-purpose cores, even at the tight
memory constraints posed by tiny MCUs. Collected results on real-life applica-
tions revealed that the benefits of custom accelerators are limited to few use-cases
and/or extreme compression ratios. When tested on commercial boards, hardware-
compliant solutions showed that memory reduction linearly improves performance,
thereby demonstrating the efficiency and the scalability of the adopted optimiza-
tion strategies.

Overall, our study proves that the design space exploration of memory-bounded
ConvNets enables to understand when custom arithmetic units are needed. Under-
standing these cases is paramount to reduce the implementation costs, especially
in the context of lightweight IoT applications. Furthermore, the analysis revealed
a natural bond between pruning and quantization that can be used in future works
to drive and accelerate the optimization process.

2.3 EAST: Encoding-Aware Sparse Training for
Deep Memory Compression of ConvNets

As discussed in Section 2.1, several works explored aggressive optimization
techniques for the memory compression of ConvNets. In the context of inference
on MCUs, quantization via fixed-point arithmetic is a standard today. The use of

32

2.3 – EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets

8-bit integers is a common choice for general-purpose cores [45] as it squeezes the
memory footprint up to 4× related to 32-bit floating-point with no, or marginal,
accuracy drop. However, quantization alone might be not enough to meet tight
memory constraints. Sparse training via weight pruning [59, 60] is an additional
strategy that can improve the compression if combined with some encoding scheme.
The joint application of sparse training and quantization generates ConvNets prone
to be compressed by lossless encoding schemes because the weight arrays contain
long sequences of zeros or repeated values.

Intuitively, higher sparsity levels can achieve higher compression rates. How-
ever, under extreme constraints, i.e. a few tens of KBs, the level of sparsity which
will let encoding schemes match the constraint is extremely high, much higher
than what ConvNets may tolerate. Fig. 2.5 illustrates this important aspect for a
9-layer ResNet trained on CIFAR-10. Above 90% of sparsity, the value needed to
achieve a memory footprint ≤40 KB, the accuracy curve suddenly drops.

60 65 70 75 80 85 90 95 100
Sparsity (%)

60

70

80

90

Ac
cu

ra
cy

 (%
)

112KB 80KB 48KB
40KB

32KB
24KB

20KB

16KB

12KB

Dense
Sparse

Figure 2.5: Sparsity vs. Accuracy trade-offs of a compressed 9-layer ResNet under
different memory constraints (the labeled numbers). The net is trained on CIFAR-
10, then compressed via weight pruning and encoding. The blue dash-dotted line
marks the accuracy of the original dense version (140 KB).

This poses a novel challenge: Is it possible to achieve higher compression rates
with lower sparsity to preserve accuracy? The technique presented in this section
aims to answer this question, proposing a practical optimization strategy named
EAST (Encoding-Aware Sparse Training). The underlying principle is simple,
yet effective: find groups of adjacent weights to be pruned rather than pruning
single connections. EAST involves a sparse training loop based on adaptive group
pruning where the group size adapts to the target memory minimizing the level
of sparsity needed. EAST adopts the LZ4 [61] encoding scheme, which (i) can be
implemented with an efficient routine of few bytes of memory and (ii) guarantees

33

2.3 – EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets

fast decompression speed and negligible overhead during inference latency. In
principle, EAST can work with any existing encoding scheme. The validation is
conducted on a state-of-the-art 9-layer ResNet trained on the CIFAR-10 dataset
and ported on an Arm Cortex-M4 MCU. A comparative analysis against the same
network compressed with a standard weight pruning and encoded with the same
LZ4 scheme demonstrates that EAST can reach higher accuracy (up to 8.73%)
when the memory budget is very limited (12 KB of flash).

2.3.1 Motivation
Weight pruning is a common technique to generate sparse ConvNets. During

training, less important connections are gradually removed until a target level of
compression is reached. The weight magnitude is the most adopted proxy to deter-
mine the weights priority, under the assumption that collapsing low-value weights
to zero has a low impact on the final output of the network. Pioneering works
in this field [59] proved that most of the weights can be zeroed (up to 90%), still
preserving the prediction quality of the dense baseline. Through a joint applica-
tion of ultra low-bit quantization (down to 2 bits) and weight encoding, sparse
ConvNets may achieve impressive compression ratios, up to 49× depending on the
network topology [62]. Furthermore, more recent studies investigated the bond
between weight pruning and quantization [29, 63], suggesting optimization strate-
gies to reach the most efficient cooperation between pruning and quantization.
However, this class of strategies demands the availability of arithmetic data-paths
supporting flexible bit-widths, whereas general-purpose cores come with a limited
instruction-set which limits the selection of the bit-width to few options, i.e., 8-bit
for the Cortex-M core.

The empirical study conducted in [60] suggested that large-sparse models out-
performs small-dense models. However, above a certain level of sparsity (>90%),
the ConvNet may show prohibitive accuracy degradation. We tackle this problem
with an encoding-aware pruning that matches the same target memory with fewer
weights pruned.

An interesting work conducted in [64] revealed that a ConvNet contains an iso-
accuracy sub-network that can be discovered via sparse training. This sub-network
may represent the smallest achievable implementation that guarantees the highest
accuracy, therefore it could be the best starting point for any encoding scheme.
However, how its identification under extremely high levels of sparsity still remains
an open problem. We propose a complementary approach, which maximizes the
efficiency of the encoding scheme forcing a certain degree of proximity for zeroed
weights.

Also, other works experimented pruning at higher-granularity, namely groups
of adjacent weights. For instance, in [34] the group size is fixed to reflect the

34

2.3 – EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets

parallelism of single-instruction multiple-data (SIMD) units. This enables to im-
prove the inference performance. Rather than improving performance, we aim at
decreasing the memory footprint. Specifically, we propose a novel version of group
pruning aiming to accelerate the compression rate. As a distinctive feature, both
the group size and the physical place of the pruned groups are tuned during train-
ing depending on the memory constraints. Moreover, our strategy can works also
for cores without a SIMD unit (e.g. the low-power Cortex-M0 and M3 MCUs).

Sparse networks can be compressed through different encoding schemes. The
most popular examples include Huffman Coding [62], Compressed Sparse Col-
umn [65], Zero Run Length [66]. We focus on the LZ4 algorithm which proved
faster than others during decompression (in the order of several GB/s on high-end
CPUs). To improve the efficiency of LZ4, and in general of any compression al-
gorithm, it is paramount to have big chunks of adjacent zeros. For this specific
reason, an efficient compression strategy should take the sparsity distribution (and
not just its absolute value) as a first-order variable.

2.3.2 Flow overview
The design of sparse ConvNets involves three main steps: (i) sparse training,

(ii) quantization, and (iii) encoding. The first, Sparse training, is to train the sparse
network under a user-defined memory constraint. Then, Quantization reduces the
arithmetic precision of the model to a given bit-width (8-bit in our case). Finally,
Encoding compresses the model size leveraging favorable patterns generated by
the sparse training. The EAST strategy implements the first stage.

EAST

Encoding-Aware Pruning. As already mentioned, accuracy-driven weight
pruning algorithms return tensors with chains of zeros much longer than in the
baseline dense model. Even though this helps to improve the efficiency of the
encoding scheme, there is no direct control on the position of the zeros, which is
driven by accuracy. The EAST technique relies on the assumption that a weight
pruning which is aware of the encoding scheme could make better use of spar-
sity. This principle is illustrated in Fig. 2.6, which shows how multi-dimensional
tensors are transformed into a 1-D array that can be processed by standard general-
purpose cores. Fig. 2.6a refers to a standard weight pruning, while Fig. 2.6b is for
a group pruning with group size (GS) of 4. In both cases, the picture refers to
a channel-last layout organization (the same scheme used by the inference library
adopted for deployment). The colored items mark the pruned weights. While for
the standard method the pruned weights are often placed far away as the selection
is just accuracy-driven (smaller weights pruned first), with a group pruning the

35

2.3 – EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets

proximity of the pruned weights is forced by the size of the group itself. This
brings to clear advantages. Indeed, even if both cases show the same sparsity
(59%), group pruning gets 55% higher compression ratio (using LZ4). The savings
get larger when considering tensors of higher dimensionality.

(a) Weight pruning. (b) Group pruning (GS = 4)
.

Figure 2.6: Weight Pruning (a) vs Group Pruning (b). Colored weights denotes
zero-values

Clearly, the group size serves as a control knob to achieve the best trade-off
between accuracy, sparsity, and compression rate. When the available memory is
extremely small, groups of larger size may help to reach higher compression with
lower sparsity, hence preserving accuracy more. With a too-small group size, e.g.
1 as for standard weight pruning, the amount of sparsity needed by the encoding
algorithm to meet the memory constraint would be too large, with negative effects
on the accuracy. The EAST strategy implements a memory-driven adaptive group
sizing during the sparse training procedure.

Sparse Training. In EAST, both sparsity and group size are gradually in-
creased during the training loop until the memory constraint is met. In the be-
ginning, the sparsity is low and the group size is set to one, hence EAST behaves
like a standard weight pruning. If the memory constraint is not satisfied, sparsity
and group size are updated following a pre-defined schedule. The sparse training
iterates for a new bunch of epochs and if the memory constraint is still not met,
sparsity and group size are newly updated. The larger the group size, the faster
the memory reduction. Therefore, group pruning helps to converge faster attain-
ing the target memory with a lower sparsity. The group selection is driven by the
ℓ2-norm: groups with lower norm are removed first. However, they can be restored
later during the training steps that follow. Once the target memory is met, the
sparsity and group size updates are stopped, the pruned weights are frozen, and
the training iterates for the last set of epochs adjusting the remaining weights in
order to maximize accuracy.

36

2.3 – EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets

Hyperparamters. Group pruning is applied at the end of each epoch, namely
after a complete iteration over the entire training set. The initial target sparsity
is 30% with an increased step of 1% every epoch; the step is halved at epochs 20
and 50. The initial group size is set to one; starting from epoch 20, it increases
with a step of 1 every 10 epochs.

Quantization & Encoding

After the sparse training, the 32-bit floating-point ConvNet is quantized to 8-
bit. The effect of the quantization is (i) to reduce the memory footprint ensuring
negligible accuracy loss, (ii) to increase the frequency of repeated weights, (iii)
to accelerate the inference time. We adopted a binary-point quantization scheme
which is fully compliant with the inference library used for on-board deployment
(CMSIS-NN [45]), therefore tailored for the target MCU (the Cortex-M by ARM).

Finally, the quantized model is compressed. EAST is compliant with any en-
coding algorithm, but we observed that the LZ4 algorithm represents the most
suitable choice for resource-constrained MCUs, thanks to its lightweight routine
that guarantee a fast decoding process. On-board measurements validated this
qualitative analysis. The implemented compression strategy is layer-wise, namely,
layers are compressed as separate blocks. This solution allows more efficient man-
agement of the available SRAM as it avoids one-shot full model decoding. In fact,
layers are processed in sequence during inference, therefore each layer block can
be decoded independently and temporarily stored in the SRAM in time-shared
buffers.

2.3.3 Experimental Results
Benchmarks, Datasets, and Training

We adopted as benchmark a 9-layer ResNet [67] (ResNet-9) for image clas-
sification on the popular CIFAR-10 dataset. ResNet-9 currently holds the first
position in the DawnBench Competition [68]. In our implementation, we removed
75% of the filter from each convolutional layer. As it is already optimized for fast
training and inference, this ConvNet represents a challenging test-case to assess
the efficiency of different compression pipelines.

The dataset is split in training (45K images), validation (5K) and test (10K)
set. The model with the highest accuracy on the validation set is selected for
evaluation. We adopted a standard data augmentation pipeline, involving padding
with random crop, random horizontal flip, and cutout. The same setting is used
for both dense and sparse training. The training is driven by SGD for 200 epochs
with a batch-size of 128. The learning rate follows a cosine annealing schedule

37

2.3 – EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets

with an initial value of 0.1. All the experiments have been conducted in Pytorch
1.2.

Concerning quantization, the fixed-point position is determined by a heuristic
that minimizes the mean squared error between the floating-point and the 8-bit
values. For the intermediate activations, the statistics have been collected on a
sub-set of the validation set (size 100 samples).

Table 2.7 reports the top-1 accuracy on the test set and the memory size of the
network. The reported values refer to a standard training (i.e. EAST off). Results
confirm the efficiency of quantization (column Q8) that gets 4× memory reduction
with negligible accuracy losses (0.09%) w.r.t. the floating-point ConvNet (column
FP32). Applying the LZ4 compression to the quantized model does not show
significant savings: just a few bytes of memory reduction (column Q8+LZ4).

Table 2.7: Top-1 classification accuracy on CIFAR-10 and weight memory of the
dense ResNet-9 after 32-bit floating-point training (FP32), after quantization (Q8),
and after LZ4 compression (Q8+LZ4).

FP32 Q8 Q8+LZ4

Top-1 91.10% 91.01% 91.01%
Memory 558 KB 140 KB 140 KB

Results

EAST opens the deep memory space. Table 2.8 reports the comparison
between a standard sparse training via weight pruning (WP) and the proposed
flow built upon EAST. The two are compared for different target memories (Mt).
The WP is trained using the same sparsity schedule of EAST. For each Mt, the
table collects the compression ratio (CR) achieved after quantization and encoding,
the sparsity reached after training (columns SWP and SEAST), the top-1 accuracy
measured on the test-set (AWP and AEAST) and the relative accuracy distance (∆A)
between EAST and WP. As demonstrated by previous works, when the memory
constraint is met with low sparsity, weight pruning guarantees marginal accuracy
losses. For instance, at Mt = 112 KB the accuracy loss is only 1.21% lower than
the dense 8-bit ConvNet (89.80% vs 91.01%). In this region of memory, EAST
reaches similar accuracy levels than weight pruning, 0.34% lower in the worst case
(Mt = 112 KB). However, in the deep memory space (Mt ≤ 40 KB) weight pruning
starts experiencing dramatic accuracy degradation. The reason is that very high
sparsity (> 90%) is needed to reach the desired memory constraint, therefore the
model loses its expressive power as only a few weights remain up. In this region
EAST outperforms WP; the encoding-aware pruning enables better control of the

38

2.3 – EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets

Table 2.8: Sparsity (S) and Top-1 Accuracy (A) of weight pruning (WP) and EAST
on ResNet-9 at different memory constraint Mt (KB). CR is the compression ratio
w.r.t. the floating-point ConvNet.

Mt CR SWP SEAST AWP AEAST ∆A

112 5.0× 58.5% 49.5% 89.80% 89.46% -0.34%
80 7.0× 76.0% 60.5% 88.67% 88.61% -0.06%
48 11.6× 89.5% 74.8% 87.51% 87.44% -0.07%
40 14.0× 92.0% 79.0% 86.80% 86.82% 0.02%
32 17.4× 94.0% 83.3% 85.30% 86.11% 0.81%
24 23.3× 96.0% 87.8% 82.33% 83.65% 1.32%
20 27.9× 96.8% 90.0% 79.63% 81.11% 1.48%
16 34.9× 97.5% 91.8% 74.16% 78.45% 4.29%
12 46.5× 98.3% 94.0% 55.59% 64.32% 8.73%

sparsity indeed (SEAST < SWP), preserving the same amount of information within
the same amount of memory. On the extreme corner, Mt = 12 KB, EAST is 8.73%
more accurate than WP due to a lower sparsity (94% vs 98.3%). To emphasize
the role of EAST, one can consider that with the same amount of sparsity (e.g.
94%) the model optimized with EAST is 2.7× smaller (row 12 KB vs 32 KB).

EAST accelerates the memory compression. Fig. 2.7 shows the evolution
of the memory footprint during the training epochs for both WP (blue line) and
EAST (red line) under the same memory constraint Mt = 32 KB. During the first
20 epochs, when the group size is one (as set by the training schedule), EAST
follows the same trend of WP. Every time the group size gets increased (events
indicated with black dots), the memory compression accelerates quickly. As a
result, EAST reaches the target memory (indicated with the dashed black line) 43
epochs sooner than WP. These findings suggest that the group size works as an
effective knob to boost the compression rate without seeking additional sparsity.

Efficient deployment of sparse ConvNets. We validated the optimization
flow on a STM32 NUCLEO-F412ZG [69] board powered with an Arm Cortex-M4
core running at 100 MHz, 1 MB of flash memory, and 512 KB of SRAM. As the
inference engine, we adopted the CMSIS-NN library. The original dense ConvNet
takes 28 KB of SRAM to store intermediate activations and classifies a single image
in 492 ms. The sparse ConvNets needs 884 B of flash for the LZ4 routine, which
thereby has a negligible impact on the compression rates achieved. Furthermore,
an additional SRAM buffer of 36 KB is needed to store the decompressed weights.
Since this buffer is time-shared among different layers, its size is given by the
biggest layer. However, the buffer can be dynamically allocated just before the
execution of the ConvNet.

The total execution time is function of the memory constraint Mt: the larger

39

2.3 – EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets

0 20 40 60 80 100 120 140 160 180 200

Epochs

25

50

75

100

125

M
em

o
ry

(K
B
)

WP

EAST

Figure 2.7: Epochs vs. Memory in weight pruning (blue line) and EAST (red line)
for Mt = 32 KB (dashed line). The dots indicates when the group size increases.

the Mt, the longer the decompression stage. For ResNet-9 generated with EAST,
the execution time ranges from 482 ms at Mt = 12 KB to 497 ms at Mt = 112 KB.
At the lowest memory, the decompression only accounts for 6 ms; in all cases, the
network layers execute faster than the dense counterpart as the weights resides in
the SRAM instead of flash.

Discussion

EAST opens new paths towards the optimization of ConvNets in memory-
bounded cores. It is particularly suited for the deep memory space, where it
outperforms state-of-the-art sparse training. Nevertheless, further investigation is
needed to bridge the accuracy gap with dense nets at extreme constraints. First,
future studies should explore other proxies than the ℓ2-norm to drive the group
selection. Second, group size and sparsity follow a relative straightforward schedul-
ing during the training; to achieve better trade-offs among sparsity, group size, and
the position of the pruned groups, a smarter approach based on automatic hyper-
parameter tuning (e.g. Bayesian optimization or reinforcement learning) might
help EAST to reach global optima in the design space.

40

Chapter 3

Energy-Driven Optimization

Energy consumption and execution speed are major sources of concern in em-
bedded ConvNets. They jeopardize scalability and responsiveness both in cloud
services, where millions of users generate large pools of concurrent requests with
high energy demand, and in mobile applications, where compute and memory re-
sources are limited by low power budgets impeding real-time performance. The
latter is of particular interest in the emerging segment of distributed sensing sys-
tems where intelligence is decentralized on the mobile edge to preserve data privacy.

The research community is attacking the problem from opposite directions.
From the bottom, with the design of custom ICs [70, 9] which show an energy con-
sumption of few pico-Joules/operation. From the top, with new learning strate-
gies [71]. Despite the impressive results achieved, modern ConvNets have an intrin-
sic limitation that prevents them to raise the bar of efficiency: they are conceived
and implemented as static models. There is much more room for improvement in-
stead, and biological systems that inspired the ConvNets may suggest additional
dimensions to explore; one of these is adaptivity. The human brain operates as a
dynamic machine adapting to the surrounding context. The effort that we, hu-
mans push to solve a task is not defined a-priory, it is tuned at run-time on the
basis of the quality-of-results we are intended to achieve and/or depending on
other non-functional metrics, like the criticality and relevance of the problem we
are going to solve, our level of tiredness and even the amount of time available to
accomplish the task. This happens in many of our daily activities when contextual
constraints take precedence over the quality of the final answer. In other words,
the brain achieves high efficiency as it pushes effort only when needed. ConvNets
are on the opposite corner. Training is a single-objective optimization carried un-
der the worst-case assumption that inference will be always operated at the finest
level of detail, no matter the external environment and the actual requests. As
our brain does, this conservative view can be relaxed for the sake of efficiency.

41

Energy-Driven Optimization

The computational effort of a ConvNet, and thus its level of classification ac-
curacy, can be reduced during inference, depending on the context and in favor of
less energy consumption or more speed. This useful when the application has to
rescale its energy footprint (due to a peak of requests in the cloud or when the
mobile system is running out of battery), but also when the classification task is
not that critical to solve (in which case some accuracy loss is tolerable) or is not
that difficult (in which case fewer resources are needed yet preserving accuracy).
We refer to ConvNets with such ability as Adaptive ConvNets. Fig. 3.1 provides
a generic and abstract view of their implementation. The template includes the
hardware hosting the pre-trained ConvNet (a systolic neural accelerator in the ex-
ample) and the control knob used to pull the system towards different points in the
operating space (the 2D energy-accuracy space in the example); the shift depends
on an external trigger and it is operated by a control knob during inference, i.e.
at run-time, re-configuring the hardware and/or the ConvNet model.

Control Knob

Filter SRAM

Systolic
PE Array

RISC
Control

DRAM

Output SRAM

In
pu

tS
R

A
M

Energy

A
cc

ur
ac

y

Adaptive ConvNet

Runtime Switching

Figure 3.1: Abstract template for Adaptive ConvNets. At run-time, a control-knob
changes the configuration of the processing elements (PEs) and of the ConvNet
to switch among different operating point in the energy-accuracy space. In this
work, the control-knob is precision scaling.

The design of an Adaptive ConvNet encompasses (i) the definition of the ex-
ternal trigger, that is an observable variable or a specific constraint forced by the
environment, and (ii) the actual implementation of the control mechanism. Con-
cerning the first point, previous works made several proposals. The most relevant
examples involve the use of the complexity of the input data [72, 73, 74], or the
energy budget available [75]. The strategies presented in this chapter deal with the
latter class, i.e. energy-driven adaptive ConvNets. About the second point, dif-
ferent kinds of knobs are available, some of which defined at the algorithmic-level,
i.e. over the ConvNet topology, like dynamic channel pruning [72, 76] and layer

42

Energy-Driven Optimization

skipping [73], while others, e.g. precision scaling [44], call for a proper hardware-
software co-design. We adopted the precision scaling because it offers unique
advantages as it will be discussed later in the text.

Specifically, in this chapter, we present two different strategies for the imple-
mentation of a hardware-aware, energy-driven Adaptive ConvNets, both based
on a per-layer dynamic precision scaling. While a plethora of hardware solutions
can implement energy-proportional multi-precision arithmetic, e.g. [18], our con-
tribution is positioned on the higher levels of the design stack, namely, on the
algorithmic implementation of dynamic precision scaling.

The first contribution introduces Adaptive ConvNets via on-line precision scal-
ing. It involves the formulation of an on-line, training-free adaptive mechanism
and its optimization methodology, the latter built over a multi-objective search
algorithm based on a modified version of the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II). The solution returned with the proposed framework con-
sists of a set of Pareto-optimal operating points in the energy-accuracy space.
Each point identifies a different precision setting of the ConvNet layers that can
be selected at run-time through software-programmable flags.

The second contribution introduces the concept of scalable-effort ConvNets, an
effort-accuracy scalable model for classification of data at multilevel abstraction.
Scalable-effort ConvNets can adapt at run-time to the complexity of the classifica-
tion problem, i.e. the level of abstraction defined by the application (or context),
and reach a given classification accuracy with minimal computational effort. The
abstraction level represents the third dimension in the design-space besides accu-
racy and energy, thereby enabling more flexible trade-offs than standard ConvNets
that always operate at the same level of abstraction.

The presented strategies have two distinctive features related to existing Adap-
tive ConvNets. First, they make use of a single weight-set rather than multiple
models stored on-chip as separate configurations. Second, they can be applied to
any pre-trained model, a key advantage compared to state-of-art implementations
of Adaptive ConvNets that need dedicated re-training procedures. The remainder
of this chapter is organized as follows. Section 3.1 introduces a taxonomy of ex-
isting strategies for Adaptive ConvNets. Section 3.2 discusses the background on
quantization via fixed-point representations, together with a synthetic review of
the most advanced implementations of mixed-precision ConvNets and their opti-
mization. Section 3.3 presents our first implementation based on on-line precision
scaling, together with the design, optimization, and implementation details. Sec-
tion 3.4 deals with the second strategy, i.e. scalable-effort ConvNets, describing
its working principle and a practical methodology for its implementation.

The content of this chapter is a revised and extended version of our previous
research works conducted in [75, 77, 78].

43

Energy-Driven Optimization

Table 3.1: Schematic classification of different implementations of Adaptive ConvNets.

Method Control-Knob Triggering Condition Optimization Search Training Free

Runtime Configurable DNNs [76] Channel Skipping Energy, Input Complexity Single-Objective (S) SGD ✗

Runtime Neural Pruning [79] Channel Skipping Input Complexity Single-Objective (S) SGD+RL ✗

ConvNet with AIGs [80] Layer Skipping Input Complexity Single-Objective (S) SGD ✗

SkipNet [73] Layer Skipping Input Complexity Single-Objective (S) SGD+RL ✗

Dynamic Bit-width Reconfiguration [74] Precision Scaling Input Complexity — — ✓

Feature Boosting and Suppression [72] Channel Skipping Input Complexity Single-Objective (S) SGD ✗

Slimmable Neural Networks [81] Channel Skipping Energy Single-Objective (S) SGD ✗

On-line Precision Scaling Precision Scaling Energy Multi-Objective NSGA-II ✓

Scalable-Effort ConvNets Precision Scaling Abstraction Level Single-Objective (D) Greedy ✗

44

3.1 – Taxonomy of Adaptive ConvNets

3.1 Taxonomy of Adaptive ConvNets
This section provides the taxonomy of Adaptive ConvNets emphasizing the key

aspects differentiating our strategy. A synthetic overview of the existing imple-
mentations is provided in Table 3.1, which reports a qualitative comparison based
on five different criteria: (i) the control knob adopted, (ii) the external trigger that
drives the adaptive mechanism, (iii) the optimization deployed at design-time to
implement the control knob and (iv) its underlying search algorithm, (v) whether
the method is training free, namely, it can be applied to pre-trained models w/o
additional re-training stages.

3.1.1 Control Knob
The existing control knobs were mainly inspired by two techniques originally

conceived as static optimizations: pruning and quantization. The two leverage
the over-parametrization of ConvNets, yet acting on different parts of the model.
The former, pruning, does reduce the cardinality of the ConvNet by altering the
topology of the network, that is, removing those components of the graph that
do not contribute (or that weakly contribute) to the classification accuracy. The
latter, quantization, decreases the arithmetic precision of the operands (i.e. weights
and activations) preserving the overall topology of the graph. Both can be applied
to different spatial granularities, e.g. at a net-, layer-, channel-, filter- and weight-
level, however, existing methods for Adaptive ConvNets work with coarser grains
(i.e. net, layer, and channel) to preserve regularity of execution and scalability of
the optimization method.

Pruning-based. Methods based on channel-skipping dynamically drop entire
channels, i.e. entire 3D convolutional filters; the selection of filters is done at run-
time, either driven by a pre-trained agent or scaling the number of filters across all
the layers according to a predefined ratio – the width multiplier. Methods based
on layer-skipping operate in a very similar way, yet at a coarser level bypassing
entire convolutional layers.

Quantization-based. ConvNets show high resilience to arithmetic approxi-
mation. In fact, their inner tensors can be discretized using a less precise repre-
sentation, e.g. fixed-point with fewer bits, and then re-trained for a few epochs to
restore accuracy. Adaptive ConvNets require that such precision scaling could be
dynamically applied at run-time, i.e. on-line during inference, thereby impeding
any re-training stage. This aspect is paramount as it may introduce a substantial
overhead. A naive solution is that of storing multiple models, each tuned and
optimized for a specific precision, and then load one of them at a time depending
on the external trigger; clearly a quite inefficient approach in terms of resource
usage. Moreover, re-configurable hardware arithmetic units are needed in order to

45

3.1 – Taxonomy of Adaptive ConvNets

ensure efficiency. Despite these design issues, dynamic precision scaling has a big
plus when compared to pruning-based methods: it can be made training-free. The
same is not for channel and layer skipping, which alter the network topology and
therefore require to re-train the weights of the original ConvNet from scratch.

3.1.2 External Trigger
Another distinctive characteristic is the type of external variable or constraint

that triggers the adaptive mechanism. The options are the input complexity,
estimated before or during the inference; the available energy budget, which might
enforce some accuracy degradation to achieve better efficiency; the abstraction
level, which reflects the semantic organization of concepts in modern datasets.

Input Complexity. Most of the methods reported in Table 3.1 rely on the
input complexity. The basic assumption is that “not all inputs are equal,” that
is, there are input patterns that are easy (hard) to classify because the important
features are clearly exposed (masked) [82], hence, they apply an iterative process
where the computational effort (managed through the control knob) is progres-
sively increased till consensus is achieved, e.g. increasing the number of active
channels or layers, or improving the arithmetic precision. Since most of the inputs
show lower complexity, the overall effort is less on average. These methods are
data-driven and there is not a direct control because the trigger is embedded into
the input itself. As the main consequence, the savings are subject to high variabil-
ity and in some cases overheads may also appear [74]. This is a key limiting factor
for energy-bounded applications that call for real-time resource management.

Energy. A more reliable approach consists of using the actual energy bud-
get as a direct constraint to drive the control knob. Under this class, there are
those methods that define a set of ConvNets configurations in the energy-accuracy
space. Such configurations, defined at design time with some reduction scheme
based on pruning or quantization, are stored on-device and then deployed at run-
time depending on the actual needs. The casual component proper of data-driven
methods fades, leaving room to determinism and predictability. For such a specific
reason, these methods are more suitable for low-power and real-time applications.
However, to have multiple models on-board (e.g. one for each energy budget) is
not that practical as it may require additional resources, memory in particular.
The issue is addressed in this work.

Abstraction Level. ConvNets can be trained and optimized to recognize
concepts at different levels of abstraction due to the hierarchical organization of
concepts used in modern training sets. As will be demonstrated in Section 3.4, the
desired abstraction level might thereby serve as the external trigger that pushes
inference towards higher or lower effort. Intuitively, the computational effort is

46

3.1 – Taxonomy of Adaptive ConvNets

inversely proportional to the abstraction level: to classify objects with macro-
labels (e.g. animals and vehicles) is less complex than recognizing to which sub-
label the objects belong (e.g. the kind of vehicles or animals). Leveraging this
relationship, a given application is free to define the actual level of abstraction
upon the contextual needs, while the control knob operates on the ConvNets set-
up in order to resize the resource usage. Like for energy-driven methods, the
control mechanism is deterministic but the need for multiple configurations at
run-time is a primary source of overheads and should be carefully addressed.

3.1.3 Optimization and search engine
A variety of optimization procedures were proposed in previous works to build

Adaptive ConvNets. The commonality between the existing methods is the single-
objective nature of the formulation, implemented either by scalarization of the
cost function, or discretization of the optimization space. Our implementation of
Adaptive ConvNets via on-line precision scaling differs as we make use of a true
multi-objective formulation built on an NSGA-II evolutionary engine.

Scalarization (S). The multi-objective problem is translated into a single-
objective formulation. Specifically, the cost function is built as a combination of
the original objectives and, if made differentiable, e.g. using linear weighted sums,
classical back-propagation methods do apply. This offers the chance to integrate
adaptive optimization and weights learning within the same training framework.
As reported in the table, most of the prior arts make use of Stochastic Gradient
Descent (SGD) and Reinforcement Learning (RL). However, the choice of the co-
efficients in the cost function represents a major source of sub-optimality. Indeed
it is very hard to correctly weigh the objectives, especially for non-linear func-
tions [83]. The authors of [76] introduced an incremental training strategy that
starts from a compact network and then it incrementally increases the number of
channels of each convolutional layer while keeping already trained weights con-
stant. In [79], the authors proposed the use of RL to train an agent that drives
the channel selection during inference. The method described in [80] implements
a layer-skipping strategy where the decision of which layer to skip is approximated
through a differentiable probability distribution and integrated into a standard
SGD training. The proposal in [73] adopts a similar strategy but the selection is
driven by RL. The authors of [72] resorted to a predictor block placed at the out-
put of each layer that estimates, at run-time, which channel must be propagated
to the next layer and which instead can be blocked; the predictor is trained via
SGD. Elaborating on the same idea, the strategy presented in [81] introduces the
design of a novel layer—the switchable batch normalization—in which the number
of active filters is tuned dynamically by means of a width multiplier.

47

3.2 – Mixed-precision ConvNets

Discretization (D). The actual optimization is run along one single dimension
of the design space representing the free variable to minimize, while the remaining
dimensions are handled as constraints. For instance, assuming the 2D energy-
accuracy space, the goal becomes to maximize accuracy under a given energy
budget, or, to minimize energy within a certain accuracy threshold.

3.1.4 Training
An important aspect is the ability to implement adaptive ConvNets avoiding

time demanding training stages. It is well known that to train a new ConvNet
architecture is a burdensome task whose efficiency is dictated by the availability
of enough computing resources and labeled samples. Since there exist a lot of
pre-trained ConvNets which are the result of high optimization efforts, even man-
ual or automatic (via NAS), the possibility of adapting ready-to-use networks is
paramount to ensure low design costs and a short turnaround. As reported in the
taxonomy table, most existing works do not have such a feature. The only excep-
tion can be found in [74], which however does not involve any specific optimization.
In this regard, the methodology proposed in Section 3.3 is one of a kind.

3.2 Mixed-precision ConvNets
Our proposals for Adaptive ConvNets are built starting from the ground con-

cept of quantization and mixed-precision. The following text thus provides a
synthetic review of the existing static methods, with emphasis on software and
hardware solutions.

3.2.1 Fixed-Point Quantization
While training is mostly performed on GPUs using 32-bit floating-point arith-

metic, the deployment of trained ConvNets on energy-efficient systems generally
encompasses quantization to fixed-point numbers. The two key advantages are the
reduction of the model size and better utilization of the memory bandwidth. A
good quantization procedure is the one that maximizes the compression – i.e. the
bit-width used to store and process the data – with the minimum accuracy loss.
Quantized ConvNets have been subject to extensive research in the last years and
now can be considered a de-facto standard; a thorough overview of the available
strategies is given in [84].

Preliminary works demonstrated that inference with 16- and 8-bit integer arith-
metic can reach the same accuracy of 32-bit floating-point just after a short retrain-
ing stage [39]. Dedicated training procedures enabled more aggressive bit-width

48

3.2 – Mixed-precision ConvNets

scaling down to ternary [40] or binary [41] representations, yet with substantial
accuracy loss.

A uniform fixed-point representation implies all the layers share the same
bit-width, whereas in mixed representations each layer comes with its own bit-
width [44]. The choice may depend on the available hardware and the application.
Obviously, mixed approaches are more accurate as layers show different distribu-
tions and ranges, but also more complex, as moving across the layers requires extra
operations to align the operands.

Regardless of the selected bit-width and its arrangement across layers, several
quantization schemes can be adopted with different results. The first distinction
is between linear and non-linear schemes. Within a linear scheme, fixed-point
numbers are encoded using an affine mapping. Following a general formulation,
an integer number Q can be converted into its floating-point approximation F
using the following equation:

F = S(Q−O) (3.1)
where S is the quantization slope and O the quantization offset. If O is uncon-
strained, i.e. can take any value, the quantization is asymmetric; if O = 0, then
is symmetric, as the quantization range is centered around zero. Finally, when
S is forced as a power of two, the quantization is binary, a well-suited approach
for resource-constrained applications because the scaling of the radix-point can
be implemented with a straightforward bit-shift. For what concerns non-linear
schemes, the distance between two adjacent quantized intervals is free to change
to better fit the original distribution. The encoding makes use of hash functions
such as a logarithmic mapping [46] or clustering [33]. A non-linear scheme ensures
a better approximation, but it requires dedicated look-up tables for an efficient
implementation.

To summarize, the quantization process encompasses two stages: (i) the choice
of the bit-width and (ii) the choice of the quantization scheme. A one-fits-all
solution does not exist as it strongly depends on the kind of available hardware,
the ConvNet model and its weight distribution. In order to implement the energy-
accuracy control mechanism in Adaptive ConvNets, we make use of a per-layer
mixed-precision linear quantization scheme with symmetric binary scaling.

3.2.2 Training Mixed-Precision ConvNets
Since the intermediate features of a ConvNet may cover uneven ranges and

distributions, the optimal solution is to mix precisions across layers. This allows
minimizing the average bit-width still preserving the accuracy of the full precision
model. The first work proposing mixed-precision ConvNets is [44], where authors
proposed a greedy heuristic that decreases the layers precision in topological order,

49

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

from input to output. However, when extra-functional metrics like energy are
taken into consideration, substantial overheads may appear due to more complex
hardware management. The first step toward hardware-conscious optimization was
to include indirect proxy signals that can regulate the precision assignment. For
instance, [39] describes the design of embedded ConvNets for Field Programmable
Gate Arrays (FPGAs) and propose a mixed-precision strategy that is aware of
the number of memory accesses. Unfortunately, proxy signals are weak predictors
for both latency and energy consumption [85]. Motivated by this observation,
more recent works introduced the actual energy consumption as a direct variable
in the objective function. Energy can be directly measured [86] or estimated
using simulation models [87]. This opened to a multi-objective problem, also
mentioned in the taxonomy section, where two conflicting metrics, accuracy loss
and energy in this case, should be minimized concurrently. A methodology based
on “scalarization” was proposed [88] where the authors formulated the mixed-
precision assignment as a differentiable problem solved within the training loop.
The authors of [87] resorted to “discretization” with an RL-based agent used to
find the optimal bit-width configuration subject to a given energy budget, while
in [85] the authors proposed an accuracy-constrained formulation.

All the above methods are for static optimization only and they do not apply
for Adaptive ConvNets. Indeed, weights are trained for a specific precision set-
ting without any concern about dynamic scaling at run-time. Their adoption for
Adaptive ConvNets would imply the storage of multiple weight sets, namely, one
full model for each operating point, which we want to avoid.

3.3 Energy-Driven Adaptive ConvNets via On-
line Precision Scaling

This part of the chapter presents our first proposal for Adaptive ConvNets,
which is based on on-line precision scaling. The rest of this section is structured
as follows. Section 3.3.1 presents the design flow, with emphasis on the proposed
precision scaling strategy, the problem formulation, and its optimization via ge-
netic search. Section 3.3.2 shows the actual implementation on a bit-width pro-
grammable processing element. Section 3.3.3 introduces the experimental setup
and collects the main simulation results, demonstrating the efficiency of the pro-
posed strategy and the effectiveness of the underlying design and optimization
engine. As conclusions, Section 3.3.4 gives the final remarks.

50

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

3.3.1 Design and Optimization
Understanding Dynamic Precision Scaling

Dynamic precision scaling means to modulate the bit-width of weights and
feature maps at inference time, from full precision n-bit (n < 32) to low preci-
sion m-bit (m < n) and backward upon request. Even though the choice of n
and m is arbitrary, to consider hardware characteristics is paramount to achieve
efficiency [31]. Operands with uneven bit-width (e.g. 12, 11, 10 or 7, 6, 5) may
be a costly design option due to sub-optimal memory allocation and additional
latency to feed the execution units in a regular manner. Moreover, custom PEs
supporting arbitrary-precision arithmetic get larger in the area and hence more
power-consuming. A common practice is to restrict n and m to a power-of-two on
the basis of the hardware parallelism. In this work, we adopted an accelerator with
8-bit memory banks (both DRAM and SRAM) and a lightweight double-precision
arithmetic unit supporting 16- and 8-bit MAC operations. Sub-multiples are still
possible, e.g. n=8 and m=4, as long proper hardware is available.

In its simpler version, precision scaling is implemented by means of weight
truncation, that is, only the m most significant bits of the weights are retrieved
from memory and processed. When applied with a per-net granularity, i.e. all the
layers scaled to m-bit, ConvNets experience dramatic accuracy loss. A quantita-
tive comparison is reported in Table 3.2 which shows the top-1 accuracy for the
five ConvNets we used as benchmark in this work; column FP32 is for the original
floating-point model, column FX16 refers to full-precision fixed-point models (i.e.
n-bit) quantized through a static method (without any re-training stage), column
FX8-T is for the dynamic scaling to low-precision (i.e. m-bit) obtained truncating
the weights of the FX16 model. While the full precision quantization can retain
accuracy (the worst-case degradation from FP32 to FX16 is 0.014%), precision
lowering via truncation causes a sudden drop (>99% from FP32 to FX8-T, which
makes the models useless. An off-line re-training to fix the loss of FX8-T models
has no meaning here as it would imply to have multiple fine-tuned models stored
on-chip to make the system adaptive, one for each precision. The idea of on-line
re-training could be feasible in principle, provided that there are enough compute
resources and time to handle back-propagation and the availability of training
data, which is unlikely to happen. Instead, the proposed dynamic approach is
training-free and can be performed at run-time with limited overhead. Specifi-
cally, we propose to generate low precision weights using a half-even rounding of
the full precision model. Intuitively, the rounding to the nearest neighbor reduces
the arithmetic error minimizing the overall accuracy drop. The results collected in
column FX8-R of Table 3.2 give experimental evidence: for the first four bench-
marks (SqueezeNet and ResNets) the top-1 accuracy raises substantially, while for

51

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

the last one (MobileNet) the recovery is negligible and not enough to make the
ConvNet of any practical use. This preliminary analysis suggests that the round-
ing scheme is a good candidate, but since the gap from full precision is still large
(≥10% even in the best case) it needs more elaboration.

Table 3.2: Top-1 classification accuracy of five state-of-the-art ConvNets on the
ImageNet validation-set at different precision: 32-bit floating-point (FP32), 16-bit
fixed point (FX16), 8-bit fixed-point with truncation (FX8-T), 8-bit fixed-point
with rounding (FX-R).

Benchmark FP32 FX16 FX8-T FX8-R

SqueezeNet v1.1 56.360 56.348 0.872 43.796
ResNet18 v1 69.128 69.126 0.100 61.852
ResNet34 v1 72.688 72.688 0.104 63.826
ResNet50 v1 74.098 74.084 0.100 64.774
MobileNet v2 69.984 69.978 0.074 0.100

A finer per-layer precision scaling will help to reach higher quality. It is well
known, in fact, that layers have a distribution of weights that changes with the
depth of the layer itself and hence there are layers tolerating arithmetic errors
less/more than others. This opens to an optimization problem: which precision to
apply to which layer in order to reach minimum accuracy drop and high energy
savings.

Framework Overview

As shown in Fig. 3.2, the design flow consists of two main stages, quantization
and Pareto search. During quantization, a ConvNet model trained with 32-bit
floating-point numbers is shifted to n-bit fixed-point representation (n < 32, 16
in this work) using a uniform quantization scheme w/o re-training. This serves as
the full precision reference for dynamic precision scaling, and hence it is the model
actually stored on-chip. During the Pareto search, the space of mixed-precision
solutions is explored to find those configurations that maximize the energy savings
ensuring minimum accuracy degradation. The exploration is driven by a multi-
objective optimization algorithm that returns the Pareto-optimal points. Each
Pareto-point has a precision setting for the L layers, full precision (i.e. n-bit)
or low precision (i.e. m-bit), that makes the ConvNet working on that specific
energy-accuracy balance. The number and values of the Pareto points are not
defined a-priori, is the result of the searching phase that identifies the optimal
configurations, and may therefore change depending on the ConvNet topology.

52

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

Quantization Multi-Objective
Optimization

Pretrained
ConvNet

FP32 FX16

Quantized
ConvNet

Energy
Budget

Energy

Ac
cu

ra
cy

Per-layer
Precision Scaling

Design Run-Time

Figure 3.2: Design-Flow Overview

At run-time, a change of the energy budget triggers the adaptive mechanism
which seeks the most accurate precision setting that satisfies the energy constraint
and implements the per-layer precision scaling via on-line weight rounding.

Quantization

We adopted a linear quantization based on symmetric binary scaling. To match
the different distributions across the network layers, we resorted to a variable
fixed-point strategy where the position of the radix b is defined layer by layer.
A greedy heuristic searches the fraction length that minimizes the mean squared
error between the original 32-bit floating-point numbers X and the quantized n-bit
numbers Q. The same procedure is applied to both intermediate activations and
weights independently. For collecting the statistics of the activations, we used a
subset of the training set referred to as calibration set. All the quantized values
are computed using Equation 3.2:

Q = clip(round(X · 2b),−2n−1, 2n−1 − 1) (3.2)
where clip denotes the clipping functions to limit Q in the quantization range

and round stands for half-even rounding.
For the assessment of accuracy, we built a custom version of the fake-quantization

strategy introduced in [89], which enables the processing of quantized ConvNets on
common GPUs. During inference, a software wrapper converts intermediate fea-
tures and weights (stored in fixed-point) to the 32-bit floating-point; after being
processed, results are converted back to fixed-point. The results previously re-
ported in Table 3.2 validate our quantization strategy showing that the accuracy
degradation from FP32 to FX16 is negligible.

Pareto Search

The procedure, graphically depicted in Fig. 3.3, aims at finding the set of
points F that are Pareto. A point is Pareto if there is no other point with at

53

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

least one inferior objective and all other objectives inferior or equal. To search
a Pareto point encompasses the concurrent optimization of conflicting objectives,
classification loss and energy consumption in this case, within a region of interest
which is limited below acceptable levels of accuracy loss (a few percents) in order
to preserve the expressive power of the original ConvNet.

Calibration set

Energy LUTs

Fixed-Point
Emulator

Optimization Engine (NSGA-II)
KL divergence (DKL)

En
er

gy

Random Population (step 1)
Population at step i
Final population
Operating points

L=7

ConvNet

F1

F2

F3

F4
F5

𝜃(F1): 1 1 1 0 1 1 1
𝜃(F2): 1 0 1 0 1 1 1
𝜃(F3): 1 0 1 0 0 1 1
𝜃(F4): 1 0 1 0 0 0 1
𝜃(F5): 1 0 0 0 0 0 1

Precision Encoding

Figure 3.3: Schematic view of design-time optimization flow.

The optimization engine is fed with the full precision ConvNet obtained af-
ter quantization and it returns the optimal mixed-precision configurations. Other
inputs are the calibration set for assessing the accuracy of the explored config-
urations (task supported by a fixed-point emulator working in background) and
the energy look-up tables (LUTs) containing a pre-characterization of the energy
consumption of the ConvNet. The example in the figure refers to a 7-layer Con-
vNets (L = 7) and produces five different configurations (red crosses) which can
be stored into the device as a LUT. Our optimization makes use of a modified
version of the NSGA-II algorithm [90], an evolutionary heuristic based on the no-
tion of Pareto dominance. Starting from a random population (the grey dots in
the figure), a set of genetic perturbations are applied to generate new individu-
als. Those who dominate the remainder of the population are picked to form the
evolved population (blue dots). After a predefined number of iterations, the final
population (yellow dots) is used as a pool from which we extract a set of Pareto
optimal configurations F (red crosses) spread across the optimization space. As
a key feature, the proposed NSGA-II* algorithm is optimized to point the search
towards the high-accuracy region. Indeed, Pareto points with low accuracy are
not of practical use, regardless of the achievable energy reduction.

In the following text, we details the multi-objective problem formulation and
the NSGA-II* algorithm used as the solver.

1) Problem Formulation: Given a set V of layers (both convolutional and
fully-connected are considered) with cardinality |V| = L, find the finite set F

54

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

of mixed-precision configurations that dominate the energy-accuracy space. Each
item in F represents an integer labeling of the layers φ : V → {0,1}L. The unknown
θ is an array of L binary decision variables encoded as follows: θi = 1 if the i-th
layer is assigned to full precision (i.e. n-bit); θi = 0 if the i-th layer is assigned to
low-precision (i.e. m-bit). The cost functions of the multi-objective optimization
are L1, as the accuracy loss, and L2, as the energy consumption, whose description
is given in the next two paragraphs.

(a) Accuracy loss (L1): the accuracy loss due to a given mixed-precision
configuration θ is expressed through an indirect metric, the Kullback-Leiber (KL)
divergence (DKL). It is a measure of distance between two probability distributions
in the interval [0, inf), where 0 means no distance, i.e. equality. Here the two
probability distributions refer to the probability distribution sampled at the output
of the ConvNet when it is set to full precision (pdfull) and when it is set with a
mixed-precision configuration θ of interest (pdmixed). The objective is therefore:

min
θ

DKL(pdfull || pdθ
mixed) (3.3)

with pdfull and pdmixed generated collecting the statistics of the output proba-
bility pk for all the classes K over the calibration set, and pk as the softmax of the
logit zk:

pk = exp (zk)∑︁K
j=1 exp (zj)

(3.4)

We experimentally proved the KL divergence is a good proxy for the assessment
of accuracy loss introduced by the precision scaling: the lower it is, the lower the
accuracy loss. Moreover, it does not need labeled data.

(b) Energy consumption (L2): the estimation of the energy consumption
E during an inference run for a given mixed-precision configuration θ is based on a
fast, yet accurate static model built upon off-line characterizations of the ConvNet
layers. More specifically, E is given as the sum of the energy consumed by each
layer Vi as follows:

E(θ) =
L∑︂

i=1
Ei(θi) (3.5)

where the values for Ei are retrieved from the energy LUT (given as input to
the optimization engine) collecting the energy consumption of each layer i under
full precision, i.e. Ei(θi = 1), and low precision, i.e. Ei(θi = 0); the two are
measured using a cycle accurate simulation engine (more details are provided in
the experimental section). The objective is therefore given as:

min
θ

E(θ) (3.6)

55

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

Algorithm 2: NSGA-II* pseudo-code
Input: ConvNet, N , maxeval, calset, Pc, Pm, KLth
Output: Pareto Front F

1 Parent Solutions = Random generate N solutions
2 Evaluate DKL and E on Parent
3 Assign penalty to Parent Solutions
4 while Evaluations < maxeval do
5 Binary Tournament Selection
6 Generate Offspring Solutions
7 Simplex Crossover with Probability Pc
8 Bitflip Mutation with Probability Pm
9 Evaluate DKL and E on Offspring Solutions

10 Assign penalty on Offspring Solutions with DKL > KLth
11 F = Population Update
12 F = ε-nondominated sorting on F
13 return F

2) Search Engine The pseudo-code reported in Algorithm 2 describes the
steps of the proposed NSGA-II*. The initial population is made up of N solutions
θ (also called individuals) randomly generated (line 1), i.e. probability of θi = 1
is 50%. For each solution θ the two cost functions are evaluated (line 2), namely
DKL (measured over the calibration set calset) and E. In order to push the search
towards regions with the highest accuracy, we assign a penalty score to those so-
lutions with high DKL (line 3) such that individuals with a high penalty can be
dropped regardless of their energy. Specifically, if a solution has DKL > KLth,
its penalty score is DKL, zero otherwise. A change of the threshold KLth has the
effect of limiting the maximum accuracy loss accepted. The new set of individ-
uals (the offspring) is generated making parents evolve through standard genetic
functions: (i) binary tournament selection using ranking and crowding distance
(line 5) to select those individuals that will produce offspring from the remainder
of the current population; simplex crossover with probability Pc; bitflip mutation
with probability Pm (lines 6-8). As soon as the offspring is ready, the objective
metrics and the penalty score are evaluated and annotated (lines 9-10), and the
parent population is updated using non-dominated sorting and crowding distance
selection as described in [90]. Among the new parent solutions, the dominant
ones are picked and collected within F . Domination is first assessed comparing
the penalty scores, and then through the concept of Pareto dominance with re-
spect to the two objective functions (line 11). The loop iterates for maxeval trials,
after which the final population is ready and the subset of Pareto points is sam-
pled using ε-nondominated sorting [91] (line 12). The key principle underlying

56

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

ε-dominance is that in a bounding-box of width ε1 and height ε2 only one Pareto
point is admitted. This kind of sorting guarantees that solutions are spread over
the energy-accuracy space. Finally, the set of selected operating points is returned
(line 13).

In terms of complexity, the bottleneck is the evaluation of DKL, as it requires
a feed-forward execution of the network. The execution time depends on the
complexity of the network and the size of the calibration set.

Even though our formulation is tuned for two precision options only (full:m
and low:n), the extension to multiple bit-widths is straightforward and can serve
as support for specialized processing units, e.g. [21]. The precision assignment
can be defined as an integer problem indeed, where θi is an integer number in [0,
B − 1], where B enumerates all the bit-widths available in hardware. Concerning
the algorithm, it is just needed to replace the bitflip mutation (line 8) with a
polynomial mutation.

3.3.2 Runtime implementation
PE-reconfiguration

Fig. 3.4 shows an abstract view of a reconfigurable processing element (PE).
The left (right) picture illustrates the execution flow at 16-bit (8-bit). When
operating at a lower bit-width, the multi-precision MAC unit doubles the number
of operations delivered each cycle and the timing critical path (red dashed arrow)
is shortened. The available timing slack can be exploited by Dynamic Voltage
Frequency Scaling to reduce power consumption while keeping the throughput
constant. As shown in Fig. 3.4b, an 8-bit representation also improves memory
utilization with fewer fetch operations and higher data reuse.

Weight-reconfiguration

The efficient execution of a low-precision layer requires that 8-bit weights reside
in adjacent memory locations to enable parallel memory fetches. Based on this
observation, the shift from full to low-precision requires a re-configuration process
by which weights are properly organized into a new workspace to ensure affine
access profiles during inference, as depicted in Fig. 3.5. The figure illustrates
the two precision scaling options discussed in the previous section, truncation
(3.5a) and rounding (3.5b), respectively. The process is managed by the RISC
control unit. In the left case, the least significant byte (LSB) is discarded and
only the most significant byte (MSB) is kept; truncated weights are then stored in
adjacent locations of the DRAM. In the right case, half-even rounding is applied to
reduce a 16-bit word to 8-bit. Our final implementation adopts the second option,

57

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

DRAM Filter
SRAM

Input
SRAM

8-bit

...

...

I0

I1

...
...

1 x 16-bit MAC

F1

F0

Long path

8-bit

8-bit

Multi-precision PE

(a)

DRAM Filter
SRAM

Input
SRAM

Multi-precision PE

8-bit

...

...

I0 ...

...

2 x 8-bit MACs
Short path

8-bit

8-bit
I1

F0

F1

(b)

Figure 3.4: Abstract execution flow and PE configuration at 16-bit (3.4a) and
8-bit (3.4b).

i.e. half-even rounding, since it guarantees better energy-accuracy trade-offs, as
demonstrated in the experimental section.

Extra memory space is needed to store the new scaled weights while keeping the

58

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

01001100

11011111

10010010

RISC Control

DRAM

8-bit

11001011

...
Truncation

01001100
11011111

...

W1

W0

W1

W0

MSB

LSB

(a)

01001100

11011111

10010010

RISC Control

DRAM

8-bit

11001011

...
Rounding

01001101
11100000

...

W1

W0

W1

W0

MSB

LSB

(b)

Figure 3.5: Weight (Wi) re-configuration with truncation (3.5a) and rounding
(3.5b).

original full precision weights. However, the additional memory can be dynamically
allocated and de-allocated when needed. As it will be detailed later, simulation
results reveal the whole process introduces a limited overhead, with a negligible
impact on the total energy consumption.

3.3.3 Experimental Results
The experimental section is organized as follows. We first describe the Con-

vNets adopted to benchmark the proposed solution. Then, we present the simu-
lation model adopted to pre-characterize the energy LUT which are then used by
the search algorithm for the assessment of Pareto optimal solutions. Next, we give
additional details on the experimental setup. We therefore present the collected
results with the aim to (i) demonstrate the efficiency of the proposed optimiza-
tion, (ii) assess the solutions in the energy-accuracy space quantifying the savings
brought by Adaptive ConvNets, (iii) compare the proposed single-weight solution
against a naive multiple-weight adaptive strategy based on topology restructur-
ing. Moreover, we validate the proposed algorithm, quantifying the contribution of
its main components, i.e. weight re-configuration with rounding and the penalty
score.

59

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

Benchmarks and Datasets

We applied and tested the proposed adaptive strategy on five state-of-the-
art ConvNets1 for image classification trained on the ImageNet (ILSVRC2012)
dataset [93]. As reported in Table 3.3, the suite includes three different versions
of the ResNet architecture [94] and two networks designed for embedded devices,
namely SqueezeNet [95] and MobileNet [96]. The top-1 classification accuracy
(Top-1 Acc. in Table 2.7) is measured on the ImageNet validation-set. The col-
umn #Params shows the number of weights for convolutional and fully-connected
layers. #Cycles is the total number of cycles needed for inference, measured by
a cycle-accurate simulator (see the next paragraph). #Layers (L) indicates the
number of convolutional and fully-connected layers; it defines the size of the search
space, which is equal to 2L. As one can observe, the number of possible precision
configurations ranges from 2.1× 106 (for ResNet18) to 1.8× 1016 (for ResNet50
and MobileNet), highlighting the need of an heuristic optimization.

Table 3.3: Benchmark ConvNets overview. Top-1 accuracy refers to the 32-bit
floating-point model.

Benchmark Top-1 Acc. #Params #Cycles #Layers

ResNet18 v1 69.13% 11.68M 29.35M 21
ResNet34 v1 72.69% 21.78M 57.28M 37
ResNet50 v1 74.10% 25.50M 74.40M 54

SqueezeNet v1.1 56.36% 1.23M 6.45M 32
MobileNet v2 69.98% 3.47M 12.13M 54

Building the Energy Model

The Pareto search encompasses the assessment of the energy consumption un-
der different precision settings. To accelerate the exploration, we adopted a static
energy model where the total energy spent during a forward pass of the net is given
as the sum of the contribution of each layer. The energy drained by each layer
is characterized for the two precision options available (16- and 8-bit) and then
stored in the energy look-up table which is fed as input to the search algorithm.

As a case study, we took a ConvNet accelerator based on a 2D systolic array as
abstracted in Fig. 3.1. The system is organized as follows: the DRAM and SRAM
memory arrays store the model parameters and the intermediate features; the

1Available on the ONNX model zoo [92]

60

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

Table 3.4: Hardware configuration of the adopted ConvNet accelerator.

#PE SRAM size DRAM size Technology
8x8 3 x 128 KB 256 MB 40 nm CMOS

RISC core is in charge of managing the control flow; the PEs host the arithmetic
workload. The main specifications are reported in Table 3.4. There is a global
256 MB DRAM and three 128 KB SRAM memories that offer support for the local
storage of the input features map, weights, and output features map. The power
characterization of the memory banks was performed with CACTI [97] for the
DRAM and CACTI-P [98] for the SRAMs. Concerning the other components
(the RISC core and the PE array), we borrowed the values reported in [18]. Each
PE can deliver 1 × 16-bit MAC or 2 × 8-bit MACs, combining DVFS for power
a higher energy efficiency. All the collected power metrics were integrated into
SCALE-sim [99], an open-source, cycle-accurate ConvNet simulator for systolic
accelerators. It takes as input the network topology and a high-level description
of the hardware, and it returns the memory traces and the computation cycles
needed for inference. In the experiments, we considered an output stationary
flow. Knowing the power consumption of each component and its utilization, we
computed and annotated the total energy spent by each layer.

Experimental Setup

Table 3.5 summarizes the hyper-parameters of our NSGA-II* implementation
with their values used for the experiments. The calibration set includes one hun-
dred samples randomly picked from the Imagenet training set. Quantization and
multi-objective optimization share the same calibration set. As already mentioned,
from the N solutions obtained by NSGA-II*, we extract a sparse set of operating-
points using ε-nondominated sorting; the KL divergence and energy resolutions—
ε1 and ε2 respectively—are set to 10% of the overall range of the corresponding
metrics. The top-1 accuracy of the final solutions is evaluated on the ImageNet
validation set, which is fully disjoint from the calibration set. The experiments
were conducted on a GP-GPU workstation powered with a Titan GTX-1080 Ti
by NVIDIA. As inference engine, we used PyTorch [100] version 1.0.

Results

Efficiency of the proposed algorithm. Fig. 3.6 shows the Pareto front
obtained by Algorithm 2 for the selected benchmarks. The dot (•) denotes the
full-precision model, where all the layers operate at 16-bit precision, while crosses

61

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

Table 3.5: Optimization parameters NSGA-II*

Notation Definition Value
N Population Size 100
maxeval Maximum number of evaluations 2000
calset Calibration set size 100
Pc Crossover probability 1
Pm Mutation probability 1/L*

KLth KL divergence threshold 0.5
ε1 KL divergence resolution 10% ∆DKL
ε2 Energy resolution 10% ∆E

* L: number of convolutional and fully-connected layers

× indicate the mixed-precision configurations returned by Algorithm 2. This il-
lustration is insightful and allows us to infer three key observations. First, all the
solutions are Pareto-optimal in the energy-accuracy space. This finding demon-
strates that DKL represents a good proxy for output quality. Second, the accu-
racy loss is constrained within reasonable values: <3% for SequezeNet; <4% for
ResNet50; < 9% for MobileNet (the worst-case). The penalty score drives the
exploration towards high accuracy regions, as demonstrated by further analysis
reported later in Sec. 3.3.3. Third, the selected operating points are spread in the
energy-accuracy space, enabling an effective trade-off. For instance, in ResNet18
the energy savings range from 18.0% to 35.2%. A slightly different trend holds
for MobileNet where the Pareto points are less spread and the maximum savings
get lower (21.77%) than in the other benchmarks. MobileNet presents a peculiar
topology interleaving depthwise and pointwise convolutions to reduce the number
of operations. As a drawback, the weights of the depthwise convolutions may show
different ranges across the filters of the same layer [101] thereby preventing the
adoption of a low-precision representation.

Table 3.6 summarizes the figures of merit of the Pareto fronts. For each bench-
mark, it shows the number of operating points (# Points), the average top-1 ac-
curacy difference with respect to full-precision (∆ Top-1) and the average energy
savings (Savings); the average is calculated over the Pareto points available. For
all the ConvNets under analysis, we identified 5-6 operating points with average
savings ranging from 19.2% to 29.8%. This allows modulating at run-time com-
putational effort and accuracy, depending on the available energy budget or the
application constraints. The last column (Ex. Time) reports the execution time
taken by the Pareto search. It is limited to a few minutes (worst case is ResNet50
with about 25 minutes). As anticipated, the main bottleneck is the evaluation of

62

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

0.7 0.8 0.9 1.0

Normalized Energy

-8%

-6%

-4%

-2%

0%

T
o
p
-1

 A
c
c
u
ra

c
y
 L

o
s
s ResNet18 v1

Full

Mixed

0.7 0.8 0.9 1.0

Normalized Energy

ResNet34 v1

0.7 0.8 0.9 1.0

Normalized Energy

ResNet50 v1

0.7 0.8 0.9 1.0

Normalized Energy

SqueezeNet v1.1

0.7 0.8 0.9 1.0

Normalized Energy

MobileNet v2

Figure 3.6: Pareto fronts of the selected benchmark. The x-axis is the normalized
energy with respect to the full-precision ConvNet (all layers at FX16). The y-axis
is the Top-1 Accuracy loss with respect to the full-precision ConvNet. The crosses
(×) indicate the operating points returned by Algorithm 2. The dot (•) denotes
the full-precision ConvNet.

the KL divergence, which requires a feed-forward execution of the net. A trade-
off between quality of the Pareto front approximation and execution time might
be enabled tuning the optimization hyper-parameters, i.e. the calibration set size
(calset) and the number of evaluations (maxeval).

Table 3.6: Figure of merits of the Pareto fronts for the selected benchmarks.

Benchmark #Points ∆ Top-1 Savings Ex. Time

ResNet18 v1 6 2.5% 27.4% 8 min 32 s
ResNet34 v1 6 3.3% 29.8% 12 min 36 s
ResNet50 v1 6 2.0% 25.6% 25 min 17 s

SqueezeNet v1.1 5 1.3% 28.4% 6 min 19 s
MobileNet v2 5 8.0% 19.2% 14 min 33 s

Dynamic Precision vs. Static Topology Scaling. Fig. 3.7 gives a com-
parison between the proposed dynamic precision scaling vs static topology scaling.
The plot shows the full-precision (dots) and the Pareto points (crosses) returned
by our optimization for the three versions of ResNets adopted in this work. Energy
values are normalized to the maximum energy configuration, i.e. the right-most
dot in the plot (ResNet50). Topology scaling means selecting one of the dots de-
pending on the energy budget, which implies the storing of three distinct models
on-chip. First, precision scaling enables is a finer knob that offers more options
(7 Points for each network vs 3 points of topology scaling). The analysis reveals
adaptive precision scaling is a more flexible strategy. On the other hand, topology
scaling may achieve better energy efficiency at the same accuracy level (ResNet18
vs ResNet34 mixed). Nonetheless, an interesting observation is that the two can
be superimposed to extend the operating range. Obviously, this comes at the cost
of more memory occupation (one weight-set for each loaded topology) and should

63

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Energy

62%

64%

66%

68%

70%

72%

74%

T
o
p
-1

 A
c
c
u
ra

c
y

ResNet18-Full

ResNet18-Mixed

ResNet34-Full

ResNet34-Mixed

ResNet50-Full

ResNet50-Mixed

Figure 3.7: Energy vs Accuracy of topology and precision scaling. Energy is
normalized with respect to ResNet50 at full-precision (green dot).

be carefully assessed considering other applications running in background may
call for some memory space too.

Overhead of weight re-configuration. As already discussed, an efficient
implementation of precision scaling requires a weight reconfiguration step to guar-
antee a memory-friendly layout of low-precision weights. To ensure the savings of
precision scaling, the energy cost of this step should be limited. We thereby as-
sessed the upper-bound of such energy cost. Specifically, we estimated the energy
needed to load the original parameters from the DRAM and store the rounded
parameters in the SRAM when all the layers switch to 8-bit (i.e. the worst-case
scenario). Collected values are reported in Table 3.7, which reports the energy cost
normalized to the energy of a single inference at full-precision for each benchmark.
Overall, weight re-configuration has a limited impact on the inference total cost
(less than 10% in the worst case). We observed a higher overhead for ResNets (from
8% to 9.6%), whereas smaller values for less complex architectures, i.e. SqueezeNet
(4.4%) and MobileNet (6.3%). However, reported values refer to a pessimistic es-
timation. First, in actual cases only a subset of the layers is set to low-precision.
Second, it is fair to assume that switching from one configuration to another is a
less frequent event, that is, the network remains at the same operating point for
multiple inferences mitigating the costs.

Ablation studies

This section aims to assess the proposed optimization strategy, in particular,
the performance of precision scaling with rounding and the quality of the adopted
penalty score.

64

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

Table 3.7: Upper bound of the energy cost for weight re-configuration. Values are
normalized to the energy of a full-precision inference.

Benchmark Energy Cost

ResNet18 v1 9.6%
ResNet34 v1 9.2%
ResNet50 v1 8.0%

SqueezeNet v1.1 4.4%
MobileNet v2 6.3%

Weight re-configuration with rounding. As a comparative analysis, Ta-
ble 3.8 shows the results of the proposed algorithm when weight re-configuration
is implemented by means of truncation. For all the networks, the algorithm fails
to find solutions with DKL < 0.5, with negative effects also on accuracy. For
MobileNet and ResNet50, all the returned solutions have accuracy < 1%, with
no operating points of practical use—indicated with a dash. For ResNet18 and
ResNet34, the average accuracy degradation is high (31.0% and 42.7%, respec-
tively) while energy savings are small (9.4% and 12.5%). Only for SqueezeNet
there are solutions with DKL greater than 0.5. Indeed, the average accuracy loss is
within an acceptable range, but if compared with the rounding strategy, the loss
is higher (3.3% vs 1.3%) with energy savings halved (14% vs 28%). Regarding
the execution time, there is no significant difference. This is to be expected since
during the optimization loop rounding and truncation needs similar processing
time and their contribution is negligible with respect to the overall time (which is
dominated by the evaluation of DKL).

Table 3.8: Figure of merits of the Pareto fronts for the selected benchmarks using
weight re-configuration with truncation.

Benchmark #Points ∆ Top-1 Savings Ex. Time

ResNet18 v11 5 31.0% 9.4% 8 min 34 s
ResNet34 v11 3 42.7% 12.5% 12 min 39 s
ResNet50 v11,2 – – – 25 min 16 s

SqueezeNet v1.1 4 3.3% 14.0% 6 min 17 s
MobileNet v21,2 – – – 14 min 32 s

1 KL constraint not met.
2 Top-1 Accuracy less than 1%.

Penalty score. To show the importance of a good penalty score and motivate

65

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

our custom version, we compared the performance of a standard NSGA-II imple-
mentation obtained by simply dropping line 10 of Algorithm 2). As a case study,
we show the analysis conducted on MobileNet v2. Fig. 3.8 reveals that a standard
implementation (NSGA-II, blue crosses) achieves higher energy savings, yet with
a dramatic accuracy degradation: all the operating points have an accuracy be-
low 30%, thus being impractical solutions. The introduction of the penalty score
(NSGA-II*, red crosses) ensures that all the operating points have accuracy above
60%. To note that the red crosses are the same as the right-most plot in Fig. 3.6.

0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84

Normalized Energy

0%

10%

20%

30%

40%

50%

60%

T
o
p
-1

 A
c
c
u
ra

c
y

NSGA-II

NSGA-II*

Figure 3.8: Pareto curve of MobileNet v2 with standard NSGA-II and our NSGA-
II* implementation with penalty score.

More insights can be drawn observing the evolution of the population across
different iterations of Algorithm 2 (lines 5–11) in the two versions. Fig. 3.9 shows
the evolution of the population across step 1, 10, and 20. Step 1 corresponds to the
initial solution randomly generated. The dotted line indicates the KL threshold
(KLth = 0.5 in our experiments). The final solutions (red crosses) are selected from
Step 20 using ϵ-nondominated sorting. NSGA-II (left plot) pushes the population
towards the bottom of the plot, i.e. the low-energy region. However, DKL keeps
very close to that of a random solution, reflecting to final solutions with accuracy
< 30%. Thanks to the introduction of the penalty score, NSGA-II* (right plot)
pushes the candidate solutions towards the left, i.e. the low DKL region. Indeed,
this procedure ensures to identify those mixed-precision configurations that keep
the top-1 accuracy at reasonable levels, still guaranteeing significant energy savings
(> 15%).

3.3.4 Discussion
This work presented the design & optimization of energy-driven Adaptive Con-

vNets via per-layer precision scaling in software-programmable accelerators with
mixed-precision arithmetic. In contrast to existing compression techniques that

66

3.3 – Energy-Driven Adaptive ConvNets via On-line Precision Scaling

1.0 10.0

KL Divergence

0.65

0.70

0.75

0.80

0.85

0.90

0.95

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

Step 1 Step 10 Step 20 Op. Points

(a)

1.0 10.0

KL Divergence

0.65

0.70

0.75

0.80

0.85

0.90

0.95

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

Step 1 Step 10 Step 20 Op. Points

(b)

Figure 3.9: Population evolution across different iterations for MobileNet v2 with
NSGA-II (a) and NSGA-II* (b).

are conceived as static optimizations, the proposed design enables run-time energy-
accuracy trade-off through dynamic resource management, leveraging the intrinsic
resilience of neural networks to arithmetic errors. Based on a multi-objective search
engine, the presented algorithm drives the optimization towards high-accuracy so-
lutions, with short execution time even in very deep networks (> 50 layers). As a
key distinctive feature, our optimization can be applied to any pre-trained mod-
els, without the need for additional training iterations, thereby ensures a fast
deployment process. Experimental results proved the efficacy of our proposal,
with trade-offs spanning over a large energy range and limited accuracy degrada-
tion. In state-of-the-art ConvNets for vision applications trained on ImageNet, we
estimated energy savings up to 35.2% with an accuracy loss < 8% in the worst
case.

67

3.4 – Scalable-Effort ConvNets for Multilevel Classification

3.4 Scalable-Effort ConvNets for Multilevel Clas-
sification

In this second part of the chapter, we present scalable-effort ConvNets. The re-
mainder of the text is organized as follows. In Section 3.4.1, we first outline the mo-
tivation and our reasoning behind the presented strategy, which relies on the idea of
multilevel classification. In Section 3.4.2, we formalize the multilevel classification
problem for ConvNets. Then, we present a cross-layer strategy for single-model
multi-precision multiply&accumulate (MAC) arithmetic (Section 3.4.3), together
with its application for processing standard ConvNets (Section 3.4.4). In Sec-
tion 3.4.5, we introduce an algorithm that implements multi-precision, accuracy-
driven per-layer precision assignment through a greedy search in the abstraction-
effort-accuracy optimization space. Finally, we present the experimental results
collected on a representative set of ConvNets trained on the ImageNet dataset
(Section 3.4.6) and discuss the key achievements of our proposal (Section 3.4.7).

3.4.1 Motivation
Modern ConvNets share a common characteristic: they are designed, trained,

and deployed as static models. They are built as flat N-ways classifiers (N is the
number of classes) that expend equal effort no matter the surrounding context
and the level of the accuracy required by the application. Even though they are
inspired by the working principles of the human brain, they lack one of the main
characteristics of the human reasoning. We, as humans, can organize the knowl-
edge by means of hierarchical semantic abstractions. This organization enables
our reasoning to shift towards the proper level of abstraction depending on the
context. We first perceive high-level properties of the surrounding environment,
e.g. indoor or outdoor. Only if needed, we focus on low-level features, for instance
to identify specific objects. Intuitively, low-level classifications require more effort.
We might be interested in classifying not just the place we are, but also things
around us, e.g. the type of vehicles in the street, car or truck, or even their brand
and model. The abstraction process is typically driven by some external trigger.

This scalable mechanism makes our brain an efficient machine, capable of
adapting to the context and reach the effort-accuracy trade-off that minimizes
energy waste. Implementing this ability on IoT end-nodes represents a unique
opportunity to improve the energy efficiency. For instance, a smart surveillance
system could reduce the effort, hence energy, by running high-level classification
for most of the time; in case of any suspicious event, more effort is pushed to “un-
derstand” and classify the triggering event. Examples of this kind are countless.

68

3.4 – Scalable-Effort ConvNets for Multilevel Classification

Depth = 4

Depth = 6

entity

physical-entity

matter

substance

food fluid

nutriment

dish

pizza

liquidbeverage

espresso alcohol

meatloaf

library

red wine

S4

Figure 3.10: Schematic view of a WordNet-like graph.

This work aims to present a design and optimization strategy for the prac-
tical implementation of this brain-inspired paradigm with embedded ConvNets.
Our proposal leverages (but is not limited to) arithmetic precision as a knob to
modulate the computational effort at run-time: depending on the required level
of abstraction (defined by the application, i.e. the context), scalable-effort Con-
vNets reduce their precision to reach an accuracy target with minimal computa-
tional resources. The working principle is based on an algorithmic relaxation of
the multiply&accumulate (MAC) arithmetic, operating on a single set of weights to
implement different precision options: full (8×8bit), mixed (8×4bit), half (4×4bit).
This approach avoids the overhead of storing multiple weight-sets for each level of
abstraction.

Note that scalable-effort ConvNets for multilevel classification differs from
chained ConvNets for hierarchical classification [102] [103]. As will be detailed
in the next section, multilevel classification encompasses semantic meaning [104]
whereas hierarchical classification does not.

3.4.2 Multilevel Classification
Common datasets used for training ConvNets reflect the hierarchical organiza-

tion of concepts built by the human brain during categorization. In this work, we
adopt ImageNet [93], one of the most common dataset for large-scale image classi-
fication. ImageNet is composed by 1.2M images organized in 1000 classes. These
classes were extracted from the WordNet database [105], a structured database of
interconnected concepts.

In WordNet, concepts are organized in synsets, each of them groups word with

69

3.4 – Scalable-Effort ConvNets for Multilevel Classification

similar meanings. The WordNet structure describes the semantic relationships
among synsets. A schematic view of a sub-set of WordNet is depicted in fig.. 3.10.
Connections among synsets express the relation between more specific concepts
(called hyponym) and more general ones (hypernym). This relation is commonly
defined as theis-a relation. For instance, in figure pizza is-a dish. Each synset can
be considered as a possible class in the multilevel classification problem, where a
hyponym is a class of inferior abstraction than to its hypernym(s).

As can be inferred from the figure, the structure of WordNet can be represented
as a direct acyclic graph (DAG), where each synset might have multiple hyponyms,
e.g. both pizza and meatloaf are a dish. The set of nodes V represents the synsets
(i.e. classes), the set of oriented edges E expresses the semantic relationships
among synsets. An edge ei,j indicates that a node vj (e.g. synset representing the
class beverage) is a hypernym of node vi (e.g. the subclass alcohol). At the top
of the hierarchy, there is only one synset v0 called entity; v0 is the root of each
semantic path. The abstraction level of node vi is defined by its depth di, i.e., the
length of the shortest path to v0; d=6 for the node dish.

The multilevel classification problem can be formulated as follows: Given a
generic level of abstraction L, label the input image I with the class si ∈ SL

that has the closest semantic meaning, i.e., si s.t. the class probability p(si) is
maximum.

The level of abstraction L is represented as a cut CL at depth L (dashed lines
in Fig. 3.10). According to this formulation, L=0 refers to the most general level
of abstraction.The set SL is composed by the target classes si available at level L;
SL is the union between the set of nodes traversed by CL and the set of 0-indegree
nodes behind CL. In Fig. 3.10, S4={food, fluid, ...}∪{library, ...}. The p(si) defines
the probability that input I belongs to class si:

p(si) =
∑︂

vj∈F anIn(si)
p(vj) (3.7)

where vj is a 0-indegree node, i.e. a synset w/o hyponyms (black nodes in Fig. 3.10)
in the transitive fan-in of si. For instance, for si={food }, the set of vj is {meat-
loaf }, {pizza }, {espresso }, and {red wine }. Note that nodes vj represent the N
classes of ImageNet (N=1000) commonly used to train ConvNets. Their distance
from v0 may differ as depicted in the DAG. Indeed, p(vj) represents the probability
that the ConvNet labels the input I as vj.

Since synsets might be hypernym of multiple hyponym, the target classes si ∈ S
may have intersecting fan-in. The node vj={red wine } belongs to the transitive
fan-in of both {food } and {fluid }, the same is for {espresso }. In these cases,
we adopted a shortest-path policy: nodes vj are assigned to the class si with
minimum distance. Therefore, both {red wine } and {espresso } contribute to
p(sj={food }) and not to p(sj={fluid }). As {fluid } has no remaining children

70

3.4 – Scalable-Effort ConvNets for Multilevel Classification

conv pool conv softmaxpool fc

p(vj)

j = 1…N

p(si)

i = 1…|SL|

L

N-way ConvNet

Figure 3.11: Multilevel classification with ConvNets.

in its fan-in, it is dropped from the set of available classes SL. This approach
guarantees ∑︁

si∈SL
p(si)=1 ∀L.

Standard ConvNets are built as flat N -way classifiers designed and trained to
produce a probability over the N available classes, the black nodes in Fig. 3.10
(nodes vj according to our formulation). To perform multilevel classification with
ConvNets, an additional processing layer is needed. As shown in Fig. 3.11, this
layer is fed with the level of abstraction L and computes Eq. (3.7). The processing
involves N arithmetic sums arranged as per the set SL (a LUT contains SL for
∀L). Therefore, it does not require any dedicated hardware and the computational
overhead is negligible if compared to the millions of arithmetic operations and
weights of a standard ConvNet.

The presented formulation represents just one of the possible alternatives that
define the multilevel classification problem. Our idea of scalable-effort ConvNets
can be extended to other formulations, e.g. different approaches for extracting the
high-level classes si.

Note that multilevel classification differs from hierarchical classification [102].
Within a multilevel classification problem, the number of target classes SL depends
on the level of abstraction L, the cardinality |S| gets larger with L. Conversely,
hierarchical classification is based on a static definition of the target classes. Specif-
ically, it always operates on the same N classes, those defined at the bottom level
of abstraction (black nodes in Fig. 3.10). Hierarchical classification works under
the assumption that all inputs are not equal. For instance, in some cases the
main features of the input might be masked, making the classification harder.
Depending on the complexity of the input, the same N -way classification can be
performed with less effort. Here comes the difference: whereas a multilevel strat-
egy exploits the lower complexity brought by different abstractions, a hierarchical
strategy exploits the lower complexity of the inputs.

Existing approaches for hierarchical classification encompass an iterative pro-
cedure where a chain of ConvNets with growing levels of complexity is processed

71

3.4 – Scalable-Effort ConvNets for Multilevel Classification

in sequence till consensus is achieved. Since most of the inputs show lower com-
plexity, some links of the chain can be skipped, reducing the overall computational
effort. For instance, the method introduced in [102] learns to distinguish “easy”
classes from “difficult” classes during training. At inference time, “easy” classes
are detected by a coarse category classifier, “difficult” classes are fed to a finer
classifier. An extension of this strategy which involves longer chains of quantized
micro-classifiers is described in [103].

3.4.3 Precision Scalable Arithmetic
Our implementation of scalable-effort ConvNets makes use of scalable-precision

MAC operations. The computational effort is proportional to the number of arith-
metic operations needed to process the ConvNet layers. We opted for a dynamic
precision scaling strategy supported by the design of a variable-latency MAC hard-
ware unit. This enable to tune the precision at run-time with minimal overhead.

Given two M ×M matrices, i.e. the input map I and the weights W, their
convolution is the dot-product of the unrolled vectors I and W , each with length
M ×M . Assuming each item Ii and Wi has a bit-width N=2n (n=3 in this work),
their scalar product Ii×Wi can be implemented as a four-stage iterative procedure
during which the most significant parts (IH

i , W H
i) and the least significant parts

(IL
i , W L

i) are multiplied, shifted and accumulated [106], as schematically depicted
in Fig. 3.12. Both IL

i and W L
i are K = N/2-bit unsigned integers, while IH

i and
W H

i are K = N/2-bit signed integers. Three precision options can be achieved by
stopping the procedure at different steps: half (K×K bit) 1-cycle, mixed (N×K
bit) 2-cycles, full (N×N bit) 4-cycles.

Scalable Multiply-Accumulate Algorithm

The same three options can be extended to the dot-product, as described in
Algorithm 3. At half precision, both the operands Ii and Wi are reduced to K
bits. The first loop (lines 1-6) processes the most significant parts IH

i , W H
i . The

result of the accumulation r is shifted by 2 ·K positions (line 8) and then returned
(line 9). The bit shifting (line 8) is required to align the radix-point to that of
the biases2 (2N -bit operands). In order to reduce the error introduced by bit-
width reduction, the weights Wi are rounded (line 3) using a half-even rounding
scheme; the latter has been indicated as one of the most efficient when dealing
with operand scaling [107]. At mixed precision, only one operand, the weight Wi,
is reduced to K bits. Under this option, the second loop (lines 11-16) takes part

2The bias is the offset parameter of a ConvNet neuron

72

3.4 – Scalable-Effort ConvNets for Multilevel Classification

Wi

×

Ii

*

I W

M

=
Ii

Wi

Ii

Wi

=

N

K

×H H

×L H

H L×
L L

+
+
+
×

K

MxM

…

…

Ii

Half:KxK

Mixed:KxN

Full:NxN

𝑖=0

𝑀2−1

𝐼𝑖 ×𝑊𝑖

H L

H L

cycle1

cycle2

cycle3

cycle4

latency

W

I

Figure 3.12: Iterative product procedure to compute the dot-product between two
vectors.
to the computation; it iterates on W H

i and IL
i . The accumulation r is shifted by K

positions (line 18) and then returned (line 19). Also in this case, W H
i is rounded

(lines 12-15) to mitigate the bit-width reduction. At full precision, both Wi and
Ii are taken as N bit operands. In this case the last two loops (lines 20-24) come
into play; they iterate on the least significant parts W L

i and Ii (both H and L)
thus to complete the remaining part of the multiplication. Rounding (lines 5 and
15) is not required under this option.

Processing Element

The structural components of the presented PE are illustrated in Fig. 3.13 for
N=8. Operands I and W (and B, the bias) are stored into dedicated 8-bit (16-bit)
registers. The multiplexers (MUXes) feed the arithmetic blocks with the proper
portion of the operand (H or L), as explained in Algorithm 3. These MUXes are
driven by an external control unit (not shown in the picture) through the signal
selI , selW , selB.

The round unit implements the half-even rounding; rounded inputs are used
for half and mixed precision (Algorithm 3). The half-even rounding takes WH

and WL as input (4+4-bit) and returns the rounded value (4-bit).
The PE has a 5× 5 multiplier, where the 5th bit is used for the sign extension

of the operands. The most significant parts (IH
i , W H

i) are signed, while the least
significant parts (IL

i , W L
i) are unsigned; the MSB of IL

i and W L
i belongs to the

module, while the MSB of IH
i and W H

i is the sign. The following mechanism is
implemented: for IH

i and W H
i , the sign (MSB) is extended to the 5th bit, while

W L
i is extended with a 0; an external control signal (not shown in the picture)

73

3.4 – Scalable-Effort ConvNets for Multilevel Classification

Algorithm 3: Scalable-precision MAC algorithm
Input: I, W , precision
Output: Dot-Product r

1 for i = 0; i < M ; i + + do
2 if precision == half || mixed then
3 W K

i = round(Wi, K)
4 else
5 W K

i = W H
i

6 r+ = IH
i ×W K

i

7 if precision == half then
8 r = r ≪ 2 ·K ; // bias radix-point alignment
9 return r ; // half precision: KxK

10 r = r ≪ K
11 for i = 0; i < M ; i = i + 1 do
12 if precision == mixed then
13 W K

i = round(Wi, K)
14 else if precision == full then
15 W K

i = W H
i

16 r+ = IL
i ×W K

i

17 if precision == mixed then
18 r = r ≪ K ; // bias radix-point alignment
19 return r ; // mixed precision: KxN
20 for i = 0; i < M ; i = i + 1 do
21 r+ = IH

i ×W L
i

22 r = r ≪ K
23 for i = 0; i < M ; i = i + 1 do
24 r+ = IL

i ×W L
i

25 return r ; // full precision: NxN

selects the proper option. Other sign extensions take place depending on the
desired precision: at half precision, IL

i contains a 4-bit feature, therefore its sign
is extended; at full and mixed precision, IL

i contains the least significant part of
an 8-bit feature, and hence it is concatenated with a 0.

An additional MUX allows to accumulate partial products or to add the bias
(selP). The biases are 2N -bit operands; their radix-point is aligned to that of the
accumulation result. Bias addition takes a fixed latency, i.e. two cycles, one for
BL, one for BH. Since the output of the multiplier is 10-bit, BH (signed) goes
through a sign extension, BL (unsigned) is zero-extended.

The 32-bit accumulator incorporates an embedded saturation logic that handles
underflow/overflow conditions. A programmable shifter implements the shift of

74

3.4 – Scalable-Effort ConvNets for Multilevel Classification

48
ze

ro
-s

ki
p A

C
C

U
M

U
LA

TO
R

w
/

sa
tu

ra
ti

o
n

clear

9
48

I

48 Sh
if

te
r

16

== 0

NOR

EN

D Q
IMSB

co
n

ca
te

n
at

e0 0
1

signed-I

latch

W

18

9

CP

EN
Q

clock gate

clock

== 0

EN

D Q
WMSB

co
n

ca
te

n
at

e0 0
1

signed-W

latch

8

8

Tr
u

n
ca

ti
o

n
w

/
ra

n
ge

 c
h

e
ck

48

Figure 3.13: Structural view of the scalable-precision processing element.
partial results (see Algorithm 3).

The truncation logic is in charge of managing the storage of the final result
into the output register O8. The range check logic drives the saturation bit when
the result does not fit the word-length (4 or 8). Depending on the bit-width
requirement of the next layer3, i.e. 4 or 8 bits, OH and OL are properly filled: for
half precision, the result is stored either in OH or OL thus to enable interleaved
memory scheme (O8 contains two 4-bit activations); for full or mixed precision,
OH and OL are filled in parallel with the most and least significant part of the
accumulation.

The zero-skipping strategy [44] is implemented through latch-based operand
isolation and clock-gating. If one of the operands equals to zero, then (i) latches at
the input of the multiplier block the propagation of data minimizing the switching
activity, (ii) a clock-gating cell disables the clock input of the accumulator thus
reducing the equivalent load capacitance of the clock signal.

Table 3.9 shows the (normalized) computational effort as number of atomic
operations, i.e. 4× 4 MAC.

Table 3.9: Normalized computational effort (#Operations) at different precision
settings (1 Operation = 1 MAC 4x4).

Precision MAC Bias-Add

Full 4 2
Mixed 2 2
Half 1 2

The proposed PE has been designed in Verilog and then implemented using the

3In scalable-effort ConvNets different layers may be assigned to different bit-widths.

75

3.4 – Scalable-Effort ConvNets for Multilevel Classification

Synopsys Galaxy Suite (versions L-2016.03). The design kit belongs to a 28 nm
UTBB FDSOI industrial technology. The clock frequency is 1.0 ns for typical pro-
cess corner, supply voltage 1.10 V, and room temperature. Power consumption
is estimated using back-annotated switching activities extracted from a realistic
ConvNet workload. The resulting core area is 1589 µm2; the average power con-
sumption is 1.23 mW. A comparison with a standard (i.e. single-precision) PE re-
veals the overhead is marginal. We designed a 4× 4 PE w/o (i) the sign extension
logic, (ii) the rounding logic; it only includes the interleaved read-in and write-out
memory scheme (still useful for optimal buffering). The design is run using the
same constraints and operating conditions used for our PE. The resulting core area
is 1520 µm2, while the power consumption 1.20 mW. Our scalable-precision PE is
just 4.5% larger and consumes only 2.5% more power.

3.4.4 Fixed-point Quantization & Fine-Tuning
The design of multi-precision fixed-point ConvNets requires proper tools that

emulate integer arithmetic units during the training and validation stages. To this
purpose, we built a dedicated emulation framework, which can run on GP-GPUs
to guarantee fast processing. The framework was integrated into the deep learn-
ing libraries available in PyTorch. Specifically, it leverages the fake-quantization
approached presented in [108, 109]. During the feed-forward execution of the net-
work, software wrappers placed across the layers convert intermediate activations
and weights (stored in fixed-point) to the 32-bit floating-point; after processing,
outputs are converted back to fixed-point.

Since activations and weights cover various ranges across different layers, we
also adopted a dynamic fixed-point scheme [108] where the position of the radix-
point is determined on a per-layer bias. For each layer, the statistics of activations
are extracted over 5k images randomly picked from the training set; the integer-
length (IL) is then computed as:

ILl = ⌊log2 [max (|xmin|, |xmax|)] + 2⌋ (3.8)

l identifies the layer, xmin and xmax are the minimum and maximum value for the
activations of that layer l. The fraction-length FLl is the difference between the
word-length (given by precision) and the integer-length ILl. The same method is
adopted for the integer- and the fraction-length of weights.

The emulation also accounts for the bit-width of the accumulation register
and its saturation/truncation scheme. The outputs of each layer are first scaled
to 32-bit (see Fig. 3.13), then shifted and truncated as needed depending on the
precision of the next layer.

In order to reduce the number of operations, batch-normalization layers are

76

3.4 – Scalable-Effort ConvNets for Multilevel Classification

fused with convolutional layers applying a re-scaling of weights and biases. Average
pooling layers are implemented through depth-wise convolutional layers.

After quantization, the ConvNet may lose its prediction quality. However, the
accuracy loss can be recovered (in some cases only partially) through additional
re-training steps. This procedure, commonly called fine-tuning [108], works as
follows: (i) the forward-propagation is run with fixed-point emulation; (ii) dur-
ing back-propagation weights are kept in a floating-point representation thus to
allow small weight updates; (iii) weights are quantized at every mini-batch using
stochastic rounding. Our framework slightly differs as quantization (with stochas-
tic rounding) is performed at the end of each epoch (rather than every mini-batch).
We observed that this variant improves the convergence of the training process.
The framework is embedded into PyTorch (version 0.3.1 for Python 3.6.0) and
performed on a machine equipped with a Titan-XP GPU by NVIDIA (cuDNN 7.0
and CUDA 8.0).

3.4.5 Precision Assignment Heuristic
The working principle of scalable-effort ConvNets lies under the ability to ex-

ploit a higher abstraction, i.e. the classification of more “general” concepts/object,
to reduce the computational effort, i.e. the arithmetic precision during inference.

As shown in previous works [44] and confirmed by our experiments (more details
in Section 3.4.6), the spatial granularity to which precision scaling is applied plays
an important role. The dynamic precision scaling adopted in this work is based
on a per-layer assignment, namely, each computational layer is processed on its
own independent arithmetic precision. This scheme enables a finer tuning of the
effort-accuracy trade-off.

Due to the high cardinality of the problem, an exhaustive search is unpractical.
Given Nl as the number of layers and Np=3 the precision options (full, mixed, low),
the available solutions are NNl

p ; with Nl=55 (one of the benchmarks used in this
work), 1.7× 1026 solutions.

Algorithm 4 shows the pseudo-code of our greedy strategy for the multilevel,
accuracy-driven, per-layer precision assignment problem. The procedure takes as
input the fine-tuned ConvNet model at full precision, i.e. activations and weights
of all the layer to 8-bit, and the level of abstraction L; it returns a near-optimal
layer-by-layer precision mapping s.t. a target accuracy is met with the minimum
number of arithmetic operations (equivalent number of 4 × 4 MAC). The target
accuracy is given as input parameter as well.

The layers of the ConvNet model are sorted (line 1) following a descending
complexity order. The complexity, defined as the total number of operations Nops,
is function of the layer topology (e.g. number and size of kernels) and its current

77

3.4 – Scalable-Effort ConvNets for Multilevel Classification

Algorithm 4: Heuristic optimization algorithm
Input: Model, L, CalibrationSet, Target Accuracy
Output: Precision-Scaled Model

1 SortedLayers ← sort(Layers, Nops)
2 i = 0
3 while i < num(layers) do
4 Layer ← SortedLayers[i]
5 Decrease precision of Layer
6 Accuracy ← check(Model, CalibrationSet, L)
7 if Accuracy < TargetAccuracy then
8 Increase precision of Layer
9 i← i + 1

10 continue
11 else
12 SortedLayers ← filter(Layers, half precision)
13 SortedLayers ← sort(Layers, Nops)
14 i← 0
15 return Model

precision; it is calculated as:

Nops = αmac ∗Nmac + αbias ∗Nbias (3.9)

where Nmac is the number of MAC operations and Nbias is the number of bias
additions; the two factors αmac and αbias are derating factors that account for
precision according to Table 3.9.

At each iteration, the first layer in the list SortedLayers is downgraded to lower
precision: full→mixed or mixed→low (lines 4-5). The accuracy is then checked on
the calibration set (line 6) for abstraction L: if the achieved accuracy is lower than
the target accuracy, the precision of the layer is restored to its previous value (lines
7-8) and computation moves to the next layer (line 9); otherwise the new precision
assignment is accepted (line 12), the ordered list is updated (lower precision implies
lower complexity) (line 13), and the index i is reset thus to restart from the first
layer (line 14). The optimization ends when the precision of any layer can be no
longer reduced, that is, any further precision scaling of any layer induces accuracy
violations.

The accuracy check (line 6) is run over a set of images randomly picked from
the ImageNet validation set; we refer to this set as the calibration set. A separated
subset (hereafter referred as the test set) of 40k images from the ImageNet valida-
tion set is used at a post-optimization stage to effectively quantify the accuracy of
the precision-scaled ConvNet.

78

3.4 – Scalable-Effort ConvNets for Multilevel Classification

3.4.6 Experimental Results
In this section, we first validate the fine-tuning procedure (Section 3.4.4 adopted

to generate accurate fixed-point ConvNets for flat N-way classification (i.e. with-
outh multilevel abstraction). These models represents the starting point over which
scalable-effort ConvNets are built. Second, we assess the figure of merits of multi-
level classification with singe-model multi-precision ConvNets (i.e. scalable-effort
ConvNets).

The acronyms used in the text are as follows: fp-32 for floating-point models;
Q-fx for fixed-point quantized models w/o fine-tuning (8-bit for all the layers, both
activations and weights, 16-bit for biases); Fine-fx for single-precision, fine-tuned
models in fixed-point where all layers share the same precision; scalable-effort:
our proposal, i.e. multi-precision models whose layer precision is assigned using
Algorithm 4. For Fine-fx and scalable-effort, the available precision options
are those introduced in Section 3.4.3: full (weights and activations 8-bit, biases
16-bit), mixed (weights 4-bit, activations 8-bit, biases 16-bit), half (weights and
activations 4-bit, biases 16-bit).

Benchmarks

We adopted as benchmarks three state-of-the-art ConvNets for image classifi-
cation: AlexNet, SqueezeNet (version 1.1), and MobileNet (version 2.0). Since we
target embedded ConvNets, SqueezeNet and MobileNet represent the two most in-
teresting benchmarks. They lack fully-connected layers, therefore, they are suited
for low-power applications running on embedded platforms. We included AlexNet
to demonstrate that our solution works for standard ConvNets too. The pre-
trained fp-32 models trained on ImageNet 2012 [110] belong to open-source repos-
itories.

Table 3.10: List of benchmarks.

ConvNet (fp-32) #Param #MAC #Layers Top-1 Acc.

AlexNet 61M 715M 8 56.544%
SqueezeNet v1.1 1.2M 352M 27 58.208%

MobileNet v2 3.5M 321M 55 71.774%

Fine-Tuning Validation

The results reported in this sub-section refer to a standard flat N-way classi-
fication, namely without any abstraction. Table 3.10 summarizes the characteris-
tics of the three pre-trained fp-32 ConvNets models. The number of parameters

79

3.4 – Scalable-Effort ConvNets for Multilevel Classification

Table 3.11: Top-1 accuracy difference (∆Accuracy) with respect to fp-32 after
quantization (Q-fx) and after fine-tuning at full precision (Fine-fx:full).

ConvNet Q-fx Fine-fx:full
AlexNet -3.784% -1.244%

SqueezeNet v1.1 -16.654% -0.740%
MobileNet v2 -50.604% -2.418%

(#Param) includes both weights and biases for all the layers; the total number
of floating-point operations (#MAC) covers the number of bias additions. Both
#Param and #MAC are calculated after fusing the batch-normalization layers
with the convolutional layers. The column #Layers just shows the number of lay-
ers that takes part in the optimization process: convolutional, average pooling,
fully-connected layers (when present). The top-1 classification accuracy (Top-1
Acc.) is measured using the ImageNet validation set (50k images). Collected
results are consistent with those reported in [1, 95, 111].

Previous works have proven full precision Fine-fx models (Fine-fx:full here-
after) guarantee the same accuracy of fp-32 [109]. Table 3.11 confirms this trend
and validates the convergence of the proposed fine-tuning framework (Section
3.4.4). It shows accuracy difference (∆Accuracy) with respect to the fp-32 model
obtained for the three benchmarks, w/o and w/ fine-tuning enabled, i.e. Q-fx and
Fine-fx, respectively.

Our fine-tuning leverages the Adam optimizer [54] with learning rate 1.0× 10−6

and batch size 128. The training process iterates over 25 epochs using 200k images
randomly extracted from the ImageNet training set. As shown in table 3.11, accu-
racy loss due to quantization is almost fully recovered: Fine-fx:full models show
a top-1 ∆Accuracy of 2.4% in the worst-case. Supported by these results, we used
Fine-fx:full models as entry level for our optimization. Clearly, over-parametrized
ConvNets like AlexNet shows higher resilience to quantization: ∆Accuracy is lim-
ited to −4% for Q-fx. Lightweight ConvNets for embedded applications show dra-
matic losses: from 58.208% to 41.554% for SqueezeNet, from 71.774% to 21.170%
for MobileNet (Table 3.10 vs. Table 3.11).

Moreover, we studied the resilience of Fine-fx models at lower precision set-
tings, i.e. mixed and half. The analysis is reported in Fig. 3.14, which shows the
evolution of the top-1 test accuracy during the fine-tuning process. The plot refers
to SqueezeNet (for MobileNet the same analysis holds). At epoch 0 the accuracy is
the one measured after quantization (e.g. 41.554% for full precision). Fine-tuning
enables substantial recovery for Fine-fx:mixed: from 0.224% (epoch 0) to 40.294%
(epoch 25). Results get worse for Fine-fx:low: accuracy never goes above 0.10%.

80

3.4 – Scalable-Effort ConvNets for Multilevel Classification

These findings suggest precisions lower than 8-bit are too aggressive for ConvNets
designed for embedded applications, like SqueezeNet; more computational effort is
required indeed. Within the context of adaptive ConvNets, the optimization room
given by single-precision models is limited, as 8-bit is by itself an effort lower-
bound. By contrast, a finer spatial precision assignment (i.e. per-layer rather than
per-net) opens to more flexible trade-offs.

0 5 10 15 20 25

Epochs

0%

10%

20%

30%

40%

50%

60%

T
o
p
-1

 T
e
s
t

A
c
c
u
ra

c
y

fp-32

Fine-fx:full

Fine-fx:mixed

Fine-fx:half

Figure 3.14: SqueezeNet Top-1 Accuracy during fine-tuning. Black line (dashed):
fp-32.; Red line (◦) Fine-fx:full (8x8); Green line (⋄): Fine-fx:mixed (8x4); Blue
line (▽): Fine-fx:half (4x4)

.

Scalable-Effort ConvNets

This section focuses on the gains brought by scalable-effort ConvNets. The
analysis is conducted at four levels of abstraction L: 4, 6, 8 and 10; a smaller value
of L refers to a higher abstraction (L=0 as the highest level). Results at the lowest
level, i.e. L=16, are reported for a more fair comparison. To notice that L=16 is
the same as a standard flat N-way classification (N=1000 for ImageNet).

Table 3.12 collects the number of classes (#Classes) for different values of L;
the same table shows the top-1 accuracy achieved with Fine-fx at full precision.
Reported numbers reveal a clear trend: the higher the abstraction level, the higher
the classification accuracy. The three ConvNets achieves a remarkable accuracy
above 93%. It is worth to emphasize that when L changes, the weights used to run
the inference still remain the same; what differs is the way output probabilities
are summed up (as described Fig. 3.11). This guarantees zero overhead in terms
of memory footprint (single model storage) and negligible computational penalty
(N=1000 sums over hundreds of millions of MAC).

81

3.4 – Scalable-Effort ConvNets for Multilevel Classification

Table 3.12: Top-1 Accuracy in multilevel classification at different levels (L) of
abstraction. The test set is composed by 40k images.

Top-1 Accuracy, Fine-fx:full model
L #Classes AlexNet SqueezeNet MobileNet
4 20 93.655% 93.850% 96.052%
6 86 77.570% 78.205% 85.368%
8 365 69.293% 70.453% 79.750%
10 613 62.972% 64.705% 75.707%
16 1000 55.312% 57.545% 69.748%

The most interesting aspect concerns how scalable-effort ConvNets exploit
the degree of freedom made available by a multilevel classification. The proposed
single-model scalable-precision strategy is validated through an exploration of the
3-dimensional optimization space (abstraction-effort-accuracy). To this purpose,
the per-layer precision assignment heuristic (Section 3.3.1) was applied on the three
ConvNets under analysis. The heuristic makes use of a calibration set to evaluate
the accuracy during the optimization loop. Such calibration set is composed by
samples randomly picked from the validation set of ImageNet. Obviously, the
size of the calibration set may sensibly affect the optimization process. For this
reason, we present results for three different size options: 1k, 5k and 10k images.
Concerning the test set, scalable-effort ConvNets are tested using 40k images
randomly picked from the ImageNet validation set. The intersection between the
calibration set and the test set is void.

All the results are reported in Tables 3.13, 3.14, 3.15 (reported at the end of
the chapter). The column L contains the level of abstraction. The column #Op-
erations refers to the overall number of operations for each Fine-fx:full ConvNet.
The column Target Accuracy reports the accuracy constraints used for optimal
precision assignment. Even though our algorithm accepts any value, our paramet-
ric analysis is run using as constraints the accuracy reached with a Fine-fx:full
model at depth L, namely, the values reported in Table 3.12. The column ∆Acc.
shows the distance between the accuracy achieved and the target accuracy. The
column Op. Savings quantifies the equivalent number of 4 × 4 operations that
can be dropped (thanks to precision scaling) w.r.t. the original model (column
#Operations). Finally, the columns 8× 4 and 4× 4 shows the percentage of MAC
at mixed and half precision respectively, that is how effort is distributed.

For all the three benchmarks, our scalable-effort strategy enables an intelli-
gent use of the available resources. Indeed, depending on the abstraction level,
scalable-effort ConvNets leave the freedom to choose over different optimal so-
lutions, namely, different Pareto points of the effort-accuracy trade-off. The plot
in Fig. 3.15 gives a more intelligible representation of this interesting aspect. It

82

3.4 – Scalable-Effort ConvNets for Multilevel Classification

55% 60% 65% 70% 75% 80% 85% 90% 95%

Top-1 Accuracy

0%

10%

20%

30%

40%

50%

60%

S
a
v
in

g
s

Depth

4

6

8

10

16

Figure 3.15: Operation Savings vs. Top-1 Accuracy trade-off for SqueezeNet with
calibration set size equal to 10000.

shows the Pareto curves obtained by SqueezeNet (calibration set 10k images).
In terms of accuracy, the baseline is at the lowest abstraction, i.e. L=16,

when resource savings is zero. The room for optimization released through higher
abstractions can be consumed by choosing to (i) improve accuracy (best case
93.85% at L=4) or (ii) reduce the computational effort and thus save operations
(best case 57.53%). In a real-life case, the choice might be done depending on the
application, the remaining battery lifetime, the operating hours, the level of light,
or any other context variable. Also, a scalable-effort ConvNet can move from
one Pareto point (or curve) to others with minimal overhead (thanks to unique
weight set).

Concerning effort distribution, the higher the abstraction, the larger the num-
ber of mixed and low precision operations. It should be noted that these two
options were said to be no adequate for Fine-fx models (please refer to Fig. 3.14)
due to dramatic accuracy drop.

Looking at the efficiency of the proposed heuristic, it may rarely happen that it
fails to reach a Pareto point. An exception can be found in Table 3.15 (coordinates:
L=4, target accuracy 79.750% and 85.368% - rows 3 and 4): operations reduces
as target accuracy increases. This is due to the greedy nature of the algorithm.

As can be inferred from Tables 3.13, 3.14, 3.15, a too small calibration set
may result in sub-optimality. First, it may happen that the accuracy gap from
the target constraint (i.e. ∆Acc.) gets too large; this implies some optimization
margin is weakly used. Second, the accuracy gap may turn negative; this implies

83

3.4 – Scalable-Effort ConvNets for Multilevel Classification

1000 5000 10000

Calibration-Set Size

-2%

-1%

0%

1%

2%

3%

4%

A
c
c
u
ra

c
y
 D

if
fe

re
n
c
e

Figure 3.16: Variation of Aaccuracy Difference vs Calibration-Set Size for
SqueezeNet.

accuracy violations. As graphically described in the Tukey boxplot of Fig. 3.16
(SqueezeNet), the larger the calibration set, the lower the distance from the target
accuracy. A calibration set of 10k images guarantees a spread of [-0.28%, 0.03%]
for 50% of the cases, [-1.23%, 0.90%] in the worst case.

3.4.7 Discussion
We demonstrated that standard ConvNets can be used to mimic the multilevel

classification paradigm of the human brain. The proposed scalable-effort ConvNets
leverage optimal effort distribution through a per-layer dynamic precision scaling
strategy.

Our experiments proved that scalable-effort ConvNets can be tuned at run-time
to achieve the best effort-accuracy trade-off depending on some external variables.
We expect that the joint combination of scalable-effort ConvNets with multilevel
training techniques and/or other effort knobs (e.g. pruning) will enable new opti-
mization schemes.

84

3.4 – Scalable-Effort ConvNets for Multilevel Classification

Table 3.13: AlexNet results.
Fine-fx:full Calibration-1k Calibration-5k Calibration-10k

Operations L Target Accuracy ∆Acc. Op. Savings 8 × 4 4 × 4 ∆Acc. Op. Savings 8 × 4 4 × 4 ∆Acc. Op. Savings 8 × 4 4 × 4

2858 M

4

55.312% 9.362% 40.26% 45% 24% 3.545% 42.00% 38% 31% 3.545% 42.00% 38% 31%
62.972% 9.295% 38.09% 54% 15% 1.703% 40.26% 45% 24% 1.703% 40.26% 45% 24%
69.293% 8.267% 37.36% 56% 12% 2.975% 38.09% 54% 15% 2.975% 38.09% 54% 15%
77.570% 1.808% 34.31% 69% 0% -0.010% 37.36% 56% 12% 0.228% 37.07% 56% 12%
93.655% 0.000% 0.00% 0% 0% -0.770% 21.26% 43% 0% -0.100% 2.64% 5% 0%

6

55.312% 5.175% 29.11% 58% 0% -1.377% 29.98% 56% 2% 4.182% 29.39% 59% 0%
62.972% 4.943% 26.18% 52% 0% 1.890% 28.92% 43% 10% 1.890% 28.92% 43% 10%
69.293% 5.325% 21.54% 43% 0% 5.325% 21.54% 43% 0% 5.325% 21.54% 43% 0%
77.570% -0.310% 10.79% 22% 0% -0.010% 2.64% 5% 0% -0.032% 9.62% 19% 0%

8
55.312% 3.292% 21.84% 40% 2% -0.038% 26.46% 53% 0% 1.305% 26.18% 52% 0%
62.972% 3.650% 21.26% 43% 0% 2.355% 21.54% 43% 0% 2.355% 21.54% 43% 0%
69.293% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0%

10 55.312% 4.648% 21.26% 43% 0% 2.837% 21.54% 43% 0% 2.837% 21.54% 43% 0%
62.972% 0.000% 0.00% 0% 0% -0.137% 2.64% 5% 0% 0.000% 0.00% 0% 0%

16 55.312% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0%

Table 3.14: SqueezeNet results.
Fine-fx:full Calibration-1k Calibration-5k Calibration-10k

Operations L Target Accuracy ∆Acc. Op. Savings 8 × 4 4 × 4 ∆Acc. Op. Savings 8 × 4 4 × 4 ∆Acc. Op. Savings 8 × 4 4 × 4

1402 M

4

57.545% 2.337% 56.55% 34% 53% -1.282% 59.05% 48% 47% 0.163% 57.53% 54% 41%
64.705% 3.965% 52.37% 48% 38% -1.197% 54.87% 41% 46% 0.895% 54.64% 41% 46%
70.453% 1.817% 47.73% 39% 38% -0.078% 51.78% 47% 38% -0.515% 49.04% 40% 39%
78.205% 0.855% 39.75% 43% 25% -1.388% 41.02% 44% 26% -0.233% 39.42% 42% 25%
93.850% -0.647% 13.65% 27% 0% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0%

6

57.545% -1.688% 28.81% 46% 8% -1.065% 28.87% 46% 8% -1.233% 27.99% 44% 8%
64.705% -1.938% 26.49% 53% 0% -1.410% 19.89% 28% 8% 0.058% 22.52% 45% 0%
70.453% -0.545% 21.61% 43% 0% 0.252% 18.12% 36% 0% 0.252% 18.12% 36% 0%
78.205% -1.445% 1.57% 3% 0% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0%

8
57.545% -0.078% 22.05% 44% 0% 0.160% 21.67% 43% 0% -0.325% 22.10% 44% 0%
64.705% -1.645% 16.81% 34% 0% -0.297% 17.26% 35% 0% -0.297% 17.26% 35% 0%
70.453% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0%

10 57.545% -0.008% 18.06% 36% 0% 1.395% 17.21% 34% 0% -0.258% 17.65% 35% 0%
64.705% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0%

16 57.545% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0%

85

Energy-Driven Optimization

Table 3.15: MobileNet results.
Fine-fx:full Calibration-1k Calibration-5k Calibration-10k

Operations L Target Accuracy ∆Acc. Op. Savings 8 × 4 4 × 4 ∆Acc. Op. Savings 8 × 4 4 × 4 ∆Acc. Op. Savings 8 × 4 4 × 4

1269M

4

69.748% -0.573% 38.60% 58% 13% -2.353% 40.95% 63% 13% -0.105% 41.70% 64% 13%
75.707% -1.165% 30.12% 60% 0% -1.047% 24.25% 49% 0% -0.245% 31.72% 64% 0%
79.750% -0.002% 30.04% 56% 3% -0.562% 22.70% 36% 6% 0.375% 22.70% 36% 6%
85.368% 1.325% 23.59% 47% 0% -0.903% 26.57% 48% 3% 0.200% 23.42% 47% 0%
96.052% -0.635% 9.21% 19% 0% -0.358% 5.66% 11% 0% -0.177% 4.90% 10% 0%

6

69.748% -3.573% 21.34% 43% 0% -1.240% 21.26% 40% 2% -0.845% 19.64% 40% 0%
75.707% -2.790% 16.32% 32% 0% -1.520% 14.48% 29% 0% 0.267% 16.17% 33% 0%
79.750% -1.445% 13.73% 28% 0% -1.455% 13.38% 27% 0% 0.157% 14.28% 29% 0%
85.368% -1.660% 6.09% 12% 0% -0.118% 3.37% 7% 0% -0.008% 3.18% 6% 0%

8
69.748% -2.900% 15.93% 32% 0% -0.555% 16.19% 33% 0% -0.698% 13.73% 28% 0%
75.707% -1.655% 12.78% 26% 0% -0.972% 11.06% 22% 0% -0.252% 9.33% 19% 0%
79.750% -0.608% 4.87% 10% 0% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0%

10 69.748% -2.980% 14.28% 29% 0% -1.625% 11.06% 22% 0% -0.653% 11.80% 24% 0%
75.707% -0.917% 4.87% 10% 0% -0.552% 3.92% 8% 0% 0.000% 0.00% 0% 0%

16 69.748% -1.168% 6.31% 13% 0% 0.000% 0.00% 0% 0% 0.000% 0.00% 0% 0%

86

Chapter 4

Power-Driven Optimization

Due to the increasing integration density and the growing performances of mod-
ern System-on-Chips, today power consumption is a major concern in the design of
digital circuits. High power consumption raises several challenges, spanning from
packaging design, system reliability, and battery lifetime [112]. The problem is well
established in the literature of embedded systems, but it gets critical especially in
deep learning applications. Indeed, deep learning models are highly parallel work-
loads that maximize the utilization of the available resources generating a rapid
increase in the active power consumption.

Existing algorithmic solutions for the design of portable ConvNets fails to tackle
power minimization efficiently [113]. Instead, the problem calls for novel solutions
at the hardware-level. At design-time, with the development of dedicated archi-
tectures for deep learning acceleration. Intuitively, custom designs tailored to run
specific workloads can achieve higher performance at lower power consumption
than general-purpose cores at the cost of lower flexibility. At run-time, playing
with hardware knobs for dynamic power management. Among them, Dynamic
Voltage Frequency Scaling (DVFS) is a de-facto standard in modern digital sys-
tems. First, DVFS enables flexible power-performance trade-offs at run-time. Sec-
ond, it is an effective knob to control the thermal stability of the system. Clearly, a
joint cooperation between architectural optimization and power management fur-
ther improve the overall efficiency. In this context, the analysis conducted in [114]
demonstrated that considering DVFS at the early stages of the design of a deep
learning accelerator enables to identify the most efficient architectural configura-
tions.

To push the efficiency of DVFS beyond its theoretical limits, we present FINE-
VH, a novel power distribution scheme for custom multi-processor System-on-
Chips. The underlying principle of the proposed strategy is to bring the voltage
control at an ultra-fine spatial granularity, i.e. within the functional units. In

87

4.1 – Power optimization on ASICs: FINE-VH

the first part of this chapter, we report the implementation details and the col-
lected simulation results. Specifically, we present a dedicated back-end flow that
guarantees design convergence with minimum delay and area overhead.

However, in other use-cases, the high implementation costs prevent the adop-
tion of custom designs. In these cases, general-purpose embedded CPUs are a valid
alternative offering several advantages. Besides limited cost, embedded CPUs have
a more flexible programmability. For instance, they can drive different peripher-
als such as sensors, actuators, and displays, i.e. they can collect data and make
decisions autonomously. Being already integrated into many embedded platforms,
they can become intelligent end-nodes through a simple software update. De-
spite the increasing number of software solutions to run ConvNets on embedded
CPUs [25], most of the existing tools focus on performance optimization at nom-
inal operating conditions, neglecting the strict power and thermal constraints of
the hosting hardware. Meeting these constraints prevents the execution of inten-
sive workloads (e.g. inference) at maximum performance for long runtime. This
problem is addressed in the second part of this chapter, which presents a perfor-
mance assessment of embedded ConvNets under thermal management. Our study
covers the behavior of two control policies, namely reactive and proactive, imple-
mented through the DVFS mechanism available on commercial embedded CPUs.
The experimental results, collected on real hardware, guide neural network de-
signers towards a proper understanding of the power constraints, suggesting novel
directions for a thermal-aware optimization of ConvNets.

The content presented in this chapter is a revised version of our previous pub-
lications found in [115, 116, 117, 118].

4.1 Power optimization on ASICs: FINE-VH
With the twilight of the Moore’s law era and the end of Dennard scaling, power

consumption has become the main obstacle to the growth of digital System-on-
Chips (SoCs) [119]. To tackle this challenge, the multi-core/many-core design
paradigm emerged as a promising solution that guarantees high-performance un-
der low power budgets. Indeed, the availability of multiple cores enables to mod-
ulate the performance and the number of active units depending on the timing
constraints and/or the complexity of workload. Following this trend, modern deep
learning accelerators are built upon highly parallel designs composed of arrays of
interconnected processing elements [28]. In this context, Dynamic Voltage Fre-
quency Scaling (DVFS) represents one of the most efficient strategy to minimize
energy consumption. To achieve this goal, DVFS scales the supply voltage (Vdd)
down to the minimum threshold meeting the frequency constraint (fclk) imposed
by the actual workload.

88

4.1 – Power optimization on ASICs: FINE-VH

Originally, DVFS was conceived for “monolithic” SoCs, but the development
of multi-processor SoCs (MP-SoCs) architectures [120] introduced an additional
degree of freedom, i.e. the opportunity to set each processing unit at a different op-
erating point [fclk, Vdd]. This core-based, i.e. fine-grained, DVFS implementation
allows to run parallel tasks asynchronously thereby reducing the minimum energy
point of the entire SoC. One of the most representative application of fine-grain
DVFS on a massively parallel architecture is reported in [121], in which 167 pro-
cessors are orchestrated over a wide voltage-frequency range, achieving ultra-low
power consumption, from 47.5 mW at 66 MHz-1.2 V to 608 µW at 66 MHz-0.675 V.
Moreover, fine-grain DVFS represents a perfect knob to control and mitigate Pro-
cess, Voltage, and Temperature (PVT) variations that might affect different cores
after fabrication and during the lifetime of the circuit [122].

A practical implementation of DVFS on MP-SoCs makes use of programmable
on-chip DC/DC converters that enable to change the supply voltage with a fine
resolution step and fast swing (see Fig. 4.1-a). Unfortunately, the integration of
DC/DC converters is not a practical solution. Indeed, DC/DC converters have
an high implementation costs, since their basic components like capacitors and
inductors have low integration density and therefore might occupy a large silicon
area. These overheads are not sustainable in fine-grain DVFS, where a dedicated
converter should be integrated within each single core.

Dual-Vdd strategies

(b)

 Low Area
 Low Power
 Fast VddL<->VddH switching
× Slow swing latency of VddL

and VddH

VddL
VddH

Ideal-DVFS

(a)

 Fast Vdd switching
× Large area or low energy

efficiency

PS

Vdd

Core

PS

Vdd

Core

PS

Vdd

Core

PS

Vdd

Core

VddL
VddH

VddH
VddL

DC/DC

Vdd

Core

DC/DC

Vdd

Core

DC/DC

Vdd

Core

DC/DC

Vdd

Core

VddH
VddL

External DC/DC VddL
VddH

Figure 4.1: Schematic view ideal-DVFS and dual-Vdd power management.

For this reason, previous works tried to achieve, or at least get close to, the
efficiency of high-resolution DVFS (ideal-DVFS hereafter), using a discrete set of
supply voltages. In discrete DVFS strategies, two Vdd levels (VddL and VddH)
are generated off-chip by an external DC/DC converter and evenly distributed

89

4.1 – Power optimization on ASICs: FINE-VH

across the chip (see Fig. 4.1-b). The values of VddL and VddH are scaled up/down
depending on the timing constraints, while the Vdd of each core is selected through
dedicated power switches (PS). Although this design strategy minimizes the impact
on area and power, it generates a speed penalty due to the slow voltage swing of
external DC/DC converters [123]. However, this is an acceptable cost as in typical
applications the voltage-frequency scaling process applies at a low rate.

The two most representative implementations of discrete DVFS are the Vdd-
Hopping [124] and the Vdd-Dithering [125]. In Vdd-Hopping, the supply voltage
range is split into a discrete set of values, two ore more depending on the external
voltage regulator; at run-time the minimum Vdd meeting the frequency constraint
is selected. In Vdd-Dithering, the Vdd switches from VddL to VddH implementing
a Vdd time-sharing scheme in which the average frequency equals the frequency
constraint. As described later, Vdd-Dithering enables to obtain a power-frequency
curve that is a linear approximation of ideal-DVFS.

In contrast to existing techniques, which try to get close to the power efficiency
of ideal-DVFS, we propose a novel solution that pushes power consumption beyond
such theoretical limit. Recalling the strategies introduced in [126] and elaborated
in [116], in this section we present FINE-VH, a power distribution scheme based on
the application of the Vdd-Hopping scheme at a ultra-fine granularity, i.e. within-
the-core. First, we conducted a comprehensive parametric analysis demonstrating
that FINE-VH outperforms ideal-DVFS. Second, we applied the proposed scheme
to a custom design for deep learning acceleration, showing the efficiency of FINE-
VH in practical use-cases.

The implementation of FINE-VH poses several challenges, especially when the
objective is to devise an automated design methodology and not a handcrafted de-
sign. Indeed, the generation of fine-grained voltage domains within the same func-
tional unit raises several concerns during the place&route flow, e.g. area overhead
and timing closure due to layout fragmentation and standard cell displacement.
Furthermore, static power consumption increases due to leakage currents among
logic gates belonging to voltage domains supplied at different Vdd. For instance,
in a simple chain of two inverters, where the driven inverter is powered at nominal
Vdd, its leakage power increases up to 5.2× if its driver is powered at 90%Vdd,
22.1× at 80%Vdd. Clearly, at this level of granularity the insertion of voltage-
level shifters would imply huge design overheads and therefore is an impractical
solution.

To address these needs, we describe a fully-integrated design flow involving in-
cremental re-synthesis stages to guarantee fast timing/power convergence. Specif-
ically, we leverage an optimal poly-bias assignment strategy that reduces intra-
domain leakage currents without area/delay costs.

First, we validated FINE-VH on a simple RISC-V core, the RI5CY, embedded

90

4.1 – Power optimization on ASICs: FINE-VH

in the ultra-low power multi-processor platform PULP [127]. On this benchmark,
we conduct an accurate design space exploration which assesses different figures of
merit, like power, area, and delay, across different degrees of granularity, using a
layout partitioned into 9, 25, and 49 domains, and different Vdd pairs, i.e. multiple
values of ∆Vdd=VddH-VddL. Second, we tested FINE-VH on a larger design,
the processing element integrated into the LoC-1 deep learning accelerator [117],
demonstrating the scalability of our strategy. For the synthesis, we adopted a
cutting-edge industrial Fully-Depleted SOI (FDSOI) CMOS technology at 28 nm.
Overall, the power-performance trade-offs achieved by FINE-VH outperform state-
of-the-art DVFS solutions: ideal-DVFS, Vdd-Hopping, and Vdd-Dithering.

4.1.1 Background
Towards Ideal-DVFS

Implementing ideal-DVFS with the insertion of programmable on-chip DC/DC
is not a viable option, as the huge area and power overhead would nullify the
savings. Two valid alternatives that guarantee reasonable implementation costs
are Vdd-Hopping [124] and Vdd-Dithering [125]. An abstract view of their working
principle is depicted in Fig. 4.2. Whereas in ideal-DVFS (dashed line in Fig. 4.2)
the supply voltage can be adjusted with a very high resolution, such techniques
employs a discrete set of supply voltages.

Vdd2P

f

Vdd1 Vdd3

Vdd-Hopping

Vdd0

fclk f

Vdd-Dithering

(a) (b)

Ideal-DVFS

Vdd2

f

Vdd1 Vdd3Vdd0

fclk

Ideal-DVFS

P

Vdd constant
Vdd switching

Figure 4.2: Performance-Power trade-off curves of existing DVFS schemes.

Vdd-Hopping: as shown in Fig. 4.2-a, in this scheme the supply voltage range
is split into a specific set of intervals, three in the plots of the figure. Among the
avaialble options, the proper voltage is selected at run-time in order to meet the
frequency constraint (fclk) imposed by the actual workload. Once fclk is identified,
the core is powered at the Vdd at the right edge of the interval including fclk
(Vdd2 in Fig. 4.2-a). Within each interval, the Vdd is kept constant and the power
consumption decreases linearly with fclk. When fclk crosses a new interval, power

91

4.1 – Power optimization on ASICs: FINE-VH

scales accordingly with the new Vdd. Clearly, the power efficiency Vdd-Hopping
drifts from ideal-DVFS as fclk approaches the left edge of each interval.

Vdd-Dithering: differently from Vdd-Hopping, this method leverage a Vdd
time-sharing scheme (Fig. 4.2-b). At the application level, the core works at low
Vdd (Vdd1 in Fig. 4.2-b) for the first portion of a task, then switches to high Vdd
(Vdd2) for the last portion. Given Tlow as the time spent at low Vdd, i.e. low
frequency flow, and Thigh as the time spent at high Vdd, i.e. high frequency fhigh,
the core operates at an average frequency (favg) proportional to the “switching
ratio”:

favg ∝
(flow · Tlow) + (fhigh · Thigh)

Tlow + Thigh
. (4.1)

Modulating the ratio between Tlow and Thigh enables to center the target fre-
quency fclk. The physical implementation reported in [125] demonstrated that the
overhead due to the non-ideality of power-switches are negligible, therefore the
trend line of Fig. 4.2-b represents a realistic approximation of the power efficiency
achieved by Vdd-Dithering.

Within-the-core power management

Following the natural scaling of power management experienced in the last
years, FINE-VH brings the Vdd-Hopping concept at a finer level of granularity,
i.e. within the core. In this section, we reviews this scaling trend through a
classification of the possible granularity options. The taxonomy tree is shown
Fig. 4.3.

Our objective is to bring the Vdd-Hopping concept at a finer level of granularity,
i.e., within the core. The underlying idea is not new as it follows the natural scaling
of other power-management experienced in the last years, e.g., Multi-Vdd, Body-
Biasing, Power-Gating [128]. The taxonomy tree shown in Fig. 4.3 provides a brief
classification of the possible granularity options.

In the beginning, low-power knobs like Multi-Vdd, Body-Biasing, or Power-
Gating [128], were applied at the architectural level, where the grain was an en-
tire functional block (Fig. 4.3-a). For instance, different pipeline stages can be
dynamically fed by VddH and VddL, using an interpolation scheme similar to
Vdd-Dithering [129]; together with a variable latency mechanism, this strategy
enable to minimize the energy overhead due to process-variations. An extension
of the scheme is presented in [130] to further improve the reliability of the system
by means of dynamic local error detection&correction units for preventing timing
violations.

Whereas operating at the architectural level is straightforward, the power ef-
ficiency is limited by the grain dimension. All the low-power knobs exploit an
intrinsic feature of digital circuits, i.e. idleness. When a functional block is not

92

4.1 – Power optimization on ASICs: FINE-VH

R = Layout Row

VDD1 (VBS1) VDD2 (VBS2)

(b)

T1 T2 T3 T4 T5

T6 T7 T8 T9 T10

T11 T12 T13 T14 T15

T16 T17 T18 T19 T20

T21 T22 T23 T24 T25

FU = Functional Unit

FU 1

FU 2

FU 3

(a)

T = Layout Tile

(c)

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10

Architectural level Row-based Tile-based

Within-the-core Granularity

Functional Block Within-the-block
(Layout-driven)

Architectural level Row-based Tile-based

Figure 4.3: Classification of low-power knobs granularity. From coarse-grained
architectural level (a), up to fine grained solutions like row-based (b) and tile-
based (c) partitioning.
used or can operate at lower speed, its power can be reduced without affecting
the performance of the overall system. Obviously, this implies the identification
of idle functional blocks and active ones. However, there is still room for im-
provement, as large portions of each functional block might include non-critical
components, e.g. standard cells belonging to short logic paths. Applying low-
power knobs on those components can introduce additional optimization margins
without any performance cost. Inspired by this intuition, power management un-
derwent a development process towards the application of low-power knobs at a
finer granularity, i.e. within-the-block.

Unfortunately, pushing low-power knobs at a fine granularity poses several
concerns, because the row-based placement of a traditional physical design flow
imposes strict geometrical constraints that limit the minimum size of the grain.
This calls for a proper understanding of the physical constraints, forcing a regular
partitioning of the layout. In this regard, the most common layout-driven solutions
are row-based and tile-based partitioning.

In row-based partitioning (Fig. 4.3-b), the grain is the a single layout row. For
instance, a row-based dual-Vdd assignment can be adopted for process variation

93

4.1 – Power optimization on ASICs: FINE-VH

compensation [131]. Specifically, timing critical rows are grouped in high-Vdd clus-
ters, whereas the non-critical ones are assigned to low Vdd. A dedicated timing-
driven optimization places critical cells on adjacent rows to minimize leakage cur-
rents at the interfaces between rows. However, the Vdd assignment is statically
done at design-time, preventing the implementation of adaptive power schemes.
Similarly, [132] presents a row-based partitioning for ultra-fine grain body-biasing.
In contrast to [131], each partition includes the same number of row, regardless
the timing criticality of logic paths. The latter solution offers more flexibility, as
it enables adaptive body-biasing tuning after fabrication to compensate process
variations.

In tile-based partitioning, the grain is a regular portion of the layout. A pic-
torial example is reported in Fig. 4.3-c, which illustrate a layout arranged in 5x5
square mesh. The seminal work of [133] presented an adaptive dual-Vdd strat-
egy applied on a cryptographic accelerator partitioned into 42 square tiles. Even
though results were promising, the power savings are limited to 12% (with respect
to a monolithic DVFS) due to static power overheads generated by intra-tile leak-
age currents. An additional example of tile-based partitioning is reported in [134],
yet with a different objective; it supplies at high Vdd those tiles including standard
cells whose electrical behavior needs a minimum operating voltage larger than most
of the other cells. This guarantees fault-free operation, even though on average
the circuit operates at Vdd< Vddmin.

Following the path of previous works, the FINE-VH strategy adopts a tile-
based partitioning. However, the aim of FINE-VH differs, as the idea of bringing
Vdd-Hopping at an ultra-fine granularity to push DVFS beyond its theoretical
limits has not been explored yet.

4.1.2 Implementing FINE-VH
Design and Optimization

A practical implementation of FINE-VH requires a proper management of the
design concerns generated by the layout fragmentation of the circuit. First, the
cell displacement due to the partitioning could generates area and timing over-
heads. Second, static power consumption could increase due to leakage currents
of standard cells powered at different Vdd. To address these issues, we devised a
computer-aided design methodology integrated in a standard place&route flow.

In this section, we first details the layout partitioning procedure and the phys-
ical design steps needed to implement FINE-VH. Second, we introduce an optimal
poly-bias assignment strategy aiming to mitigate intra-tile leakage at no timing
penalty. Finally, we present a simulation/emulation procedure for optimal Vdd
selection.

94

4.1 – Power optimization on ASICs: FINE-VH

Physical Design

The FINE-VH strategy adopts a tile-based partitioning, schematically depicted
in Fig. 4.4. The layout is partitioned in regular mesh of NxN square tiles (N=3 in
the figure), each of them fed with dual-Vdd, i.e., low-Vdd (VddL) and high-Vdd
(VddH), brought by the around-the-core power-rings. The two supply voltages are
generated by external DC/DC converters and their values depend from the target
frequency fixed at the application level (for instance, in Fig. 4.2, VddL=Vdd1 and
VddH=Vdd2). Overall the power distribution network includes five power-grids
running around the core through upper-metal horizontal/vertical stripes: VddH,
VddL, Gnd, Vbn (n-bias), and Vbp (p-bias). Note that this scheme is compliant
with adaptive/dynamic body-biasing (out of the scope of this work).

Core

Wrapper Tile

VddH Gnd

Power Grids
Mesh Core

VddL

FINE-VH

VddH VddL

Vdd

Tile

Vdd-MUX
Standard

cells

Rows

Figure 4.4: Tile-based partitioning and tile organization
The Vdd-selection is made possible by p-type header power switches that tie

the layout rows to the power-grids. These switches are integrated into custom
cells, called Vdd-MUX. In practice, the power-management unit is in charge of the
Vdd-selection, loading the Vdd configuration bit-stream into dedicated chain of
flip-flops that drives the Vdd-MUXes. The placement of the Vdd-MUXes follows a
row-based insertion scheme [135], ensuring a uniform distribution across the tile.
The power-grids run over the Vdd-MUX columns, therefore simple vertical vias
connect VddL and VddH to the Vdd-MUX cells.

Adjacent tiles are isolated by a void-space wrapper that break the continuity
among the lower-metal power rails. The wrapper is needed since adjacent tiles
might have a different Vdd. The wrapper width should guarantee the minimum
metal-to-metal distance, which is a design constraints defined by the technology
adopted.

The key feature of FINE-VH is that the tile-based partitioning follows a “no-
look” style. Once the grain size is fixed through the design parameter N , the layout
is partitioned at the floorplanning stage, before the placement of the functional

95

4.1 – Power optimization on ASICs: FINE-VH

blocks of the core. One might wonder if this choice could generate overhead as
functional blocks are split across multiple tiles. However, this represents the only
viable solution that guarantees (i) a regular power distribution netowork and (ii)
the convergence of a commercial placer to a fast timing closure.

From a practical viewpoint, the FINE-VH flow encompasses six different stages
fully integrated into a commercial design platform by SynopsysRO by mean of ded-
icated TCL procedures:

1. Synthesis: logic synthesis using technology libraries characterized at the
maximum Vdd, e.g., 1.0V for our 28 nm technology.

2. Floorplanning: estimation of the core area and creation of an empty lay-
out; the latter is then automatically partitioned into NxN regular tiles using
placement blockages.

3. PG-Synthesis: power-grids are synthesized following a regular mesh over
the partitioned layout.

4. Placement: the Vdd-MUXes are placed at the boundaries of the tiles while
standard cells are placed within the tiles so that timing constraints are sat-
isfied.

5. Post-Placement leakage optimization: a re-synthesis stage performing
optimal poly-bias assignment for those cells at the interface of the tiles (ad-
ditional details in the next subsection).

6. Routing: a standard timing-driven routing for logic signals.

Intra-tile leakage power reduction via Poly-Bias optimization

In a FINE-VH design, static power might increase due to larger leakage currents
between the interface-cells, i.e. cells driven by signals coming from other tiles.
When an interface-cell receives an input signal with a voltage lower than its Vdd,
its internal pull-up network remains partially turned-ON, thus increasing leakage
currents (see Fig. 4.5-a).

To mitigate this overhead, it is possible to increase to p-MOS threshold volt-
age (Vth) of the interface-cells. Two practical solutions to achieve this goal are
gate length modulation [136] and high-Vth transistors [137]. The FDSOI CMOS
technology, adopted in this work, provides multi-Vth libraries obtained with former
technique, which is also referred to as poly-biasing (PB) and shown in Fig. 4.5-
b. Specifically, each logic gate is available in four different versions: PB0 (the
standard Vth), PB4, PB10 and PB16 (the highest Vth).

96

4.1 – Power optimization on ASICs: FINE-VH

VddL VddH

‘0’ ‘1’

Vg = VddL

Vs = VddH Ileak∝ e |Vg - Vs - Vth|

VddL VddH

‘0’ ‘1’

Vg = VddL

Vs = VddH
PB

VddL

VddL - Vtp

Vtn

VddH
VddH - Vtp

Vtn

Gnd

VddL
VddL - Vtp

Vtn

VddH

VddH - Vtp

Vtn

Gnd

Vtn ⇑
Vtp ⇑{

(b)(a)

Figure 4.5: Intra-tile leakage current (a) and its mitigation via poly-biasing (b)
As the Vdd selection is done at run-time, identifying the interface-cells affected

by intra-tile leakage is not feasible. Needless to say, a conservative strategy in
which all the interface-cells are mapped to high-Vth would generate excessive delay
overhead. For this reason, we present a timing-driven post-placement poly-bias
assignment which works as illustrated in Fig. 4.6. Starting from a placed netlist
of standard Vth cells, i.e., PB0, the interface-cells are first identified (a) and then
virtually isolated in a separated netlist with back-annotated delay information (b).
Using the optimization engine embedded into the physical synthesizer, a timing-
driven multi-PB assignment is run (c). The netlist returned by the multi-PB
assignment step has the minimum leakage configuration, i.e., the largest set of high-
Vth cells, that satisfies the delay constraints. Finally, the resulting PB assignment
is annotated into the main netlist (d).

The actual leakage optimization takes place in step (c). To avoid delay penal-
ties, the optimization involves only those interface cells belonging to logic paths
with a timing slack grater than certain threshold. Furthermore, to maximize the
number of cells with highest Vth (PB16), the procedure encompasses three incre-
mental PB-assignment stages. At each stage, only one class of PB cells is consid-
ered: at the first stage PB16, at the second stage PB10, at the third stage PB4. In
this procedure, PB16 cells (which guarantee the highest protection from intra-tile
currents) gets higher priority than the PB10 and PB4 cells (for which intra-tile
leakage compensation is minimal)

The slack thresholds adopted for the selection of the interface cells involved
in the poly-bias assignment depends on the actual stage of the optimization. For
example, at the first stage (PB16 assignment), the slack threshold is larger, as
PB16 cells introduces a larger delay overhead than PB10 and PB4 cells. At the
last stage (PB4), the slack threshold is relaxed. To determine the exact values
of these thresholds, we extracted the slow-down factor αsd, i.e. the average delay
overhead, induced by each class of PB cells and defined the slack threshold for
each stage trough equation (4.2):

97

4.1 – Power optimization on ASICs: FINE-VH

input

netlist

interface cells

netlist

*timing back-annotation

*

*
*

**

* *

*

*

**

*

*

*

*

*

three-stage

poly bias

optimization

PB16 PB10

PB4

output

netlist

a)

b)

c)

d)

PB0

PB0 PB0

PB0

PB0

PB16 PB10

PB4

PB0

PB0

PB0

PB0

Figure 4.6: Optimal poly-bias assignment through local re-synthesis

PB0 PB4 PB10 PB16

0

2

4

6

8

10

12

14

16

18

20

S
lo

w
-D

o
w

n
 F

a
c
t
o
r

1.00

2.82

8.76

19.88

Figure 4.7: Average slow-down factors for the different poly-bias options.

Sth(PB) = davg · αsd , PB = [4, 10, 16] . (4.2)
where davg denotes the average propagation delay of a cell belonging to the

critical path. Figure 4.7 reports the collected slow-down factors: 2.82x for PB4,
8.72x for PB10, 19.88x for PB16.

As a final remark, note that the presented multi-stage re-synthesis is suited not
only for the 28 nm FDSOI technology but it can be extended for every technology
offering multi-Vth libraries.

98

4.1 – Power optimization on ASICs: FINE-VH

4.1.3 Simulation and Emulation
The assessment of the figure-of-merits of a FINE-VH design requires the de-

velopment of a dedicated static-analysis engine able to process level-shifter free
multi-Vdd designs. For this purpose, we opted for a static estimation of intra-tile
leakage currents based on an off-line characterizations. In addition, as FINE-VH
exploits a dynamic (i.e. at run time) Vdd-selection, an accurate assessment should
include the emulation of power-management policies. Regarding this point, we
implemented a simple, yet effective timing-driven Vdd-selection.

Intra-Tile Leakage Power Estimation

In this section, we present a static analysis engine to estimate intra-tile like
power avoiding heavy SPICE simulations of the entire core for multiple Vdd-
selections. More specifically, we built a look-up table annotating the leakage power
derating fcator for all possible input patterns (logic 0/logic 1) and all possible
VddL/VddH configurations. Similarly to standard timing libraries, the look-up
tables are generated for different voltage corners. The collected look-up tables
enable to compute the leakage power employing the same model integrated into
commercial tools:

Pleak =
2n∑︂
i=1

Pi · Li · ki (4.3)

where n denotes the number of input pins (the number of pins, for sequential
cells), Pi the input pattern probability, Li the nominal static power extracted from
standard timing libraries, and ki the leakage power derating factor picked from the
LUT. Clearly, ki=1 if the driver cell is placed in a tile sharing the same Vdd of
the logic cell under analysis.

Vdd-selection

To emulate power-management at design-time we devised a timing-driven Vdd-
selection (pseudo-code in in Algorithm 5). The algorithm estimates the timing
criticality of each tile counting the number of cells with negative slack. Tiles with
the largest number of critical cells are assigned to VddH first. The procedure is
iterated until all the cells show a positive slack.

First, the algorithm assigns all the tiles to VddL (line 1). For each tile a criti-
cality score is initialized to zero (line 3). Once the most critical path is extracted,
all the cells belonging to that path are stored in a dedicated list called Cell_List
(line 4). For each cell in Cell_List, the propagation delay is extracted and added
to the criticality score of the tile hosting the current cell (lines 5 to 8). Once all

99

4.1 – Power optimization on ASICs: FINE-VH

Algorithm 5: Vdd-selection Procedure
Input: V ddL, V ddH, fclk
Output: Vdd assignment

1 set_VddL([All_tiles]);
2 while Worst_Slack < 0 do
3 zero(Tile_Score[All_tiles]);
4 Cell_List ← Cells ∈ Critical Path
5 foreach Cell ∈ Cell_List do
6 Cell_Delay ← propagation delay of Cell;
7 Tile_ID ← tile hosting Cell;
8 Tile_Score[Tile_ID] += Cell_Delay;
9 end

10 Tile_Score ← Tile_Score[Tiles@VddL];
11 Tiles_Score ← sort(Tile_Score, decreasing);
12 Critical_Tile ← Tile_Score[0];
13 set_VddH(Critical_Tile);
14 end

the cells in Cell_List have been processed, those tiles still supplied at VddL are
sorted according to their score (line 10 and 11). The tile with the highest score
(line 12) is assigned to VddH (line 13). The procedure ends when the core presents
a positive timing slack, i.e. when the target fclk is met (line 2).

4.1.4 Evaluating FINE-VH
In this section, we report experimental results collected on two different bench-

marks. The first one is a small design consisting of a tiny general purpose cores
used to demonstrate the feasibility of the presented strategy. As a second bench-
mark, we adopted a processing element integrated in a deep learning accelerator.
Compared to the former benchmark, the processing element is a larger design that
enables to validate the scalability of FINE-VH.

Validation Benchmarks

We first tested the FINE-VH flow on the RI5CY core, an open-source RISC-
V instruction set architecture used in the low-power parallel-processing platform
PULP [127]. The core includes the following functional blocks: a prefetch buffer, an
instruction decoder, a 31x32 bit register file, an integer ALU, a single-cycle 32x32
integer multiplier, a control status register, hardware loop unit, debug unit, and a
load&store unit. Figure 4.8 illustrates the layout of the die after tile partitioning
for N=49.

100

4.1 – Power optimization on ASICs: FINE-VH

Figure 4.8: Layout partitioning of A RI5CY core after standard-cell placement (49
tiles).
Experimnetal Set-up

For static timing and power analysis, we resorted to the engine integrated in
the STA tool by Synopsys (PrimeTime). We used technology libraries provided
by the silicon vendor characterized for Vdd ranging from 0.60 V to 1.00 V (step of
50 mV) and worst-case corner (slow-slow and 125 ◦C).

We performed a comparative analysis between existing DVFS schemes and
FINE-VH. The experimental settings is reported as follows.

• Ideal-DVFS: for each Vdd, the maximum frequency is extracted and set
as the working frequency. The Vdd ranges from 0.60 V up to 1.00 V with a
step of 25 mV, resulting in eight (f , Vdd) operating points; for those Vdd not
available in the library set, we used a cross-library scaling feature embedded
into the STA tool.

• Vdd-Hopping: the Vdd range [0.60 V-1.00 V] is split into a finite set of in-
tervals having a fixed width: ∆Vdd=200 mV and ∆Vdd=100 mV; the result-
ing Vdd values are 0.60 V, 0.80 V, 1.00 V and 0.60 V, 0.70 V, 0.80 V, 0.90 V,
1.00 V respectively. The Vdd is chosen depending on the target frequency
(please refer to Fig. 4.2).

• Vdd-Dithering: same Vdd ranges/intervals of the Vdd-Hopping scheme,
but power consumption is a liner interpolation of points obtained through
ideal-DVFS (please refer to Fig. 4.2).

• FINE-VH: the technique proposed in this work. As for the previous schemes,
the Vdd ranges is [0.60 V-1.00 V]; two ∆Vdd options are explored, i.e., 200 mV

101

4.1 – Power optimization on ASICs: FINE-VH

(Vdd range split into two intervals) and 100 mV (Vdd range split into four
intervals).

For all the above design strategies the average power is extracted considering
realistic switching activities of the primary inputs, i.e., annotating static proba-
bilities and toggle rates extracted from functional simulations.

Results

Table 4.1 reports the figures of merit of the RI5CY core after the FINE-VH flow
is applied at different levels of granularity (#Tiles=1 denotes a standard design
without FINE-VH). Both the core area and the number of layout rows increase with
granularity due to wrapper insertion around the tiles. Such a void space is devoted
for de-cap cells insertion and intensive routing. The area overhead ranges from
2.42% for 9 tiles to 5.95% for 49 tiles. The most interesting note is that the active
cell area and the nominal delay@1.00 V (i.e., critical path delay when all the tiles
are supplied at 1.00 V) keep almost constant; this proves the convergence of the
design flow, even at 49 tiles. As one can observe, the percentage of interface cells
increases with the number of tiles, together with the intra-tile interconnections.
However, as will be shown later in the text, the proposed poly-biasing optimization
helps to control the intra-tile leakage overhead.

Table 4.1: Figures of merit of the RI5CY after FINE-VH

Tiles 1 9 25 49

Core Area µm2 36229 37105 37626 38386
Rows 158 160 161 163
Cell Area µm2 25550 25397 25302 25698
Delay@1.00V ns 3.00 2.95 2.99 3.00
Interface Cells 0.0% 38.44% 56.89% 62.65%

Concerning the Vth distribution, Fig. 4.9 shows that the PB optimization pro-
cedure makes extensive use of cells at the highest Vth (PB16), above 57% in all the
three configurations. This highlights how the leakage optimization engine embed-
ded into commercial tools well fits FINE-VH purposes when properly instructed.

Figure 4.10 shows the power vs. frequency trade-off curves for a 49-tile FINE-
VH configuration and the three state-of-the-art DVFS schemes. Numbers are
normalized with respect to an ideal-DVFS implementation (dashed line in the
plot) supplied at minimum Vdd. As expected, Vdd-Hopping and Vdd-Dithering
do approximate the behavior of ideal-DVFS, even though in a different manner.
Within each Vdd interval the Vdd-Hopping gets worse at lower frequencies, while

102

4.1 – Power optimization on ASICs: FINE-VH

PB0 PB4 PB10 PB16

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

17.9% 16.4%

8.5%

57.2%

23.2%

9.4% 9.1%

58.4%

19.8%

11.4% 10.3%

58.5%

9 tiles 25 tiles 49 tiles

Figure 4.9: Poly-bias distribution across the interface-cells
Vdd-Dithering always runs close to ideal-DVFS. FINE-VH outperforms the com-
petitors for all the operating points, both for ∆Vdd=200 mV and ∆Vdd=100 mV.
When ∆Vdd = 200 mV, average power reductions of 43.5% and 27.5% are obtained
with respect to Vdd-Hopping and Vdd-Dithering respectively. Moreover, FINE-
VH outperforms ideal-DVFS achieving a 23.4% of power savings. The benefits of
the proposed technique are even more empathized at ∆Vdd=100 mV, where the
average power consumption is reduced to 35.3% with respect to Vdd-Dithering and
to 34.6% with respect to ideal-DVFS.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Normalized Frequency

0

1

2

3

4

5

6

N
o
rm

a
li
z
e
d
 P

o
w

e
r

0.80V

1.00V

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Normalized Frequency

0

1

2

3

4

5

6

0.70V

0.80V

0.90V

1.00V

Ideal-DVFS Vdd-Hopping Vdd-Dithering FINE-VH

Figure 4.10: Comparative analysis among four DVFS schemes: i) ideal-DVFS, ii)
Vdd-Hopping, iii) Vdd-Dithering, iv) FINE-VH (49 tiles); ∆Vdd=200 mV (left),
∆Vdd=100 mV (right).

The power savings for each operating point are detailed through Fig. 4.11

103

4.1 – Power optimization on ASICs: FINE-VH

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Normalized Frequency

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%

P
o
w

e
r

S
a
v
in

g
s

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Normalized Frequency

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%

Ideal-DVFS Vdd-Hopping

Figure 4.11: Power savings of the proposed FINE-VH (49 tiles) with respect to
ideal-DVFS and Vdd-Hopping; ∆Vdd=200 mV (left), ∆Vdd=100 mV (right).
(the plot does not show savings with respect to Vdd-Dithering as they are close to
ideal-DVFS). For ∆Vdd=200 mV savings range from 8.5% to 30.6% with respect to
ideal-DVFS and from 30.0% to 61.0% with respect to Vdd-Hopping. For ∆Vdd=
100 mV power savings range from 32.0% to 38.2% with respect to ideal-DVFS
and from 33.6% to 49.7% with respect to Vdd-Hopping. When considering a
direct comparison to Vdd-Hopping, larger savings are achieved at lower operating
frequencies (left side of each Vdd interval), where a finer granularity allows to
supply more portions of the layout at the low voltage. Vdd-Hopping, instead,
forces the core running at a Vdd that is quite far from the optimal one.

Working with ∆Vdd=100 mV brings larger average savings (with respect to
ideal-DVFS) for two main reasons: (i) a finer voltage granularity allows a better
selection of tiles that can be set at VddL, hence, it helps to get closer the global
optimal; (ii) a smaller ∆Vdd guarantees better noise margins while mitigating
the effects of intra-tile leakage. This would suggest that a smaller ∆Vdd is a
better design option. That’s true as long as power/delay overheads of external
voltage regulators are neglected. Indeed, when the target frequency imposed at
the application level is shifted outside the reference interval, VddL and VddH need
to be set to different values (please refer to Fig. 4.2); this implies some extra power
overheads and additional latencies due to off-chip DC/DC converters. Intuitively,
a lower number of intervals, i.e., a larger ∆Vdd, may allow to cover a larger set
of target frequencies with the same pair of values for VddL and VddH. In other
words, a larger ∆Vdd reduces the probability of an external voltage shift. The
choice of an optimal ∆Vdd is a trade-off imposed by design specifications.

Figure 4.12 shows the percentage of the cell area supplied at low Vdd when
FINE-VH is applied at different granularity, i.e., 9, 25 and 49 tiles. The plot clearly
shows that 49 tiles give the best savings. For both the two ∆Vdd options, working
at higher frequencies decreases the amount of silicon area powered at low Vdd.

104

4.1 – Power optimization on ASICs: FINE-VH

0

0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area Ratio (%)

1.00

1.11

1.22

1.34

1.44

1.56

1.66

1.78

1.88

1.99

2.10

2.21

2.31

2.42

2.50

2.59
N

o
rm

a
li
z
e
d
 F

re
q
u
e
n
c
y

0
.6

0
V

-0
.8

0
V

0
.8

0
V

-1
.0

0
V

0

0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area Ratio (%)

0
.6

0
V

-0
.7

0
V

0
.7

0
V

-0
.8

0
V

0
.8

0
V

-0
.9

0
V

0
.9

0
V

-1
.0

0
V

9 25 49

Figure 4.12: Percentage of standard cell area @VddL for different number of tiles.
For instance, at the maximum frequency, fclk = 2.59, with 9 tiles, the percentage
of area at low Vdd drastically reduces to zero for ∆Vdd=200 mV, and to 2.4%
for ∆Vdd=100 mV. A lower granularity implies larger tiles that, most probably,
will contain at least one timing critical logic path that forces the selection of a
high Vdd. This issue is progressively mitigated as the granularity gets finer. As
one can observe, at the maximum frequency fclk = 2.59, with ∆Vdd=200 mV, the
percentage of area powered at low Vdd increases to 11.3% at 25 tiles and 25.4%
at 49 tiles. Savings are even larger when ∆Vdd=100 mV, 36.2% at 25 tiles and
58.7% for 49 tiles. The advantage of a finer granularity can be better appreciated
considering the average over the whole frequency spectrum: for ∆Vdd=200 mV, the
average percentage increases to 38.5% (9 tiles), 52.0% (25 tiles), 58.9% (49 tiles);
for ∆Vdd=100 mV, the average percentage increases to 54.0% (9 tile), 60.7% (25
tiles), 69.2% (49 tiles). This confirms once again the rule of thumb: “the finer, the
better”.

Figure 4.13 shows the power savings (with respect to ideal-DVFS) achieved
with the proposed PB optimization. For ∆Vdd=200 mV, do not using poly-biasing
nullifies all the savings brought by FINE-VH, i.e., negative savings. On the con-
trary, the PB assignment helps recovering the overheads due to a level-shifter free

105

4.1 – Power optimization on ASICs: FINE-VH

strategy as multi-Vth cells substantially reduce the intra-tile leakage and are in-
trinsically less leaky. Our PB strategy achieves average savings of 23.4%. For
∆Vdd=100 mV, though the overhead imposed by intra-tile leakage currents is
smaller, our PB optimization allows larger savings, 34.6% (PB) against 10.8%
(no PB), without any performance penalty.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Normalized Frequency

-20%
-15%
-10%

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%

P
o
w

e
r

S
a
v
in

g
s
 w

.r
.t

.
id

e
a
l-

D
V

F
S

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Normalized Frequency

-20%
-15%
-10%
-5%
0%
5%
10%
15%
20%
25%
30%
35%
40%

Dual-Vdd w/o PB Dual-Vdd w/ PB

Figure 4.13: Power savings with respect to ideal-DVFS before and after PB opti-
mization for ∆Vdd=100 mV and ∆Vdd=200 mV (49 tiles)

2.31

2.42

2.50

2.59

0
.9

0
V

-1
.0

0
V

1.88

1.99

2.10

2.21

0
.8

0
V

-0
.9

0
V

1.44

1.56

1.66

1.78

0
.7

0
V

-0
.8

0
V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Tile Number

1.00

1.11

1.22

1.34

0
.6

0
V

-0
.7

0
V

N
o
rm

a
li
z
e
d
 F

re
q
u
e
n
c
y

VDDL VDDH

Figure 4.14: Voltage Assignment (25 tiles)

Finally, Fig. 4.14 reports the Vdd selection obtained through Algorithm 5 for

106

4.1 – Power optimization on ASICs: FINE-VH

the case ∆Vdd=100 mV. The plot refers to 25-tile configuration. For each op-
erating frequency, it shows the Vdd assigned to each tile. When the frequency
increases, the number of tiles supplied at low Vdd decreases. However, some tiles,
like the #4 and the #5, are more critical than others as they are constantly fed
by VddH; other tiles are less critical, like tile #3, #6, #16, and, even at higher
frequencies, they still keep running at low Vdd. The most critical functional blocks
are the arithmetic units, for which at least one tile is always supplied at high Vdd.
The proof that the Vdd-assignment algorithm detects the most timing-critical tiles
can be inferred by observing the regularity of the Vdd distribution within each in-
dividual voltage interval: once a critical tile is assigned to VddH it never swaps to
VddL. This holds for tile #7, #8, #9, #10, #12.

Case Study: FINE-VH on deep learning accelerators

To assess the benefits of FINE-VH on a deep learning accelerator, we applied
our design flow to synthesize the processing element (PE) of the LoC-1 architec-
ture [117] The LoC-1 is a low-power micro-programmable architecture hosting a
2D array of identical processing elements. The PE is the basic block of the acceler-
ator. It consists of a SIMD-like (Single Instruction Multiple Data) unit integrating
four parallel lanes. The lanes have been conceived for flexibility and high perfor-
mance. Indeed, their programmable architecture supports all the main operations
(convolution, pooling, non-linearity) found in DL algorithms and can be dynam-
ically resized to match different input feature-map and kernel size. The flow of
operations is managed by a local control unit. Each lane has local memory and an
execution unit. The local memory is divided in two banks, a private and a shared
bank; the former is only locally accessible whereas the latter can be accessed also
by other lanes. The execution unit contains a multiply-and-accumulate unit whose
adder can also be used independently. The PE also hosts a network-on-chip router
that dispatches data and instructions from/to other PEs. We refer the interested
reader to [117] for a detailed description at the architectural level of the PE and
the LoC-1 accelerator.

The PE was partitioned with 400 tiles and was synthesized with fclk=1.3 GHz
@ 1.0 V using a CMOS 28 nm FDSOI technology. After the place&route stage, we
measured a core area of 101 362 µm2. The design was fully characterized in terms
of power and performance. Fig. 4.15 shows a comparison between a core-level Vdd-
Hopping and FINE-VH. The plot reports the normalized power consumption for
the two schemes with 16 frequencies and 4 voltage intervals. FINE-VH outperforms
Vdd-Hopping, resulting up to 20% power savings. These findings confirm the
efficacy of the proposed strategy.

107

4.1 – Power optimization on ASICs: FINE-VH

0

1

2

3

4

5

N
o
rm

a
li
z
e
d
 P

o
w

e
r

0.70V

0.80V

0.90V

1.00VVdd-Hopping FINE-VH

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Normalized Frequency

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

P
o
w

e
r

S
a
v
in

g
s
 (

%
) 0.60V-0.70V 0.70V-0.80V 0.80V-0.90V 0.90V-1.00V

Figure 4.15: Power comparison between Vdd-Hopping and FINE-VH for a PE
partitioned into 400 tiles (after place&route).
4.1.5 Discussion

Ultra-Fine Grain Vdd-Hopping (FINE-VH) improves the efficiency of state-
of-the-art DVFS schemes. We implemented a fully automated layout-assisted,
level-shifter free flow which enables tile-based Vdd-Hopping at ultra-fine granular-
ity with minimum design overheads. The proposed technique includes a timing-
driven incremental re-synthesis stage for optimal poly-biasing assignment address-
ing the intra-tile leakage power reduction without incurring in delay degradation.
FINE-VH was first validated on a RISC-V core for MP-SoC applications and then
experimented on a processing element for deep learning acceleration. Both designs
were mapped onto a commercial 28 nm FDSOI technology. To measure the bene-
fits of the proposed technique, we devised an experimental framework capable of
emulating the Vdd-selection at different target clock frequencies and estimating
the intra-tile leakage power.

Experimental results shows that FINE-VH outperforms existing power-management
schemes, like Vdd-Hopping and Vdd-Dithering, and, most importantly, goes be-
yond the theoretical limit imposed by ideal-DVFS. An accurate parametric analy-
sis clearly stated that finer layout granularity enhances FINE-VH power efficiency.
Average power savings at low Vdd, when ∆Vdd is fixed to 200 mV, increases from
38.5% for 9 tiles, up to 58.9% for 49 tiles. Once again the rule of thumb “the finer,
the better” is confirmed. An important design variable is the difference between
VddL and VddH, ∆Vdd, as a proper choice may depend on the characteristics of

108

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

the off-chip voltage regulators and the actual design specifications. That said, our
quantitative analysis reveals that FINE-VH can work for a wide range of ∆Vdd
values, from 100 mV (10%Vdd) up to 200 mV (20%Vdd).

4.2 Power optimization on CPUs: Voltage-Scaled
ConvNets

Power consumption is a primary source of concern for the execution of deep
learning workloads, especially for real-time applications that run inference over a
continuous stream of data. Commonly referred to as continuous inference, some
real-world applications include context sensing [138], health monitoring [139], and
object tracking [140], for which ceaseless uploading of data in the cloud would be
impractical due to high communication costs and unpredictable response time.

Today, general-purpose CPUs represent the most adopted design choice for
embedded platforms. Millions of chip-sets integrating Reduced Instruction Set
Computers (RISCs) are already in the field (e.g., in smartphones) and can be
empowered with ConvNets through a simple software update [141]. To deploy
compute-intensive workloads like ConvNets, a common practice is to adopt het-
erogeneous designs powered by high-end multi-core CPUs with parallel arithmetic
units. For instance, the ARM Cortex-A15 of the Samsung Exynos 5422 system-
on-chip (SoC) [142] embeds a four-core CPU that can operates with a maximum
frequency of 2.0 GHz. Each core is equipped with the NEON unit [143], a Single-
Instruction Multiple-Data (SIMD) data-path for parallel arithmetic. Furthermore,
dedicated low-level routines optimized for linear algebra (e.g. convolutions between
multi-dimensional matrices) are used at compile time to build highly efficient ex-
ecutable code [144].

However, even the most compact ConvNets are super-dense workloads that
flood the hardware, saturating both memory and CPU utilization. While this
may seem positive in terms of efficiency, it raises a serious concern over long ex-
ecution intervals, when thermal issues arise affecting the reliability. This aspect
is neglected in modern deep learning optimization frameworks. Since high-end
cores are integrated into embedded devices with a small form factor, high utiliza-
tion rates come at the cost of much higher power density, which in turn generates
more heat than cooling systems can dissipate. The on-chip temperature increases
quickly, reaching critical values (e.g. 90 ◦C) even in short time windows. High tem-
peratures activate several degradation mechanisms that affect the lifetime of the
device [112] and the user experience. This problem calls for a control mechanism
to avoid thermal runaway.

The working principle of thermal control strategies is to switch active cores

109

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

into a low power state as soon as their temperature reaches a critical threshold.
Thanks to lower power dissipation, temperatures cool down, allowing to restore
the thermal stability of the system. As a downside, thermal control strategies
limit the CPUs speed, bringing a significant mismatch between nominal (i.e. at
maximum speed) and actual performance (i.e. under thermal management). As
will be shown later, state-of-the-art ConvNets, both accuracy optimized ConvNets
(e.g. Inception [145]) and performance optimized ConvNets (e.g. MobileNets [12]),
exceeds the safety-critical temperature just after 1–3 s of continuous inference,
making the average performance gap quite large. Neglecting this aspect may
have dramatic impacts on the dependability of the system, leading to functional
failures in the worst case. Instead, a thermal-conscious deployment of ConvNets
would help to improve several figures of merit. While thermal issues and thermal-
aware hardware/software co-design are well established topics in the literature,
the intersection with ConvNets is a less explored field. An in-depth analysis may
reveal interesting trends with new insights for the optimization of ConvNets. This
is the aim of this section, which presents a thorough assessment of the performance
of ConvNets under thermal management, implemented into low power CPUs for
mobile applications.

Among the existing alternatives, supply-voltage lowering is a common knob
to match Thermal Design Power (TDP) constraints. If combined with frequency
scaling, it enables a cubic reduction of dynamic power consumption. Moreover,
lower voltages reduce static power. Embedded CPUs integrate Dynamic Voltage
and Frequency Scaling (DVFS) mechanisms offering an extended range of oper-
ating points in the power-temperature-performance space. DVFS is managed by
software routines, called thermal governors, which implement temperature-driven
DVFS to maximize performance within the available TDP budget. Identifying the
best control policy is an interesting problem that has been extensively addressed in
the literature. While sophisticated schemes based on workload prediction and/or
temperature speculation are currently available [146], ConvNets are static graphs
with data-independent workloads. This offers a unique opportunity to profile the
thermal-vs.-performance behavior at design-time. We thereby developed an auto-
matic framework that supports multiple ConvNet models allowing a parametric
analysis over different use cases. The experiments, conducted over four state-of-
the-art ConvNets for computer vision tasks ported on an Odroid-XU4 board [147]
powered by the ARM Cortex-A15 core, enables the following key achievements:

• Quantify the thermal headroom of ConvNets in the context of continuous
inference. Our analysis identifies applications that can be critical for power-
constrained devices.

• Assess the performance of ConvNets under thermal-aware DVFS. The ex-
periments cover two control policies, namely reactive and proactive.

110

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

• Identify the optimal operating points of voltage scaled ConvNets. The anal-
ysis suggests useful insights to support the development of smarter control
policies specialized for ConvNets.

• Prove that the thermal profile of ConvNets depends on the network architec-
ture. The collected results reveal the need for new optimization techniques
for training thermal-aware ConvNets.

Our experiments demonstrate that designers should carefully assess the ther-
mal and power constraints of the hosting hardware to avoid mismatches between
expected performance (at design-time) and run-time execution. The conducted
analysis serves as a baseline for future thermal-aware ConvNet optimization. For
instance, standard optimization methods like neural network compression [86] and
neural architecture search [148] might exploit the power-thermal characterization
of the target hardware.

The remainder of this section is organized as follows. We first summarize the
standard thermal management mechanisms implemented in off-the-shelf embedded
systems. Second, we describe the proposed characterization framework. Finally,
we report the experimental results and discuss the main findings of our analysis.

4.2.1 Thermal-Aware Power Management in embedded
CPUs: Reactive vs. Proactive DVFS

Thermal Management Strategies

Thermal management strategies change the operating point of the system to
reduce the power consumption and control the on-chip temperature. Among the
available options, DVFS represents one of the most effective knobs since the ac-
tive power consumption shows a quadratic dependence on voltage and a linear
dependence on frequency.

Commercial CPUs offer a wide set of voltage and frequency (V F) levels (19 in
the Cortex-A15), which enable a fine grained control on power and performance.
As will be discussed in Section 4.2.3, we observed that other knobs are less efficient
for controlling temperature during continuous inference. Each V F level identifies
a specific operating point in the power-performance space. The maximum per-
formance can be achieved using the highest voltage and the maximum frequency
available, which we refer to as V Fmax; within the Cortex-A15, V Fmax = 1.3625 V
@ 2 GHz. Changing the operating point at run-time enables managing the power-
performance trade-off, which means controlling the temperature gradient at the
cost of performance penalty.

111

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

An efficient management policy aims to guarantee thermal stability with min-
imum speed degradation. Off-the-shelf SoCs implements a reactive thermal man-
agement mechanism. To meet high computational demands, the active cores oper-
ate at V Fmax and invoke a safety mechanism, thermal throttling, that reduces the
V F level when the temperature reaches a critical threshold, thus preventing the
processor, and the whole device, from overheating. For instance, the Cortex-A15
CPU down-scales the voltage-frequency level from V Fmax to V Flow = 0.8875 V @
900 MHz when the temperature exceeds Tmax = 90 ◦C. A qualitative analysis of
this strategy is depicted in Figure 4.16.

Time (s)

T (°C)

Tmax

VFmax

VFlow

Thermal
Throttling

Occurrence

VF

Time (s)

Latency (s)

Lnom

Sustained Thermal Throttling

Unpredictable Latency

Latency
Increase

Figure 4.16: Qualitative trends of temperature (above) and inference latency (be-
low) over time under reactive thermal management.

Under intensive workloads, like those of ConvNets, this mechanism may lead to
significant performance degradation, especially when continuous inference is held
for long time intervals. As shown in the top plot of Figure 4.16, running the cores at
maximum performance pushes the temperature towards the critical threshold Tmax
and forces the SoC to throttle the performance of the cores switching from the high
performance state V Fmax to the low power state V Flow. As soon as the temperature
falls below Tmax, the SoC switches back to V Fmax, forcing another invocation
of thermal throttling in a very short time; the sequence repeats ceaselessly till

112

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

the task ends. This working mode is called sustained thermal throttling: the
temperature fluctuates around the safety threshold over a sustained period, and
so does the voltage-frequency operating point, which moves up and down between
V Fmax and V Flow. As shown in the bottom plot of Figure 4.16, this has a negative
impact on latency: (i) working at V Flow introduces an overhead with respect to
the nominal latency Lnom; (ii) the cyclic swapping from high performance (V Fmax)
to low power (V Flow) modes makes the latency less predictable. For these reasons,
reactive strategies turn out to be quite inefficient. In the specific case of continuous
inference, we measured a latency overhead ranging from 30% to 43% depending
on the ConvNet, together with an increase of variability up to 70× (see Section
4.2.3 for more details).

Proactive thermal management represents a more efficient alternative. It works
ahead of time as it enacts a more stable voltage lowering before the temperature
reaches critical limits. More precisely, the CPU is made to work at an intermediate
operating point V Fopt between V Fmax and V Flow from the beginning. The ben-
efits are qualitatively shown in Figure 4.17, which provides a comparison against
the reactive strategy. While the proactive approach introduces some performance
overhead on the very first short term (Lopt > Lnom), it ensures substantial gains
in the long term because it prevents the occurrence of the throttling events. Over-
all, the average latency improves, while the predictability is guaranteed for much
longer. Under highly demanding workloads of a very long duration, the tempera-
ture might reach critical values even with a proactive control, and hence, thermal
throttling (from V Fopt to V Flow) may still occur. However, its occurrence is less
frequent.

Reactive
Proactive

Lopt

Time (s)

Latency (s)

Lnom

Latency
SavingsLimited

overhead

Sustained Thermal Throttling

Figure 4.17: Inference latency in reactive (red) and proactive (blue) thermal man-
agement.

113

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

Optimal Power-Performance Trade-off

For a given maximum temperature, there exists an optimal trade-off between
power (i.e., the V F level) and performance. Figure 4.18 gives a graphical rep-
resentation of such an optimality problem. The plot shows the average latency
(Lavg) for different V F levels considering a pre-defined sequence of N inference
runs. On the right side of the minimum latency point, achieved working at V Fopt,
it happens that frequent throttling events induce performance penalty. On the
left side of V Fopt, thermal throttling does not occur often, but latency increases
due to a too conservative voltage-frequency scaling. The precise position of V Fopt
depends on the total execution time, i.e., the number of inference runs N , and the
topology of ConvNet (size, number of operations, and memory allocation).

VF

Lavg

VFopt

Lopt

VFmax

Proactive

Reactive

Figure 4.18: Average latency (Lavg) under reactive and proactive thermal manage-
ment strategies.

Proactive DVFS Policies

Several works investigated the implementation of proactive thermal manage-
ment on embedded systems. They presented control policies that aimed to identify
the optimal operating point of the system depending on the current workload. An
exhaustive taxonomy of the existing techniques can be found in [146] This subsec-
tion summarizes the most important approaches.

The seminal work of [149] presented a closed-loop controller that adjusts the
voltage and frequency level to reduce the error between the expected and measured
performance. More advanced controllers incorporate regression models to predict
the future temperature and identify the operating point that achieves maximum
performance, yet avoiding thermal violation. The model can be trained off-line
on a set of representative benchmarks [150] or it can be continuously updated at
run-time [151, 152].

Motivated by the observation that ConvNets are static graphs that always
execute the same flow of operations, we propose a characterization framework that

114

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

enables extracting the thermal profile of a given ConvNet at design time. Rather
than proposing a novel controller, this work aims to quantify the performance of
ConvNets in a power/thermal constrained environment and to identify the best
operating points for thermal management during continuous inference.

4.2.2 Thermal-Aware Performance Optimization and Char-
acterization Framework

The problem of finding the optimal operating point of continuous-inference
applications under proactive thermal management can be formulated as follows:
given a pre-trained ConvNet, deployed on a given embedded CPU, and made
to run for a fixed number of inferences N , find the voltage-frequency operating
point V Fopt that minimizes the average latency. Considering the relatively low
cardinality of the solution space, we opted for an exhaustive exploration conducted
through the characterization framework shown in Figure 4.19.

ConvNet # Inferences (N)

VFopt

Hardware

….

Characterization Flow

.tflite

VF

Lavg

VFopt

Lopt

Model
Benchmarking

Inference
Engine

N runs

VF1

VF2
VF3

VFm

Lavg 1

Lavg 2

Lavg 3

Lavg m

Figure 4.19: Schematic view of the proposed characterization flow.

The framework consists of two main components: (i) an inference engine that
runs the ConvNet workload and (ii) a benchmarking tool that is in charge of
assessing the performance, i.e., the inference latency. The inference engine is
based on TensorFlow Lite (TFL) by Google, i.e., a collection of software routines
for deep learning highly optimized to run tensor graphs on multi-core processors
integrating an SIMD data-path. Furthermore, TFL integrates a benchmarking
utility, called the TensorFlow Lite Model Benchmark, that allows the measurement

115

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

of the inference time on the target device by randomly assembling inputs from the
dataset. The tool collects several statistics recorded on-board, in particular the
average latency and the standard deviation over multiple runs.

The frameworks are fed with three main inputs: (i) a ConvNet architecture in
tflite format; (ii) the number of continuous inferences N ; (iii) the specifications
of the device that hosts the ConvNet (i.e., the available V F levels). The framework
is compiled and executed on the specified hardware to collect the average latency
over N continuous inferences run for all available V F points. The main outcome
is the minimum latency value Lopt and the corresponding optimal operating point
V Fopt.

4.2.3 Experimental Setup and Results
The objective of the analysis reported in this section is threefold: (i) understand

when continuous inference generates temperature violations; (ii) quantify the ac-
tual performance of ConvNets under reactive/proactive thermal management and
different network architectures; (iii) identify the optimal operating points for volt-
age scaled ConvNets to guide the development of smart control policies oriented
toward neural tasks. The contents are organized as follows. First, we report the
hardware specifications of the board adopted in the experiments, together with the
software environment used for the deployment. Second, we describe the ConvNets
taken as benchmarks. Finally, we report the collected results and discuss the key
insights.

Hardware Platform and Software Configurations

The hardware test bench was the Odroid-XU4 platform equipped with the Sam-
sung Exynos 5422 SoC. The platform hosts a quad-core CPU (ARM Cortex-A15),
that can operate up to V Fmax = 1.3625 V @ 2 GHz in nominal conditions. The
operating system running on-board is Ubuntu Mate 16.04, kernel Version 3.10.106-
154, released by Hardkernel. The standard thermal governor implements a reactive
policy, which scales the V F level of the CPU cores down to V Flow = 0.8875 V @
900 MHz as soon as the temperature exceeds the safety threshold Tmax = 90 ◦C.
The operating-system kernel offers 19 voltage and frequency levels with a step of
100 MHz (the minimum frequency is 200 MHz). For the sake of brevity, we denote
the V F operating points just using the frequency value (in GHz). The board was
cooled with an active fan controlled by pulse-width modulation (PWM); all the
experiments were run at a constant fan speed of 36%. Unless explicitly specified,
collected measurements refer to four thread execution.

The inference engine was TensorFlow Lite 1.14. It offers a set of low-level
routines tailored to run neural operators on the ARM Cortex-A architecture.

116

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

Specifically, the convolutional operators make use of SIMD instructions to leverage
the parallel arithmetic data-paths of the NEON unit [89]. In our setup, Tensor-
Flow Lite was cross-compiled using the GNU ARM Embedded Toolchain (Version
6.5) [153].

ConvNet Benchmarks

The adopted ConvNets were picked from the TensorFlow Hosted Models [154]
repository. In particular, we used two representative types of models: MobileNet
and Inception. For each model, we investigated two different versions for a total
of four ConvNets; their features are summarized in Table 4.2. All the ConvNets
make use of an 8-bit fixed-point representation, a common choice for edge inference
as it guarantees lower memory footprint and improved performance with marignal
accuracy loss related to the floating-point. The column Memory reports the size
of the tflite, which contains the data structures needed to execute the model
on-chip, i.e., the network weights and the topology description. The column Top-
1 refers to the top-1 classification accuracy measured on the ImageNet validation
set. The column Lnom reports the nominal latency, i.e. the one measured under
maximum performance (V Fmax). The reported numbers refer to the average over
100 inference runs, each of them interleaved by a two-second pause to avoid tem-
perature variations of the chip. The column σnom reports the standard deviation
of the nominal latency measured over the same 100 runs.

Table 4.2: Memory, accuracy, and nominal latency of the selected benchmarks.

ConvNet Memory (MB) Top-1 (%) Lnom (ms) σnom (ms)

MobileNet v1 4.3 70.0 31.99 0.06
MobileNet v2 3.4 70.8 30.24 0.06
Inception v1 6.4 70.1 87.84 0.13
Inception v4 41.0 79.5 658.06 0.57

MobileNets are lightweight models optimized for high performance on embed-
ded applications. Inception models are designed to maximize accuracy; therefore,
they have a more complex architecture that requires more memory and computa-
tional resources. Inception v4 achieves 8.7% higher accuracy than MobileNet v2
at the cost of 12× more memory and 22× higher latency.

Results

Thermal headroom in continuous inference. Table 4.3 reports the num-
ber of continuous inferences Nsafe and the execution time tsafe at V Fmax = 2.0 GHz

117

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

before the temperature exceeds the critical threshold Tmax = 90 ◦C. For all the
ConvNets, the critical threshold was reached after a low number of inferences,
e.g., only four in Inception v4. This motivated the need for thermal management.

It is possible to observe different trends across the selected benchmarks. For
instance, Inception v4 presented the first thermal throttling event 2.3× later than
MobileNets v2 (2.93 s vs. 1.27 s). This finding suggests that the thermal gradient
strictly depends on the topology of ConvNets, which is quite intuitive as different
models come with a different number of layers of different sizes and cardinality.
Obviously, the smaller the net, the larger the number of inferences run within tsafe.

Table 4.3: Thermal headroom of different ConvNets in continuous inference. Nsafe
and tsafe are the maximum number of consecutive inferences and the execution
time at safe temperature values (i.e., T < Tmax).

ConvNet Nsafe tsafe (s)

MobileNet v1 39 1.26
MobileNet v2 42 1.27
Inception v1 25 2.21
Inception v4 4 2.93

Performance under thermal management A more interesting analysis
concerns the performance gap between reactive thermal management (i.e., work-
ing at V Fmax) and proactive thermal management (i.e., working at V Fopt). For
proactive, the optimal level V Fopt is extracted from the proposed characterization
framework (see Section 4.2.2). The framework runs a continuous number of infer-
ences N , with N ranging from 50 to 1000 with a step of 50 inferences. Figure 4.21
(see the end of the section) reports the collected results for all the benchmarks.

The plots in Figure 4.21a show the average latency as a function of N ; the
red “×” marker refers to reactive. whereas the blue “+” marker is for proactive.
The black dashed line quantifies the nominal latency Lnom (the exact value is also
reported in the label). In both cases, thermal management produces a performance
overhead with respect to Lnom. As expected, proactive management outperforms
reactive management as it mitigates the occurrence of thermal throttling. For
longer execution time, i.e., larger N , the level of V Fopt scales down (value reported
in the blue boxes, in GHz), as larger thermal headroom is needed to ensure safety.
Again, the performance analysis reveals different trends depending on the ConvNet
topology. First, MobileNets showed a higher performance overhead with respect to
Lnom than Inception nets when running in continuous inference. In the worst case,
the overhead was 43% and 30% for MobileNet v2 and Inception v4, respectively.
Second, in proactive management, the value of V Fopt varied with N , but also with

118

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

the kind of network. For example, in MobileNets, V Fopt scaled down to 1.7 GHz,
whereas in Inception nets, the minimum value was 1.8 GHz.

Figure 4.21b gives a more detailed analysis of the performance gains achieved
with proactive management. Concerning the MobileNets, the savings against reac-
tive increased up to 15.3% and 16.8% for v1 and v2, respectively; for the Inception
nets, the performance savings were greater than 10% for N > 100, with peaks of
15.1% and 16.2% for v1 and v4, respectively.

Proactive management also guaranteed lower latency variability. This is shown
in Figure 4.21c. The plots report the standard deviation σ measured at different
N . For all the benchmarks, a proactive strategy kept σ close to the variability
measured at nominal conditions (depicted by the black dashed line). These find-
ings demonstrate that proactive management enables a more efficient and reliable
neural task scheduling.

Topology impact on temperature. To better analyze the impact of dif-
ferent topologies on the temperature gradient, we collected the chip temperature
with a sampling rate of 10 ms over an interval time of 100 s. Figure 4.22a (reported
at the end of the section) reveals that the Inception nets had a slower temperature
gradient than that of the MobileNets, both in reactive and proactive management.
This suggests there is room for power- and thermal-aware design of ConvNet oper-
ators that might help to achieve higher thermal stability. Current research trends
in deep learning do not consider this aspect as the design of ConvNets is mainly
driven by performance and energy optimization in nominal conditions, which is
misleading indeed. Furthermore, we measured the latency of each inference over
the same activity time in order to highlight the variations resulting from thermal
management. The analysis is reported in Figure 4.22b. In reactive management
(red line), the latency quickly increased, both in terms of absolute values and vari-
ability, as soon as the SoC entered the sustained thermal throttling regime. This
condition held for all the benchmarks. On a long term period, proactive man-
agement (blue line) outperformed the reactive approach by far, ensuring better
performance on average with a higher degree of stability. As expected, the latency
under pro-active management became worse just in a very short term window at
the beginning, when the cores were cold.

The bar plot in Figure 4.20 quantifies the percentage of time during which the
cores were pushed to work in the low power mode (V Flow) due to the occurrence
of thermal throttling. The percentage was much lower for proactive management
indeed. Interestingly, Inception nets were less prone to thermal protection, even if
their size is larger than MobileNets. Under proactive management, Inception v1
spent 277× less time in throttling than MobileNet v1, even if working at a higher
V F level (1.8 GHz vs. 1.7 GHz, as shown in Figure 4.22b). Overall, proactive
management can be appreciated as an effective strategy to reduce the throttling

119

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

time (2.77% as the worst case).

Mobilenet v1 Mobilenet v2 Inception v1 Inception v4
0

10

20

30

40

50

P
er
ce
nt
ag
e
(%

)
44.59 44.45

33.35 31.44

2.77 0.95 0.01 0.24

Reactive

Proactive

Figure 4.20: Percentage of execution time at V Flow = 900 MHz over a runtime of
100 s.

Efficiency of DVFS. Multi-core CPUs offer another power knob to control
the thermal state of the chip: Dynamic Power Management (DPM) via core shut-
down. This strategy adjusts the number of active cores to limit peak power con-
sumption. Given the parallel nature of ConvNets, reducing the number of process-
ing elements could have a severe impact on performance. Instead, supply voltage
reduction enables a finer control on the power-performance trade-off. Table 4.4
provides empirical evidence of this observation. For each benchmark, the table
reports the nominal latency of three thread execution (column Lnom-3) and the
worst case latency measured under DVFS based proactive management at four
thread execution (column Lopt-wc). Even in nominal conditions, i.e., at V Fmax
w/o thermal throttling, DPM had lower performance than thermal-aware DVFS
(Lnom-3 > Lopt-wc in all cases). The collected results demonstrate that operating at
low voltage is the most effective solution for the thermal management of ConvNets.

Table 4.4: Nominal inference latency at 3 thread execution vs. worst case latency
under DVFS based proactive management at 4 thread execution.

ConvNet Lnom-3 (ms) Lopt-wc (ms)

MobileNet v1 41 38
MobileNet v2 38 36
Inception v1 103 102
Inception v4 770 768

120

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

4.2.4 Discussion
We presented a parametric characterization of the performance of embedded

ConvNets under thermal management. The analysis, conducted on an off-the-shelf
CPU for mobile applications, involved standard DVFS-based thermal protection
schemes, i.e. both reactive and proactive control policies. The collected results
serve as useful guidelines for hardware-conscious optimization of ConvNets, as they
highlight a substantial mismatch between nominal and real performance in power-
constrained systems that need thermal management to meet the TDP constraints.
A thorough assessment proved that proactive control policies could help to limit the
performance penalty and ensure low performance variability. Finally, the findings
of our study suggest that future research efforts should investigate the design
of thermal-aware neural network operators, as they provided empirical evidence
that the thermal profile of ConvNets depends on the shape of the internal layers.
There might exist networks with the same memory footprint and latency, but
different thermal profiles. Identifying those configurations could help to improve
the efficiency of continuous inference tasks.

121

Power-Driven Optimization

250 500 750 1000
N

35

40

L
av
g
(m

s)

2.0

1.9

1.8
1.7

32 ms

Mobilenet v1

Reactive Proactive Lnom

250 500 750 1000
N

30

35

40
2.0

2.0

1.9

1.8
1.7

30 ms

Mobilenet v2

250 500 750 1000
N

90

100

110

120

2.0

1.9

1.8

88 ms

Inception v1

250 500 750 1000
N

700

800

2.0

1.8

658 ms

Inception v4

(a) Average latency vs. inference number (N).

250 500 750 1000
N

0

5

10

15

20

L
at
en
cy

re
d
u
ct
io
n
(%

) Mobilenet v1

250 500 750 1000
N

0

5

10

15

20
Mobilenet v2

250 500 750 1000
N

0

5

10

15

20
Inception v1

250 500 750 1000
N

0

5

10

15

20
Inception v4

(b) Average latency reduction (in %) of proactive management with respect to reactive management.

250 500 750 1000
N

0

1

2

3

4

σ
(m

s)

Mobilenet v1

Reactive Proactive σnom

250 500 750 1000
N

0

1

2

3

4
Mobilenet v2

250 500 750 1000
N

0

2

4

6
Inception v1

250 500 750 1000
N

0

5

10

15

20

Inception v4

(c) Latency standard deviation (σ) over N inferences.

Figure 4.21: Results of the characterization flow.

122

4.2 – Power optimization on CPUs: Voltage-Scaled ConvNets

0 25 50 75 100
Runtime (s)

60

70

80

90
T
em

p
er
at
u
re

(°
C
)

1.26s

52.40s

Mobilenet v1

V Fmax = 2.0 GHz

V Fopt = 1.7 GHz

0 25 50 75 100
Runtime (s)

60

70

80

90

1.27s

70.75s

Mobilenet v2

V Fmax = 2.0 GHz

V Fopt = 1.7 GHz

0 25 50 75 100
Runtime (s)

60

70

80

90

2.21s

93.81s

Inception v1

V Fmax = 2.0 GHz

V Fopt = 1.8 GHz

0 25 50 75 100
Runtime (s)

60

70

80

90

2.93s

91.23s

Inception v4

V Fmax = 2.0 GHz

V Fopt = 1.8 GHz

0 25 50 75 100
Runtime (s)

35

40

45

L
at
en
cy

(m
s)

Mobilenet v1

V Fmax = 2.0 GHz

V Fopt = 1.7 GHz

0 25 50 75 100
Runtime (s)

30

35

40

45
Mobilenet v2

V Fmax = 2.0 GHz

V Fopt = 1.7 GHz

0 25 50 75 100
Runtime (s)

90

100

110

120

Inception v1

V Fmax = 2.0 GHz

V Fopt = 1.8 GHz

0 25 50 75 100
Runtime (s)

700

750

800

Inception v4

V Fmax = 2.0 GHz

V Fopt = 1.8 GHz

Figure 4.22: Temperature gradient (top) and inference latency (down) of continuous inference for 100 s. The annotations reports the
occurrence of the first thermal throttling event.

123

Chapter 5

Conclusions

Thanks to the rapid advancements in deep learning theories, ConvNets have
become state-of-the-art for data-analytics. The growing interest to bring data-
analytics near the source of data stimulated the development of a wide variety
of hardware platforms for efficient processing of ConvNets under tight resource
budgets. In the beginning, software and hardware optimizations evolved as parallel
layers. However, today there is a growing consensus that only a stronger interaction
between the two layers can enable the shift of ConvNets from high-performance
cloud servers to low-power IoT end-nodes. In this context, design automation
plays a crucial role, with the development of cross-layer strategies for optimal
software-to-silicon mapping. That’s the target addressed by this dissertation.

In this thesis, we showed that the cloud-to-edge shift raises several challenges
besides the computational complexity of ConvNets. The primary source of concern
is the heterogeneity of application requirements and hardware solutions. Indeed,
the deployment of ConvNets encompasses a multi-objective optimization involving
different extra-functional metrics like memory, energy, and power. Furthermore,
the increasing number of alternative hardware platforms requires a proper aware-
ness of the limitations and opportunities for each case.

To answer these needs, we presented a comprehensive set of design&optimization
strategies to explore the existing trade-offs in the accuracy-complexity space. Each
of the proposed strategies targets a specific design goal. In this way, designers can
select the most suited solutions to meet the design specifications. All the pre-
sented strategies share two common principles: (i) consider the characteristics of
the underlying hardware from the early stages of the optimization process to guar-
antee portability; (ii) exploit additional knobs provided by the hardware through
a joint co-operation with algorithmic optimization to maximize efficiency. More-
over, our proposals include both static (i.e. applied at design-time) and dynamic
(i.e. operating at run-time) optimization strategies. The latter are of paramount
importance as they enable to extend the optimization room.

124

Conclusions

Overall, our contribution can be summarized as follows.
In the context of memory optimization, we addressed the deployment of Con-

vNets on memory-bounded general-purpose MCUs. We first presented PaQ, a
two-stage framework that efficiently explores the memory-accuracy space using a
lightweight, hardware-conscious heuristic optimization. The proposed tool enabled
the assessment of memory-bounded ConvNets, showing that most of them are cen-
tered on specific parameter settings that are found difficult to be implemented on a
low-power RISC. To reduce the memory footprint of network weights, we presented
EAST, a novel memory-constrained training procedure that leads quantized Con-
vNets towards deep compression. EAST implements an adaptive group pruning
designed to maximize the compression rate of the weight encoding scheme.

Regarding energy optimization, we introduced the concept of Adaptive Con-
vNets, i.e. models that can tune their behavior at run-time to meet different energy
budgets and accuracy constraints. We proposed two implementations of Adaptive
ConvNets, both of them based on a per-layer precision scaling strategy. In On-line
Precision Scaling the optimization is built upon a multi-objective problem formu-
lation solved through a modified version of the NSGA-II genetic algorithm that
ensures a fast design space exploration. In scalable-effort ConvNets, we presented
a design methodology to perform classification of data at multilevel abstraction
and reach a given classification accuracy with minimal computational effort.

Concerning power optimization, we focused on power management strategies
specialized for ConvNets. With FINE-VH, we proposed a novel power distribution
scheme for multi-processing engines (e.g. deep learning accelerators) to improve
the efficiency of standard DVFS. For those cases where custom solutions are not
viable, we studied the achievable power-performance trade-offs of ConvNets under
thermal-aware DVFS, revealing the urgent need to tackle power optimization in
the design of neural network architectures.

125

List of publications

This appendix lists all the publications produced during the PhD years. The list
also reports some works not discussed in this dissertation. Most of them, however,
are still related to the design and the optimization of embedded ConvNets.

Overall, the list of publications co-authored by Valentino Peluso includes:

• 3 accepted papers in international journals

• 3 book chapters

• 13 accepted papers in international conferences

International Journals

• Matteo Grimaldi, Valentino Peluso, Andrea Calimera: Optimality As-
sessment of Memory-Bounded ConvNets Deployed on Resource-Constrained
RISC Cores. IEEE Access 7: 152599-152611 (2019).

• Valentino Peluso, Roberto Giorgio Rizzo, Andrea Calimera: Performance
Profiling of Embedded ConvNets under Thermal-Aware DVFS. Electronics
8 (12), 1423.

• Valentino Peluso, Roberto Giorgio Rizzo, Andrea Calimera: Efficacy of
Topology Scaling for Temperature and Latency Constrained Embedded Con-
vNets. Journal of Low Power Electronics and Applications 10 (1), 10.

Book Chapters

• Valentino Peluso, Roberto Giorgio Rizzo, Andrea Calimera, Enrico Macii,
Massimo Alioto: Beyond Ideal DVFS Through Ultra-Fine Grain Vdd-Hopping.
VLSI-SoC (Selected Papers) 2016: 152-172.

• Roberto Giorgio Rizzo, Valentino Peluso, Andrea Calimera, Jun Zhou: On
the Efficiency of Early Bird Sampling (EBS) an Error Detection-Correction
Scheme for Data-Driven Voltage Over-Scaling. VLSI-SoC (Selected Papers)
2017: 153-177.

126

List of publications

• Valentino Peluso, Andrea Calimera: Energy-Accuracy Scalable Deep Con-
volutional Neural Networks: A Pareto Analysis. VLSI-SoC (Selected Papers)
2018: 107-127.

Proceedings of International Conferences

• Valentino Peluso, Andrea Calimera, Enrico Macii, Massimo Alioto: Ultra-
Fine Grain Vdd-Hopping for energy-efficient Multi-Processor SoCs. VLSI-
SoC 2016: 1-6.

• Roberto Giorgio Rizzo, Valentino Peluso, Andrea Calimera, Jun Zhou,
Xin Liu: Early bird sampling: A short-paths free error detection-correction
strategy for data-driven VOS. VLSI-SoC 2017: 1-6.

• Valentino Peluso, Andrea Calimera: Energy-Driven Precision Scaling for
Fixed-Point ConvNets. VLSI-SoC 2018: 113-118.

• Giulia Santoro, Mario R. Casu, Valentino Peluso, Andrea Calimera, Mas-
simo Alioto: Design-Space Exploration of Pareto-Optimal Architectures for
Deep Learning with DVFS. ISCAS 2018: 1-5.

• Valentino Peluso, Andrea Calimera: Weak-MAC: Arithmetic Relaxation
for Dynamic Energy-Accuracy Scaling in ConvNets. ISCAS 2018: 1-5.

• Valentino Peluso, Andrea Calimera: Scalable-effort ConvNets for multi-
level classification. ICCAD 2018.

• Giulia Santoro, Mario R. Casu, Valentino Peluso, Andrea Calimera, Mas-
simo Alioto: Energy-performance design exploration of a low-power micro-
programmed deep-learning accelerator. DATE 2018: 1151-1154.

• Daniele Jahier Pagliari, Valentino Peluso, Yukai Chen, Andrea Calimera,
Enrico Macii, Massimo Poncino: All-digital embedded meters for on-line
power estimation. DATE 2018: 737-742.

• Valentino Peluso, Matteo Grimaldi, Andrea Calimera: Arbitrary-Precision
Convolutional Neural Networks on Low-Power IoT Processors. VLSI-SoC
2019: 142-147.

• Valentino Peluso, Roberto Giorgio Rizzo, Antonio Cipolletta, Andrea Cal-
imera: Inference on the Edge: Performance Analysis of an Image Classifica-
tion Task Using Off-The-Shelf CPUs and Open-Source ConvNets. SNAMS
2019: 454-459.

127

List of publications

• Valentino Peluso, Antonio Cipolletta, Francesco Vaiana, Andrea Calimera:
Integer ConvNets on Embedded CPUs: Tools and Performance Assessment
on the Cortex-A Cores. ICECS 2019: 598-601.

• Valentino Peluso, Antonio Cipolletta, Andrea Calimera, Matteo Poggi,
Fabio Tosi, Stefano Mattoccia: Enabling Energy-Efficient Unsupervised Monoc-
ular Depth Estimation on ARMv7-Based Platforms. DATE 2019: 1703-1708.

• Matteo Grimaldi, Valentino Peluso, Andrea Calimera: EAST: Encoding-
Aware Sparse Training for Deep Memory Compression of ConvNets. AICAS
2020: 233-237.

128

Bibliography

[1] Alex Krizhevsky et al. «Imagenet classification with deep convolutional
neural networks». In: Advances in neural information processing systems.
2012, pp. 1097–1105.

[2] Richard Socher et al. «Parsing natural scenes and natural language with
recursive neural networks». In: Proceedings of the 28th international con-
ference on machine learning (ICML-11). 2011, pp. 129–136.

[3] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. «Speech recog-
nition with deep recurrent neural networks». In: 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE. 2013, pp. 6645–
6649.

[4] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. «Deep learning». In:
nature 521.7553 (2015), pp. 436–444.

[5] Xiaowei Xu et al. «Scaling for edge inference of deep neural networks». In:
Nature Electronics 1.4 (2018), p. 216.

[6] Yoshua Bengio et al. «Learning deep architectures for AI». In: Foundations
and trends® in Machine Learning 2.1 (2009), pp. 1–127.

[7] Léon Bottou. «Large-scale machine learning with stochastic gradient de-
scent». In: Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[8] Renzo Andri et al. «YodaNN: An ultra-low power convolutional neural net-
work accelerator based on binary weights». In: VLSI (ISVLSI), 2016 IEEE
Computer Society Annual Symposium on. IEEE. 2016, pp. 236–241.

[9] Yu-Hsin Chen et al. «Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks». In: IEEE Journal of Solid-State
Circuits 52.1 (2017), pp. 127–138.

[10] Lukas Cavigelli et al. «Origami: A 803-GOp/s/W Convolutional Network
Accelerator». In: IEEE Transactions on Circuits and Systems for Video
Technology 27.11 (Nov. 2017), pp. 2461–2475.

129

BIBLIOGRAPHY

[11] Karen Simonyan and Andrew Zisserman. «Very deep convolutional net-
works for large-scale image recognition». In: arXiv preprint arXiv:1409.1556
(2014).

[12] Andrew G Howard et al. «Mobilenets: Efficient convolutional neural net-
works for mobile vision applications». In: arXiv preprint arXiv:1704.04861
(2017).

[13] Mingxing Tan and Quoc Le. «EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks». In: International Conference on Machine
Learning. 2019, pp. 6105–6114.

[14] An-Chieh Cheng et al. «Searching toward pareto-optimal device-aware neu-
ral architectures». In: Proceedings of the International Conference on Computer-
Aided Design. ACM. 2018, p. 136.

[15] Norman P. Jouppi et al. «In-Datacenter Performance Analysis of a Tensor
Processing Unit». In: SIGARCH Comput. Archit. News 45.2 (June 2017),
pp. 1–12.

[16] Stephen Cass. «Taking ai to the edge: Google’s tpu now comes in a maker-
friendly package». In: IEEE Spectrum 56.5 (2019), pp. 16–17.

[17] Valentino Peluso et al. «Weak-MAC: Arithmetic Relaxation for Dynamic
Energy-Accuracy Scaling in ConvNets». In: Circuits and Systems (ISCAS),
2018 IEEE International Symposium on. IEEE. 2018, pp. 1–5.

[18] Bert Moons et al. «DVAFS: Trading computational accuracy for energy
through dynamic-voltage-accuracy-frequency-scaling». In: Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2017. IEEE. 2017,
pp. 488–493.

[19] Hardik Sharma et al. «Bit fusion: Bit-level dynamically composable archi-
tecture for accelerating deep neural networks». In: Proceedings of the 45th
Annual International Symposium on Computer Architecture. IEEE Press.
2018, pp. 764–775.

[20] Yaman Umuroglu et al. «Bismo: A scalable bit-serial matrix multiplication
overlay for reconfigurable computing». In: 2018 28th International Confer-
ence on Field Programmable Logic and Applications (FPL). IEEE. 2018,
pp. 307–3077.

[21] Jinmook Lee et al. «UNPU: A 50.6 TOPS/W unified deep neural net-
work accelerator with 1b-to-16b fully-variable weight bit-precision». In:
2018 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE.
2018, pp. 218–220.

130

BIBLIOGRAPHY

[22] NVIDIA TENSOR CORES. 2019. url: https://www.nvidia.com/en-
us/data-center/tensorcore (visited on 05/25/2019).

[23] Why the PowerVR Series2NX NNA is the future of neural net acceleration.
2019. url: https://www.imgtec.com/blog/why-the-powervr-2nx-nna-
is-the-future-of-neural-net-acceleration (visited on 05/25/2019).

[24] Valentino Peluso et al. «Inference on the Edge: Performance Analysis of
an Image Classification Task Using Off-The-Shelf CPUs and Open-Source
ConvNets». In: 2019 Sixth International Conference on Social Networks
Analysis, Management and Security (SNAMS). IEEE. 2019, pp. 454–459.

[25] Valentino Peluso et al. «Integer ConvNets on Embedded CPUs: Tools and
Performance Assessment on the Cortex-A Cores». In: 2019 26th IEEE
International Conference on Electronics, Circuits and Systems (ICECS).
IEEE. 2019, pp. 598–601.

[26] Andres Gomez, Francesco Conti, and Luca Benini. «Thermal image-based
CNN’s for ultra-low power people recognition». In: Proceedings of the 15th
ACM International Conference on Computing Frontiers. ACM. 2018, pp. 326–
331.

[27] Michele Magno et al. «DeepEmote: Towards multi-layer neural networks in
a low power wearable multi-sensors bracelet». In: 2017 7th IEEE Interna-
tional Workshop on Advances in Sensors and Interfaces (IWASI). IEEE.
2017, pp. 32–37.

[28] Vivienne Sze et al. «Efficient processing of deep neural networks: A tutorial
and survey». In: Proceedings of the IEEE 105.12 (2017), pp. 2295–2329.

[29] Frederick Tung et al. «CLIP-Q: Deep network compression learning by in-
parallel pruning-quantization». In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 7873–7882.

[30] Valentino Peluso, Matteo Grimaldi, and Andrea Calimera. «Arbitrary-Precision
Convolutional Neural Networks on Low-Power IoT Processors». In: 2019
IFIP/IEEE 27th International Conference on Very Large Scale Integration
(VLSI-SoC). IEEE. 2019, pp. 142–147.

[31] Matteo Grimaldi, Valentino Peluso, and Andrea Calimera. «Optimality as-
sessment of memory-bounded convnets deployed on resource-constrained
risc cores». In: IEEE Access 7 (2019), pp. 152599–152611.

[32] Matteo Grimaldi, Valentino Peluso, and Andrea Calimera. «EAST: Encoding-
Aware Sparse Training for Deep Memory Compression of ConvNets». In:
2020 2nd IEEE International Conference on Artificial Intelligence Circuits
and Systems (AICAS). IEEE. 2020, pp. 233–237.

131

https://www.nvidia.com/en-us/data-center/tensorcore
https://www.nvidia.com/en-us/data-center/tensorcore
https://www.imgtec.com/blog/why-the-powervr-2nx-nna-is-the-future-of-neural-net-acceleration
https://www.imgtec.com/blog/why-the-powervr-2nx-nna-is-the-future-of-neural-net-acceleration

BIBLIOGRAPHY

[33] Song Han et al. «Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding». In: arXiv preprint
arXiv:1510.00149 (2015).

[34] Jiecao Yu et al. «Scalpel: Customizing dnn pruning to the underlying
hardware parallelism». In: ACM SIGARCH Computer Architecture News.
Vol. 45. 2. ACM. 2017, pp. 548–560.

[35] Manu Mathew et al. «Sparse, quantized, full frame cnn for low power em-
bedded devices». In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops. 2017, pp. 11–19.

[36] Bert Moons et al. «An energy-efficient precision-scalable ConvNet processor
in 40-nm CMOS». In: IEEE Journal of solid-state Circuits 52.4 (2017),
pp. 903–914.

[37] Hao Li et al. «Pruning filters for efficient convnets». In: arXiv preprint
arXiv:1608.08710 (2016).

[38] Deepak Mittal et al. «Recovering from random pruning: On the plasticity
of deep convolutional neural networks». In: 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV). IEEE. 2018, pp. 848–857.

[39] Jiantao Qiu et al. «Going deeper with embedded fpga platform for con-
volutional neural network». In: Proceedings of the 2016 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays. ACM. 2016,
pp. 26–35.

[40] Hande Alemdar et al. «Ternary neural networks for resource-efficient AI
applications». In: 2017 International Joint Conference on Neural Networks
(IJCNN). IEEE. 2017, pp. 2547–2554.

[41] Mohammad Rastegari et al. «Xnor-net: Imagenet classification using binary
convolutional neural networks». In: European Conference on Computer Vi-
sion. Springer. 2016, pp. 525–542.

[42] Manuele Rusci et al. «Quantized NNs as the definitive solution for inference
on low-power ARM MCUs?: work-in-progress». In: Proceedings of the Inter-
national Conference on Hardware/Software Codesign and System Synthesis.
IEEE Press. 2018, p. 12.

[43] Why the PowerVR Series2NX NNA is the future of neural net acceleration.
url: https://www.imgtec.com/blog/why-the-powervr-2nx-nna-is-
the-future-of-neural-net-acceleration/e (visited on 04/08/2019).

[44] Bert Moons et al. «Energy-efficient convnets through approximate com-
puting». In: Applications of Computer Vision (WACV), 2016 IEEE Winter
Conference on. IEEE. 2016, pp. 1–8.

132

https://www.imgtec.com/blog/why-the-powervr-2nx-nna-is-the-future-of-neural-net-acceleration/e
https://www.imgtec.com/blog/why-the-powervr-2nx-nna-is-the-future-of-neural-net-acceleration/e

BIBLIOGRAPHY

[45] Liangzhen Lai and Naveen Suda. «Enabling Deep Learning at the loT
Edge». In: (2018), pp. 1–6.

[46] Sebastian Vogel et al. «Efficient hardware acceleration of CNNs using loga-
rithmic data representation with arbitrary log-base». In: Proceedings of the
International Conference on Computer-Aided Design. ACM. 2018, p. 9.

[47] GAP8 Hardware Reference Manual. url: https://gwt-website-files.
s3.amazonaws.com/gap8_datasheet.pdf (visited on 08/08/2019).

[48] Francesco Conti et al. «PULP: A ultra-low power parallel accelerator for
energy-efficient and flexible embedded vision». In: Journal of Signal Pro-
cessing Systems 84.3 (2016), pp. 339–354.

[49] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Tech. rep. Citeseer, 2009.

[50] Pete Warden. «Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition». In: arXiv preprint arXiv:1804.03209 (2018).

[51] Challenges in representation learning: Facial expression recognition chal-
lenge. url: http://www.kaggle.com/ (visited on 05/08/2019).

[52] Aravind Vasudevan et al. «Parallel multi channel convolution using general
matrix multiplication». In: Application-specific Systems, Architectures and
Processors (ASAP), 2017 IEEE 28th International Conference on. IEEE.
2017, pp. 19–24.

[53] Philipp Gysel et al. «Ristretto: A framework for empirical study of resource-
efficient inference in convolutional neural networks». In: IEEE Transactions
on Neural Networks and Learning Systems 29.11 (2018), pp. 5784–5789.

[54] Diederik P Kingma et al. «Adam: A method for stochastic optimization».
In: arXiv preprint arXiv:1412.6980 (2014).

[55] Yangqing Jia et al. «Caffe: Convolutional architecture for fast feature em-
bedding». In: Proceedings of the 22nd ACM international conference on
Multimedia. ACM. 2014, pp. 675–678.

[56] Tara N Sainath et al. «Convolutional neural networks for small-footprint
keyword spotting». In: Sixteenth Annual Conference of the International
Speech Communication Association. 2015.

[57] Lutz Prechelt. «Early stopping-but when?» In: Neural Networks: Tricks of
the trade. Springer, 1998, pp. 55–69.

[58] Bowen Baker et al. «Accelerating neural architecture search using perfor-
mance prediction». In: arXiv preprint arXiv:1705.10823 (2017).

133

https://gwt-website-files.s3.amazonaws.com/gap8_datasheet.pdf
https://gwt-website-files.s3.amazonaws.com/gap8_datasheet.pdf
http://www.kaggle.com/

BIBLIOGRAPHY

[59] Song Han et al. «Learning both weights and connections for efficient neu-
ral network». In: Advances in neural information processing systems. 2015,
pp. 1135–1143.

[60] Michael Zhu and Suyog Gupta. «To prune, or not to prune: exploring the ef-
ficacy of pruning for model compression». In: arXiv preprint arXiv:1710.01878
(2017).

[61] LZ4. url: https://lz4.github.io/lz4/.
[62] Song Han, Huizi Mao, and William J. Dally. «Deep Compression: Com-

pressing Deep Neural Network with Pruning, Trained Quantization and
Huffman Coding». In: 4th International Conference on Learning Represen-
tations, ICLR 2016. 2016.

[63] Matteo Grimaldi, Valerio Tenace, and Andrea Calimera. «Layer-Wise Com-
pressive Training for Convolutional Neural Networks». In: Future Internet
11.1 (2019), p. 7.

[64] Jonathan Frankle et al. «The Lottery Ticket Hypothesis at Scale». In: arXiv
preprint arXiv:1903.01611 (2019).

[65] Song Han et al. «EIE: efficient inference engine on compressed deep neural
network». In: 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). IEEE. 2016, pp. 243–254.

[66] Angshuman Parashar et al. «Scnn: An accelerator for compressed-sparse
convolutional neural networks». In: 2017 ACM/IEEE 44th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE. 2017, pp. 27–
40.

[67] TorchSkeleton. url: https://github.com/wbaek/torchskeleton (visited
on 05/08/2019).

[68] Cody Coleman et al. «Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark». In: ACM SIGOPS Operating Systems
Review 53.1 (2019), pp. 14–25.

[69] NUCLEO-F412ZG. url: https://www.st.com/en/evaluation-tools/
nucleo-f412zg.html (visited on 05/08/2019).

[70] Renzo Andri et al. «YodaNN: An architecture for ultralow power binary-
weight CNN acceleration». In: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 37.1 (2017), pp. 48–60.

[71] Jiuxiang Gu et al. «Recent advances in convolutional neural networks». In:
Pattern Recognition 77 (2018), pp. 354–377.

[72] Xitong Gao et al. «Dynamic Channel Pruning: Feature Boosting and Sup-
pression». In: International Conference on Learning Representations. 2019.

134

https://lz4.github.io/lz4/
https://github.com/wbaek/torchskeleton
https://www.st.com/en/evaluation-tools/nucleo-f412zg.html
https://www.st.com/en/evaluation-tools/nucleo-f412zg.html

BIBLIOGRAPHY

[73] Xin Wang et al. «Skipnet: Learning dynamic routing in convolutional net-
works». In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 409–424.

[74] Daniele Jahier Pagliari, Enrico Macii, and Massimo Poncino. «Dynamic
Bit-width Reconfiguration for Energy-Efficient Deep Learning Hardware».
In: Proceedings of the International Symposium on Low Power Electronics
and Design. ACM. 2018, p. 47.

[75] Valentino Peluso and Andrea Calimera. «Energy-Driven Precision Scaling
for Fixed-Point ConvNets». In: 2018 IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC). IEEE. 2018, pp. 113–118.

[76] Hokchhay Tann et al. «Runtime configurable deep neural networks for
energy-accuracy trade-off». In: Proceedings of the Eleventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Syn-
thesis. ACM. 2016, p. 34.

[77] Valentino Peluso and Andrea Calimera. «Energy-Accuracy Scalable Deep
Convolutional Neural Networks: A Pareto Analysis». In: IFIP/IEEE In-
ternational Conference on Very Large Scale Integration-System on a Chip.
Springer. 2018, pp. 107–127.

[78] Valentino Peluso and Andrea Calimera. «Scalable-effort convnets for mul-
tilevel classification». In: 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE. 2018, pp. 1–8.

[79] Ji Lin et al. «Runtime neural pruning». In: Advances in Neural Information
Processing Systems. 2017, pp. 2181–2191.

[80] Andreas Veit and Serge Belongie. «Convolutional networks with adaptive
inference graphs». In: Proceedings of the European Conference on Computer
Vision (ECCV). 2018, pp. 3–18.

[81] Jiahui Yu et al. «Slimmable Neural Networks». In: International Conference
on Learning Representations. 2019.

[82] Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. «Conditional
Deep Learning for Energy-Efficient and Enhanced Pattern Recognition».
In: Proceedings of the 2016 Conference on Design, Automation & Test in
Europe. DATE ’16. Dresden, Germany: EDA Consortium, 2016, pp. 475–
480. isbn: 9783981537062.

[83] Michael Lones. Sean Luke: essentials of metaheuristics. 2011.
[84] Yu Cheng et al. «A survey of model compression and acceleration for deep

neural networks». In: arXiv preprint arXiv:1710.09282 (2017).

135

BIBLIOGRAPHY

[85] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. «Designing energy-efficient
convolutional neural networks using energy-aware pruning». In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2017,
pp. 5687–5695.

[86] Tien-Ju Yang et al. «Netadapt: Platform-aware neural network adaptation
for mobile applications». In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 285–300.

[87] Kuan Wang et al. «Haq: Hardware-aware automated quantization with
mixed precision». In: (2019), pp. 8612–8620.

[88] Bichen Wu et al. «Mixed Precision Quantization of ConvNets via Differ-
entiable Neural Architecture Search». In: arXiv preprint arXiv:1812.00090
(2018).

[89] Benoit Jacob et al. «Quantization and training of neural networks for effi-
cient integer-arithmetic-only inference». In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2018, pp. 2704–2713.

[90] Kalyanmoy Deb et al. «A fast and elitist multiobjective genetic algorithm:
NSGA-II». In: IEEE transactions on evolutionary computation 6.2 (2002),
pp. 182–197.

[91] Marco Laumanns et al. «Combining convergence and diversity in evolu-
tionary multiobjective optimization». In: Evolutionary computation 10.3
(2002), pp. 263–282.

[92] Open Neural Network eXchange (ONNX) Model Zoo. 2019. url: https:
//github.com/onnx/models (visited on 05/25/2019).

[93] Jia Deng et al. «Imagenet: A large-scale hierarchical image database». In:
2009 IEEE conference on computer vision and pattern recognition. Ieee.
2009, pp. 248–255.

[94] Kaiming He et al. «Deep residual learning for image recognition». In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[95] Forrest N Iandola et al. «SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size». In: arXiv preprint arXiv:1602.07360
(2016).

[96] Mark Sandler et al. «Mobilenetv2: Inverted residuals and linear bottle-
necks». In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 4510–4520.

136

https://github.com/onnx/models
https://github.com/onnx/models

BIBLIOGRAPHY

[97] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. «Op-
timizing NUCA organizations and wiring alternatives for large caches with
CACTI 6.0». In: Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society. 2007, pp. 3–14.

[98] Sheng Li et al. «CACTI-P: Architecture-level modeling for SRAM-based
structures with advanced leakage reduction techniques». In: Proceedings of
the International Conference on Computer-Aided Design. IEEE Press. 2011,
pp. 694–701.

[99] Ananda Samajdar et al. «Scale-sim: Systolic cnn accelerator». In: arXiv
preprint arXiv:1811.02883 (2018).

[100] Adam Paszke et al. «PyTorch: An imperative style, high-performance deep
learning library». In: Advances in Neural Information Processing Systems.
2019, pp. 8024–8035.

[101] Tao Sheng et al. «A quantization-friendly separable convolution for mo-
bilenets». In: 2018 1st Workshop on Energy Efficient Machine Learning
and Cognitive Computing for Embedded Applications (EMC2). IEEE. 2018,
pp. 14–18.

[102] Zhicheng Yan et al. «HD-CNN: hierarchical deep convolutional neural net-
works for large scale visual recognition». In: Proceedings of the IEEE inter-
national conference on computer vision. 2015, pp. 2740–2748.

[103] Bert Moons et al. «14.5 envision: A 0.26-to-10tops/w subword-parallel dynamic-
voltage-accuracy-frequency-scalable convolutional neural network processor
in 28nm fdsoi». In: Solid-State Circuits Conference (ISSCC), 2017 IEEE
International. IEEE. 2017, pp. 246–247.

[104] Alsallakh Bilal et al. «Do convolutional neural networks learn class hierar-
chy?» In: IEEE transactions on visualization and computer graphics 24.1
(2018), pp. 152–162.

[105] George A Miller. «WordNet: a lexical database for English». In: Commu-
nications of the ACM 38.11 (1995), pp. 39–41.

[106] Israel Koren. Computer arithmetic algorithms. Universities Press, 2002.
[107] Clive Maxfield et al. The definitive guide to how computers do math: fea-

turing the virtual DIY calculator. Vol. 1. John Wiley & Sons, 2005.
[108] Philipp Gysel et al. «Ristretto: A framework for empirical study of resource-

efficient inference in convolutional neural networks». In: IEEE transactions
on neural networks and learning systems 29.11 (2018), pp. 5784–5789.

[109] Fixed Point Quantization. url: https://www.tensorflow.org/performance/
quantization.

137

https://www.tensorflow.org/performance/quantization
https://www.tensorflow.org/performance/quantization

BIBLIOGRAPHY

[110] Olga Russakovsky et al. «ImageNet Large Scale Visual Recognition Chal-
lenge». In: International Journal of Computer Vision (IJCV) 115.3 (2015),
pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[111] Mark Sandler et al. «Inverted Residuals and Linear Bottlenecks: Mobile
Networks for Classification, Detection and Segmentation». In: arXiv preprint
arXiv:1801.04381 (2018).

[112] David Brooks et al. «Power, thermal, and reliability modeling in nanometer-
scale microprocessors». In: Ieee Micro 27.3 (2007), pp. 49–62.

[113] Valentino Peluso, Roberto Giorgio Rizzo, and Andrea Calimera. «Efficacy
of Topology Scaling for Temperature and Latency Constrained Embedded
ConvNets». In: Journal of Low Power Electronics and Applications 10.1
(2020), p. 10.

[114] Giulia Santoro et al. «Design-space exploration of pareto-optimal architec-
tures for deep learning with dvfs». In: 2018 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE. 2018, pp. 1–5.

[115] Valentino Peluso et al. «Ultra-fine grain Vdd-hopping for energy-efficient
multi-processor SoCs». In: 2016 IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC). IEEE. 2016, pp. 1–6.

[116] Valentino Peluso et al. «Beyond ideal DVFS through ultra-fine grain vdd-
hopping». In: IFIP/IEEE International Conference on Very Large Scale
Integration-System on a Chip. Springer. 2016, pp. 152–172.

[117] Giulia Santoro et al. «Energy-performance design exploration of a low-
power microprogrammed deep-learning accelerator». In: 2018 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE. 2018,
pp. 1151–1154.

[118] Valentino Peluso, Roberto Giorgio Rizzo, and Andrea Calimera. «Perfor-
mance Profiling of Embedded ConvNets under Thermal-Aware DVFS». In:
Electronics 8.12 (2019), p. 1423.

[119] Vasanth Venkatachalam and Michael Franz. «Power reduction techniques
for microprocessor systems». In: ACM Computing Surveys (CSUR) 37.3
(Sept. 2005), pp. 195–237.

[120] Tejaswini Kolpe, Antonia Zhai, and Sachin S. Sapatnekar. «Enabling im-
proved power management in multicore processors through clustered DVFS».
In: DATE’11: Design, Automation & Test in Europe Conference & Exhibi-
tion. IEEE. Mar. 2011, pp. 1–6.

138

https://doi.org/10.1007/s11263-015-0816-y

BIBLIOGRAPHY

[121] Dean N. Truong et al. «A 167-processor computational platform in 65
nm CMOS». In: IEEE Journal of Solid-State Circuits 44.4 (Apr. 2009),
pp. 1130–1144.

[122] Saurabh Dighe et al. «Within-Die Variation-Aware Dynamic-Voltage-Frequency-
Scaling With Optimal Core Allocation and Thread Hopping for the 80-Core
TeraFLOPS Processor». In: IEEE Journal of Solid-State Circuits 46.1 (Nov.
2010), pp. 184–193.

[123] J. Park et al. «Accurate modeling and calculation of delay and energy
overheads of dynamic voltage scaling in modern high-performance micro-
processors». In: 2010 ACM/IEEE International Symposium on Low-Power
Electronics and Design (ISLPED). Aug. 2010, pp. 419–424.

[124] Sylvain Miermont, Pascal Vivet, and Marc Renaudin. «A power supply
selector for energy-and area-efficient local dynamic voltage scaling». In:
Integrated Circuit and System Design. Power and Timing Modeling, Opti-
mization and Simulation. Vol. 4644. Springer, 2007, pp. 556–565.

[125] Edith Beigné et al. «An asynchronous power aware and adaptive NoC
based circuit». In: IEEE Journal of Solid-State Circuits 44.4 (Apr. 2009),
pp. 1167–1177.

[126] Valentino Peluso et al. «Ultra-Fine Grain Vdd-Hopping for energy-efficient
Multi-Processor SoCs». In: 2016 IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC). IEEE. Sept. 2016, pp. 1–6.

[127] Davide Rossi et al. «A 60 GOPS/W, -1.8 V to 0.9 V body bias ULP cluster
in 28 nm UTBB FD-SOI technology». In: Solid-State Electronics 117 (Mar.
2016), pp. 170–184.

[128] L. Bolzani et al. «Enabling concurrent clock and power gating in an indus-
trial design flow». In: 2009 Design, Automation Test in Europe Conference
Exhibition. Apr. 2009, pp. 334–339. doi: 10.1109/DATE.2009.5090684.

[129] X. Liang, G. Y. Wei, and D. Brooks. «Revival: A Variation-Tolerant Archi-
tecture Using Voltage Interpolation and Variable Latency». In: IEEE Micro
29.1 (Jan. 2009), pp. 127–138.

[130] M. S. Gupta et al. «Tribeca: Design for PVT variations with local recovery
and fine-grained adaptation». In: 2009 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). Dec. 2009, pp. 435–446.

[131] Mohammad Reza Kakoee and Luca Benini. «Fine-Grained Power and Body-
Bias Control for Near-Threshold Deep Sub-Micron CMOS Circuits». In:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems
1.2 (June 2011), pp. 131–140.

139

https://doi.org/10.1109/DATE.2009.5090684

BIBLIOGRAPHY

[132] Yasumi Nakamura et al. «1/5 Power reduction by global optimization based
on fine-grained body biasing». In: Proceedings of the Custom Integrated
Circuits Conference. IEEE. Sept. 2008, pp. 547–550.

[133] Atsushi Muramatsu et al. «12% Power reduction by within-functional-block
fine-grained adaptive dual supply voltage control in logic circuits with 42
voltage domains». In: ESSCIRC’11: Proceedings of the 37th European Solid-
State Circuits Conference. IEEE. Sept. 2011, pp. 191–194.

[134] Tadashi Yasufuku et al. «24% Power reduction by post-fabrication dual
supply voltage control of 64 voltage domains in VDDmin limited ultra low
voltage logic circuits». In: ISQED’12: Thirteenth International Symposium
on Quality Electronic Design. IEEE. Mar. 2012, pp. 586–591.

[135] Pietro Babighian et al. «Post-layout leakage power minimization based on
distributed sleep transistor insertion». In: ISLPED’04: International Sym-
posium on Low Power Electronics and Design. IEEE. Aug. 2004, pp. 138–
143.

[136] Dipankar Saha et al. «Row-Based Dual Vdd Assignment, for a Level Con-
verter Free CSA Design and Its Near-Threshold Operation». In: Advances
in Electrical Engineering 2014 (July 2014), pp. 1–6.

[137] A. U. Diril et al. «Level-shifter free design of low power dual supply voltage
CMOS circuits using dual threshold voltages». In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 13.9 (Sept. 2005), pp. 1103–
1107.

[138] Lorenzo Seidenari et al. «Deep artwork detection and retrieval for automatic
context-aware audio guides». In: ACM Transactions on Multimedia Com-
puting, Communications, and Applications (TOMM) 13.3s (2017), p. 35.

[139] Aiguo Wang et al. «A comparative study on human activity recognition
using inertial sensors in a smartphone». In: IEEE Sensors Journal 16.11
(2016), pp. 4566–4578.

[140] Shuochao Yao et al. «Deepsense: A unified deep learning framework for
time-series mobile sensing data processing». In: Proceedings of the 26th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee. 2017, pp. 351–360.

[141] Carole-Jean Wu et al. «Machine learning at facebook: Understanding infer-
ence at the edge». In: 2019 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). IEEE. 2019, pp. 331–344.

[142] Exynos 5 Octa 5422 Processor: Specs, Features. url: https://www.samsung.
com/semiconductor/minisite/exynos/products/mobileprocessor/
exynos-5-octa-5422/ (visited on 08/11/2019).

140

https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/

BIBLIOGRAPHY

[143] Minwoo Jang, Kukhyun Kim, and Kanghee Kim. «The performance analy-
sis of ARM NEON technology for mobile platforms». In: Proceedings of the
2011 ACM Symposium on Research in Applied Computation. ACM. 2011,
pp. 104–106.

[144] Valentino Peluso et al. «Enabling energy-efficient unsupervised monocular
depth estimation on armv7-based platforms». In: 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. 2019, pp. 1703–
1708.

[145] Christian Szegedy et al. «Going deeper with convolutions». In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015,
pp. 1–9.

[146] Young Geun Kim, Joonho Kong, and Sung Woo Chung. «A survey on re-
cent OS-level energy management techniques for mobile processing units».
In: IEEE Transactions on Parallel and Distributed Systems 29.10 (2018),
pp. 2388–2401.

[147] Odroid-XU4 User Manual. Hardkernel. url: https://magazine.odroid.
com/wp-content/uploads/odroid-xu4-user-manual.pdf.

[148] Han Cai, Ligeng Zhu, and Song Han. «ProxylessNAS: Direct Neural Archi-
tecture Search on Target Task and Hardware». In: International Confer-
ence on Learning Representations. 2019. url: https://openreview.net/
forum?id=HylVB3AqYm.

[149] Onur Sahin, Paul Thomas Varghese, and Ayse K Coskun. «Just enough is
more: Achieving sustainable performance in mobile devices under thermal
limitations». In: Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design. IEEE Press. 2015, pp. 839–846.

[150] Samuel Isuwa et al. «TEEM: Online Thermal-and Energy-Efficiency Man-
agement on CPU-GPU MPSoCs». In: 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE. 2019, pp. 438–443.

[151] Ganapati Bhat et al. «Algorithmic optimization of thermal and power man-
agement for heterogeneous mobile platforms». In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 26.3 (2017), pp. 544–557.

[152] Somdip Dey et al. «Edgecoolingmode: An agent based thermal management
mechanism for dvfs enabled heterogeneous mpsocs». In: 2019 32nd Interna-
tional Conference on VLSI Design and 2019 18th International Conference
on Embedded Systems (VLSID). IEEE. 2019, pp. 19–24.

[153] Linaro Toolchain. url: https://www.linaro.org/downloads/ (visited on
08/11/2019).

141

https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
https://www.linaro.org/downloads/

BIBLIOGRAPHY

[154] TensorFlow Lite Hosted Models. url: https://www.tensorflow.org/
lite/guide/hosted_models (visited on 08/11/2019).

142

https://www.tensorflow.org/lite/guide/hosted_models
https://www.tensorflow.org/lite/guide/hosted_models

BIBLIOGRAPHY

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

143

	List of Tables
	List of Figures
	Introduction
	Context & Motivation
	Towards Edge Inference
	Software Optimization: the Evolution of ConvNet Architectures
	Hardware Optimization: Platforms for Edge Inference

	Objectives & Contribution

	Memory-Driven Optimization
	Background on Neural Network Compression
	Pruning
	Quantization
	Pruning and Quantization

	PaQ: Prune and Quantize
	Framework Overview
	Evaluation of PAQ
	Discussion

	EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets
	Motivation
	Flow overview
	Experimental Results

	Energy-Driven Optimization
	Taxonomy of Adaptive ConvNets
	Control Knob
	External Trigger
	Optimization and search engine
	Training

	Mixed-precision ConvNets
	Fixed-Point Quantization
	Training Mixed-Precision ConvNets

	Energy-Driven Adaptive ConvNets via On-line Precision Scaling
	Design and Optimization
	Runtime implementation
	Experimental Results
	Discussion

	Scalable-Effort ConvNets for Multilevel Classification
	Motivation
	Multilevel Classification
	Precision Scalable Arithmetic
	Fixed-point Quantization & Fine-Tuning
	Precision Assignment Heuristic
	Experimental Results
	Discussion

	Power-Driven Optimization
	Power optimization on ASICs: FINE-VH
	Background
	Implementing FINE-VH
	Simulation and Emulation
	Evaluating FINE-VH
	Discussion

	Power optimization on CPUs: Voltage-Scaled ConvNets
	Thermal-Aware Power Management in embeddedCPUs: Reactive vs. Proactive DVFS
	Thermal-Aware Performance Optimization and Characterization Framework
	Experimental Setup and Results
	Discussion

	Conclusions
	List of publications
	Bibliography

