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Abstract
Laser-induced graphene (LIG) is a three-dimensional porous graphene-based material easily
prepared by single or multiple laser direct writing on a polymeric or organic surface. It possesses
impressive physical and chemical properties, including high surface area, hierarchical porosity, and
good electrical conductivity. Here, we investigate the toxicological profile of LIG and its impact in
zebrafish (Danio rerio) as in vivo biological models with high homology with humans. We evaluate
the effect of LIG, administered in different concentrations to zebrafish embryos, on different
biological parameters, including embryo viability and morphological changes. Our results show
that LIG does not exhibit toxic effects and does not interfere with zebrafish development, even at
high concentrations. Our findings provide direct evidence of the LIG biocompatibility and offer a
promising avenue for its safe use in biological applications.

1. Introduction

Graphene-family nanomaterials (GFNs), including monolayer graphene, few-layer graphene (FLG),
graphene oxide (GO), reduced graphene oxide (rGO), graphene nanoribbons and graphene nanosheets
(GNS) [1, 2] are increasingly employed in energy harvesting and storage, electronic devices [3, 4] and
biomedical applications [5–7]. However, a major concern is represented by the toxicity of these
nanomaterials. Several studies assessing the in vitro and in vivo toxicity/biocompatibility of GFNs have
shown their toxic effects with different degree in cultured cells and model organisms [8]. In particular, the
cytotoxic effects of the different GNFs on several cell lines included mitochondrial injury, membrane
integrity destruction, morphological changes, DNA damage and cell apoptosis [9–13]. Moreover, GNFs
exerted developmental toxicity in zebrafish, causing growth inhibition with morphological abnormalities
[14–17]. In particular, pristine graphene (170–390 nm) caused perturbations in the survival, hatching and
heart beat rates with yolk sac and pericardial edema [15]. Also, GO nanosheets induced similar toxic effects
in embryos and larvae [17]. Moreover, we have recently reported that a commercial graphene oxide (600 nm)
induced toxicity in zebrafish at high doses, with perturbations in all the endpoints analyzed (survival,
hatching, swimming, morphology) [16]. Also in mice and rats, graphene-family nanomaterials induced toxic
effects, with inflammation response, leading to different effects, in particular, tissue injuries [10, 18, 19].

The toxicity of these nanomaterials have been related to several factors, such as aggregations, average and
lateral size and surface area [12, 20, 21].

Laser-induced graphene (LIG) is a young member of the FLG family, first reported by Tour and
coworkers in 2014 [22]. The research interest around this three-dimensional arrangement of bi-dimensional
flakes is growing exponentially thanks to its peculiar properties. First, it is obtained by a fast and
cost-effective direct-laser writing on flexible polymeric surfaces and it exhibits relatively high surface area,
good electrical conductivity and interesting mechanical properties [23]. Moreover, it can be easily doped
with several elements or decorated with oxides and dichalcogenides, in order to improve its performance in
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specific applications [24–27]. In the last five years, LIG has been obtained on several different materials
ranging from technical polymer (Kapton, PEEK, Kevlar) to vegetal substrates (coconut, wood, bread)
enlarging its potential application to almost every technological fields [28]. Indeed, LIG has been proposed
for the fabrication of strain sensors, chemical sensor, electrodes for catalysis or energy harvesting and storage
devices [28–34].

It can be obtained using several laser sources with wavelenghts in the infrared, visible and UV regions.
The formation mechanism was previously disclosed as depending on the absorption of the incident laser
power by the polymer that induces a locally raise of the temperature causing chemical bonds to break. In this
step the atoms rearrangement occurs with the formation of graphitic structure. Several species (depending
on the starting polymer) evaquate the polymer network as gaseous products generating holes with different
dimensions, resulting in a the characteristic foam-like morphology of LIG [35].

Moreover, the LIG composition and its surface properties can be modified following different strastegies.
LIG of various compositions is formed during the laser induction process by tuning of laser parameters,
changing the gas environment or acting on the substrate composition [35] In these ways it is possible to
achieve different atomic ratios of carbon, nitrogen, and oxigen and modification of the LIG wettability.

Thanks to its promising biological, physicochemical, and electronic properties, LIG could be investigated
as potential bio-paltforms, as well as other graphene-family nanomaterials, for different biomedical
applications, such as bioimaging and cancer theranostic, tissue regenerative scaffolds, photo thermal and
photodynamic treatments. In particular, its atomic 2D morphology and high surface area allow to
biofuntionalize and decorate the LIG with proteins, fluorospores and other molecule for their utilization in
biomedical.

Although several reports have already demonstrated the potentiality of LIG for biological applications
such as electrodes for neural signal recording or stimulation [36], and their anti-biofilm activity [37], no
toxicological studies have been reported so far.

For this reason, herein we present a detailed study about the toxicity of LIG investigated through
zebrafish model. Zebrafish are increasingly employed as alternative model systems to assess developmental
toxicity of different nanomaterials, chemicals and drugs. Zebrafish offer several advantages making them
promising systems for in vivo high-throughput screening. A toxicity assessment in zebrafish embryos and
larvae can be performed in a week; this time is short if compared with the duration of a mammalian assay.
Zebrafish have small size, high fecundity and fast embryonic development. They are low cost, optically
transparent and easily handled [38]. The optical transparency allows to detect the effects of nanomaterials in
tissues and organs [39] and to assess different morphological endpoints by using a simple stereomicroscope
[40]. Moreover, the results obtained in zebrafish can predict the nanomaterials behavior and toxicity in
humans [22, 41, 41], thanks to the high homology between the two species, confirmed by the genomic
sequencing [43]. In the present study, we assess the effects of LIG by analyzing the growth, hatching and
development of embryos treated with different concentrations of LIG. Our results provide new insight into
the toxicity/biocompatibility of graphene produced by laser writing and consequently on its potential
bio-applications.

2. Methods

2.1. Materials synthesis
The electrodes were fabricated using a micromachining system produced by Microla Optoelectronics srl
equipped with a CO2 pulsed laser working at 10.6 µm wavelength, with tunable process parameters (power,
pulse frequency and scan speed). The laser system is composed by beam expander (2X) and galvanometric
scanner with a focusing objective of 100 mm. The operating laser parameters used in this work are: power
6 W, frequency 20 kHz, scanning rate 500 mm s−1. After laser-writing LIG was manually removed by the
remaining polyimide support by scratching with a razor blade, weighted in a microbalance and then finely
dispersed in deionized water by 1 h of ultrasonication treatment.

2.2. Characterization
The morphology of the obtained LIG material was studied with a Zeiss Supra 40 Field-Emission Scanning
Electron Microscope (Zeiss) equipped with an Oxford Si(Li) detector for Energy Dispersive X-ray analysis
(EDX). Metallic coating was not required since the obtained LIG material is conductive.

Structural characterization was carried out on a FEI Tecnai G2 F20 S-TWIN Transmission Electron
Microscope operated at 200 kV acceleration voltage. Concerning sample preparation, a dispersion of LIG
flakes in high-purity ethanol (>99.8%) was obtained by sonication and subsequently drop-casted to a
holey-carbon Cu TEM grid. The analysis of TEM images for surface area estimation was carried out with
ImageJ software.
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X-ray Photoelectron Spectroscopy (XPS) was performed on a PHI 5000 VersaProbe (Physical
Electronics) instrument, equipped with monochromatic Al Kα radiation (1486.6 eV energy) X-ray
source. Different pass energy values were used for survey (187.75 eV) and HR spectra (23.5 eV). Charge
compensation during measurements was obtained with a combination of electron beam and low-energy Ar
beam system. The binding energy scale was calibrated to the C-C/C-H component (284.5 eV) of the C1 s
region. CasaXPS software was used for the analysis of spectra.

Size dispersion have been measured by Zetasizer Nano ZS90 (Malvern) on solutions of LIG with a
concentration of 0.05 mg ml−1.

2.3. In vivo toxicity protocol
Zebrafish maintenance and spawning followed the conditions previously described [44]. Briefly, wild-type
zebrafish were kept under controlled conditions and were fed twice a day. Embryos, obtained by the random
pairwise mating, were collected at 4 hpf (hours post fertilization) and incubated in E3 medium, the
typically-utilized medium to raise the embryos [45], in 24 well-plates at 28 ◦C. Embryos were treated by
simple soaking or microinjection with different solutions of LIG in E3 medium up to 120 hpf.
Concentrations tested were 5, 10, 50 and 100 µg ml−1. E3 medium was used as negative control. The
solutions of LIG were replaced with a fresh suspension every 24 h. A set of endpoints, including survival,
hatching, heart bate rates and morphological changes, was examined every 24 h (24, 48, 72, 96, 120 hpf)
using a stereoscopic microscope (SMZ18, Nikon). The swimming activity of larvae at 96 hpf was recorded
with an EthoVision video tracking software (Noldus Information Technology, Wageningen, Netherlands), as
previously reported [41]. Experiments were performed in triplicate for statistical accuracy. All animal
experiments were performed in full compliance with the revised directive 2010/63/EU.

2.4. Data analysis
All parameters were expressed as mean± standard deviation and the data were analyzed as previously
reported [46].

3. Results and discussion

3.1. Physico-chemical characterization
The LIG obtained by laser-writing of the polyimide film has been deeply characterized from the
physico-chemical point of view. As previously described in the literature, its morphology recalls a sponge
(figure 1(a) and (b)) with micrometric pores which formed during the laser-induced conversion of the
polymer. Specifically, the interaction of the laser with the polyimide film breaks chemical bonds in the
polymide repeat units through photothermal effects, promoting the formation of a defective graphenic
structure with the simultaneous release of gaseous products [47, 48]. In this way, a three-dimensional porous
architecture is obtained, with thins walls (thickness approximately <20 nm) which are constituted by
few-layer graphene nanoflakes.

The change in chemical composition induced by the laser process is investigated by XPS: survey spectra
and related semi-quantitative analysis confirm that during laser irradiation bonds involving carbon, oxygen
and nitrogen are broken, leading to a final structure dominated by carbon atoms (see supporting
information (available online at stacks.iop.org/JPhysMaterials/3/034008/mmedia)).

A comparison of high-resolution acquisitions of the C1 s region before and after laser treatment (figure
1(c)) confirms the decrease of oxygen/nitrogen-containing functionalities; moreover, the asymmetric
lineshape of the C-C component and the presence of the π–π∗ satellite in the C1 s region of LIG give an
indication that a graphenic structure is obtained, according to the literature [48, 49].

Further proof of the successful graphenization is provided by TEM analysis, which allows direct
investigation of the structure of LIG through high-resolution imaging. Low-magnification TEM images
(figure 1(d)) confirm that the LIG flakes are wrinkled and exhibit nanoscale porosity. This is related to the
complex structure of the flakes: they are constituted of randomly oriented few-layer graphene domains, as
shown in high-resolution TEM images (figure 1(e)), where it is possible to directly visualize the few-layer
features, with≈0.34 nm interplanar spacing characteristic of (002) family of planes in graphite.

Through TEM imaging, it is also possible to estimate the morphology of the LIG flakes after detachment
from the substrate for subsequent use in the preparation of dispersions. In this case, it is possible to image
single flakes (figure 2(a)) which typically have surface area values <10 µm2, as shown in the surface area
distribution (figure 2(b)) obtained by the analysis of several TEM images of different single flakes.

As a complementary analysis, the same LIG powder, once dispersed in water by sonication was analyzed
by dynamic light scattering (DLS) in order to assess the hydrodynamic size dispersion. Figure 2(c) collects
the histogram representation of the flake size distribution coming from the DLS measurement, showing that
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Figure 1. FESEM top-view images (a) and (b) of a laser induced graphene area on polyimide film at different magnifications.
(c) provides XPS high-resolution scans of the C1 s region before (left) and after (right) laser treatment. TEM low-magnification
image (d) of a LIG nanoflakes, with corresponding high-resolution TEM image (e) providing direct visualization of the structure.

Figure 2. Low magnification TEM images of the morphology of the LIG flakes after detachment from the substrate and sonication
(a) and subsequent analysis of the surface area distribution. The scale-bar in TEM images is 500 nm.The distribution of the
hydrodynamic size measured by DLS is provided in (c).

the size dispersion is quite broad with not negligible percentage of flakes between 200÷ 300 nm or above
1 µm. However, more than 50% of the LIG flakes exhibit an average size of 535± 65 nm. It must be stressed
that the reported data were calculated using Stokes-Einstein equation [51], representing the effective
‘diameter’ of the flakes in a spherical geometry approximation; therefore, they cannot be directly correlated
with results obtained by the analysis of TEM images.

3.2. Toxicity evaluation
To assess the toxicological profile of laser-induced graphene, embryos were treated with various
concentrations of LIG (5, 10, 50 and 100 µg ml−1), and all the toxicological end-points were examined at
different time points. The survival and hatching rates were analyzed along the five days of assay (4–120 hpf).
The survival rates of zebrafish exposed to laser-induced graphene presented no significant differences at low
concentrations of nanomaterials (5 and 10 µg ml−1). At 50 and 100 µg ml−1, the parameter was time and
dose-dependent, with a significant decrease in comparison to the control after 72 hpf (figure 3(a)). The
hatching time normally corresponds to a temporal window between 48 hpf and 72 hpf. Figure 3(b) showed
that the embryos hatched without any delay. Moreover, the hatching rate was time, dose-dependent, and
lower than that of the control samples at high LIG concentrations. In accordance with the OECD guidelines

4



J. Phys. Mater. 3 (2020) 034008 M d’Amora et al

Figure 3. (a) Survival rate and (b) hatching rate of zebrafish after exposure to different concentration of LIG. Data are represented
as mean± SD (standard deviation).

Figure 4. (a) Heart beat rate and (b) total swimming distance of zebrafish after exposure to different concentration of
laser-induced graphene. Data are represented as mean± SD (standard deviation).

Figure 5.Malformations of zebrafish treated with LIG.

[50], the behavior of these parameters indicated a nontoxic effect of LIG in zebrafish, in contrast to other
graphene-family nanomaterials [15, 16].

To determine the possible effects of LIG on larval behavior, we monitored the heart beat rates and the
total swimming distances by a visible light test. No considerable changes were detected in the heartbeat rates
of larvae of 72 hpf treated with various concentrations of LIG (figure 4(a)). Correspondingly, larvae exposed
to laser-induced graphene showed total swimming distances not concentration-dependent and comparable
to the control ones (figure 4(b)).

These results indicated no impact of laser-induced graphene on zebrafish larval behavior, with
completely different effects compared with other graphene-family nanomaterials [14–16].

Moreover, the treatment of embryos with different concentrations of LIG induced low percentages of
abnormalities, even if significant in comparison with the untreated groups (figure 5).

Different well-known anomalies were noted. The yolk sac edema (YSE) and pericardial edema (PCE),
finfold flexure (FF) and tail flexure (TF) were the typical deformities induced in embryos and larva treated
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Figure 6.Malformations of zebrafish larvae. FF, finfold flexure, TF, tail flexure, YSE, yolk sac edema, PCE, pericardial edema.
Scale bars= 500 µm.

with LIG (figure 6). Similar types of morphological defects in zebrafish embryos/larvae were also caused by
other graphene family nanomaterials, such as graphene oxide [16].

In the case of laser-induced graphene, the low percentages of each abnormality confirmed the absence of
toxicity of this nanomaterial in zebrafish development.

Our results demonstrate that laser-induce graphene exhibite good biocompatibility in vertebrate systems.
These findings are particularly relevant, considering the toxicological profiles of other graphene-family
nanomaterials.

Here, we show for the first time, different behavior of laser-induced graphene, that results to be a novel
biocompatible platform.

4. Conclusion

In conclusion, we have demonstrated the biosafety of laser-induced graphene in zebrafish, during the
different stages of growth. Our results report time and dose-dependent behavior of the survival and hatching
rates of embryos and larvae exposed to different concentrations of LIG, with no toxic effects. Moreover,
laser-induced graphene has no impact on the swimming and cardiac activities of treated zebrafish,
confirming its biocompatibility. In summary, we demonstrate for the first time that laser-induced graphene
exhibit a complete different toxicological profile on zebrafish compared to other nanomaterials of the
graphene family, including graphene, GO and GO nanosheets. Our results show that laser-induced graphene
possesses good biocompatibility, making this nanomaterial a promising platform for several biological
applications.
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