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On Edge Computing for Remote Pathology
Consultations and Computations

Alessio Sacco, Flavio Esposito, Guido Marchetto, Grant Kolar, and Kate Schwetye

Abstract— Telepathology aims to replace the pathology
operations performed on-site, but current systems are lim-
ited by their prohibitive cost, or by the adopted underlying
technologies. In this work, we contribute to overcoming
these limitations by bringing the recent advances of edge
computing to reduce latency and increase local compu-
tation abilities to the pathology ecosystem. In particular,
this paper presents LiveMicro, a system whose benefit is
twofold: on one hand, it enables edge computing driven
digital pathology computations, such as data-driven im-
age processing on a live capture of the microscope. On
the other hand, our system allows remote pathologists to
diagnosis in collaboration in a single virtual microscope
session, facilitating continuous medical education and re-
mote consultation, crucial for under-served and remote
hospital or private practice. Our results show the benefits
and the principles underpinning our solution, with partic-
ular emphasis on how the pathologists interact with our
application. Additionally, we developed simple yet effective
diagnosis-aided algorithms to demonstrate the practicality
of our approach.

Index Terms— Telepathology, Edge Computing, Collabo-
rative pathology.

I. INTRODUCTION

TELEPATHOLOGY is the practice of digitizing histo-
logical or macroscopic tissue images based on a glass

slide for transmission along telecommunication pathways for
diagnosis, consultation, or medical education. Pathologists
seek second opinions from local experts either intraoperatively
(rapid frozen section assessment of margins during tumor
excision, for example) or during routine sign-out of difficult
or unusual entities; in most settings, this involves the transport
of physical glass slides. Hence, every pathologist should
ideally be able to consult an expert via telepathology, either
intraoperatively or for routine sign-out.

Today, however, telepathology is often grouped in expensive
software packages that most local hospitals cannot afford, and
it is practically unused for the applications that would need
it the most: fast and reliable consultations, as well as multi-
student, live teaching sessions; pathology is nowadays mostly
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taught via offline methods or via one-to-one mentor-student
specimen analysis.

Our work aims at enhancing the currently booming field of
Digital Pathology (DP), which can be seen as an attempt to
adopt digital technologies to reduce the time and improve the
accuracy of a diagnosis, for example by reducing the number
of physical slide requests [1], [2]. However, developing tech-
nologies to efficiently digitalize image samples and building
solutions that pathologists can easily access is a challenge.

Pathologists often analyze histological samples on a glass
slide while the patient is still in the operating room. Without
a telepathology solution, pathologists usually ask for second
opinions from nearby experts (if available) by physically
carrying glass slides, in order to minimize the time to diagnosis
and report to the surgeon. When not enough local experts
are available, the presence of a telepathology system could
be a critical factor in providing the best care for the patient.
Moreover, a telepathology system can be used to transmit high-
resolution images of specimens to connected experts in order
to speed up the diagnosis of more routine cases in more rural
treatment locations. Finally, it might also mitigate discordance
between pathologists [3]. In summary, telepathology has the
potential to have a positive impact on the delivery of expert
care patients regardless of the location of their surgical treat-
ments.

We developed a new edge computing-based telepathology
system, LiveMicro, that enables real-time remote control of
the microscope and live histological image processing. In
particular, this paper extends our previous work [4] providing
more results on histological sample processing, an in-depth
evaluation of the system using the real microscope, and a
description of new features. Our solution enables remote
collaboration and digital image sharing in addition to remote
computation provided by edge computing.

LiveMicro eliminates the need to transfer physical slides
and reduces to zero the travel time for remote specialists for
consults or tumor board reviews. As demonstrated, this saves
valuable time and expense, providing faster diagnoses resulting
in better patient care.

Our system allows remote control of panning, zooming, and
focus of a microscope, on software-defined glass slides. This
is fundamentally different from a video conference, e.g., for
a remote surgery application; in a telepathology system, the
resolution, responsiveness, and size of the histological images
to transfer and pre-process are very large: both very low delays
and high bandwidth are required on a dedicated virtual path
that must not compete with other Internet traffic or internal
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campus network data flows.
We validate several simple remote computation algorithms,

showing how in critical and urgent scenarios, simple computa-
tions are very effective. Our goal was to demonstrate that when
there is no time to perform complex computational operations,
and there are no adequate datasets to train a neural network
or a deep learning system, a telepathology session allowing
remote computations and remote consultations can be very
effective.

Our approach does not exclude, however, the application of
Neural Networks models, already largely used in many fields
of pathology [5]–[7].

The rest of the paper is organized as follows. In Section II
we discuss related telepathology solutions. Section IV details
our LiveMicro system as well as all technologies used for the
deployment of the architecture. Section V describes the image
processing algorithms applied over histological samples, used
to assist the pathologist during a telepathology session. In
Section VI we describe the results obtained by measuring
performance in the edge infrastructure and evaluate the quality
of histological processing. Finally, we conclude the work in
Section VII.

II. RELATED WORK

Current clinical applications of telepathology include in-
traoperative frozen sections, routine surgical pathology sign-
out, second opinions, and subspecialty consultations [8]. The
term “telepathology” was used for the first time in a 1986
editorial in Human Pathology. Many studies explained the
benefits brought by telepathology and limitations as well, and
the majority of the analysis is still valid [3], [8], [9].

The major benefits of the introduction of telepathology that
have been identified are the absence of intraoperative consul-
tations (IOC) service in hospitals with no on-site pathologists
and the prevention of two-stage surgeries and patient transfers.
Furthermore, the retention and recruitment of surgeons in
remote hospitals were facilitated because of telepathology was
instrumental in their treatment decisions. Lastly, professional
isolation among pathologists working alone is reduced.

Table I describes the evolution of the Telepathology class
solutions, in particular, the features added and the differences
among them, in accordance with the Weinstein classifica-
tion [8]. The different classes are proposed sequentially, in
an attempt to improve the previous systems, allowing more
actions or enhancing the already present ones. First and
Second classes constitute the first-generation telepathology,
relatively simple systems whose imaging can be done in 2
ways: real-time imaging mode (i.e., dynamic) for class 1 [10],
[11], and store-and-forward mode (i.e., static) for class 2 [12].
In both options, the histopathology field selection can take
place in a remote site, which enables the remote control
feature, also known as robotic. Third class systems evolved
by fusion of 2 previous systems, leading to the new term
“hybrid systems” [13], [14]. In the fourth class, the “virtual
slide” is obtained by programming a microscope stage to
automatically scan an entire slide and capture images of
all microscopic fields without operator intervention. In some
versions, the telepathologist can remotely control the order in

TABLE I: Summary of Features in existing telepathology solutions: Ours
added edge computing for remote consultation and remote computation.

Features

Telepathology Solutions Remote Real Hybrid Virtual Rapid Edge
Control Time System Slide Processor Computing

First Class [10], [11] 3 3
Second Class [12] 3

Third Class [13], [14] 3 3 3
Fourth Class [15], [16] 3 3 3 3
Fifth Class [17], [18] 3 3 3 3 3

LiveMicro (Our Solution) 3 3 3 3 3 3

which the composite images are acquired [15], [16]. Class 5
is based on an entirely different design concept and is the first
telepathology system to incorporate a multisensor design [17],
[18]. This technology produces miniaturized microscopes that
are assembled into miniaturized microscope arrays (MMAs).
This class of systems was designed to capture in less than 1
minute an entire virtual slide. In our solution, we added edge
computing to improve the image processing performance, al-
lowing us to apply image analysis before sending the result to
pathologists. In addition to image operations, edge computing
can be exploited for network processing.

It is possible to find cheaper solutions as well, e.g., a system
that consists of a Raspberry Pi 3 hosting a web server, Apache,
that contains microscopic medical images that were captured
using smartphones [19]. In another solution, the Raspberry Pi
was combined with an external webcam and used to stream
microscopic images to a pathologist at a remote location. They
tested 3 low-cost telecytology systems: a Raspberry Pi with
a webcam, an iPhone 4S with FaceTime, and an iPhone 4S
with a live streaming app. Inexpensive telecytology systems
are able to stream live video feeds of cytology slides from a
microscope to a remote location at usable resolutions [20].

Weinberg and Randolph deployed a solution applicable in
telepathology as well [21]. This project aims to enrich high-
school biology education via real-time video, and the main
focus is education and the interaction between high school
teachers, high school students, university faculty, and students.
The entire project relies on the GENI [22] infrastructure to
create a high-speed Internet connection between the University
of Southern California and Chattanooga, Tennessee. No edge
computing is present in this solution.

The problem of transmission of large size of data, such
as video, arises in other fields outside of telepathology and
constitutes an active area of research. We can cite, for example,
some commercial products, like GigE vision technology for
the transmission of a video over Gigabit Ethernet [23]. The
standard defines the process by which a host machine can dis-
cover and acquire images from one or more high-performance
cameras to be transmitted at high speed. Although this solution
provides excellent results in the video transmission, it is
relevant for the one-way transfer only and lacks in supporting
the remote control of devices.

Recent studies optimize the offered services, such as
[24], [25], where the authors present solutions to provide a
telepathology system or collaborative image viewer. However,
none of them is able to guarantee a microscope remote control
with high bandwidth and low delay, along with fast image
processing. In fact, all these presented solutions are cloud-
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based, that is optimal for storage and intensive processing,
but it yields high and intolerable latency when systems need
a feedback from the user, as in interactive systems.

Contrary to other solutions described, our system allows
remote control of the microscope, where edge computing is the
enabling technology, and integrates a collaborative image ana-
lyzer empowered with some image processing algorithms. Our
solution supports high-speed data transfer with low-latencies,
but aims to provide services for real-time consultations in both
education and surgery scenarios using edge computing. With
low-latencies, we are able to provide consultations for intra-
operative frozen section requests (most commonly requested
in oncological surgeries). By low-latency system we mean a
program able to reduce latency to the order of hundreds of
milliseconds, considered as a threshold for enabling the user
interaction [26].

III. USE CASES: TEACHING, DIAGNOSIS AND MORE

Remote real-time consultations on rare or newly recog-
nized diseases. Patient care relies on rapid and accurate diag-
nosis in the pathology laboratory. In certain critical situations,
the time to diagnosis can literally be life-saving, including
timely recognition of bacterial organisms in cerebrospinal fluid
(meningitis). Often, these diagnoses are made by a pathologist
using a microscope to analyze biological material (cells or
tissue) on a glass slide, which is subject to human error.
The accuracy of the diagnosis depends on the experience
of the on-call pathologist, who may cover a broad range
of subspecialties. Another common scenario occurs during
surgery when a quick and accurate pathology assessment
(frozen section [27], touch or smear cytologic preparation)
necessarily defines the next treatment steps by the surgical
team. In all these scenarios, LiveMicro would offer a quality-
oriented platform for remote consultation by connecting more
experts to cooperate in the pursuit of the best possible diag-
nose.
Continuous medical education. Pathology today is taught
to medical students, residents or in a session of continuous
medical education in a one-to-one form with microscopes with
double or triple oculars. With LiveMicro, multiple students
(and a teacher) could access the same live telepathology
session in an online classroom environment. Each connected
user could manipulate individually a virtual instance of the
microscope. Using our software, multiple connected users can
perform actions on a captured image, e.g., zoom, pan, or save
the images to their local device.
Remote (complex and resource intensive) computations.
In addition to multi-session (live) teaching and rapid remote
case consultation for pathology, we foresee the success of
LiveMicro in furthering the research and educational goals.
Research microscopy imaging data takes many forms, rang-
ing from static large virtual slide images, often collected
in single axial planes, to more complex and resource in-
tensive datasets including multiple axial planes (Z-stacks),
multiple data channels (multi-color fluorescence imaging),
and time-course data involving both multiple image planes
and fluorescence channels. Storing these images often require
several gigabytes. Consequently, very high-definition image

Fig. 1: Remote pathologist can access the microscope through
the web application, that leverages Edge Cloud computation.

transfer for analysis, collaboration, or consultation requires
significant resources and time using conventional network
channels, e.g., the Internet. Furthermore, collaboration in
the research microscope laboratory is increasing as multi-PI
research programs are becoming essential in the biological
sciences. Such activities depend on data communication not
only for consultation among colleagues, but also for the use
of common computing resources often housed in individual
laboratories or core facilities.

With the increased capabilities offered by the edge
computing-based LiveMicro, researchers and (bio)medical stu-
dents can now use their data captured and store them in a ”vir-
tual slide”, with confocal and super-resolution. This is relevant
for a series of applications, for example, scanning electron
microscopes for complex cell tracking, automated (observer-
independent) morphometric analysis, co-localization, 3D re-
construction, and image deconvolution analysis.

IV. LIVEMICRO: EDGE-BASED ARCHITECTURE

In this section we describe the LiveMicro system and its
design and implementation details. Our design has focused
on allowing (i) remote computations and (ii) remote con-
sultations. In spite of pathology applications, we argue that
any field that uses a microscope, for example microbiology,
may benefit from our system. Remote consultation entails
the possibility for pathologists to access through our web
interface to a live session of a microscope and remotely control
its firmware and its functionalities. Typically, pathologists
ask for zooming, panning, focusing, or taking snapshots of
histological samples. The entire application is accessible via
a web browser (Figure 1).

A. Front-End and Plugin Design

Our design goal is to allow pathologists to access the
microscope in a user-friendly manner, merely through a web
browser. For this reason, as shown in Figure 1, the entry point
for the entire system is a web server, which acts as a portal
through which users connect to the ecosystem and join, start,
or terminate one or multiple telepathology sessions. The choice
regarding the front-end design goal was to create a component
as lightweight as possible, keeping a user-friendly and intuitive
interface. The web front-end is implemented in AngularJS,
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Fig. 2: Services are spread across the infrastructure, the mi-
croscope uses a dedicated machine and a dedicated hardware
for capturing samples.

and the slide visualization is manged by the OpenSeadragon
JavaScript library [28].

At the other end of the telepathology session, a computer
runs a modified version of µManager — often named Micro-
Manager, as in microscope-manager — an open-source pack-
age for configuring and controlling a fairly large amount
of commonly used microscopes. We can state, for example,
Leica, Nikon, Olympus among the microscopes supported, and
Hamamatsu, Canon, and Nikon for the cameras. However,
although Micro-Manager provides this extensive support in
the standard version, it is also possible to write new device
adapters (i.e., “drivers”) for the new hardware, or even improve
existing ones.

Originally µManager did not support network connectivity
nor edge computing functionalities. Our modified instance
of µManager can be plugged to a physical machine attached
to a microscope, to handle data marshaling between the
network and the microscope firmware. In our prototype, we
use an Olympus IX81 [29], one of the microscopes whose
interface is compatible with Micro-Manager. LiveMicro can
also operate on an emulated version of the microscope, that
may result a very effective tool to scale, for instance for
pathology medical education.

Since pathologists (in training or at work) need to examine
tissues among diverse microscope lenses, a simple image snap-
shot is often not enough. Live streaming of the sample under
consideration is hence necessary to have immediate feedback
and make the system usable. We use ffmpeg [30] to encode
and transmit videos from our Micro-Manager Plugin (from
now on denoted as, Plugin) to the LiveMicro Server, while on
the web-page, our WebRTC [31] interface is responsible for
receiving and showing the video. We provide further details
on the live streaming process in Section IV-C. Our Edge
Cloud infrastructure pre-processes the stream compressing its
payload. The compression is not performed on the Plugin, but
in a second phase, thereby videos can be stored and retrieved
at a later stage.

B. Core and Edge Cloud Management

To control large pools of storage, compute, and network
resources between the web server and the Plugin, we deployed
our own Edge Cloud infrastructure (Figure 2), modifying
OpenStack [32], a well-known open-source Cloud Computing

platform. We associate each user of a telepathology session
to a VM that provides network and node functionalities, e.g.,
CPU-intensive algorithms on the histological imagery.

The architecture and the object model that we propose will
leverage the computing paradigm known as Edge (or Fog)
Computing [33]. In an Edge Computing system, much of
the processing takes place in a process at the edge of the
network (as opposed to the core of the network as in the
Cloud Computing paradigm). It is inefficient to transmit all
telepathology generated data to the cloud for processing, data
query or analysis; doing so requires a great deal of band-
width and all the back-and-forth communications between the
sensors and the cloud would adversely impact performance,
rending the application unusable. Our proposed infrastructure
will enable flexibility in the mechanisms that regulate the
adaptation (creation, monitoring, and migration) of virtual
network resources carrying glass-slide imagery.

Our architecture at the edge demands at least two nodes
in charge of launching the core management features: the
controller node and the compute node. The controller manages
the resources available in the infrastructure, and the compute
node is where the VMs and their bookkeeping are installed;
the networking service agent then connects all telepathology
instances to their isolated virtual networks providing besides
security services to instances.

The best hosting machine is chosen according to some con-
figurable criteria, e.g., the usage of machines at that moment or
hosted application requirements. OpenStack selects by default
the hosting machine regardless of the application logic. But in
our scenario, we forced the controller node to choose a node
close to the requested microscope, in order to guarantee a low
delay. Specifically, we adjusted the default cloud orchestration
mechanisms to better support edge computing applications,
modifying the VM scheduler to handle multiple telepathology
sessions.

The core process is the LiveMicro Server, where most of
the telepathology application logic resides. It receives requests
from either the web server or the microscope plugin, and
it is responsible for determining the following operations:
it manages live sessions, it communicates with the database
and decides when it is time to create or destroy a VM,
according to the business logic. In our system, to reduce the
startup delay when a VM is created, we keep a pool of VMs
already deployed. In such a way, when a user needs to operate
on a VM, the system can exploit the existing VMs instead
of creating new ones, hence reducing the response time.
Moreover, the LiveMicro Server provides the services needed
to control the microscope remotely. This program holds also
the management of the prior (live) sessions and implements
the Node.js REST API called by the emulator plugin and the
desktop application. We select the Node.JS environment to
handle the requests as it connects the ease of a script language
as JavaScript with scalability, fast implementation, and high
speed of the code execution [34].

Each VM hosts a telepathology session client, which acts
as a proxy: it receives requests from the LiveMicro Server
through gRPC protocol [35], elaborates them, and in case
sends them to the Plugin. If the response is already in the
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VM, e.g., the client is working on an already snapped image,
the request is not forwarded to the Plugin. This cache layer is
fundamental to avoid overloading the real microscope.

The image and video processing of each telepathology
session occur across multiple VMs. Hence, each client can
ask different processing on the same virtualized histological
image, at the same time. The system assures that actions of a
user do not affect the analysis of another pathologist working
on the same sample, as the operations take place in different
VMs. The doctor is free to work independently as long as the
action does not modify the microscope settings. In this latter
case, the actions are enqueued and synchronized, and all the
clients of the sessions will be affected. This strategy is based
on the intuition that users are more likely to require image
and video processing rather than microscope configuration.
The synchronization is necessary to prevent the access to
the shared resource (the microscope) from multiple agents,
that can potentially lead to an inconsistent state. However,
as demonstrated in our evaluation (Section VI), the time to
execute actions is significantly smaller than transmission and
processing time, proving that, when ten users are cooperating,
the waiting time is negligible.

Image Management and Visualization. The pathologist
can thus analyze images that are captured in real-time or that
were previously saved. In the former case, there is not enough
time to generate a WSI and, for this reason, the system sends
only the slide as captured by the camera. If requested, the
image is processed, but the algorithm is limited to the viewed
image only. Further details on the streaming of the slides are
provided in the following Section IV-C.

In the latter case, i.e., offline digital slides, the web applica-
tion uses the OpenSeadragon image viewer [28] for navigating
and zooming over the slide. On the server side, specifically
on the VM, our program returns tiles of specified coordinates
and zoom levels on demand. Albeit as mentioned earlier these
images are very huge and require enough disk space to be
stored, we optimize the RAM usage by loading not the entire
image, but only a small portion of it, i.e., a tile. These tiles are
generated on demand using a PyramidIo-based tool [36] that
generates them. PyramidIo allows reading WSIs of different
formats and facilitates the rapid retrieval of subregions of the
image. The tiles could also be pre-generated and saved on
the file-system for future usage. Nonetheless, we experienced
that performance difference between dynamically-tiled and
statically-tiled viewing sessions is imperceptible for the user.
Moreover, the use of dynamic tiling avoids an additional step
in the workflow and eliminates the storage overhead of storing
tiles.

Alongside the management of smaller tiles, the VM pro-
vides a cache layer between the client and the storage, so that
multiple requests for the same area are immediately replied.
In such a way, the time to process a request is shortened.
Additionally, the web browser, through the OpenSeadragon
library, is a supplemental layer for caching the image bytes,
in order to reduce the response time.

Browser Client
(Remote side)

LiveMicro Server
(Node.js)

Plugin
(Patient side)

Session  Request
Send Streaming Request

Send Confirmation

Exchange Media Streams

Display
Remote
Media
Stream

Send a Call Offer 
using SDP

Send a Call Answer 
using SDP

Send Confirmation

(WebRTC) (ffmpeg)

Fig. 3: Signaling and Interaction of Video Streaming.

C. Live Streaming Architecture for Immediate Medical
Feedback

Obtaining immediate feedback from the system is extremely
important in these solutions, and live streaming from the
microscope camera is an effective way to give this feedback
to the medical doctor. In our system, indeed, the remote
pathologist can manipulate the microscope in search of the
best possible sample for the diagnose. In order to provide the
video streaming to all the pathologists connected to the live
session, we leverage ffmpeg as an encoder, and WebRTC as a
de-multiplexer and for showing the video in the web-page.

Frames acquisition and transmission. At the plugin side,
the frame encoding occurs via ffmpeg, which reads from files
the frames captured by Micro-Manager and sends them as a
stream to the LiveMicro Server. This tool allows specifying
significant video options, such as aspect ratio, video codec,
frame rate. These parameters are set to guarantee low delays
and to achieve zero losses in the capture, therefore moderately
sacrificing the video resolution. Nonetheless, as in the edge
computing paradigm, the LiveMicro Server is in the proximity
of the Plugin, which allows not to drastically downgrade
the video resolution in favor of the latency. Besides, the
stream is directly sent to the LiveMicro Server rather than
passing through the user’s VM, in order to further reduce the
application delay. It is also worth noticing that very high-
resolution images, when needed, can be obtained by means
of offline downloads.

On the LiveMicro Server resides WebRTC, which manages
the transmission of the video stream to the final user. It is re-
sponsible for communicating with the web browser in order to
agree on the best bitrate that adapts to the network conditions.
This service receives the stream of data from the Plugin and
forwards it to clients interested in receiving the video. In case
the client asks for a reduced bitrate compared to the ffmpeg
stream, WebRTC handles this difference and stores the data
temporarily in order to synchronize the incoming stream with
the outgoing one. Moreover, it receives the commands from
the user and forwards them to the microscope, dispatching
the requests in the same order they are received. WebRTC
comes up with several components for different functionalities
provided. Among them, we can enumerate signal processing,



6 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

codec handling, security, bandwidth management, to name a
few. The services such as STUNA and TURN, provided by
WebRTC, allow the communication to hold even in the pres-
ence of firewalls and NATs, very common in real scenarios.

Figure 3 summarizes the messages we defined to instantiate
the streaming from the microscope to the connected user, as
well as signaling requirements and interactions. WebRTC, with
its module PeerConnection API, is responsible for managing
the full life cycle of each client-microscope connection at
the remote site, by encapsulating all the connection setup,
management, and state within a single interface. When the user
joins a live session, it contacts the signal server (LiveMicro
Server) to create the session and a secure channel. Once the
server receives the request, it contacts the Plugin asking to start
the streaming session. At this point, the Plugin initializes the
samples capture procedure and sends the confirmation back,
which is eventually forwarded from the LiveMicro Server to
the client. Then, the client sends an offer message containing
a description of the streaming session according to the Session
Description Protocol (SDP) format. This description includes
the streaming communication parameters, such as the types of
media to be exchanged, codecs and their settings, and band-
width information. Upon receiving the offer, the LiveMicro
Server creates an answer for connecting to the endpoint. After
having checked the information in response are correct, the
peers establish a connection, and the Plugin can finally send
the media stream to the client, passing through the server.
The first part of the communication, i.e., between the Plugin
and the server, occurs via ffmpeg, while the second part, i.e.,
between the client and the server, is managed by WebRTC.

V. IMAGE PROCESSING

Typical image processing operations performed on the sam-
ples can include color deconvolution, nuclear and mitotic
counts on tumor cells, tumor pattern detection as the user
moves the image, etc. . Machine learning algorithms are under
rapid development to assist with the latter. As other software
that allows such image processing, our application is written in
Java and uses standard libraries such as ImageJ and OpenCV.

Antibody markers such as Ki-67 are used to measure
the rate of tumor proliferation by immunohistochemical
methods, particularly in neuroendocrine tumors. Currently,
quantification is done predominately by hand-counting positive
and negative nuclei on selected regions of the tissue. While
software packages that distinguish immunohistochemically-
positive and negative cells exist, they do so on merely
single photographs of selected regions. Our solution allows
the entire virtual slide to be processed (more than a single
photograph) using high computational power present within a
regional network, i.e., at the edge, or remotely, using virtual
network paths with reserved bandwidth.

Figure 4 shows an example of image processing aiming to
count the affected nuclei. The counting is recomputed every
time the image is moved or zoomed. The knowledge of the
percentage of cells activated by different markers (represented
by different colors), can be used by the pathologist to assess
the tumor grade, a critical parameter for the course of an active
surgery or a treatment.

Fig. 4: (Left) View of invasive squamous cell carcinoma of
a tongue, with tumor area highlighted in the red circle at 2X
magnification. (Right) Image after the application of nuclei
detection algorithm at 10X magnification: in addition to the
image, information about percentage of marker co-expression
in the sample is automatically provided to the web interface.

0.8 mm

(a) (b)
Fig. 5: Example of distance tumor to margin operation by
means of an algorithm that automatically detects the margin.
Tumor is automatically detetcted as well, when the pathologist
selects the area of interest. Distance is returned in “mm”.

In Figure 5, we measure the distance from the tumor and
the margin, inked in yellow at the left side. The pathologist
marks the tumor, and the algorithm automatically detects the
margin and computes the distance between the two points. As
demonstrated by previous solutions [37], this information is
extremely significant, but, sometimes it is computed by hand
by pathologists. The distance from tumor-to-margin is typi-
cally reported in oral cavity malignancies (usually, squamous
cell carcinoma), as it has been shown to impact prognosis
when the margin is less than 5 mm. Before the gross specimen
is sectioned and sampled in cassettes for histology, inking
is performed, making it easy to detect it for a computer-
based algorithm. Automatic calculation of the closest distance
between the tumor and specimen margin (edge) can greatly
decrease evaluation time and reporting accuracy. The distance
can also be used in breast cancer specimens, with particular
interest on the distance from an invasive and in-situ tumor in
the standardized reporting forms.

A. Image Processing for Faster and Accurate
Diagnostics

The edge computing paradigm allows us to perform fast
and intensive processing otherwise impossible to obtain on
a local machine. We provide the overall procedure in Algo-
rithm 1, highlighting the different operations performed when
the image is locally saved on the server or not. With the aim
of reducing response time, and so the diagnosis turnaround
time, we first check whether the requested image is already
in memory. If so, our software retrieves it, and our processing
algorithm (if configured by the user) is applied (lines 6-7). The
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user can also specify if a compression needs to be applied
over the final image. In this case, the image is sent after
a lossless compression. In case of urgent analysis, a lossy
compression algorithm can be requested and applied, where
the compression quality is a customizable parameter. The
compression quality is a value between 0 and 1: a compression
quality setting of 0.0 means that the highest compression must
be applied, while a setting of 1.0 requires images to be of
the best possible quality. By default we use 0.75. In a lossy
compression schema, the compression quality determines the
trade-off between file size and image quality, by choosing
quantization tables when writing JPEG images. For lossless
instead, the compression quality is used to control the trade-off
between file size and time taken to perform the compression,
by optimizing row filters and setting the ZLIB compression
level when writing the final PNG image.

If the image is not in memory, it must be retrieved from the
database, and then we follow the same procedure mentioned
above (lines 8-11). In this case, however, we locally save
the image in order to avoid the transfer delay in case the
pathologist will come back to work on the same sample.

The presented procedure works for offline images, while for
images snapped during the live session, a lossy compression
algorithm is necessarily applied (unless otherwise specified) as
they have to be retrieved from the microscope (lines 12-16).

In the following, we describe two examples of image pro-
cessing which can be applied either in real-time for captures
of the microscope or offline for stored samples. Before the
application of such algorithms, it is often required to regularize
the image, typically via a stain normalization, in order to
increase the accuracy of following image operations.

Algorithm 1 Image Edge Processing: Overall procedure.

1: Let I be the requested image by client C
2: Let Ac be the compression algorithm (lossy or lossless)
3: Let L be the level of Ac

4: Let Ic be the final image for client C
5: if I is a saved image then . Offline image
6: if I is already in memory then
7: I ← the image and apply algorithm
8: else
9: I ← the image from the database

10: Save I in memory, and apply algorithm
11: Ic ← apply Ac with level L and send
12: else . Real-time image
13: I ← the image from the microscope
14: Save I in the database and in memory
15: Apply algorithm
16: Ic ← apply Ac with level L and send

Stain Normalization. The procedure of staining the tissue
sections affects the appearance of H&E histology samples, and
it can vary significantly across laboratories, but even across
samples within the same lab. Although this variability only
partially limits the interpretation of images by pathologists, it
may affect the result of subsequent image analysis algorithms.
To address this problem, Stain Normalization (SN) algorithms

are able to match stain colors of histological images with
a given template [38], [39]. Formally, SN consists in trans-
forming an image I into another image I∗ via a function f ,
I∗ = f(θ, I), where θ denotes a set of parameters extracted
from a template image t. θ includes the parameters that are
generally defined to capture color information of the main stain
components in the image, such as H and E. The final result
I∗ is a stain-normalized image whose distribution of colors
resembles the ones of the template t.

In this manuscript, we considered a state-of-the-art algo-
rithm based on the method published by Macenko et al. [38].
It is applied as a reference method in a large number of
applications, such as in community challenges [40], and other
studies [41]. However, since this algorithm is time-consuming
and not always necessary for the methods described in the
following, it is applied only when specified by the user.

Counting nuclei. In Figure 6, we describe an example of
methodology we validate in this manuscript, used for the count
nuclei task. First, the image is retrieved either in real-time from
the microscope or offline from the database/ memory, and the
user labels the Region of Interest (ROI). The ROI boundaries
are set using our interface, which provides commands to
select an area on the image. However, if not specified, the
program assumes the ROI as the whole image and continues
the pipeline in the same way. One of the advantages of edge
processing is indeed the possibility to perform computations
on the whole slide image, which would be extremely power
and time consuming on local machines. After converting the
image to grayscale, a Gaussian filter is applied to blur the
image and to reduce noise. The Gaussian filter is a linear
filter, usually adopted for low-pass frequency filters, since its
effect is to remove high spatial frequency components from
an image, thus reducing the contrast of the sample. In our
experiments, the value of sigma in the Gaussian filter was 0,
and a kernel size of 5× 5 pixels was used.

As the third step, we apply segmentation through the Otsu’s
method to perform automatic image thresholding [42]. This
algorithm finds the threshold that minimizes the weighted
within-class variance and returns the image whose pixels are
either black or white. On the obtained image, the detection
of contours is indeed easier, due to the high contrast between
black and white pixels. Thus, the contours are easily extracted
using the algorithm [43], and we draw them on the final image
so that pathologists can observe them even in the RGB colored
image. As additional information, we provide the number of
found contours n, which is fundamental for the pathologist.

If necessary, the pathologist can decide to show the nuclei
centroids, for the sake of improved visibility and clarity of
the image. In this case, nuclei centroids were detected as the
moments of centroids of connected targets in a binary image,
through the Green’s formula [44].

Tumor to margin distance. Algorithm 2 formalizes the
operations performed to obtain the distance from tumor-to-
margin with an uncertainty of g. Once the ROI, defined by
the main malignant area within the pathology image, is set,
the pathologist marks the tumor as a point m in the image.
Considering that the margin of the cell is usually inked, e.g.,
in yellow as in Figure 5, a computer algorithm can rapidly
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Fig. 6: Count Nuclei computation. Image processing pipeline to extract cells information, such as the overall number and the
position inside the image.

Algorithm 2 Tumor-to-Margin Distance Computation.

1: Let I be the requested image by client
2: Let g be the granularity of the measurement
3: I1 ← ROI area of the imageI
4: m← mark the tumor point
5: CO ← get the contours in I1
6: d← 0 , ext← false , p← 0
7: v ← min (distance between m and the borders of the I1)
8: r ← v/2
9: while d = 0 do . We have the answer if d is not 0

10: circ← circumference with center m and radius r
11: if ext 6= true then
12: if circ intersect CO then
13: r ← r − g
14: ext← true
15: else
16: if circ is internal to CO then
17: p← r + g
18: else
19: v ← r − g
20: r ← (p+ v)/2

21: else
22: if circ intersect CO then
23: r ← r − g
24: else
25: d← r + g . Final result
26: end while;
27: Id ← draw distance d on I1
28: return Id and d

detect the margin contours using a procedure to identify pixels
of a specific color. Then, the maximal distance initializes v,
which is computed as the minimum length between m and
the edges of the ROI. This value is quickly obtained through
four comparisons of location m, with the four borders, and is
then multiplied by the ratio to get the distance in “mm”. The
minimal distance p is instead initialized to 0.

After this first initialization phase, an iterative search starts,
aiming to find the distance as the radius of a circumference
centered in m. The first part (lines 11-20) is a binary search of
a circumference that intersects the cell’s margin. Binary search
is a well-known approach to find the position of a target value
within an array. In this case, our algorithm has the contour CO
as target and compares this target to the circumference circ
with a radius equals to the middle of all possible distances, i.e.,
a number between p and v. If circ and CO are not crossed,

the half in which the target cannot lie is eliminated, and the
search continues on the remaining half, again taking the radius
r as the middle element to compare, and repeating this until
the target value is found. By leveraging binary search, we
can reduce the number of iterations [45], compared to other
iterative search techniques that are more time-consuming.

When the circumference is found, ext is set to true, and the
second part starts. Given the valid circumference identified at
the end of the first section, we then try to minimize the value
of r to reach the minimal distance between the target and m.
In fact, the circ found is clearly valid, but it might not be the
smallest circumference that meets the target shape. For this
reason, in lines 22-25, we iteratively decrease r until the de-
rived circ resides outside the target. At this point, we are sure
that the distance is the last value of r plus the granularity g.
Finally, the algorithm returns the distance with an uncertainty
g, and this value is reported in the image, in a way that pathol-
ogists can use this information for subsequent operations.

As can be clearly seen, the granularity value g significantly
affects the number of iterations and, consequently, the overall
time. However, despite the default value of 0.1 mm that we set
since it is reasonable in most of the cases, it can be customized
by the pathologist to tailor the specific use case.

VI. EXPERIMENTAL SETUP AND RESULTS

To establish the advantages brought by our design, we
developed a testbed deployed both on our own servers and
on CloudLab [46]. Firstly, we used the emulated version of
the microscope to test our edge-based telepathology system.
Secondly, we evaluate the algorithms implemented in terms of
accuracy and computation time. Thirdly, system performance
and resource usage are measured in order to assess the
practicality of our approach. Finally, we conduct experiments
over a real microscope to quantify the overhead due to
physical device effects. Throughout this experimental phase,
all services are installed on VMs deployed by the OpenStack
orchestrator across three physical machines.

In a typical scenario, the pathologist requests to join a
session and remotely controls the microscope. To test our
system performance, and to cope with the lack of a real end-
user in the emulated version, we replaced the front-end web
server with a request generator. The messages are sent directly
to the LiveMicro server, which multiplexes and demultiplexes
network and application requests to/from the proper VM.
In this context, the program calculates the encountered end-
to-end latency within our edge cloud when responses are
received.
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Fig. 7: Edge Computing Advantages: (a) Elaboration and Transmission time of image processing performed by LiveMicro and
a representative legacy solution. (b) Trade-off between accuracy and time for distance tumor-from-margin algorithm and tumor
detection counting. For the latter percentage is considered output if resides in a 5% range around the true value. (c) Time
necessary for different operations to be performed at the edge plus image transmission time for samples with varying size.

To evaluate our system, and in particular the computer-
aided image processing, we rely on real microscopic samples
retrieved from an online database [47]. On the other hand, in
the microscope emulated version, standard images from the
default camera of Micro-Manager are used. Despite not being
representative for assessing the validity of the processing, the
latter setting is especially effective to measure the latency and
scalability of the system when microscope settings are not
involved.

A. System Performance Analysis
One of the main benefits of adopting edge computing

in telepathology is the use of computational capacity, not
available on the microscope, to pre-process histological images
and help the pathologist team with their diagnosis, as well as to
speed up their image transfer. To validate such advantages, we
process a variety of images and quantify the expected system
performance improvement. On the local testbed, we run our
microscope emulator, while the servers are hosted on Cloudlab
bare-metal machines.

We begin by quantifying the time involved for a pathologist
to receive, compress, and process an image. In this case, the
image processing entails the nuclei count, necessary to assess
whether or not it is a tumor and the tumor grade. Tumor cells
are labeled with different histological markers or antibodies,
such as Ki-67. We consider two use cases (Figure 7a): edge
image processing (LiveMicro) and local image processing
(State-of-the-art Solution). In the LiveMicro use case, the
image elaboration is performed at the edge of the network, by a
machine in local proximity of the microscope. In this setup, the
Plugin and the edge servers are connected to the same Local
Area Network (LAN) in the Saint Louis University campus.
Instead, the client is in the same city but not on the same LAN,
and connects to the servers through the telco infrastructure.
After the first processing, the result is then compressed and
sent back for use. In this context, the elaboration occurs on
host machines running Ubuntu, Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz, while the VMs are limited to 1VCPU,
2GB RAM and 20GB Disk. Conversely, in the case of a
State-of-the-art Solution, the client receives the original image,
then it runs the image processing algorithm on it. In this
scenario, the image sent needs to be uncompressed, since
the calculation is better performed on the original version,
where the pixel information is maintained as close to the

original as possible. On the contrary, an elaboration on a
compressed image can lead to erroneous diagnosis. The testbed
is similar to the previous case, the client is in the same city
but connected through a different LAN. Host machines are
Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz. As evident
from Figure Figure 7a, the proximity of processing offered
by edge computing enables a lower latency, hence better
addressing the concerns of the response time requirements.
Both elaboration and transmission time are greatly improved
compared to local processing, due to a shorter transmission
path between the microscope and the edge machines, which
are also more powerful than conventional desktop PCs. We
can also argue that in a more traditional cloud-based solution,
servers could provide higher computation capabilities and
hence handle complex workloads, such as image processing, in
a relatively short time. In such a way, the images would be first
elaborated by a server in the cloud and then sent compressed
to the client. However, in this case, the latency between the
microscope and the server would have a more considerable
impact leading to higher transmission time.

We also measured the quality of the algorithms implemented
for assisting the pathologist during the diagnosis. Figure 7b
reports the accuracy and computation time of the algorithms
that were previously exposed in Section V, where SN-Counting
denotes the operation of counting nuclei preceded by a stain
normalization (SN) process. The accuracy metric is the ratio
of the number of correct estimations to the total number of
input samples. In the case of the counting nuclei process, we
define as correct a value that resides in a 5% range around
the true value, while the distance must differ for less than 1
mm to be considered correct. The algorithms are tested over
100 samples and results are averaged over 50 runs. Images
for the distance algorithm are obtained from the online and
publicly available database [47]; given the metadata included,
the ground truth is computed as a distance of two points in
the pixel space, then multiplied by the image scale to obtain
the final measurement in “mm”. On the other hand, for the
counting nuclei, we utilize the Kaggle dataset [48], which also
provides the solution so that the ground truth and the accuracy
can be computed straightforwardly. The two datasets are then
reviewed by our team of pathologists.

We can conclude that distance tumor-to-margin is a more
effective method, and in fact, the accuracy is higher compared
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to a tumor detection algorithm. The problem of detection
nuclei methods resides in the variety of colors of samples
and inks used to highlight tumors, leading to a solution that
hardly fits all the cases. In fact, when SN occurs ahead of the
counting, the accuracy of the process rises to 97%. However,
this benefit comes at the cost of higher processing time. For
this reason, we choose to perform the stain normalization only
when required and offline, as it would be too cumbersome
for real-time operations. The impossibility of achieving 100%
accuracy partially resides in approximations that are inherent
to the methods and partially overlapped cells. Although other
implementations of stain normalization are available, such as
in [39], [49], our main goal is to demonstrate the applicabil-
ity of such method even in the context of edge-computing.
LiveMicro can be extended with other algorithms if provided
by the user. On the other hand, borders are more easily
detected by computers, and the distance may be approximated
more precisely. In fact, the response is extremely accurate,
since the result differs less than 5% from the true value in
98% of the trials. Furthermore, we can observe that time to
obtain the distance is slightly higher than time to compute the
count of nuclei. We re-conduct this behavior to the intrinsic
complexity of the distance computation algorithm, in which
the refinement phase is notably time-consuming.

Further, Figure 7c evaluates LiveMicro in different circum-
stances by reporting the latency to process image samples of
various sizes. Image sizes range between 38 kB (image sample
A) and 14 MB (image sample F). Latency values are the
average between cases in which the image is retrieved from
the database (worst-case scenario), and the image is cached
on the server (typical scenario). Four situations are taken
into account: (i) No computing, no processing on the sample
is performed, (ii) Compressed, the image is sent (lossless)
compressed but no processing on the sample is performed,
(iii) Processing, one image elaboration algorithm (counting
nuclei) is applied on the sample sent without compression,
(iv) Compressed processing, one image elaboration algorithm
(counting nuclei) is applied on the sample sent after com-
pression. Results confirm that, in the latter case, the system
can benefit from the high computation power of servers and
the low latency due to compression. Clearly, compression
diminishes transmission time because of the smaller com-
pressed payload. Nevertheless, these results demonstrated the
significant benefits of even a simple pre-processing performed
at the edge to handle a telepathology session.

Furthermore, we analyze the system’s degradation perfor-
mance when more clients are working simultaneously. Fig-
ure 8d shows the average waiting time, i.e., the time elapsed
since the request arrives at the Plugin and its execution, for
four kinds of actions performed on the microscope. We can
observe that the time slightly increases when the number of
users increases, but even the time needed for moving the z-
stack (the more time-consuming action) is negligible compared
to elaboration and transmission time. This result ensures that
multiple users can cooperate smoothly and that the bottleneck
resides in the processing and transmission of slides.

Lastly, to prove the usability and the correctness of the
algorithms applied, the system has been validated by a team

of ten pathologists. The response was extremely positive,
especially in terms of ease of use and reactiveness, and in
fact, the compression after processing resulted as a good way
to shorten latency. In this evaluation, the pathologists try to
access the same microscope in a close area, attempting to
control it and to perform operations on the image. The latency
obtained with LiveMicro enables interactivity and usability,
confirming the numerical results also from a user perspective.
B. LiveMicro performance: resource usage analysis

We envision LiveMicro to run in hospitals with (some but
not severe) budget constraints, which often lack expensive
hardware but are provisioned with a standard medium size
datacenter. To this end, we run a set of experiments to assess
the base performance needed to run LiveMicro smoothly. We
also present some results on resource load related to create
and maintain a LiveMicro session on a VM.

As reported in Table II, the overhead of bootstrapping a
new LiveMicro session is fairly similar to the one spent in
deploying a VM on OpenStack and so non-negligible. On the
other hand, if we cache a telepathology session, its bootstrap,
i.e., resume time, is more than 200 times faster. These results
validate our approach of maintaining a pool of resources
already deployed and turned them on when necessary.

TABLE II: Startup latency in case of a pool of VMs already deployed, and
case when VM is created for each client.

Login Get Image

Pool 0.447 s 0.450 s
On demand 3.940 s 120.062 s

Moreover, we analyze the load on the physical machine,
for the bootstrap of a session, to see how this can impact
on system performance. In particular, we evaluate memory
and CPU usage. Figure 8a shows how the creation of a new
LiveMicro session does not extensively impact the used mem-
ory (RAM), in a classic case of two-users session deployment;
this means that two pathologists in different locations are both
connected to the same remote microscope. We note that for
each VM hosting a telepathology session, the RAM usage
increases only of 2 MB, and the memory is used until the
VM is destroyed, when the resources are hence released.
Considering the total RAM on the physical machine was
about 250 GB, we can state that creating and maintaining
a telepathology session with LiveMicro is negligible, as we
measured an overall consumption of less than 1%. Figure 8b
shows, instead, the CPU usage in the same conditions as the
prior experiment: a two-users telepathology session. In this
case, we note how, except for an initial peak, the deployed
VM does not particularly impact the CPU load: the usage
never exceeds 6%.

Given our resource usage findings, we conclude that
LiveMicro can run smoothly if deployed on a fairly powerful
server capable of running the two main OpenStack services,
i.e., the compute service and the networking service (see Sec-
tion IV), plus an additional one to handle each telepathology
session. In fact, given a well-dimensioned pool, the startup
time for obtaining a VM is reasonable for the user, that is
asked to wait for less than 1 second for the login request.
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Fig. 8: (a) OpenStack memory usage during the startup of 2 VMs. For each VM creation we notice an increment. (b) OpenStack
CPU usage, during the startup of 2 VMs. We notice that the CPU is just partly affected. (c) The samples are displayed in
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TABLE III: Time required for LiveMicro requests to access microscope.

10 m 1 Km 960 Km

Network Latency 0.92 ms 1.64 ms 0.14 s

Configuration 0.34 s 0.78 s 1.32 s
Stage Move 0.22 s 0.65 s 1.52 s

Z-stack Move 0.49 s 0.99 s 1.98 s
Light control 0.19 s 0.57 s 1.10 s

To assess the system performance from the user perspec-
tive, in Figure 8c we report the time to retrieve samples of
increasing size when already in the memory of the VM (best
case) or in the database (worst case). The results confirm the
validity of our approach to store locally the image so that
consecutive requests benefit from the cache layer provided by
VMs. Besides, we can note how the time to access the database
is affected by the image size and format, as well as by other
factors that can vary from case to case, e.g., caching policies of
the database management system. It is relevant to note that the
latency shown in the figure is the time to collect and display
the whole image, a rare scenario that usually happens just once
at the beginning. In practice, the user operates on a small
portion of the sample to analyze in more detail shapes and
colors, leading to a reduced latency perceived.

C. Real-microscope evaluation
In this section, we show our latency evaluation results on

an Olympus IX81 [29] microscope connected to a network
interface through our Plugin program. Table III reports the
average experienced latency over 20 runs considering four
different types of requests for a microscope located at Saint
Louis University, varying the distance between the client and
the microscope from a few meters to 960 Km. As a baseline,
we also report the network latency, which is measured through
the ping tool, and it indicates the time to send a (small) packet
over the network.

Our results confirm that the time to perform an action even
on a real microscope is lower than the standard threshold for
enabling a real-time system [50]. Only for the most remote
location (960 Km), the latency increases to values that might
be too high, but still lower than other similar solutions [51].

We can observe that for very distant locations, other ar-
rangements should be considered for optimal user experience.
For these distances, the problem is indeed the possible con-
gestion, that can be tackled both via bandwidth reservation

among separate sites, such as Virtual Private Networks, and
selecting different congestion control protocols that are more
suited for latency-critical applications. Moreover, other solu-
tions can be designed alongside the Internet Service Provider
(ISP) for a specific Quality of Service (QoS), which usually
entails a payment. In the past, the interaction with the ISP
was necessary to provide the service, e.g., in [52], where
the Norwegian Telecom reserves enough bandwidth for the
communication. Although nowadays the reservation is not a
pre-requisite, for optimal service interactivity, this option may
be valuable. Finally, when we process digital slides offline, we
show that even scarce but well-managed (CPU and memory)
resources can be adequate for an effective telepathology.

VII. CONCLUSION

Telepathology, the practice of pathology at long distance
by pathologists has been around since 1986 but never took
off due to poor performance and the lack of usability. This
paper presents a novel system aiming to advance significantly
the field of telepathology by augmenting live remote micro-
scope sessions with the computational power of (cutting) edge
computing technologies. Such a platform allows a team of
pathologists to access, control, and process, simultaneously, a
remotely located (real or emulated) microscope using merely
a (mobile) web browser. We describe the architecture of our
system and disclose its potentials to improve the field of
medical diagnosis in critical situations, for example under an
active surgery, where a quick diagnosis is vital but experts are
locally unavailable.

Furthermore, our results show how an edge computing-
empowered microscope provides additional benefits such as
performing application-specific image processing and speed-
ing up image transmission time. Such processing involves, for
example, tumoral cell identification to accelerate pathology
diagnosis (currently expressed cells are manually counted) and
to support continuous education in pathology.

Future work could focus on both aspects of this cyber-
human system. From the system side, researchers could focus
on enabling telepathology also on longer and congested paths
using novel latency-sensitive protocols, or applying more com-
plex pattern recognition algorithms on digital slides. From the
human point of view, future work could involve assessments of
Quality of Experience of LiveMicro in biomedical education.
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