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Abstract: One fundamental dimension in the design of an electrical energy system (EES) is the
economic analysis of the possible design alternatives, in order to ensure not just the maximization of
the energy output but also the return on the investment and the possible profits. Since the energy
output and the economic figures of merit are intertwined, for an accurate analysis it is necessary to
analyze these two aspects of the problem concurrently, in order to define effective energy management
policies. This paper achieves that objective by tracking and measuring the energy efficiency and the
cost effectiveness in a single modular framework. The two aspects are modeled separately, through the
definition of dedicated simulation layers governed by dedicated virtual buses that elaborate and
manage the information and energy flows. Both layers are simulated concurrently within the same
simulation infrastructure based on SystemC-AMS, so as to recreate at runtime the mutual influence of
the two aspects, while allowing the use of different discrete time scales for the two layers. Thanks to
the tight coupling provided by the single simulation engine, our method enables a quick estimation
of various cost metrics (net costs, annualized costs, and profits) of any configuration of EES under
design, via an informed exploration of the alternatives. To prove the effectiveness of this approach,
we apply the proposed strategy to two EES case studies, we explored various management strategies
and the presence of different types and numbers of power sources and energy storage devices in
the EES. The analysis proved to allow the identification of the optimal profitable solutions, thereby
improving the standard design and simulation flow of EES.

Keywords: design-time optimization; cost modeling and simulation; cyber-physical system;
electrical energy system; sustainable energy planning; sustainable power planning; design space
exploration; SystemC-AMS

1. Introduction

In the design of large-scale electrical energy systems (EESs), cost is a dimension at least as
important as the energy efficiency of the system: given the initial investment, in fact, users do want an
effective solution that can provide a return on the investment in the shortest possible time.

Designing an EES encompasses a number of options, such as the choice of components
(which power sources and which storage devices), their sizing, and particularly, their management
(how the energy flow is controlled among all the actors), possibly in a way that is aware of the
load profiles. The problem of optimizing the cost under an initial investment cost constraint is
therefore a complex problem, as it involves both “physical” aspects (i.e., the dynamics of the various
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devices, their non-idealities, the electrical characteristics of the loads, etc.) as well as “cyber” issues
(the algorithms that manage the flow of energy among these devices and the loads).

It is quite evident that accounting for (i) such a set of heterogeneous variables, (ii) numerous
significant non-idealities, and (iii) complex inter-dependencies between components can only be
handled effectively by the simulation of the EES as a cyber-physical system (CPS). This would allow
one to describe accurate (power and cost) models for the components, fed by accurate traces of
environmental data for the power sources, and exercised under realistic power demand traces [1,2];
on top of that, management policies modeled in software can evaluate a number of alternative scenarios.
Although throwing all these aspects into an optimization problem would be possible [3], this could be
done only using average quantities as representative values for the variables of the problem.

The literature presents many solutions for the simulation of these cyber-physical electrical energy
systems (CPEES), with different levels of accuracy, complexity, generality, and flexibility [4–8]. Most of
these approaches lack one fundamental feature which could be regarded as modularity. With this
term we mean the possibility of separating the different layers of information to be tracked in the
CPEES simulation. For instance, the analysis of the power flow (an “power layer”) could be carried
out to extract information that could be used for different purposes by another “layer” of simulation
that sits on top of that power layer. Such information could be used, for example, to track the
reliability (e.g., the mean time to failure, MTTF, or the mean time between failures, MTBF) of the
CPEES, using appropriate reliability models that depend on how energy is used and are fed by the
power traces obtained by the simulation at the power layer. Alternatively, as done in this work,
one could use the power traces to feed cost models to assess the overall economic balance of the system.
In some cases, a user might want to have both layers (reliability and cost), while in others, one might
be interested in only one of them. This degree of modularity requires a specific architecture of the
overall simulation framework.

An interesting solution that follows this modular approach was proposed in [9], where the
authors design a framework for the concurrent simulation of both functionality and extra-functional
properties, yet in a different context. The work refers to smart electronic systems [10–12], which can
be seen as small scale CPSs; here, the bottom layer of the simulation is the functionality; i.e., what the
overall system does and its timing evolution in terms of digital signals. Layers built on top of this
baseline layers (called “non-functional”) track other quantities (called properties), such as power
consumption, temperature, and reliability, stacked in this order. The key for modularity in this work
was the definition of a multilayer, bus-centric framework where each layer has a similar structure:
each simulated quantity corresponds to a simulation layer, and the bus-centric organization in each
layer implies the definition of a virtual bus, which conveys and elaborates quantity-specific information
(i.e., power-bus, temperature bus, etc.) to ease synchronization and information exchange.

In this work we adopt the paradigm of [9] to use it to add support for a new “property”; i.e., cost.
Cost is modeled as a new layer of the framework of the bus-centric approach: component-specific
costs are estimated locally to each component, while the bus merges them and keeps track of the
power balance and of any operation of the grid; i.e., to buy or sell power. We additionally extend the
framework to focus on the simultaneous simulation of cost with the power layer, to reproduce the
mutual interactions of the two properties, and to investigate such mutual inter-dependency.

Finally, we apply the extended framework to the design of a custom EES, that is used to highlight
and investigate the characteristics of the proposed modeling and simulation approach.

The paper is organized as follows: Section 2 discusses the background, including related work
and a brief introduction of the multi-layered framework of [9]. Section 3 illustrates how to build the
cost-layer and the information exchanges with the other layers. The implementation of proposed
simulation framework is introduced in Section 4. Section 5 exemplifies the overall approach on a
reference EES case study to prove the effectiveness of the proposed solution, and Section 6 draws
our conclusions.
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2. Background

2.1. Cost Estimation for EES Systems

The estimation of the total cost (and the possible resulting economic benefit) of an EES should
consider a number of cost items; namely, the initial investment, the runtime operation expenditures
(i.e., maintenance and obsolescence), and the cost of energy consumption, which depends on the
overall architecture and the load profiles. Once a comprehensive model is available, it will allow one to
compare different solutions (mainly the allocation of the energy flow, and the choice and sizing of the
components), so as to choose the most profitable one, by taking into account a number of constraints
and of optimization goals.

Given its relevance in many domains (industry, residential, large-scale energy generation
installations), the literature on the topic is quite rich. The most recent solutions proposed at state of the
art are summarized in Table A1 (moved to the Appendix A not to interrupt the natural flow of the
paper). The Table highlights the goal of each work, how EES components are modeled, the considered
costs, and most importantly, the solution proposed by each work, which mostly fall under two
categories: optimization-based approaches and simulation-based approaches.

Optimization-based solutions use analytical or empirical equation-based models of the power
characteristics of EES components and the corresponding costs, and formulate the problem into the
constrained optimization of a given target; e.g., maximization of power production, or minimization of
a cost function [13–31]. Unfortunately such approaches suffer from many limitations. Given that the
focus is optimization of some economic parameter, the evolution of EES components is considered
only as a byproduct: either as a constraint or an optimization goal [29–31], or as a dimension of the
problem that can be reproduced with simplified models or even simple input traces [13–18,24,25,28,32],
thereby sacrificing accuracy to simplify computation. When accurate models are adopted, they are
restricted to a subset of the components considered of interest (e.g., only batteries or PV modules),
while the other EES components are either ignored or modeled with simplistic equations [20–23,26,27].
Few works take into account the power management strategy used to activate power sources and
energy storage devices. When this happens, the goal is determining the optimal day-ahead scheduling
of energy storage devices, thereby preventing the comparison of different power management
strategies [26–31]. As a result, power dynamics are always considered as a minor dimension of
the problem (i.e., a constraint, an optimization goal, or an input), and the mutual impact of power and
cost is completely lost. Finally, these approaches provide one solution (or a few) and do not easily
allow a comparative analysis of various solutions, nor the sensitivity of a solution with respect to some
of the parameters.

Simulation-based approaches optimize EES design from an economic perspective based on dynamic
simulations of alternative configurations [33–35]. The goal is the evaluation of the impact of electricity
pricing, the feasibility of the constructed EES, or the evaluation of the most economical alternative.
However, once again the focus is on the economic dimension, thereby adopting gross grain temporal
scales (e.g., 1 h time steps) and restricting accurate modeling only to specific classes of EES components
of interest (e.g., PV modules [33,34]). Finally, the focus is restricted to only one direction of the
mutual impact between the cost dimension and power dynamics of the EES under analysis, which are
evaluated strictly sequentially, depending on the causality of interest.

The main limitations of the aforementioned approaches are thus the adoption of abstract and
simplistic models of EES components and the gross grain temporal scale: the energy dimension is
thus modeled with a very low level of detail, thereby missing important intrinsic dynamics of the
EES components, together with the modeling of inefficiencies and of realistic operating conditions.
Additionally, cost and power evolution are never considered as mutually interacting dimensions,
thereby missing important dimensions of the analysis.

The work proposed in this paper can be viewed as a different perspective; while it is a
simulation-based approach, it leverages results of an independent simulation of power traces, which can use
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models with variable accuracy and possibly with different time scales; these power traces are then fed
into the various models of different cost items (where they are power-dependent), which can vice versa
influence and impact the power dimension. This kind of modular approach is not, however, the result
of two distinct simulation environments, but both power and cost information can be derived by
concurrently simulating them: this allows one to expose all mutual dependencies between power and
cost, and thus to improve the design of EES with a more informed view of all the variables. There is
one study [36] that focused on the modeling the different components in the EES by using a different
model of computation (MoC) in one simulation framework by using SystemC-AMS. Cost is indeed
mentioned in that study, but there is no indication of how the cost models of that work are linked to the
power simulation. These are simply obtained by a post-processing of the power traces, as done in most
related works. Our proposed simulation framework speeds up the design-time optimization process
and has different methods to evaluate the power flow and economic benefit of EES by concurrently
simulating the two quantities. The key for such a modular and concurrent simulation approach is
described in the following section.

2.2. A Multi-Layered Approach for Functional and Extra-Functional Simulation

The simultaneous simulation of the various aspects of a system requires the construction of
frameworks that integrate different views of a system in a single run. The work in [9], which targeted
smart electronic systems, proposed an effective methodology that allows the simulation of system
functionality together with its power, thermal, and reliability evolution.

The approach proposed in [9] envisions a multi-layer, bus-centric framework (depicted on the
left-hand side of Figure 1, adapted from the original paper): multi-layer because it has a stacked layers
structure; each layer is associated with one simulated characteristic of the system (called property).
Bus-centric means each property is simulated with a virtual bus in each layer, used to update the
property-specific status of the system. All simulated properties are thus reduced to this common
structure, thereby easing synchronization and information exchange. The goal is indeed to avoid the
construction of co-simulation frameworks, and to rather simulate all layers in a single run by falling
on the same implementation language; namely, SystemC-AMS.

Each layer is fixed to a single generic underlying architecture, of which the layer-specific
bus is the central element, used to carry information between components (layer-specific signals).
Such information is specific of the property under analysis in the layer (e.g., voltage and current for
the power layer). Each component in the system corresponds to a model in each layer, to capture
the property-specific evolution over time of the component. The layer-specific bus aggregates the
property-specific information of each component to control the information flow and update the
overall property-specific information. Layers can additionally share information (inter-layer signals) to
mutually influence each other. Notice that signals can go in both directions; i.e., they can be forwarded
to upper layers, as signals that are needed to carry out the simulation at that layer (solid lines);
but signals can also be fed back to lower layers as information that can make the lower-level simulation
more accurate (dotted lines). In the context of [9], for example, the former type of signals could
be power consumption signals forwarded upwards to compute the temperature map of the system;
the latter type could be the same temperature maps, which could impact the power consumption of
some of the components. Most importantly, when the layers run at different time scales, time converters
can be introduced to convert the signals towards coarser or finer time scales. For instance, while it
makes sense to measure the functionality of an electronic system at the nanosecond scale, this is not
a required granularity for power simulation, and can be even more relaxed for the analysis of the
thermal flow.

Not shown in the figure, there are also layer-specific description data that are strictly referring to that
layer and are needed as a sort of “context” of the simulation. In the temperature layer of [9], these data
could refer either to the physical locations of the components, which affect the thermal flow, or to the
characteristics of the materials (type, thickness, etc.) constituting the system itself.
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Figure 1. The multiple layered framework for the non-functional properties simulation proposed in [9]
(left) and application to the simulation of power and cost proposed in this paper (right).

This paradigm proved to work very well for the simulation of the different views of a smart
system, thanks to its scalability and to the simultaneous evolution of the different system properties,
which thus can react simultaneously the one to changes of the other.

For this reason, in this work we tried to fit the above-described paradigm to the co-simulation of
power and cost of an EES, with the objective of exploiting its two main benefits; namely, modularity and
generality. Notice that the contribution of this work is showing that the layered, modular framework
of [9] is not a customized architecture, but its paradigm can be extended to other quantities: in this
specific case the operational costs of an EES. The work of [9] was applied to small-scale electronic
systems, where the non-functional properties were (from bottom to top; see Figure 1 in the manuscript)
power, temperature, and reliability. Our work aims at demonstrating the general applicability of the
modeling and simulation paradigm of [9] to the context of large-scale EES, and can add different
non-functional properties that the properties in this work are power and cost. The right-hand side of
Figure 1 shows how the generic bus-based layered architecture maps to our specific context. Since we
focus on EES, the first layer of the simulation stack coincides with the power layer. In some sense,
this represents the equivalent of “functionality” in the original version; that is, the lowest abstraction
level of the semantics. On top of the power layer sits the cost layer, which receives power flow
information (used to update the power-dependent cost items, such as electricity cost) and returns cost
information to the power layer, which can be used to implement policies in the power bus to decide
the optimal power flow among the various components.

Time converters are also expected, since some updates of some of the cost items might generally
have different time granularity with respect to power updates, which in the finest granularity are
updated every 15 min (as in the most accurate meters).

In the conceptual architecture of Figure 1, the power layer is fundamentally working just as
described in [9]; even if components are different in their power scale (100 s of Watts vs. milliwatts),
their interfaces and interaction are the same. The cost layer, conversely, is an original layer and its
implementation within the constraints of the layered structure demonstrates the claim of modularity
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of the architecture. In the next section, we will describe the cost models and the technical details to
incorporate the cost layer within the template of Figure 1.

3. Modeling of Cost

Calculating the life-cycle cost of the EES is an accurate and sound way to estimate the overall
cost spent on an asset over the course of its useful life, thereby including the initial capital costs,
the projected operating costs, and the maintenance costs, plus possible disposal costs or final residual
values of the asset. This Section maps the characteristics of the various models of the life-cycle cost
with respect to the layered structure outlined in Section 2.2.

3.1. Main Characteristics of the Cost Layer

The cost of the whole EES is a combination of component-specific cost items—that is, that can entirely
be determined locally for each component (e.g., initial investment cost, operation, and maintenance
cost); and of global costs—that is, costs that require an aggregation to be computed; this is essentially
the case for electricity cost, whose computation implies the calculation of the balance of the power
flow. Therefore, the adoption of a bus-based architecture for the cost layer is relatively natural
and straightforward:

• Each component computes its “local” costs over time;
• All individual costs are conveyed to the cost bus;
• The cost bus estimates additional global costs, i.e., due to energy balance with respect to the grid;
• The cost bus determines and keeps track of the total balance over time.

The characteristic information managed in this layer is cost, interpreted as a numeric value in some
currency. Cost is thus the only layer-specific signal that connects all components to the layer-specific
bus, and all components are directly connected to the cost bus. Notice that this architecture may not
reflect the actual physical organization among the components in the actual EES. For instance, in the
real-world EES, a certain component may be connected to the physical power bus through a DC-DC
converter; nonetheless, in this virtual cost layer, both the component and the DC-DC converter are
independently connected to the cost bus. Figure 2a shows a pictorial representation of the general
structure of the cost layer.

Figure 2. Organization of the cost layer: property-specific signals (a), inter-layer signals shared by
models of the same component (b), and with the power bus (c).

3.2. Cost Models

This Section details the various cost components by category, and it maps them to the cost
layer template. Notice that the presence of multiple cost models makes the cost signal connecting
components to the bus rather an array of cost values, as sketched to Figure 2a, where each array
element denotes one cost category listed hereafter. In the following, we will use uppercase letters C to
denote cumulative costs; i.e., costs whose definitions encompasses the time intervals over which they
are accrued. Lowercase c denotes instantaneous costs. The former are expressed in currency × time,
e.g., $ × year, and the latter in currency.
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3.2.1. Component-Specific Costs

We consider three main component-specific cost items. Since our focus is on small to medium-scale
EESs (such as those in residential installations), we ignore here disposal costs or final residual values
as they can be regarded as marginal. These could be, however, easily incorporated without any
conceptual difficulty.

Initial Capital Cost

Initial capital cost is the initial investment for the purchase of a component at time zero.
This expense is computed for component i by considering its unit cost Cunit,i and its cardinality Ni:

Ccapital,i = Ni · Cunit,i (1)

where Ci is the cost of one unit of component i; Ni is the number of units of i. We decouple the two
terms to allow the possibility of tuning the size of components in the exploration. Many components
can in fact being seen as modular (e.g., a PV panel consists of a number of PV modules, a battery pack
of a number of cells, etc.).

Time-Dependent Capital Cost

Time-dependent capital cost describes the decrease in the value of a component over its useful
life as a consequence of obsolescence and/or wearing, and it is in general proportional to its initial
capital cost. We consider two types of components, depending on how their loss of value is defined.
A first category corresponds to components that have a maximum expected duration; examples are,
for instance, PV panels and wind turbines, whose datasheets typically define maximum operational
life. For this class, we call this cost depreciation cost, defined for component i as:

Cdepreciation,i(t) = Ccapital,i · CRF · t
Ts

(2)

where Ccapital,i is defined as in Equation (1), and Ts serves as a time normalization factor and it denotes
the number of simulation samples (∆T) per year, in order to express the depreciation over each sample
time (e.g., if the ∆T is 1s, Ts = 3600× 24× 365). CRF is the capital recovery factor, a ratio used for
estimating the present value during the lifespan of a system if invested at a particular interest rate [37].
CRF is expressed by:

CRF =
R · (1 + R)n

(1 + R)n − 1
(3)

where R is the interest rate, and n denotes the number of years of operations of the system
(i.e., component lifetime).

A second class of components has instead a lifetime not defined a priori, but rather determined
by their usage characteristics; this is for instance the case of batteries, whose lifetime is defined
upon reaching a given value of usable capacity, which depends on several usage-related factors [38].
To distinguish from the former category, we call the time-dependent capital cost for this class as
wear-out cost, defined for component i as:

Cwout,i(t) = Ccapital,i ·
L(t)
Lmax

(4)

where L(t) is the loss of “functionality” over time and Lmax is the maximum value of the loss after
which the component is considered not functional and it needs to be replaced. Thus, when L(t) reaches
Lmax, the entire capital cost has been consumed.

L(t) clearly depends on the type of component and requires an ad-hoc model. Using a battery as
an example, L(t) will be the capacity loss due to both calendar and cycle aging, which are affected by
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several parameters [39], most of which can be attributed to how the power is drawn from the battery,
and thus from information derived from the power layer. Lmax is the maximum capacity loss before
the battery is considered as depleted (usually a loss of 20% from the initial capacity). This information
must be provided at runtime by power simulation, as will be explained later in this Section.

In summary, the time-dependent capital cost depends on the type of component; the term Ccapital,i(t)
will correspond to either Equation (2) or Equation (4) depending on the characteristic of component i.

Operation and Maintenance Cost

Another time-dependent cost is the one due to operation and maintenance [40] that includes both
scheduled and major corrective maintenance. This cost is component-specific, as it strictly depends
on the characteristics of the component (e.g., it may include periodical cleaning, wiring replacement,
and screw and bolt tightening). To this extent, many definitions of this cost are available.

Coperation,i(t) = Coperation,yearly,i · Pi(t) ·
t

Ts
(5)

where Coperation,yearly,i is expressed in $/kW/Year; Pi(t) is the instantaneous power flow related to
different components i; e.g., the power generation of PV modules and power provided by the battery
pack. Ts is the time normalization factor defined as in Equation (2). The Coperation,i includes the base
cost of element replacement inside each component during its operating lifetime.

3.2.2. Bus Models

The functions of the cost bus are two-fold; firstly, it calculates the costs that depend on the
overall power flow of the EES; i.e., the cost of electricity that is bought (and sold) over time from the
grid. Secondly, it computes some global cumulative metrics to be used for the exploration of design
alternatives or for computing the sensitivity with respect to some parameters of the EES.

Electricity Cost

Electricity cost is the instantaneous cost related to the money paid to (or received from) the utility
provider as an effect of the total power balance in the system. This cost can be modeled as:

celec(t) = pE(t) ·
E(t)
ηconv

(6)

where E(t) = P(t) · ∆t is the energy to be bought (or sold) at time t; P(t) is the instantaneous power
demand (positive or negative), which refers to the total balance of the EES, and its sign determines
whether the power is being bought (P(t) > 0) or sold (P(t) < 0). pE(t) is the instantaneous electricity
price (in currency/kWh); its value depends on the sign of P(t):

pE(t) =

{
pE,buy if P(t) > 0
pE,sell if P(t) < 0

where typically pE,sell < pE,buy. ηconv ≤ 1 is the efficiency of the conversion process; i.e., how the
nominally consumed energy E(t) is actually perceived [2].

Given that Equation (6) depends on the overall power flow (production vs. demand) of the EES
evolution, this cost can only be computed by the cost bus, that, by collecting the individual signals
from the components can have a global perspective on the system.
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Net Cost

The first global metric computed by the cost bus is net cost over time; i.e., simply the sum of all
cost components:

Cnet(t) =
t

∑
τ=0

(
celec(τ)

)
+∑

i

(
Ccapital,i(t) + Coperation,i(t)

)
(7)

including, thus, time-dependent capital costs, operation and maintenance costs, and the cost of
electricity until time t. Notice that the total electricity cost is obtained by integrating (summing) the
celec component over the time interval [0, t], whereas the other components already include the time
interval in their definition.

Annualized Cost

The annualized cost of an EES is the cost that, if it were to occur equally in every year in the
system lifetime, would give the same net present cost as the actual cash flow sequence associated with
the system:

Cannualized =
Cnet(tMAX)
tMAX

∑
t=0

PPS(t)

(8)

where tMAX is the maximum system lifetime, and PPS(t) is the power produced by the EES power
sources over the same interval. The equation considers all costs from the beginning of simulation to
the end of system lifetime, and divides them by the total produced power, with no distinction between
whether such power has been used to satisfy load demand or to sell power to the grid.

This cost basically returns the average cost per kWh of consumed energy produced by the system:
it is thus a useful metric to compare alternative configurations of the EES and to have a picture of
which configuration is more convenient than the others.

Profit

The net cost provides an indication of the total cost over a given time interval. When exploring
different design alternatives (EES architectures, policies), a most useful metric is the actual profit of a
given configuration. Defining a profit would, however, require to set a baseline to compare against;
since the key element that has the most sizable impact on profit is the presence of renewable power
sources, our definition of profit focuses on the net balance of the energy provided from power sources
to the load and not requested from the grid (at the price pE,buy). From this energy we need to subtract
the net cost defined in Equation (7) .

Pro f it(t) =
t

∑
τ=0

(
pE,buy(t) ·

Eps2load(t)
ηconv

)
− Cnet(t) (9)

Clearly, the profit is monotonically increasing with t during the lifetime of EES. The positive value
of profit illustrates the given configuration can bring real benefit to the users, while the negative value
indicates the given configuration is not a profitable one.

3.3. Interaction with the Power Layer

As stated in the previous section, some cost models depend on the power flows in the EES.
The concurrent simulation of the cost and power layer is, therefore, essential to get an accurate
estimation of the total EES costs. The generic inter-layer interaction depicted in Figure 1 shows generic
connection between two layers. However, there are distinct types of interactions among the power
and cost layers.



Energies 2020, 13, 2949 10 of 33

The first one involves an individual component in the two layers (Figure 2). The power model of a
component Ci sends the following information to its cost model:

• The time-dependent capital cost requires information about the current loss of functionality
of the component L, and the maximum accepted loss Lmax (Equation (4)). Both values are
known at the power layer: Lmax is a configuration value used by policies to determine when the
component reached the end of its lifetime; L is a value that is constantly updated at simulation
time to correctly estimate the behavior of the component. Using again the example of a battery,
this would be approximated by the full cycle equivalent [41], i.e., the number of equivalent full
charge-discharge cycles, which can be computed by just knowing the nominal battery capacity
and the instantaneous power drawn.

• The operation and maintenance cost strictly depends on the power produced or stored by a
component over a given time interval (Equation (5)); the power layer naturally keeps track of this
quantity during simulation.

The second type of interaction involves the two buses as it concerns aggregate information
(Figure 2c). The power bus forwards to the cost bus the following information:

• The energy balance over time ETOT , taking into account the difference between the power
provided by power sources and the power demand to guarantee the load operations. This quantity
allows one to compute the electricity cost over time (Equation (6));

• The total power produced over time by power sources PPS, useful for the estimation of the
annualized cost (Equation (8)).

There is, however, also a feedback flow from the cost bus to the power bus. The former can in
fact provide information to the power layer that can be used to design and apply specific power
management policies. Examples of such information are:

• The current price of electricity: at times, the price of electricity may be so low that it makes
convenient to recharge all energy storage elements (e.g., battery packs), and use the stored energy
to power the system when electricity price is higher.

• Data on wear-out and/or depreciation in the form of alarms or warnings that can be used to force
the replacement of some components.

The next section will present the implementation details (software infrastructure, timing model,
etc.) of the overall intra-layer and inter-layer signal interaction.

4. SystemC-AMS Implementation

In order to replicate the approach proposed in [9], the proposed framework has been implemented
in SystemC-AMS. Section 4.1 provides a brief introduction to SystemC-AMS, while Section 4.2 explains
the reasons behind this choice and explains how SystemC-AMS has been adopted in this context.

4.1. SystemC-AMS

SystemC-AMS is the extension of SystemC for modeling analog and mixed-signal systems [42].
SystemC-AMS provides three different models of computation (MoC) to cover various domains as
indicated in Figure 3.

Figure 3. Abstraction levels supported by SystemC-AMS.
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Timed data-flow (TDF) models are scheduled statically by considering their producer-consumer
dependencies in the discrete time domain. Each TDF module is characterized by a simulation time
step, which is used by the TDF solver to insert timed activation events in the standard SystemC event
queue. This ensures efficient computation, as it avoids any runtime dynamic event management.
Continuous time models can be modeled with two abstraction levels. Linear signal flow (LSF)
supports the modeling of continuous time through a library of pre-defined non-conservative primitive
modules [43] (e.g. in Figure 3 derivative and integrative, respectively). The electrical linear network
(ELN) MoC models the electrical network by connecting the instantiation of predefined primitives
(e.g., in Figure 3, capacitor and voltage source, respectively). All such abstraction levels are handled by
the same simulation kernel that derives the system of equations to be solved over time and estimates
system evolution.

4.2. SystemC-AMS Implementation of the Proposed Solution

SystemC-AMS is selected as the reference language for heterogeneous modeling for several
reasons. The provided multiple abstraction levels unify the modeling work in a wide range of
domains by using a single language: models can be built by choosing the most suitable abstraction
level, and native converters can be exploited to simulate different abstraction levels simultaneously.
SystemC-AMS also has the characteristics of a modular one, in that it divides the definition of interface
and implementation, and is a IEEE standard language; thus, it can be easily extended and free from
compatibility and reuse issues.

The flexibility of SystemC-AMS allows one to easily integrate the power models and the cost
models. Figure 4 shows an example of a component implementation of a battery that is used in the
remainder of this section as a reference. Each EES component is instantiated as a SystemC-AMS
module (SC_MODULE, Figure 4, left) that internally instantiates one SystemC-AMS module for the power
model and one for the cost model (line 5). This solution avoids forcing the fact that both models follow
the same abstraction level and leaves maximum flexibility in the choice of the implementation style.
The interface of the top level module includes the layer-specific signals of power (line 2) and cost
(line 3) that will be bound to the corresponding ports of the layer-specific buses.

Figure 4. Example of SystemC-AMS of a battery: top level module (left), power model, implementing
a circuit model in ELN (center), and a cost model (right).

The interface of the power and cost modules includes the layer-specific signals (e.g., in case of the
cost layer, one port per cost computed by the component, line 45) and the inter-layer signals, used to
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communicate with the other layer (line 22 for the signals propagated from the power module to the
cost module). This naturally enables inter-layer communication: thanks to the encapsulation of both
power and cost models in a single top level SystemC module, inter-layer communication signals are
set as TDF signals, binding the property-specific ports of the modules (lines 4 and 14–16).

The implementation of power models in SystemC-AMS has been discussed in many works at
the state of the art that proved that SystemC-AMS can find a good trade off between accuracy and
simulation time [36,44,45]. The presence of multiple abstraction levels allows one indeed to adopt for
each power model the most suitable solution; e.g., ELN for circuit or circuit-equivalent models, TDF
for equations, and LSF for dynamic models. In the case of Figure 4, the power model adopted for
the battery is the circuit model proposed in [38] that is implemented as a network of connected ELN
primitives (e.g., Ib is a current source, lines 23 and 30–32; Cnom is a capacitor, lines 25 and 34–35).

Modeling the cost equations detailed in Section 3 is straightforward, as they can be easily mapped
on C++ functions and primitives, encapsulated by the TDF semantics of SystemC-AMS. The right-hand
side of Figure 4 shows a snapshot of code: the processing function of TDF repeatedly evaluates the
cost models of the battery over time, in terms of capital cost (line 50), real-time capital cost (line 51),
and operation and maintenance cost (line 52).

Note that the separation of the power model and the cost model in two different SystemC-AMS
modules allows one to decouple their activation frequency. Power models require a fine grain activation
time step (in the order of 1s down to 1ms) to accurately evaluate the internal dynamics of the component.
Vice versa, the cost models allow a larger time step, so as to reduce the computation overhead. As a
result, the activation time step of the two modules is different (lines 41 and 56, respectively), and the
inter-layer signals are handled with a conversion between different time scales.

5. Simulation Results

All simulations reported in this section have been implemented in SystemC-AMS 2.1 and run on a
server installed with Intel Xeon 2.40 GHz CPU (16 cores, 2 threads each) and 128GB RAM, with Ubuntu
operating system 18.04.1.

5.1. EES Case Study 1

As an example case study, we used a grid-connected EES built upon the prototype of [46],
and sketched on the left hand side of Figure 5. The EES includes a wind turbine, a photovoltaic (PV)
array, a battery pack, various AC loads, a common DC bus, and the necessary converters. Tables 1 and 2
report the main characteristics of the EES components, in terms of rated power and costs, respectively.
The right hand side of Figure 5 shows the mapping of the case study to the proposed two-layer
approach. The following subsections will detail the construction of the power and cost layers.

Figure 5. Structure of the electrical energy system (EES) case study 1 (left) and result of the application
of the proposed approach (right).
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Table 1. Characteristics of prototype EES components.

Component Unit Rated Electric Characteristic Cardinality (#) Overall Rated Electric Characteristic

Wind Turbine 10 kVA 1 10 kVA

PV Module 57 V 5.49 A 30 10 kW

Battery Cell 3400 mA 3.7 V 40 × 60 200 Ah 144 V

Table 2. Initial capital cost and nominal lifetime of EES components.

Component Unit Capital Cost ($) O&M Cost ($/kW/Year) Nominal Lifetime

Wind Turbine 19,500.00 15 20 Years

PV Module 675.00 15 20 Years

Battery Cell 2.50 10 SOH→ 80%

5.1.1. Power Layer

In the power layer, each EES component is described by a model. More specifically:

• The wind turbine is modeled with a mechanical model, proposed in [47];
• The PV array is modeled with a model of a single PV module, built by adopting the solution

in [48], scaled up to the size of the PV array;
• The battery pack is based on the circuit-equivalent model in [38] (which models a single battery

cell), scaled up to the size of the pack;
• AC loads reproduce power consumption of a residential community including 15 houses [49];
• Converters are modeled in terms of their conversion efficiency as introduced in [50];
• The grid component is used only to keep track of the power balance between demand and supply,

and of any inefficiency introduced by the presence of a transformer between the grid and the
power bus.

Table 1 collects the most relevant power characteristics of these components, plus the initial
cardinality (# of elements) considered in the initial installation.

The power sources need input traces of irradiance and wind speed, which have been downloaded
from the datasets of the National Renewable Energy Laboratory’s (NREL’s) Measurement and
Instrumentation Data Center (MIDC) [51]. The time scale of irradiance and wind speed traces (one
sample per minute) is longer that those of the load (one sample per second). We adopted the conversion
methodology proposed in [9] to solve the issue of different time resolutions.

The power bus implements an initial non-cost-aware energy management policy similar to the one
proposed in [52]: AC loads are satisfied by the renewable power sources whenever possible, and the
battery pack is used to compensate whenever necessary (until its state of charge reaches a minimum of
10%). If the sum of energy stored in the battery pack and the power generated from the power sources
cannot satisfy the AC loads, the houses purchase the missing energy from the grid. Otherwise, if the
demand of the AC loads is less than the total power generation of the power sources, the unused
power is used to charge the battery pack until it reaches 90% SOC, and then it is sold back to the grid.

5.1.2. Cost Layer

In the cost layer, only some components of the EES are relevant from the cost perspective. AC loads
are not considered as a “variable,” as they are assumed to be given upfront in terms number and type;
as such, they are not associated with a cost model, as they do not contribute to the overall economic
evolution. Therefore, loads are an input of the system; i.e., a trace of the input power demand over time.

Another difference with respect to the power layer is that all costs connect to the grid; i.e., the costs
of buying/selling energy to the grid, are taken into account inside the cost bus; it is not, therefore,
necessary to include a specific component for the grid.
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Thus, the cost layer features three components: the two power sources (i.e., the wind turbine
and the PV array) and the energy storage (battery pack). Table 2 reports all cost information for such
components. All components model their initial and time-dependent capital costs (Equations (1)
and (2) or (4)) and their operation and maintenance cost (Equation (5)). Note that the operation and
maintenance cost is expressed in terms of $/kW/Year, as it considers the annual routine operating and
maintenance costs, and not accidental inside parts replacement. The interest rate used in Equation (3)
is 7% for all components, and the CRF is thus set as 0.094.

The main difference between the models of the components is in terms of their time-dependent
capital cost:

• The wind turbine and the PV array are considered as fixed lifetime components (with lifetime
20 years, as derived from their datasheets); thus, their time-dependent capital is modeled as in
Equation (2).

• The battery pack has a variable lifetime, depending on its usage profile; thus, its time-dependent
capital cost is modeled as in Equation (4), by considering the loss of functionality L as a aging
degradation of battery capacity over time. The state of health (SOH) of the battery pack is
represented by 1− L.

The cost bus estimates the total electricity cost with Equation (6), plus the net cost and the
annualized cost, as defined in Equations (7) and (8). In our analysis, electricity price depends on
the kind of operation (i.e., buying or selling) and on the time slot of the day, as shown in Table 3.
Electricity buying price pE,buy is initially defined in three time slots, with the highest price at peak
demand hours of the day. Electricity selling price pE,sell is instead independent of time and is much
lower than pE,buy.

Table 3. Electricity prices in different time of the day, as defined in [53].

Operation Rate Value ($/kWh) Time Slot of Day

Buying
F1 0.220 10 a.m.–3 p.m., 6 p.m.–9 p.m.
F2 0.215 7 a.m.–10 a.m., 3 p.m.–6 p.m., 9 p.m.–11 p.m.

F3 0.200 11 p.m.–7 a.m.

Selling - 0.030 all day

5.1.3. One-Month Example Simulation Traces

In order to illustrate the different quantities that can be trace with the proposed simulation
framework, we extract one-month simulation results of the prototype EES configured as shown in
Table 1. For the simulation, the environmental traces used are relative to the observation site of MIDC
at the University of Arizona [51], which has dry and windy weather all year long, with up to 90%
sunny days.

Evolution of the Power Layer

Figure 6 depicts the evolution of the prototype EES in the initial 30 days by focusing on the power
layer. Plot A shows the evolution of the environmental traces, in terms of solar irradiance (blue line)
and wind speed (orange line), while plot B shows the power production of the corresponding power
sources (same colors as in A). Plot C shows residential load demand over time. Plots D and E show
the results of the application of the power bus policy in terms of state of charge (SOC) over time of the
battery (D) and power balance in the system that leads to buying or selling energy.
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Figure 6. One-month long simulation of the EES in terms of power tracing quantities.
The solar irradiance and wind profiles shown in (A) illustrate different daily weather conditions;
the corresponding power generation by PV array and wind turbine indicated by (B); (C) reports the
load power consumption of the whole residential community; battery SOC profile is shown in (D),
within its operating range from 10% to 90%; the interactions with utility grid to buy or sell energy due
to the energy surplus and deficit are illustrated in (E).

Evolution of the Cost Layer

The corresponding cost information evolution is shown in Figure 7, which reports one subplot per
cost equation described in Section 3.2.1. The plots refer to the aggregate cost for all components,
as determined by the cost bus, to provide a global view of the system rather than focusing on
single components.

The plots in A and B show the global evolution of the time-dependent capital cost and of the
operation and maintenance cost over time, respectively, as in Equations (2) and (5). Such graphs
linearly grow over time, as the system components’ values decrease over time and maintenance is
necessary to allow their correct operation.

The graphs in C-E are used to comment on the instantaneous electricity cost, dropped down
into money spent to buy electricity from the grid (C), and money earned by selling to the grid (D).
Such graphs reflect the application of the policy implemented by the power bus. For the sake of
readability, we report in E the evolution of the battery SOC: from this plot, it is evident that electricity
is bought from the grid when the battery is discharged (SOC < 10%) and the loads demand too much
power, and that electricity is vice versa sold to the grid when power sources can feed the loads and the
battery is fully charged (SOC > 90%).

Plot F shows the total net cost, as from Equation (7), that grows almost linearly over time, as a
result of the sum of electricity cost with the time-dependent capital cost and operation and maintenance
cost of all components.

Plot H reports the evolution of profit over time (Equation (9)) that mitigates net cost by considering
the intrinsic benefit generated by using the produced green energy (reported in plot G), rather than
satisfying the entire load demand by buying from the grid. As the graph reports, exploiting renewable
power sources generates a positive advantage for the EES: profit tends to grow linearly over time.
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The decreasing periods correspond to time slots when it was necessary to buy electricity from the
grid, as the battery SOC was equal to 10% and renewable energy could not feed the loads (e.g., in the
daytime of 6th and 20th days, or in the nighttime between the 9th and the 10th day).
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Figure 7. Evolution of the different cost quantities referring to the overall EES system and to
the snapshot of simulation reported in Figure 6: time-dependent capital cost (A); operation and
maintenance cost (B); electricity cost, divided into buy cost (C) and sell cost (D); SOC evolution of the
battery (E); net cost (F); benefit generated by using power sources to feed the loads (G); and profit (H).

Evolution of Component-Specific Costs

Figure 8 reports the detailed evolution of time-dependent capital cost and O&M cost for each
component in the EES.
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battery bank (C) and SOH and battery current profile (D) referring to the snapshot of simulation
reported in Figure 6.
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The time-dependent capital cost evolves linearly for the PV installation, A, and the wind turbine,
B, which have a constant depreciation over time, according to Equation (2). The time-dependent
capital cost of the battery (C) reflects the capacity loss over time, as it is calculated with the wear-out
Equation (4). The full cycle equivalent battery pack aging mode [41] is adopted in our simulation, which
correlates (Equation (10)):

Ncyc =

∫ T
0 |I(t)|dt
2 ∗ Cnom

and L =
Ncyc

Ncyc,max
(10)

where effective number of cycles Ncyc is an amount of charging and discharging energy divided by a
nominal battery capacity Cnom; Ncyc divided by the maximum charging and discharging cycles of the battery
Ncyc,max indicates the lost capacity (L).

We define 1− L as the state of health (SOH) of the battery pack; the real-time available battery
pack capacity is thus computed by SOH × Cnom. The SOH profile shown in D illustrates the available
capacity decreases based on the battery charging/discharging current, whereas it keeps stable when
there is no current flow in the battery pack (blue line in D); e.g., during the night between 5th and 6th
days; then results the time-dependent cost also do not change during such period (Orange line in C).

The operation and maintenance cost grows almost linearly for all components, in a way that is
linearly proportional to the unit operation and maintenance costs listed in Table 2; i.e., 10 $/kW/Year
for the battery pack and 15 $/kW/Year for the other components. However, the cost growth is strictly
related to the power handled by the component over time. This is clear from the plot in A, as the O&M
cost of the PV module has approximately a stair-case waveform shape. This happens because at night
there is no PV power production, and thus no increase in the O&M cost. Concerning the O&M cost of
the battery, it shows itself to be similar to its time-dependent cost due to there being no power value
sent to the cost layer during the battery pack idle period.

Comparisons with Previous Works

Concerning the validation of the power simulation accuracy and the comparison with other work,
it is not possible to directly compare with other similar methods, as it would imply re-implementing
the codes of other authors, since the comparable frameworks are not open-source. Although different
in the way the co-simulation of power and cost is carried out, one possible option is to build the
same proposed framework in Simulink, the work of [36] has demonstrated that already demonstrated
that a SystemC-based homogeneous simulation can conduct the EES power simulation with excellent
accuracy compared with Simulink (the average error is smaller than 0.0001%; the maximum error of
all different components in the EES is smaller than 0.5% ), while achieving a speedup of about 250X
on simulation time. In terms of the cost evolution, Simulink it requires additional post-processing of
power traces to track the cost metrics, which further supports the benefits of our proposed concurrent
simulation, as the post-processing for the evaluation of the cost is proportional to the length of the
total simulated interval.

5.1.4. Design Space Exploration through Proposed Simulation Framework

The previous section has shown the type of analysis that our framework can provide;
however, its main use is to allow a cost-aware design of EES while simultaneously simulating the
power flow of the system.

To demonstrate this feature, this Section provides three possible design space exploration (DSE)
experiments to rank different system configurations from the cost perspective. We first compare the
adoption of two possible power policies: the standard power management policy proposed in Section 5.1.1
and a cost-aware policy, designed for real time pricing rates.

Then, we propose two design space explorations that consider as variables the amount of power
sources and of energy storage; i.e., the numbers of PV modules, battery cells, and wind turbines included
in the system. The reference initial configuration is the one proposed in [46] and listed in Table 1,
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i.e., one wind turbine, 30 PV modules, and a battery pack of 2400 battery cells. The first experiment
carries out an exhaustive exploration of different configurations to determine the one with the highest
economic profit as computed by Equation (9); the second one explores the most profitable configuration
under the fixed initial capital cost limitation.

Comparison of Different Power Bus Policies

The pricing policies applied by the grid suppliers have an important impact on the profit and the
costs connected to EES operation, as evident from the different cost definitions provided in Section 3.
When building the power management policy of an EES, it is thus crucial to determine how the energy
balance between loads and renewable power sources fits the pricing policy that will be applied by
the supplier.

The power management policy presented in Section 5.1.1 is not cost-aware: it assumes a traditional
time of use (TOU) policy like the one in Section 5.1.2, where electricity price is different at different
times of the day (higher/cheaper rates during peak/off-peak hours). However, the smart grid market
has started featuring into complex pricing policies [54–56]. Comparing such rates and understanding
their economic impact given the power management policy is far from trivial.

The framework proposed in this paper naturally enables this kind of analysis, thanks to the
concurrent cost/power co-simulation of the EES on typical environmental traces, with the possibility
of evaluating different power management policies implemented by the power bus.

To prove this effectiveness, we compare the adoption of the non-cost-aware policy presented in
Section 5.1.1 with a cost-aware policy. In the latter, electricity price is changed dynamically according
to a real time pricing (RTP) strategy. RTP improves flexibility as electricity price closely reflects the
trend of the wholesale market and of the energy demand over time on the grid: prices vary at any
time of day, several times per day, and differently on different days (even working ones) of the week;
this should encourage users to behave in a flexible manner to reduce demand peaks [56].

As a possible strategy that uses this dynamically changing pricing, we propose the following
energy management policy: if the renewable power sources cannot satisfy the load demand, the power
bus checks the current price of electricity. If the price is lower than the daily average buying price
(calculated as the moving average over one week), then electricity is bought from the grid. This allows
one to save the energy stored in the battery pack for more expensive time slots. This modification
makes the policy cost-aware, as it shifts electricity demand on the grid to cheaper time slots.

Figure 9 analyzes the impact of the two policies (the non-cost-aware and cost-aware ones) by
comparing the simulation results on a one-week simulation, from Monday to Sunday. Plot A shows
the evolution of the total load power consumption of the whole community (blue) and the total power
generation from renewables (i.e., PV modules and wind turbine, in red), in order to highlight the
power balance in the system. Plot B indicates the evolution of electricity prices to buy energy from
the grid applied by the cost-aware policy, as derived from [56] (solid) and the moving average used
by the policy to implement cost-awareness (dashed); notice that the electricity price exhibits a high
heterogeneity not only across the hours of a single day but also across different days of the week.
As a concrete comparison between the two policies, plot C reports the SOC profile of the battery pack
(dashed for the cost-aware, solid for the non-cost-aware).

The main difference is visible on Monday (Day 1), when the total renewable power generation
cannot satisfy the load consumption. Since the RTP is lower than the average buying price,
the cost-aware policy does not use the battery (whose SOC does not change in this interval), but rather
buys power from the grid. Vice versa, the non-cost-aware policy uses the battery to provide, and the
SOC curve of non-cost-aware policy (orange color) reaches the minimum threshold of 10%.

Table 4 lists all the costs after one year of operation by applying the two different policies. Net cost
and profit are calculated with Equations (7) and (9): net cost is the sum of real-time capital costs,
operation and maintenance costs, and the cost of buying/selling power from/to the grid; notice
the cost of selling energy (second row) is a negative value since it is treated as a gain of the EES
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compared to the cost of buying energy; profit is the value gained by using renewable power sources
minus the net cost. The year uses the same real load consumption (total AC loads of 15 houses [49]),
environmental data collected by MIDC at University of Arizona [51] as the previous simulation,
and RTP is extrapolated by [56] repeating the 1-week profile shown in Figure 9B. The cost-aware policy
reduces the time-dependent capital cost and operation and maintenance cost of the battery, which is
less involved in the EES energy flow. However, the cost to buy from the grid is higher for the cost-aware
policy, and it is not compensated by a higher gain to sell to the grid. This is not counter-intuitive: a
cost-aware policy is not necessarily improving the overall net cost or profit, as shown in the table, but it
is just inclusive of the electricity cost in the decision of the energy flow. While the choice of buying
energy when the price is low seems reasonable, it causes in fact a reduction of the energy provided by
the EES itself (avoid using the battery and rather buy when electricity price is considered low, thereby
reducing the benefit generated by using power sources to feed the loads).
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Figure 9. Different scenarios of two power management policies within one example week.

Generally speaking, the design of a smart energy management policy that maximizes the profit is
not the target of this work. In this section we just showed that the proposed simulation framework can
easily include cost “in the loop” and can efficiently validate the policies over time intervals of practical
significance. In this perspective, the result on the cost-aware policy confirms that it is necessary to
evaluate the mutual impact of cost and power, to get a complete view of the economic advantage of
the EES under design.

Table 4. Different cost values after one year operation by two policies.

Cost Type Cost-Aware Policy ($) Non Cost-Aware Policy ($)

Electricity Buy 2445.34 1855.35

cost Sell −507.34 −416.51

Own (provided by EES) 9146.64 9736.63

Battery Time-dependent capital cost 470.86 662.14

Operation and maintenance cost 17.46 24.73

PV array Time-dependent capital cost 1903.35 1903.35

Operation and maintenance 55.88 55.88

Wind turbine Time-dependent capital cost 1832.79 1832.79

Operation and maintenance cost 123.57 123.57

Net Cost 6341.97 6041.30

Profit 2804.67 3695.33
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Exhaustive Exploration of Different Configurations

The first scenario is an exhaustive DSE to determine the configuration with the highest economic
benefit. Two cases are described in here based on the presence of wind turbine. As the capital cost
of one wind turbine is approximately equal to the capital cost of 29 PV modules, the ranges of the
parameters of power source and energy storage are set as follows:

• The number of PV modules varies from 0 to 100 in steps of 10 when the wind turbine is present,
and from 0 to 150 when there is no wind turbine in the EES;

• The number of battery cells varies from 0 to 10,000, in steps of 1000.

The AC loads and input environmental traces are same as the ones introduced in Section 5.1.3.
The TOU scheme is adopted as electricity buy price, 0.03 $/kWh as the electricity sell price; then we
use the non-cost-aware power management policy in the exploration simulations.

The left-hand side of Figure 10 shows the net cost for the cases with (top left) and without
(bottom left) wind turbine after 20 years, which is the maximum operating lifetime of wind turbine and
PV modules. The right-hand curves show instead the corresponding 20 years annualized cost computed
by Equation (8). The x-axis and y-axis represent the different numbers of PV modules and battery cells
in the pack, and the z-axis represents corresponding cost.

Figure 10. Net cost (left) and annualized cost (right) of different ESS configurations after 20 years with
(top) and without (bottom) wind turbine.

The results illustrate the advantage of wind turbine in the EES: the annualized cost of those
EES including wind turbine is about 10% of the annualized cost of configurations including only PV
modules and batteries. Such a big advantage is mainly caused by the complementary effect of the
wind turbine with respect to photovoltaic energy generation: the wind turbine mostly generates power
at night or on cloudy/rainy days, when the PV modules cannot generate power or can only generate
power with low efficiency. Additionally, the wind turbine increases total power generation during the
peak hours to reduce the need of buying power from the grid.

The optimal EES configuration without wind turbine is made of 5000 battery cells and 150 PV
modules, thereby reaching an annualized cost of 0.9591 $/kW. The optimal configuration when
the wind turbine is present has 2000 battery cells and 100 PV modules, with a total 0.4984 $/kW
annualized cost. This confirms the intuition that annualized cost can be reduced by increasing total
power generation.
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However, such configurations may not be optimal from the perspective of profit; i.e., when taking
into account also the advantage of self-consumption of power generated by the renewable power
sources. The corresponding results for the exhaustive exploration results in the perspective of profit
are shown in Figures 11 and 12. The x-axis and y-axis represent the different numbers of PV modules
and battery cells in the pack. The z-axis represents the total profit of EES computed by Equation (9)
for the various configurations, at different points of the lifetime of the EES (i.e., after 5, 10, 15 and
20 years).

Figure 11. Profit in different years with various configurations for case without wind turbine in EES.

Figure 12. Profit in different years with various configurations for case with wind turbine in EES.

Figure 11 refers to EES configurations without the wind turbine: the results illustrate that none of
the configurations without a wind turbine results into a positive profit, even after 20 years. The 3-D
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surface shown in the figures indicates that the more PV modules the higher the benefit, still on the
negative profit side. The optimal configurations is different from the previous analysis and always
include 6000 battery cells and a number of PV modules that varies from 140 to 150 (due to the varying
nature of environmental inputs and load power consumption profiles over the years). Notice that,
for longer time horizons, the profit of the EES worsens, e.g., the configuration of 6000 battery cells with
140 PV modules has lost 2805.77 K$ after one year, and this loss is enlarged to 58,080.77 K$ after the
EES run for 20 years.

When the EES includes the wind turbine for generating power, there exist several configurations
making profit, as revealed in Figure 12. This proves once again the benefit of a wind turbine in the EES.

According to the simulation results, the optimal configuration with highest profit is made
of 3000 battery cells with 60 PV modules and one wind turbine. Some years see a higher profit
when decreasing PV modules to 50, due to the different weather conditions and load power profiles;
however, the increase in profit is minimal; e.g., the configuration with 50 PVs leads to an increase of
86.90 $ after 5 years, while one with 60 PV modules makes a profit 850.42 $ bigger than the 50 PV
modules one after 20 years). Thus, the two configurations can be considered comparable, and the user
may choose the one he prefers (e.g., the one with lower initial capital cost), knowing that the profit will
be comparable.

Exploration with Fixed Initial Capital Cost

A more realistic scenario is the one where the initial capital investment is a fixed constraint,
i.e., the compared EES configurations have same initial capital cost. Given the big advantage of
the presence of a wind turbine in the EES indicated in the previous exploration, the configurations
considered in this analysis always take into account the presence of the wind turbine.

We assume an initial capital cost to 60,000 $: Table 5 lists 20 different configurations with different
numbers of PV modules, battery cells and wind turbines, with an initial capital cost as closed as
possible to 60,000 $. Note that configurations from 1 to 13 have one wind turbine, and explore the
number of PV modules (from 0 to 60) and of battery cells (0 to 16,200). Configurations from 14 to
20 additionally explore the introduction of a second wind turbine, thereby lowering the number of the
other EES components to meet the initial capital cost constraint.

Table 5. Different configurations with fixed initial capital cost in the exploration.

Config. PV Modules Batteris Wind Turbines Config. PV Modules Batteries Wind Turbines
(#) (#) (#) (#) (#) (#)

1 0 16,200 1 11 50 2700 1

2 5 14,850 1 12 55 1350 1

3 10 13,500 1 13 60 0 1

4 15 12,150 1 14 0 8400 2

5 20 10,800 1 15 5 7050 2

6 25 9450 1 16 10 5700 2

7 30 8100 1 17 15 4350 2

8 35 6750 1 18 20 3000 2

9 40 5400 1 19 25 1650 2

10 45 4050 1 20 30 300 2

Furthermore, we bring another factor in the exploration to investigate the influence of weather
condition. We conduct the exploration with data relative to two locations from the database of
NREL’s MIDC [51] that have significantly different climatic characteristics: one is located in Eugene,
Oregon (cloudy and wet climate), the other in Tucson, Arizona (dry and windy climate).
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The exploration results in perspective of profit in both locations show the same finding as previous
explorations, the highest profitable configuration is the same one in each year.

Figure 13 shows the profit results after 20 years for the two locations. As expected, the profits
in Arizona (right) are always higher than in Oregon, due to its better environmental conditions.
Table 6 lists the profit made by highest profitable configuration at both locations in different years: the
difference of the profit keeps about 150%, due to the their climatic characteristics. For example,
the average annual energy generated by PV modules for configuration 10 in Arizona is about
30,000 kWh, and the wind turbine produces about 50,000 kWh every year; while the same numbers in
Oregon become about 20,000 kWh and 25,000 kWh, respectively.

Overall, the highest profit configuration in Eugene is number 19 in Table 5, and the highest one is
number 18 for Tucson (peaks of the 3-D surfaces across all years). Note that both optimal configurations
have two wind turbines, thereby proving that wind power generation is the critical factor among three
modifiable parameters in the EES. The valleys in both 3-D surfaces correspond to 13, which features no
battery: this indicates that the battery pack also plays an important role to maximize the profit, as it
reduces the need for buying energy from the grid.

Figure 13. Profit of different configurations have same initial capital cost at two locations.

Table 6. Highest profit at both locations in different years.

Year Eugene, Oregon Tucson, Arizona Absolute Relative

Config. Profit ($) Config. Profit ($) Difference ($) Difference (%)

1 19 2402.92 18 6062.42 3659.50 152.29%

5 19 11,997.35 18 30,282.70 18,285.35 152.41%

10 19 23,971.38 18 60,679.42 36,708.04 153.13%

15 19 35,432.53 18 90,469.58 55,037.05 155.32%

20 19 49,118.32 18 122,508.33 73,390.01 149.41%

5.2. EES Case Study 2

In order to show the high flexibility of our proposed simulation framework, we built another
EES case study as described in Figure 14; the EES is composed of a PV array, an electric vehicle (EV),
an AC load, a common DC bus, and the relative converters. The left-hand side of Figure 14 draws the
conceptual graph of the new EES case study, the right-hand side displays the corresponding modules
of the EES in the proposed simulation framework.
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The construction of the power layer and cost layer in the proposed simulation framework has
been done similarly to the previous example of Sections 5.1.1 and 5.1.2.

Figure 14. Structure of the EES case study 2 (left) and result of the application of the proposed
approach (right).

Concerning the power layer, the PV array has been modeled by starting from a single PV module
model [48], which has then been scaled up to the size of the final array; namely, 10 PV modules to
mimic a small-size residential PV installation. In this case study the size of the array is fixed. The AC
load represents the power consumption of one single house from dataset [49]; converters are modeled
as already described above [50]. The EV consists of two sub-modules; namely, the battery pack module
and EV motor module; their models are built by the methods provided in [50]; the grid is used to keep
track of the power balance between house power consumption and PV array power generation and
energy storage of EV.

The input traces of solar irradiance from the dataset provided by the National Renewable Energy
Laboratory’s (NREL’s) Measurement and Instrumentation Data Center (MIDC) [51]. Concerning the
driving profile, we assume the EV operates according to a daily commute routine: the driver leaves
at 7:30 a.m. and drives half an hour to arrive at the destination; then he/she drives another half an
hour and comes back home at 7 p.m. We assume the EV consumes the identical energy every day in
the following simulations to remove from the analysis the influence from the EV driving situations.
This scheme can obviously be changed should one be interested in analyzing the fluctuations due to
specific driving patterns.

We envision two main scenarios in the EES daily operation; the first one is with the EV plugged,
the second one is when PV acts as as the only power source connected to the EES. The power bus
module implements a cost-aware energy management policy: (1) when the EV is not connected, the PV
array provides its generated power to satisfy load demand of the house; excess power will be sold
to the grid while power deficit will be bought from the grid; (2) when the EV is plugged, we set a
threshold electricity price to decide whether the power consumption of the house is provided by the
EV (price < threshold), or bought from the grid (price > threshold). However, the EV can provide
power only until its battery SOC reaches to 10%, then the house will have to buy from the grid the
required power, and the EV will start to charge the battery until the electricity price goes below the
threshold price. As already discussed for the previous uses case, this is just an example of policy and it
has no claim of optimality; our objective is to show the flexibility of the framework and not to provide
optimized policies.

Concerning the cost layer, we adopted the three-time slots electricity price as indicated in Table 3
in this case study and we set the threshold electricity price is 0.21 $/kWh; therefore, it means EV
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plays the power source role in the EES during the electricity price in the F1 and F2 periods if it has
residual energy.

The cost items referred to the battery and the PV modules are the same as in Tables 1 and 2.
We selected several EVs with different battery pack sizes in the market used in the following simulations.

Notice that the cost analysis does not consider the items involved in the EV operations outside
the house EES, such as possible intermediate charging costs or different driving distances.

5.2.1. One-Week Example Simulation Traces

We extract a five-day simulation (one week of working days) results of the EES with EV case
study to show the different power and cost quantities that can be tracked in our proposed simulation
framework. For the battery pack size of the EV used in this example, the 21 kWh battery pack with
40sX40p configuration is adopted. The selected solar irradiance trace is the location at the University
of Arizona [51]. The load consumption profile is extracted from the number 1 house in the dataset [49].

Evolution of the Power Layer

Figure 15 shows the EES main quantities evolution of the power layer. Plot A shows the PV array
generation power evolution, it illustrates the EES does not have a renewable power source during the
night. Plot C shows the result of the power bus policy that leads to buy or sell energy with the grid.
Plot D shows the SOC over time of EV battery pack and plot E shows the corresponding battery current
profile, the positive value means the discharge current, the negative values means the charge current.
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Figure 15. Five-Day simulation of the EES in terms of power tracing quantities. The PV power
generation profile is shown in (A) illustrate different daily weather conditions; (B) reports the load
power consumption of one house; the interactions with utility grid to buy or sell energy due to the
energy surplus and deficit are illustrated in (C); battery SOC profile is shown in (D), within its operating
range from 10% to 90%; the corresponding battery current is indicated in (E).
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In order to show how the policy executed in the power bus and how we consider the
time-dependent capital and O&M cost of the battery pack in EV in our simulations, we extract
one day from Figure 15 to give more details as shown in Figure 16.

Because EV leaves from the house at 7:30 a.m. and comes back home at 7 p.m., there are two
periods after 7 a.m. and before 7 p.m. in the plot C indicate the SOC of battery decreases (as estimated)
due to the driving. In the period when the EV is plugged in the house, the battery pack in the EV
provides the power to the house if the electricity price is higher than the threshold price 0.21 $/kWh,
therefore, plot E shows there are discharge currents between 7 a.m. and 7:30 a.m. and from 7 p.m.
to 11 p.m. However, the SOC of battery pack reaches its bottom operation limitation 10% during the
period from 7 p.m. to 11 p.m. as indicated in plot C, so the house has to buy power from the grid
starting from about 9:50 p.m. as shown in plot B.

As discussed above, the cost generated by the EV daily driving and charging does not take into
account in our analysis, the reason is that the EV is independent energy storage or power source
component to the house, there is no direct relation between load demand of the house and the EV,
we only consider the power involved between the EV and the house when the EV plays a role of the
power source. Therefore, the power consumed by the daily driving and the charging power to backfill
such consumed power is ignored, but the charged power for compensating the power provided to
the house should be taken into account. This point is illustrated by plots B and C, the EV starts to
provide power to the house when it comes back house at 19:00 and the SOC is about 40% at that time
as indicated by red arrow A; then the house start to buy power from the grid after the SOC decreases
to 10% at around 21:45 as shown by red arrow B; the electric price is lower than the threshold price
after 23:00; thus, the EV starts to charge the battery pack; when the SOC increases to 40% around 24:00
as indicated by red arrow C, the bought power for charging the battery is stopped since it reaches
the SOC when the EV arrives at house, only left the bought power for the load demand of house as
shown in plot B. We remove the influence of the EV driving conditions from our analysis in this way,
only consider the period between arrow A and C which is the period of EV involved with the House.
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Figure 16. One-day long simulation with power quantities of the EES extracted from Figure 15.
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Evolution of the Cost Layer

The corresponding cost quantities traces are shown in Figure 17, each subplot is related to one
cost equation formalized in Section 3.2.1.

Plots A and B show the time-dependent capital cost and operation and maintenance cost of PV
modules and battery pack in EV; the time-dependent capital cost of PV modules is updated according
to Equation (2), so it increases as time elapses. Conversely, the time-dependent capital cost of the
battery pack is given by Equation (4), so it only increases when the EV connects with the house to
provide the power or to charge the battery pack to backfill the provided power; both actions use
Equation (5) to compute the operation and maintenance cost; therefore the curve of PV is related to
the power generation profile that keeps stable during the night and increases during the daytime,
whereas the curve of the battery pack has the similar trend as time-dependent capital cost.

Plot D shows the cost related to the grid as per Equation (6). It indicates that the surplus PV
power is sold to the grid and the house needs to buy the power if PV power cannot satisfy the power
demand when the EV is disconnected with the house; it also indicates that the house always buy the
power from the grid from 11 p.m. to 7 a.m. due to the low electricity price. The blue line in plot F
shows the net cost formalized by Equation (7), which grows over time since it is a result of the sum
of the described previous cost. Plot E shows the evolution of intrinsic benefit generated by using the
PV power and battery pack of EV, instead of buying power from the grid to satisfy the load demand.
The orange line in plot F illustrates the profit profile of the EES computed by Equation (9), the negative
values tell this EES cannot bring profit finally, but notice that the EES still can bring the benefit, a more
comprehensive comparison is introduced in the following section to illustrate the benefit of EES.
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Figure 17. Five-day simulation with cost quantities of the EES corresponding to Figure 15.

5.2.2. Comparison of Different EVs in the EES

As an example of design-space exploration, we investigated the impact of different EVs involved
in the EES, in terms of different battery sizes. We select several EVs (with different battery pack sizes)
in the following simulation. Table 7 lists the corresponding configurations, chosen from a set the
popular common EVs in the market [57]. We also added two configurations without battery pack
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involved in the EES as a reference. The first one shows a scenario in which the house always buys
the power from utility grid since there is no any other power sources; the second one indicates the
house can also get the power from PV modules instead of only buying power from the grid, while still
having no storage (EV).

Table 7. Different configurations of EES for comparing the cost quantities.

EES No. PV Modules Number Electric Vehicle
EV Model Battery Pack Size (kWh)

1 0 NaN 0

2 10 NaN 0

3 10 Mitsubishi MiEV 16

4 10 GM Spark 21

5 10 Nissan Leaf 30

6 10 BMW i3 (2019) 42

7 10 Tesla S 60 30

Table 8 shows the one-year long simulation results of the different configurations list in Table 7.
The first row indicates the situation when all the load demand needs to be satisfied by the grid, so there
is only electricity buying cost, the net cost and profit is computed based on the Equations (7) and (9),
respectively; notice that the negative sign in the last column means an absolute cost for the household.
The PV array cost columns are constant but in the first case, as it generates the same power. The “buy”
electricity cost column indicates that the cost of buy electricity decreases if the battery pack size in
the EV increases due to the residual energy of battery pack increases when the EV comes back house,
the last three cases show that the “buy” electricity cost are same because of the maximum energy
can be provided to the load by the battery pack is reached, it means increasing the battery pack size
becomes useless.

The “own” electricity cost behaves similarly to the buy cost; it first increases for increasing battery
sizes, then it stabilizes since the maximum energy provided by the EV is reached. The battery pack cost
columns indicate that the O&M cost is positively correlated to the power provided from the battery
pack, while the time-dependent capital cost column tends to decrease for larger sizes because the
time-dependent capital cost (Equations (4) and (10)) states that the aging degradation is reduced when
the battery pack size increases.

The last column in the Table 8 illustrates that all the different EVs involved in the EES cannot bring
profit for the house, which is not like the results in the previous case study, for example, 3000 battery
cells with 60 PV modules and 1 wind turbine combination of previous EES case study can generate
positive profit as shown in Figure 12. However, involving EV in the EES can bring economic benefit
compared to the situation when this is no EV in the EES; for example, involving an EV with a 16 kWh
battery pack (third row) can bring 16.36 $ economic benefits compared to the EES without EV involved
(second row). Finally, the profit-optimal battery size is the one in the third case; it provides about a
1104.33 $ benefits compared to the case without PV modules and EV involved in the EES.
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Table 8. Cost quantities simulation results of one-year period with different battery packs in the EV.

No.

Electricity Cost ($) PV Array Cost ($) Battery Pack Cost ($) Net
Cost
($)

Profit
($)Buy Own Sell

Time-
Dependent

Capital Cost
O&M

Time-
Dependent

Capital Cost
O&M

1 1513.08 0.00 0.00 0.00 0.00 0.00 0.00 1513.08 −1513.08

2 833.48 672.17 385.03 52.15 1.98 0.00 0.00 1097.27 −425.11

3 812.71 689.20 385.03 52.15 1.98 20.58 0.10 1097.95 −408.75

4 796.10 1051.30 385.03 52.15 1.98 445.34 2.09 1508.09 −456.79

5 793.08 1087.52 385.03 52.15 1.98 477.59 2.30 1537.52 −450.00

6 793.08 1087.52 385.03 52.15 1.98 471.80 2.30 1531.82 −444.30

7 793.08 1087.52 385.03 52.15 1.98 467.80 2.30 1527.73 −440.21

6. Conclusions

This paper proposed a simulation framework for the economic optimization of EESs that relies
on the concurrent simulation of energy flows and economic estimations based on a single simulation
kernel, namely, SystemC and its extensions. We showed that our framework allows an effective and
efficient design exploration of the EES under design and enables decisions, such as the identification of
(1) the optimal management policy based on joint energy and economic constraints; (2) the cost-optimal
or profit-optimal configurations of the EES in terms of number and type of renewable energy elements
used (power sources and energy storage devices).
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Appendix A

Table A1. Overview of recent representative related works on cost estimation of EES Systems.

Ref. Goal Energy Models Cost Models Proposed Solution

[13] Optimize energy storage
configuration to minimize fuel
costs

Simple linear models, e.g., PV
power as function of area and
rated power

Operation and maintenance,
replacement, capital

Comparison of alternative
configurations

[14] Find sizing of EES
components that minimizes
levelized cost of electricity

Based on linear equations of
rated power and capacity

Capital, operation and
maintenance, replacement

HOMER [58] and artificial
bee colony optimization

[15] Optimal configuration while
minimizing total net present
cost

Simplified models of EES
components (e.g., battery as a
function of efficiency and depth
of discharge)

Capital, replacement,
operation and maintenance

Hybrid optimization genetic
algorithm

[16] Optimization of levelized
energy cost and payback time,
emission reduction

Simple linear models Annual investment and
replacement, emission
reduction benefit

Particle swarm optimization
to identify optimal
component sizing

[17] Minimize cost and improve
reliability

Simple linear models,
e.g., power sources as linear
function of environmental
quantity

Investment, replacement,
operation and maintenance,
electricity

Constrained optimization
problem to determine
capacity of power sources
and storage

[18] Optimization of annualized
cost through dimensioning of
EES components

Power sources as simple linear
function of environmental
quantities

Operation and maintenance,
capital, replacement,
electricity

Mixed integer linear
programming applied to
different scenarios



Energies 2020, 13, 2949 30 of 33

Table A1. Cont.

Ref. Goal Energy Models Cost Models Proposed Solution

[19] Optimal sizing of EES
components to minimize
levelized cost of energy

Accurate models, fixed power
management policy

Capital, operation and
maintenance, replacement

Genetic algorithm

[20] Maximize electricity bill
savings with optimal sizing of
energy storage

Accurate model only of energy
storage devices

Capital, electricity,
replacement

Non-convex optimization
problem plus
exhaustive-search solution

[21] Optimal sizing of EES
components given pricing
policies

Focus only on power source
capacity and battery state of
charge

Capital, operation and
maintenance, electricity

Cataclysm genetic algorithm

[22] Reduce cost of microgrid
expansion considering impact
of battery dynamics

Focuses on batteries, simple
model of power sources

Capital, electricity,
annualized cost

Mixed integer linear
programming

[23] Optimize battery sizing given
battery bank degradation cost

Models only battery aging, fixed
power management policy

Electricity, battery
degradation

Linear optimization method

[24] Optimize battery size and
scheduling taking into
account costs and loads

Simple linear models, input
traces for power sources

Electricity, battery capital
cost

Convex programming
method

[25] Find sizing of EES
components plus operating
strategy to minimize costs

Simple models, based on rated
power, efficiency coefficients,
area occupied by PV modules,
etc.

Annualized system cost Mixed integer linear
programming model solved
with CPLEX

[26] Optimization of battery
management to minimize
electricity cost and carbon
dioxide emissions

Focuses on battery state of
charge, no model of other EES
components

Electricity, emissions
equivalent cost

Multi-objective optimization
(energy cost and emissions)

[27] Co-scheduling problem of
HVAC control and battery
management

Detailed model only of batteries
(power sources as input traces,
converters as efficiency
coefficients)

Electricity, battery
degradation

Minimize total cost with the
convex optimization tool
CVX

[28] Utility scheduling to minimize
total operational cost

Storage devices modeld only as
their lifetime, power sources as
input traces

Electricity, degradation,
pricing schemes

Nonlinear mixed integer
optimization to determine
schedule of batteries and
supercapacitors

[29] Determine optimal power
management policy to reduce
operation and emission costs

EES components as min-max
constraints for the optimization

Operation and maintenance,
electricity

Particle swarm optimization

[30] Balance total power
generation w.r.t. load and
minimize total operation cost

Capacity and scheduling as goal
of optimization

Capital, operation and
maintenance, electricity

Integer linear programming
with CPLEX

[31] Construction of optimal
scheduling to optimize usage
of storage and grid

EES capacity as constraints and
object of optimization

Levelized cost of energy Predictive optimization
given a graph of alternatives

[32] Techno-economic model to
determine optimal capacity of
PV system and battery storage

Simple models, e.g., PV as linear
function of irradiance and
temperature

Capital, operation, payback
time

Particle swarm optimization

[33] Optimal sizing of EES
components to maximize
profit

Accurate model only of PV
modules

Capital, operation and
maintenance, electricity

Dynamic simulation to
evaluate impact of electricity
tariffs

[34] Feasibility study of wind/PV
hybrid system

Accurate model only for PV
modules

Capital, operation and
maintenance, replacement

Simulation based on
MATLAB and HOMER [58]

[35] Operation cost minimization
with different pricing
mechanisms

Simple linear models Annualized cost of system
components

Based on HOMER [58]

This Estimate mutual impact of
power dynamics and costs to
reach effective design of EES
(Sections 3.3 and 5)

Level of detail can be tuned by
user, allows one to have high
level of accuracy of component
dynamics (Sections 2.2 and 4)

Capital, profit, depreciation,
operation and maintenance,
electricity, net and
annualized cost (Section 3)

Simulation-based, allows
efficient construction and
evaluation of alternative
configurations (Section 5)
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