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Abstract— Predicting response to neo-adjuvant 
chemotherapy of liver metastases (mts) using CT 
images is of key importance to provide personalized 
treatments. However, manual segmentation of mts 
should be avoid to develop methods that could be 
integrated into the clinical practice. The aim of this 
study is to evaluate if and how much automatic 
segmentation can affect a radiomics-based method 
to predict response to neoadjuvant chemotherapy of 
individual liver mts. To this scope, we developed an 
automatic deep learning method to segment liver 
mts, based on the U-net architecture, and we 
compared the classification results of a classifier fed 
with manual and automatic masks. In the validation 
set composed of 39 liver mts, the automatic deep-
learning algorithm was able to detect 82% of mts, 
with a median precision of 67%.  Using manual and 
automatic masks, we obtained the same 
classification in 19/32 mts. In case of mts with largest 
diameter > 20 mm, the precision of the segmentation 
does not impact the classification results and we 
obtained the same classification with both masks. 
Conversely, with smaller mts, we showed that a Dice 
coefficient of at least 0.5 should be obtained to 
extract the same information from the two 
segmentations. This are very important results in the 
perspective of using radiomics-based approach to 
predict response to therapy into clinical practice. 
Indeed, either precisely manually segment all lesions 
or refine them after automatic segmentation is a 

time-consuming task that cannot be performed on a 
daily basis.  

Keywords—deep learning, radiomics, automatic 
segmentation, CT imaging, prediction of response. 

I. INTRODUCTION 
Colorectal cancer (CRC) is the third most common 

tumor worldwide [1] and frequently metastasized into 
thoracic organs (liver and peritoneum). The high 
heterogeneity that characterizes CRC can lead to 
differences in response to treatment, either between the 
primary tumor and the metastatic lesions or among 
different metastatic lesions in the same patient [2]. 
Recently, some studies developed radiomics-based 
algorithms aiming at predicting response to neo-
adjuvant chemotherapy of liver metastases (mts) using 
CT images [3]–[5].  

However, all these studies performed the analyses 
from masks that were manually segmented by a 
radiologist. Manual segmentation is a time consuming 
task that is prone to errors and that shows high inter-
reader variations [6]. Moreover, in a clinical 
perspective, where time is an important issue, it would 
be not feasible to manually segment all mts, before 
applying computerized methods.  

The aim of this study is twofold. First, we want to 
assess whether automatic segmentation can affect a 
radiomics-based method to predict response to 
neoadjuvant chemotherapy (nCT) of individual liver 
mts. Secondly, we want to evaluate how precise should 



be the automatic segmentation to not compromise the 
results of the prediction. To this scope, we developed an 
automatic deep learning method to segment liver mts, 
based on the U-net architecture, and we compared the 
classification results of a classifier fed with manual and 
automatic masks.   

II. MATERIAL AND METHODS 

A. Patients and reference standard 
We retrospectively included patients with a stage IV 

CRC having at least one measurable liver mts as defined 
by the RECIST 1.1 Criteria (greater diameter ≥  10 
mm). All patients underwent a CT exam with contrast 
injection within 2 weeks from the start of nCT. A 
maximum number of 10 liver mts per patient were 
segmented by a resident radiologist (5 years of 
experience in reading CT images) on the portal phase of 
the baseline CT exam using ITK-Snap. All slices of each 
metastases were manually contoured. Metastases that 
either were confluent or subdiaphragmatic or contained 
large vessels or were difficult to measure in the 
subsequent exams were excluded. Once all mts were 
segmented, their longest diameter was measured at 
baseline and after 12 weeks of nCT. Mts were defined as 
non-responder (R-) if their diameter increased more than 
3 mm and responder (R+) if their diameter decreased 
more than 3 mm or remained stable (±3 mm). This cut-
off was chosen based on a preliminary study, in which 
we demonstrated that 95% confidence interval on the 
difference between means of diameters of liver mts in 
CT exams measured by two radiologists was 3 mm. 
Patients were divided into a training and a validation set. 
The study was approved by the local Ethics Committee 
and informed consent was signed by all patients.  

B. Automatic segmentation 
The automatic segmentation of the liver mts is 

carried by a U-net based system. The U-net is a Fully 
Convolutional Network, which provides a prediction 

mask whose dimensions are the same of the input 
image.   

The network implemented is defined by 4 
descending layers (Figure 1). Each of them is 
characterized by two subsequent Convolutional layers 
with 3x3 kernel and ReLU activation function [7], and 
a Max pooling layer, with pool size of 2x2 to halve the 
dimension of the image. The extending layers are 
similar to the previous one, where the Max Pooling 
layer is replaced by the upsampling layer.  The output 
layer is characterized by the Convolutional layer with 
1x1 kernel and Softmax activation function. The 
optimizer is Adam [8] with learning rate of 0.0001, the 
loss function used is the Binary Crossentropy  (1) 

𝐻"(𝑞) = − (
)
∑ 𝑦, ∙ log1𝑝(𝑦,)3 + (1 − 𝑦,) ∙)
,6(

log11 − (𝑦,)3,      (1) 

where yi is the label and p(yi) is the predicted probability 
of the sample to belong to the label class. The training 
epoch was set to 50. 

All metastases of patients belonging to the training 
set were used to develop the U-net. In particular, all 
slices were divided into a training (700 slices) and a test 
(300 slices) set. Both sets are composed of the same 
proportion of healthy and unhealthy slices. The network 
has been implemented on Matlab R2019a with the Deep 
Learning toolbox.  

Since the number of background pixels is higher 
than the mts ones, the method of the inverse frequency 
weighting (2) was applied, to balance the provided 
dataset. 

𝑤𝑒𝑖𝑔ℎ𝑡>?@AA =
BCDEFG	@??	",IF?A

BCDEFG	",IF?A	EF?JBK,BK	LJ	>?@AA
        (2) 

Finally, the U-net was validated using all metastases of 
patients of the validation set.  

C. Classification  
In this study, we used a previously developed 

machine learning algorithm that classifies lesions as R+ 

 
Figure 1: U-net architecture 

 



and R-, based on radiomics features (RF) computed on 
the CT scan acquired before nCT [9]. Briefly: a) RFs 
are extracted from a 7x7 ROI that moves across the 
image by step of 2 pixels and that is fully included in 
the tumor mask; b) feature selection is performed using 
a genetic algorithm (GA); c) classification of each ROI 
is performed by a two-layer neural network, in which 
the number of neurons is optimized by the GA during 
the feature selection step; d) each mts is classified as R+ 
if the percentage of R+ ROIs is higher than the value 
represented by the Youden Index computed on the 
Receiver Operating Characteristics (ROC) curve of the 
training set. The classifier was trained with ROIs 
computed using the manually segmented masks of the 
training set and was subsequently validated on both 
manual and automatic masks of patients belonging to 
the validation set. 

D. Statistical analysis 
Results of segmentation were evaluated on both the 

training and the validation datasets using 3 metrics: 
Dice Similarity Coefficient (DSC), Recall and 
Precision, using the following equations (3) 
   

																												DSC = 	
2|MM	 ∩ AM|
|MM| + |AM|

 

																												Precision =
TP

TP + FP
 

 
																												Recall = 	 `a

`abcd
                                (3), 

where MM is the manual mask, AM is the automatic 
mask. TP the number of true positive pixels, FP the 
number of FP pixels and FN the number of false 
negative pixels. 

DSC computes the overall overlap between two 
masks, while Precision and Recall are correlated to the 
under and over segmentation, respectively.  

Results of classification were evaluated by 
computing the confusion matrices and their 
corresponding values of sensitivity, specificity, positive 
predictive values (PPV) and negative predictive values 
(NPV).  

III. RESULTS 

A. Patients 
The training set was composed of 16 patients for a 

total of 84 mts (21 R- and 63 R+), while the validation 
set was composed of 39 mts (22 R+ and 17 R-) from 8 
patients. Median size of mts was 28(25th-75th percentile: 
19-36) mm.  

B. Segmentation   
The U-net classified all mts in the training set, with a 

median Dice overlap of 0.54(25th-75th percentile: 0.30-
0.77), a median precision of 0.67(25th-75th percentile: 
0.48-0.80), a median recall of 0.66(25th-75th percentile: 
0.22-0.82). In the validation set, 7/39 mts were not 
detected by the automatic segmentation performed by 
the U-net. Among them, 6 were very small mts (longest 
diameter≤12), and one had longest diameter=16mm. 
Mean Dice, recall and precision are shown in Table 1. 
Examples of segmentations are shown in Figure 2. 

C. Classification  
In the training set, 15/21 R- and 26/63 R+ mts were 

correctly classified, leading to a sensitivity and a 

TABLE 1: RESULTS OF THE U-NET IN THE VALIDATION SET 

ID Pat Mean Dice Mean 
Precision 

Mean 
Recall 

1002 0.49 0.41 0.84 

1009 0.49 0.64 0.39 

1010 0.51 0.41 0.69 

1013 0.52 0.60 0.61 

2015 0.73 0.75 0.79 

3003 0.48 0.48 0.48 

3005 0.70 0.66 0.77 

3010 0.80 0.72 0.90 

 
TABLE 3: RESULTS OF THE TRAINING SET: NUMBERS OF CORRECTLY 

CLASSIFIED R+/R- LESIONS OVER THE TOTAL NUMBER OF R+/R- 
LESIONS. 

ID Pat # correctly 
classified R+ 

# correctly 
classified R- 

1003 2/4 - 
1005 3/10 - 
1006 0/1 - 
1015 1/1 - 
1018 1/6 - 
1023 3/9 - 
1025 1/1 - 
2004 1/1 7/7 
2010 1/1 - 
2011 8/10 - 
2012 0/4 - 
3004 1/1 - 
3006 - 5/6 
3007 2/10 - 
3009 - 0/2 
3012 1/4 4/6  

 

TABLE 2: RESULTS OF THE TRAINING AND VALIDATION SET. NUMBERS 
ARE IN PERCENTAGES 

 Sens 
(95%CI) 

Spec 
(95%CI) 

PPV 
(95%CI) 

NPV 
(95%CI) 

Training 41.3 
 (29.0-54.4) 

[26/63] 

71.4 
 (47.8-88.7) 

[15/21] 

81.3 
(67.5-90.1) 

[26/32] 

28.9 
(22.4-36.3) 

[15/52] 
Validation 

manual 
57.9 

(33.5-86.1) 
[11/18] 

61.5 
(31.6-86.1) 

[8/13] 

68.8 
(50.0-82.9) 

[11/16] 

50.0 
(33.6-66.4) 

[8/16] 
Validation  

U-net 
52.6 

(28.9- 75.5) 
[10/19] 

61.5 
(31.6-86.1) 

[8/13] 

66.7 
(47.1-81.8) 

[10/15] 

47.1 
(31.9-62.8) 

[8/17] 

 



specificity of 41% and 71%, respectively (Table 2). 
Number of lesions divided per patient is shown in Table 
3.  26 out of 37 FNs belonged to only 4 patients (3R+ 
and 1 R-), moreover 21 out of 26 lesions had the longest 
diameter smaller than 20 mm. In the validation set 8/13 
R- and 11/19 R+ mts were correctly classified, when 
using the manual mask, and 8/13 R- and 10/19 R+ mts 
were correctly classified, when using the automatic 
masks (Table 2). The classification obtained using 
different masks was congruent in 19 out of 32 mts (Table 
4). Table 4 shows that if dice overlap is very low (<0.25) 
the classification is different regardless the size of the 
lesion, e.g., the 7th lesion of patient 1013.  Indeed, 5/13 
lesions with different classification had Dice ≤0.21. Dice 
overlaps between 0.25 and 0.6 could impact the results 
if the lesion is very small (longest diameter <15 mm). In 
our dataset, this is true in 2/13 cases (patient 1009, lesion 
2 and patient 2015, lesion 4). High values of Dice 
(between 0.61 and 0.80) could impact the classification 
if the lesion is small, while very high Dice (>0.8) does 
not affect the classification results, independently of 
lesion diameter.  

IV. DISCUSSION 
In this study we assessed the impact that an automatic 

segmentation could have when using a radiomics-based 
algorithm to predict response to therapy of liver mts. To 
this scope, we first develop an automatic deep-learning 
algorithm that was able to detect 82% of liver mts, with 
a median precision of 67%. High values of precision 
indicate that the lesion is not over-segmented, which is 
important in a radiomics based method, since we had to 
avoid including healthy tissue in the analysis. The 
precision reached by our method is promising, 

considered the limited number of cases, and could be 
improved by including more patients. However, in this 
study we showed that in case of lesion with diameters ≥ 
20 mm (most of mts), the precision of the segmentation 
does not impact the classification results. Indeed, when 
Dice overlap is higher than 0.2, we obtain the same 
classification between manual and automatic masks, 
meaning that the same information is provided to the 
classifier. This is a very important results in the 
perspective of using radiomics-based approach to 
predict response to therapy into the clinical practice. 
Indeed, either precisely manually segment all lesions or 
refine them after automatic segmentation is a time-
consuming task that cannot be performed on a daily 
basis. 

Conversely, we demonstrated that in case of very 
small lesions, it is necessary that the automatic 
segmentation reaches very high value of Dice overlap to 
obtain the same classification that we can obtain using 
manual masks. Indeed, since in this case we have a few 

 

 
Figure 2: Example of a patient with correctly and under segmented 
lesions (in red manual masks and in blue automatic masks). First row 
shows thre metastases (1,2,3) correctly classified (Dice 0.85,0.83,0.71). 
Second row: one small mts (mts 6) correctly segmented (Dice 0.73) , 
and one mts (9) under-segmented (Dice=0.17). Both mts are classified 
differently between manual and automatic masks.  

 

TABLE 4: DIFFERENCES AMONG CLASSIFICATIONS OBTAIEND 
WITH MANUAL AND AUTOMATIC MASKS (IN BOLD LESIONS 

CLASSIFIED DIFFERENTLY).  

ID 
Pat 

ID 
mts 

Real 
class Manual U-net Dice Longest

Diameter 
1002 1 1 1 0 0.18 30 
1002 2 1 0 0 0.29 28 
1002 3 1 0 0 0.64 60 
1002 4 1 1 1 0.85 23 
1009 1 1 1 1 0.49 10 
1009 2 1 0 1 0.48 10 
1010 1 1 0 0 0.51 15 
1013 1 1 1 1 0.52 43 
1013 2 1 1 0 0.73 14 
1013 3 1 1 0 0.75 14 
1013 4 1 1 1 0.46 21 
1013 5 1 1 1 0.68 20 
1013 6 1 0 1 0.05 17 
1013 7 1 0 1 0.21 50 
1013 8 1 1 1 0.82 19 
1013 9 1 0 1 0.21 38 
1013 10 1 1 0 0.74 18 
2015 1 0 1 1 0.68 28 
2015 2 0 0 0 0.83 33 
2015 3 0 0 0 0.85 26 
2015 4 1 1 0 0.55 14 
3003 1 0 0 0 0.48 16 
3005 1 0 0 0 0.85 59 
3005 2 0 1 1 0.83 45 
3005 3 1 0 0 0.71 28 
3005 4 0 0 0 0.82 31 
3005 5 0 0 0 0.69 21 
3005 6 0 0 1 0.73 11 
3005 7 0 1 0 0.64 16 
3005 8 0 1 1 0.82 18 
3005 9 0 0 1 0.17 31 
3010 1 0 1 0 0.80 15 

 



numbers of ROI, we cannot extract the same information 
from two masks that differ significantly.  

One limitation of this study relies on the not optimal 
results obtained by the classification method. This might 
be due to the low number of patients included in the 
study. However, the aim of this study was not to 
optimize the classifier, but to assess differences between 
manual and automatic segmentation. Having 
demonstrated that automatic segmentations, even not 
perfect, can provide the same information of manual 
masks in most cases, it would be possible to improve 
classification method by adding more cases, without 
relying in manual segmentations.  
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