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A Macromodeling Based Hybrid Method for the
Computation of Transient Electromagnetic Fields
Scattered by Nonlinearly Loaded Metal Structures

Torben Wendt, Student Member, IEEE, Cheng Yang, Member, IEEE, Heinz D. Brüns, Stefano
Grivet-Talocia, Fellow, IEEE, and Christian Schuster, Senior Member, IEEE

Abstract—We present a hybrid numerical scheme to compute
the transient electromagnetic fields scattered by a metallic
structure loaded with lumped, nonlinear loads. The proposed
scheme is based on three successive steps. First, the field
coupling problem to the structure with the nonlinear loads
removed is solved in the frequency-domain using a Method-of-
Moments (MoM) formulation. The unloaded structure is thus
characterized as a generalized multiport Thevenin equivalent,
whose components are represented as time-domain operators by
performing a set of rational approximations followed by closed-
form Laplace transform inversion. Transient port voltages and
currents in presence of nonlinear loads are then computed using
a standard circuit solver. As a last step, the substitution theorem
is used to solve the radiation problem again in the frequency
domain using a MoM solver, the results of which are then
translated into time-domain by means of rational approximations
and recursive convolution operations. The proposed method
enables an accurate and efficient evaluation of the transient
nonlinearly scattered fields by the loaded structure, with a good
potential for scalability to large-scale high-complexity nonlinear
shields. Extensive validations are provided to demonstrate the
accuracy of the proposed method, which is here applied to the
characterization of energy-selective shielding for protection of
sensitive devices from High-Intensity Radiated Fields (HIRF).

I. INTRODUCTION

THREATS to today’s sensitive electronic devices have
many forms. Exposure to High Intensity Radiated Fields

(HIRFs) can destroy unprotected devices. HIRFs can be caused
by radio transmitters, base stations, lightning strikes, electro-
static discharge or Nuclear Electromagnetic Pulses (NEMPs).
To make electronic systems more robust with respect to HIRFs
shielding can be used. Shielding can be achieved by placing
the vulnerable devices in a conductive enclosure. However, to
allow for wireless communication with the outside world an
opening in the enclosure is inevitable. This opening provides
an exit and entrance path for both communication and HIRFs
[1]. If poorly designed, an enclosure with aperture can focus
destructive electromagnetic energy onto the sensitive devices.

A promising approach to mitigate the danger of HIRFs is
the design of self-actuated structures using nonlinear elements.
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In [2] a nonlinear cover for apertures is presented. The cover is
a diode grid and changes from transparent to reflecting if a haz-
ardous energy level is exceeded. This novel shielding method
achieves an adaptive electromagnetic protection that reflects
potentially destructive fields while being almost transparent to
weak communication signals. Recently, many other applica-
tions of nonlinearly loaded structures have been presented, e.g.
frequency selective surfaces [3], [4], energy selective surfaces
[5], waveform-dependent absorbing metasurfaces [6], [7], and
power-dependent impedance surfaces [8]–[10].

Modelling of nonlinearly loaded structures has been a topic
of computational electromagnetics since at least the late 1970s
[11], [12]. The simulation methods can be generally classified
into two classes. The first is based on real-time full-wave
simulations, which calculate the voltages/currents of nonlinear
loads and the scattering fields simultaneously in time domain.
For example, the Finite-Difference Time-Domain Method
(FDTD) [13], the Time Domain Finite-Element Method (TD-
FEM) [14], the Partial Element Equivalent Circuit (PEEC)
approach [15], and techniques based on Time Domain Integral
Equations (TDIE) [16] belong to this category. The second
category utilizes a combination of various full-wave and circuit
solvers to compute the load responses at first, and then a
post-processing to extract the fields, such as the transient
convolution based technique [17]–[21], the Harmonic Balance
(HB) [22] approach and the envelope tracking method [23].

This paper belongs to the second class of solvers and
provides an alternative formulation with respect to the method
originally presented in [2], [24]. In particular, the large-
scale electromagnetic problem related to field coupling and
radiation is decoupled from the small-scale problem related
to interaction with lumped nonlinear components. The former
can be formulated and solved in frequency domain; since
the particular electromagnetic structure we are considering is
open, we will resort to the Method of Moments (MoM) as the
core field solver. Due to the presence of nonlinear elements, a
transformation from frequency to time domain is mandatory.
This step is here performed through behavioral macromodels,
suitably identified through Vector Fitting (VF) techniques from
sampled frequency-domain data obtained by the MoM solver.

The proposed hybrid method has several advantages com-
pared to competing approaches. Although the problem decom-
position between linear (frequency-domain) electromagnetic
and nonlinear (time-domain) circuit subproblems is not new,
here we perform the conversion between frequency and time
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domains through high-performance macromodeling schemes,
leveraging on recent developments that guarantee numerical
robustness, stability and efficiency. This approach has no
limitations on the nature of excitation signals, which are not
required to be narrowband or periodic as in Harmonic Balance
or envelope tracking methods. Moreover, the linear electro-
magnetic subproblem and consequent macromodels are com-
puted only once in a preprocessing offline step, allowing for
fast repeated (online) transient analyses with different loading
components and excitation waveforms and/or energy levels.
This is obviously not allowed with direct transient solvers
that integrate lumped nonlinear loads (e.g., FDTD or FIT),
which require to repeat the complete full-wave simulation
anytime a component or excitation is varied. The presented
approach differs from [2,24] specifically by (i) performing
the transient analysis through using a legacy circuit solvers
of the SPICE class and finally, (ii) computing the nonlinearly
scattered electromagnetic field at various observation points
through dedicated recursive convolution schemes, which prove
very efficient and easily parallelizable. Finally, the adopted
problem decoupling has the potential for improved scalability
when increasing the number of nonlinear loads to hundreds or
thousands, as may be required by the energy-selective shield-
ing application that motivates this work. Detailed scalability
studies will be addressed in a future report.

Additional advantages or proposed approach become evi-
dent when considering the specific electromagnetic scattering
problem under investigation. All structures of interest are
metallic and embedded in an open computational domain. For
such structures, the frequency-domain Method of Moments
(MoM) provides the most appropriate EM formulation, since
only surface unknowns (currents on metal objects) are solved
for, without any need of truncating the computational domain.
Conversely, transient solvers (FDTD, FIT) need to artificially
truncate the computational domain with an absorbing layer
such as Perfectly Matched Layer (PML) [25]; we show in
Sec. V-A that, when combined to strong nonlinearities with
rectifying behavior, the PML may lead to inaccurate results
due to mixing and downconversion of energy to low frequen-
cies. In addition, transient (differential) solvers compute fields
in a discrete volume mesh, requiring a much larger number
of unknowns with respect to MoM. For these reasons, the
MoM (integral) formulation in the frequency domain is our
preferred EM solver. We do not consider time-domain integral
equation solvers since the presence of nonlinear terminations
may have a detrimental effect on solver stability, which is
instead guaranteed by the adopted macromodeling approach
which enforces both stability and passivity, see Sec. III.

This paper is structured as follows. Section II provides a
high-level description of the main components of proposed hy-
brid approach. Section III reviews some background material
on macromodeling, highlighting those aspects that are relevant
for this work. Section IV provides a detailed description of all
computational stages, whereas critical issues that are relevant
for validation, which are related to computational domain
truncation and lumped port modeling, are addressed in Sec. V.
Finally, Sec. VI presents and discusses numerical results, with
conclusions drawn in Sec. VI.

II. GENERAL MODELLING APPROACH

This section provides a general description of the proposed
method, with reference to Fig. 1. An electrically large, per-
fectly electrically conducting (PEC) structure is loaded with
electrically small, nonlinear elements connected at lumped
and electrically small ports, as depicted in Fig. 1a. The
structure is illuminated by a plane wave pulse with electric
field amplitude Einc(t), which is scattered by the structure. Due
to the nonlinear loads, the scattered field caused by induced
currents on the structure depends nonlinearly on Einc(t). The
objective is to compute the total electric field ~Eobs(t,~ro) at a
set of observation points ~ro. Our approach divides this process
into three steps.

A. Characterization of field coupling at lumped ports and
extraction of the Thevenin equivalent of the metallic structure

Starting from the structure depicted in Fig. 1a, we detach
the nonlinear loads from the ports and we characterize the re-
sulting field-excited structure through a generalized Thevenin
equivalent [26], as shown in Fig. 1d. This requires the solution
of two independent field problems, which are carried out
with the MoM solver [27] in the frequency domain. First, we
compute the induced open circuit voltages Voc(jω) by leaving
each port open-circuited and exciting the structure with the
incident field (Fig. 1b). Second, we evaluate the impedance
matrix Z̆(jω) of the structure by exciting each port through a
current source and evaluating the corresponding port voltages,
with the incident field deactivated (Fig. 1c). Further details are
discussed in Sec. IV-A.

B. Solution of transient port voltages with nonlinear loading

Considering the equivalence established in Fig. 1e, we cast
the generalized Thevenin equivalent in time-domain by: i)
computing a stable and passive state-space macromodel of
the impedance matrix, which is then realized as a SPICE
network, see Sec. III-A; ii) apply a frequency-domain rational
function approximation to the open-circuit voltages Voc(jω),
so that an accuracy-controlled closed-form time-domain wave-
form voc(t) is achieved through inverse Laplace transform
(Sec. III-B). The corresponding time-domain lumped circuit
obtained by connecting the nonlinear elements to each port
(Fig. 1e) is then solved in time-domain using a circuit solver.
The computed transient port voltages v(t) are the same (net
of all numerical approximations involved in all computations)
that we would observe by solving directly the nonlinear
electromagnetic field coupling problem depicted in Fig. 1a.
Note that, by the Substitution Theorem [28], once we know
the actual transient port voltages v(t), we can replace the
nonlinear terminations with ideal voltage sources with the
same values v(t) without affecting any other electrical variable
of interest (see Fig 1f), including the transient currents through
the structure, which are used in the next step.

C. Computation of field at observation points

Based on the above considerations, the original nonlinear
scattering problem is reformulated as an equivalent linear
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Fig. 1. Graphical description of the proposed modeling flow. (a)-(d): charac-
terization of field coupling at lumped ports and extraction of the generalized
Thevenin equivalent of the metallic structure (red, Sec. II-A); (e)-(f): Solution
of transient port voltages with nonlinear loading (yellow, Sec. II-B); (g)-(h):
Computation of field at observation points (green, Sec. II-C).

scattering problem, by replacing the nonlinear terminations
with known lumped voltage sources v(t), see Fig. 1g. This
linear scattering/radiation problem can be solved using the
frequency-domain MoM solver, with a postprocessing trans-
formation between frequency and time-domain. Due to the
presence of two source terms, one related to the incident field
and one to the lumped voltage sources, we apply superposition
by solving the two problems independently, as depicted in
Fig 1h. In particular, the radiated field is obtained as the
superposition of the field scattered by the short-circuited
structure (i.e. by setting v(t) = 0) with the field radiated by the
antenna-like structure excited by v(t) with the incident field
deactivated. Details about this step are reported in Sec. IV-C.

D. Some remarks on notation

Throughout this work, normal fonts are used for scalar x
and boldface fonts for vectors x, matrices X and tensors.
Time-domain and frequency-domain port signals are typeset
in lower v(t) and upper case V (jω), respectively. Incident
(electric) field waveform is denoted with Einc(t) and Einc(jω)
in time and frequency domain, respectively, with the corre-
sponding vector fields at position ~r denoted as ~E inc(t,~r) and
~Einc(jω,~r).

Calligraphic fonts are used for exact (continuous)
frequency-domain operators C̆(jω, ~r), whose discretized
(computed) values at discrete frequencies ωn are described
through Roman upright fonts as C̆(jωn). Corresponding
macromodels are denoted as C(s) in the Laplace-domain and
c(t) in the time domain, with the accent˘ removed.

III. PASSIVE MACROMODELING AND RECURSIVE
CONVOLUTION

Any conversion from frequency-domain (tabulated re-
sponses) to a time-domain form is here performed through
well-established macromodeling techniques. The latter are
essentially based on the construction of a suitable rational
approximation in the Laplace domain from the available sam-
ples, followed by either a state-space realization and equivalent
circuit (in SPICE form) synthesis, or by an analytic Laplace
transform inversion, which produces a closed-form expression
of the impulse response at hand. We use macromodeling here
since the developments over the last two decades have led to
a set of mature, reliable, robust and efficient algorithms (see,
e.g., [29]), now routinely used for research and production
both in academia and in industry.

A. Passive macromodels of multiport systems

The lumped circuit simulation problem depicted in Fig. 1e
is here performed using a standard SPICE solver. Therefore,
an equivalent circuit for the multiport impedance matrix of
the stucture is needed. Starting from the tabulated multiport
impedance samples Z̆(jωn) obtained from the field solver, we
apply a standard Vector Fitting (VF) process [29], [30] in its
fast and decoupled implementation [31]. The number of poles
is automatically determined through the so-called "Adding and
Skimming process" described in [32]. The resulting rational
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Fig. 2. (a): Impedance parameters of structure shown in Fig. 6 computed
using MoM and corresponding extracted passive macromodel. (b): model
passivity is confirmed by nonnegative frequency-dependent eigenvalues of the
Hermitian part of Z(jω).

approximation is subjected to a passivity enforcement based
on [33] (see also [29] for full details), yielding the positive
real rational function

Z(s) =

L∑
l=1

Rl

s− pl
+R0 + sR−1. (1)

where s is the complex frequency (Laplace variable), pl are the
poles of the model, here assumed to be common to all transfer
function entries in order to model correctly global resonances,
Rl are the residues corresponding to the poles pl andR0,R−1

capture direct coupling and an inductive (linear) term. Using
standard methods [29] the model (1) is realized as a state-space
form and converted to a SPICE netlist. Figure 2 demonstrates
model accuracy (top panel) and passivity (bottom panel) for a
three-port two-loop antenna, introduced later in Sec. V-A, see
Fig. 6.

B. Delay-rational fitting and fast recursive convolution

As discussed in Sec. II, all field coupling and radiation
operators are naturally described in the frequency domain.
However, accounting for nonlinear elements according to our
proposed hybrid approach requires coupling and radiation to
be formulated in time-domain. Therefore, we follow the same
idea of closed-form Laplace inversion based on a suitable set
of macromodels obtained from tabulated data from the MoM
solver. There are however two main differences with respect
to the impedance macromodel discussed in Sec. III-A;
• Since distances between structure and observation points

may be significant in terms of wavelength at the highest
frequency of interest, it is appropriate to embed the

propagation effects in form of a time-delay term in both
the Laplace-domain and the corresponding time-domain
forms.

• Since only a forward evaluation of such operators is
required, there is actually no need to check and enforce
passivity of the rational approximation, which is instead
essential for the impedance matrix macromodel in order
to guarantee stable transient simulations.

Based on these considerations, we consider for each individual
(scalar) frequency-domain operator H̆(jω) a delay-rational
approximation in form

H(s) = e−sτ ·

 l̄∑
l=1

rl
s− pl

+ r0

 (2)

which is constructed by enforcing a fitting condition
H(jωn) ≈ H̆(jωn) at all available samples from the MoM
solver using the Delay Vector Fitting (DVF) algorithm [31],
with a simplified implementation since only one delay term τ
is required.

Assuming that operator H̆(jω) is applied to some input
signal U(jω) to obtain some output Y (jω), the corresponding
time-domain form based on approximation (2) reads

y(t) = h(t) ∗ u(t)

=

l̄∑
l=1

epltθ(t) ∗ u(t− τ) + r0u(t− τ)
(3)

where θ is the Heaviside step function. Thanks to the expo-
nential kernels, the evaluation of the output y(t) at any time
instant t can be performed through an interpolation of dis-
crete output samples obtained through recursive convolutions.
Defining a delayless output z(t) such that y(t) = z(t − τ),
and discretizing the time axis with resolution T , the discrete
samples zk = z(tk) at uniformly sampled time steps tk = kT
are simply obtained as

zk =

l̄∑
l=1

rlxl,k + r0uk (4)

with
xl,k = αlxl,k−1 + βluk + γluk−1 (5)

through constant and pre-computed coefficients αl, βl, γl
(see [29] for detailed expressions). Then, defining ∆ = τ/T−
K and K = bτ/T c, with operator b·c denoting truncation to
the largest integer not larger than its argument, we have

y(t) = z(t− τ) ≈ (1−∆)zk−K + ∆zk−K−1 (6)

Throughout the following, we will denote the above discretized
delayed recursive convolution with the compact notation

y(t) = h(t) ~ u(t) (7)

We remark that numerical evaluation of (7) is particularly
efficient since both CPU and memory costs scale linearly with
number of time steps to be computed.
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IV. NUMERICAL IMPLEMENTATION

A. Characterization of Field Coupling at Lumped Ports

The objective of this section is to describe the computation
of the voltage sources Voc(jω) and the impedance parameters
Z̆(jω) to construct the Thevenin equivalent as shown in Fig.
1d. To this end, we remove the lumped nonlinear loads and
we solve the resulting linear field coupling problem in the
frequency domain using MoM. A qualitative description of
a numerically efficient implementation of the above steps is
as follows; all patches of the PEC structure experience an
impressed tangential electric field, which is canceled by the
field of the induced currents (to be computed) on the structure
s.t. the electric field tangential to the structure except at the
ports is zero. This requires the computation of the mutual
coupling of the patches which is stored in an impedance
matrices for each frequency point, which can be written[

Z̆11 Z̆12

Z̆21 Z̆22

]
·

[
~Iis
~Iip

]
=

[
~V is
~V ip

]
, (8)

where ~Iis are the unknown currents across the patches, ~Iis are
the short circuit port currents ~V is and ~V ip are the voltages
compensating the incident field tangential to the patches and
ports, respectively. Frequency sampling rate (N samples at
frequencies ωn) and bandwidth are determined based on the
bandwidth of the excitation pulse as well as on the expected
resonance pattern, so that each resonance is well resolved.

Network parameters: The first step is to determine the
network parameters of the structure at the lumped ports. The
reduced admittance matrix Y̆(jωn) is calculated from (8) by
solving for the image of each port excitation (1 V at the
ports, all other voltages 0 V) separately and selecting only
the rows corresponding to port currents from the resulting
solution matrix. These results are then collected into the P×P
port admittance matrix Y̆(jωn), which is then inverted at
each frequency to obtain the open-circuit impedance matrix
Z̆(jωn). The computational cost is O(N3

u), where Nu is
the number of unknowns. The memory requirement of patch
coupling matrix is O(N2

u) and grows linearly with the number
of frequency points. A detailed numerical complexity analysis
conducted in [34]. Alternatively, the admittance matrix can be
computed in one single step (For each frequency point) by
computing a Schur complement to (8) for eliminating internal
patch variables. Our current implementation is based on the
first approach. Even for large port numbers, this step has a
computational cost that is significantly smaller than the total
cost for the overall modeling flow.

These frequency samples are fed to the Vector Fitting algo-
rithm followed by a passivity enforcement postprocessing, as
discussed in Sec. III-A, leading to a state-space macromodel.
The latter is synthesized as a SPICE equivalent circuit [29].

Computation of open-circuit voltages: We now consider the
open-circuit voltages (Fig. 1b). For the sake of generality, we
consider an incident field pattern composed by K indepen-
dent plane waves characterized by their incidence/polarization
angles {(θ, φ, ψ)k} and electric field spectra Ekinc(jω) for
k = 1, . . . ,K. The relationship between each incident field
waveform spectrum Ekinc(jω) and the corresponding induced

open circuit voltage V k,poc (jω) at port p (see Fig. 1b) can
be characterized by a transfer function B̆k,p(jω) and can be
written as

V k,poc (jω) = B̆k,p(jω) · Ekinc(jω). (9)

Computation of (9) is again achieved through application of
a MoM solver [27], which uses the electric field integral
equation (EFIE) in a mixed potential formulation. The matrix
equation is solved by LU decomposition [35]. Stability issues
have not been observed in previous comparable works [1], [2].
Investigations have shown that the resulting current distribu-
tions stay stable providing expected system responses even
in case of internal resonances. The adopted solver returns
tabulated frequency responses at discrete frequencies ωn.
These can be collected into a three-way tensor B̆ ∈ CN×K×P,
by iterative and/or parallel execution of the MoM solver
which solves the EFIE for each set of tuples {(θ, φ, ψ)k}
defining plane wave excitations of unit amplitude over N
frequency samples ωn. As a result, the open-circuit voltages
are expressed at each frequency ωn as

V poc(jωn) =

K∑
k=1

B̆
k,p

(jωn)Ekinc(jωn). (10)

Rational fitting is then used as a postprocessing to convert the
equivalent to time-domain form that is immediately usable for
transient analysis.

A

B~κ1
~κ2

~κK

B

~κk · ~ro

rph

~ro
~κk

(a) (b)

Fig. 3. (a): visualization of phase reference sphere with radius rph. (b):
consequently to the reference shift, the distance traveled by a plane wave to
reach observer B changes due to the new reference plane. See text for details.

Setting of phase reference planes: As in most common im-
plementations, the adopted MoM solver [27] sets the reference
phase of an incident plane wave field at the origin of the
coordinate system. Therefore, depending on the location of the
lumped ports with respect to the plane wave propagation di-
rection, the impulse response bk,p(t) associated to the transfer
functions B̆k,p(jω) may not satisfy the fundamental causality
conditions bk,p(t) = 0 for t < 0. The latter is however
essential for later time-domain lumped circuit solution with
nonlinear elements connected, due to the time-stepping nature
of all transient analysis methods available in any circuit
solver. For the transient scattering problem to be well-defined,
we will require all incident fields to vanish identically in a
volume that encloses the PEC structure under investigation
for all times t < 0. For this reason, we define the reference
phase of incident plane waves on the surface of a sphere of
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radius rph centered at the origin of the coordinate system,
which completely includes the structure under investigation,
see Fig. 3a. Correspondingly, we introduce the phase-shifted
transfer functions

B̄
k,p

(jωn) = e−jωn
rph
c0 · B̆

k,p
(jωn) (11)

where c0 is the speed of light in free space. The term rph
c0

corresponds to the propagation delay of the plane wave from
the reference sphere to the origin, which is now embedded as
a delay term in the transfer functions B̄

k,p
(jωn).

We are now ready to perform a time-domain conversion
of (9). Instead of using a standard FFT processing, we choose
the more flexible approach of Sec. III-B of performing a delay-
rational approximation of each phase-shifted transfer function
B̄
k,p

(jωn), followed by a recursive convolution. The result is

vpoc(t) =

K∑
k=1

b̄
k,p

(t) ~ Ekinc(t), (12)

where by consruction b̄
k,p

(t) = 0 for t < 0. We remark that
this implementation choice allows, for instance, for persis-
tently exciting and non-periodic field waveforms and provides
a simpler approach for handling bandlimited data without
introducing aliasing effects.

B. Solution of Transient Port Voltages with nonlinear Loading

We now address the lumped circuit problem of Fig. 1e,
whose individual components are fully characterized based on
the results of Sec. IV-A. In particular, the impedance matrix is
available as a macromodel in SPICE-compatible form, whereas
the time-domain open-circuit voltages are available through
the recursive convolutions of (12) and are synthesized as
piecewise linear sources for SPICE transient analysis.

The nonlinear loads are assumed to have general voltage-
current characteristics, compactly collected as v = F(i).
These are reattached to the ports of the Thevenin equivalent,
and the resulting circuit is solved using an off-the-shelf circuit
solver [37]. We denote the corresponding differential-algebraic
equation formulation embedded in such a solver by the abstract
notation

v =N (F ,Z,voc) (13)

where N represents the used nonlinear circuit solver, and
where the desired output variables being computed are the
transient port voltages v. This solution is depicted with a blue
box in Fig. 4.

C. Computation of Field at Observation Points

Once the port voltages v(t) induced on the nonlinearly
loaded structure by the incident field are known, we can
proceed in computing the (total) field at desired observation
points ~ro, with o = 1, . . . , O. As described in Fig. 1g.
This is accomplished by solving a linear scattering problem
defined by replacing the nonlinear elements with equivalent
(known) voltage sources v(t), available from the lumped
circuit solution of Sec. IV-B.

As depicted in Fig. 1h, the total field at ~ro can be expressed
as the superposition of three terms as

~Eobs(jω,~ro) =

3∑
d=1

P∑
p=1

C̆o,p,d(jω)V p(jω) · ~ed

+

3∑
d=1

K∑
k=1

D̆o,k,d(jω)Ekinc(jω) · ~ed,

+ ~Einc(jω,~ro),

(14)

where ~ed for d = 1, 2, 3 denotes the unit vector in the x, y
or z direction, C̆o,p,d is the operator mapping the voltage at
port p to the d-th component of the scattered electric field
at the observer o with all other ports shorted, and D̆o,k,d is
the operator mapping the k-th incident plane wave to the d-
th component of the scattered electric field at the observer o,
with all ports shorted. The contribution from the incident field
to the total field is known and does not require any further
processing.

All operators C̆o,p,d and D̆o,k,d are computed using MoM
and are available as tabulated frequency data, collected respec-
tively in tensors C̆(jωn) ∈ CO×P×3 and D̆(jωn) ∈ CO×K×3.
We are now ready to cast (14) in time-domain. This is
accomplished by the following three steps.

• A delay-rational approximation is computed for each
component of C̆(jωn) using the procedure of Sec. III-B,
resulting in a set of discretized time-domain impulse
responses represented by delayed recursive convolution
operators co,p,d;

• The same procedure is applied to each component of
D̆(jωn), for which however we need to apply the same
phase shift preprocessing as in (11), in order to align the
time axis and enforce causality of all involved transfer
functions. The result is a set of delayed recursive convo-
lution operators d̄

o,k,d;
• In order to guarantee consistency among all field com-

ponents, also for the direct incident field contribution the
same delay is extracted and embedded into a set of free-
space propagation operators p̄o,k,d.

The final time-domain formulation enabling fast evaluation of
total field at ~ro reads

~E
o

obs(t) =

3∑
d=1

P∑
p=1

co,p,d(t) ~ vp(t) · ~ed

+

3∑
d=1

K∑
k=1

d̄
o,k,d

(t) ~ Ekinc(t) · ~ed

+

3∑
d=1

K∑
k=1

p̄o,k,d(t) ∗ Ekinc(t) · ~ed

(15)

The first two lines in (15) are numerically computed using
fast recursive convolution as in (5)-(6), whereas the last line
is a simple time shift by a propagation delay τk,o depending
on the excitation direction and the location of observer (see
Fig. 3b) as

τk,o =
1

c0
(rph + ~κk · ~ro) , (16)
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b̄ z-1 F c +

Einc voc − i

d̄

p̄

v ~Eobs

Fig. 4. Block diagram of operators used in time domain field computation.
All red blocks correspond to time-domain operators implemented by discrete
delayed recursive convolutions based on suitably computed delay-rational
macromodels. The blue block is computed through a circuit solver, and the
green block in the bottom is known in closed form. See text for details.

where c0 is the speed of light in free space and ~κk is the unit
vector defining the propagation direction of the k-th excitation.

V. NUMERICAL EXPERIMENTS AND COMPARISON TO FIT
APPROACH

The presented method is now illustrated and validated using
various test cases. Since the main application we have in mind
is energy selective shielding, we design all test cases to capture
all features that are relevant for this application. In particular,
each case will consist of three main components:

1) a PEC structure with well-defined (lumped) ports,
2) nonlinear port terminations,
3) excitations defined by incident field waveforms and

directions of arrival.
The following subsections investigate different setups consist-
ing of these components, by comparing the results of our
proposed hybrid approach to reference time-domain solutions
obtained through a commercial Finite Integration Technique
(FIT) solver [38], which allows for direct transient simulations
with embedded nonlinear terminations.

Due to the different modeling approaches of the adopted
MoM solver and the FIT-based validation solver, certain
differences in the final results are to be expected. We were
able to identify two main reasons for such differences, namely
the presence of an absorbing bounding box to truncate the
computational domain in FIT (not required by proposed ap-
proach) and the lumped port implementation, which is differ-
ent between the two solvers. These two points are addressed
in Sec. V-A and Sec. V-B, respectively, together with a
description of the compensation techniques that we adopt to
make results directly comparable.

A. Effects of Computational Domain Truncation in FIT

In order to compute the electromagnetic properties of a
structure using FIT (or any partial differential equation solver),
it is necessary to limit the domain of computation. For
free space problems, this is achieved by encapsulating the
structure in a bounding box, which mimics an open domain
by absorbing radiated fields with low reflection. The state of
the art implementation involves using an absorbing PML.

Ideally, the bounding box should be large enough to include
the reactive nearfield, whose extension can be estimated by
d = λmax

2π [39], where λmax is the largest (relevant) occurring
wavelength in the simulation. Practically, a trade-off between

−0.5 0.0 0.5
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)

−vth
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AP Diodes

Fig. 5. V-I curve of two anti-parallel diodes (default model from [37]
with saturation current is = 1 nA). The threshold voltage is approximately
Vth = 0.4 V.

Fig. 6. A double-loop PEC frame with sizes a = 15 cm and b = 10 cm.
The frame is constructed from thin strips of width 5 mm. A plane wave
pulse excites the structure from broadside, and the nonlinearly scattered field
is observed at B. The three ports are loaded with the anti-parallel diode
configuration displayed in Fig. 5. The diodes are aligned with the electric
field vector of the incident pulse.

computational cost and accuracy has to be made, leading to
the usual practice of choosing the smallest possible box size
that is compatible with accuracy requirements.

For our particular application, the nonlinear loads can
cause mixing to lower frequencies and rectification (see later
Fig. 10), which can dramatically increase the extension of
the nearfield, thus requiring a larger PML bounding box.
However, the PML size is usually determined a priori, since
the frequency mixing properties of the loaded structure are
difficult to predict a priori. Therefore, a careful assessment of
the accuracy loss induced by a given PML size is mandatory
for a correct interpretation of the validation results. The
accuracy loss due to a finite-size computational domain in
FIT is well described by a simple simulation setup, aimed at
the evaluation of the driving point impedance matrix of the
structure. For illustration, we consider the two-loop structure
depicted in Fig. 6 with three lumped ports. The top panel of
Fig. 7 compares the real part of the driving point impedance
<(Z11) obtained by FIT (distance from structure to PML
from 25 mm to 800 mm) and MoM, respectively. Since the
structure is lossless (all metal is PEC), we expect the real part
of the impedance to approach zero. This is indeed confirmed
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Fig. 7. (a): effect of FIT bounding box of different sizes on real part of
the impedance for the two-loop structure of Fig. 6. For low frequencies,
the nearfield of the structure extends into the PML, leading to absorption
of energy and constituting a modeling error when trying to model a free
space environment. (b): port voltage induced by an incident gaussian pulse
(see text for definition) with all ports terminated into antiparallel diodes with
threshold voltage Vth = 0.4 V. Adding a series resistance Rs = 12 Ω to the
MoM impedance confirms that the modeling error in FIT is due to artificial
losses.

by the MoM results, whereas the FIT results lead to a real part
which artificially increases at low frequencies. This behavior
can be associated to spurious additional losses induced by
the PML. A crude model for this spurious behavior can be
obtained by adding a series resistance Rs to the impedance
parameters computed by MoM, as confirmed in Fig. 7 (where
a value Rs = 12 Ω is considered). In order to confirm that
these additional losses are due to the PML, we compare the
low frequency behaviour of <(Z11) of different bounding
box sizes. The top panel of Fig. 7 shows that the frequency
band over which the FIT impedance matches the MoM results
extends more and more to lower frequencies as the PML size
increases.

The effect of the spurious losses introduced by PML are also
clearly visible in time-domain responses. The bottom panel of
Fig. 7 compares the induced port voltage v1(t) by an incident
plane wave gaussian pulse [40] on the same structure of Fig. 6
given by

Einc(t) = Ê · e−a(t−τ)2 · ejωc(t−τ) (17)

a = −
(ωc

2 bw)2

4 · log(10
bwr
20 )

(18)

where τ is a time-delay as required by the assumed reference
phase definition (11), Ê = 100 V m−1 is the amplitude of the

Fig. 8. Two canonical structures used for the validation of proposed approach.
Left: electrical dipole of length 10 cm; right: square loop with area 100 cm2.
A single port is defined for both structures as a feed gap of width ∆ = 2 mm.
The diodes terminating the ports are aligned with the electric field vector of
the incident pulse.
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Fig. 9. Piecewise linear diode terminations ((a): voltage-limiting; (b): current-
limiting). The differential resistance value of each branch is Ra = 100 kΩ
and Rb = 100 mΩ. The threshold voltage of the voltage limiting diode
is Vth = 0.4 V and the threshold current of the current limiting diode is
Ith = 1.5 mA.

pulse, ωc = 2π · 0.75 GHz is the center angular frequency,
bw = 2 is the fractional bandwidth and bwr = −6 is the ref-
erence level at which fractional bandwidth is calculated (dB).
Further, all three ports are loaded by two antiparallel diodes
(default model from [37], Vth = 0.4 V). The macromodel of
the network parameters has 28 poles.

We note a different late-time DC offset as computed by
our proposed hybrid approach and by a direct transient FIT
simulation. This DC offset is due to the charge separation
occurring in the top and bottom halves of the two loops
when all diodes are non-conducting. As above, the proposed
approach can be modified to match FIT results by adding the
series resistance Rs in the SPICE simulation that evaluates the
port voltage (Sec. IV-B), as depicted by the orange curve in
the bottom panel of Fig. 7.

The above discussion pinpoints the main reason for incorrect
DC offsets in late-time transient results, which is understood
as spurious losses at low frequency induced by PML in FIT
validations. The correctness of the low-frequency asymptotic
behavior of MoM impedance is confirmed based on theoretical
considerations, giving strong confidence in the corresponding
transient results, which are subject of this investigation.

In order to provide meaningful validations in the follow-
ing sections, we will avoid considering pathological cases
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Fig. 10. Induced port voltage at the dipole and loop antenna shown in
Fig. 8 when terminated with the anti-parallel, piecewise linear diode models
shown in Fig. 9. The configurations are as follows: (a): dipole with voltage
limiting diodes; (b): loop with voltage limiting diodes; (c): dipole with current
limiting diodes; (d): loop with current limiting diodes. Configurations (a)
and (d) allow for sustained DC components due to rectification in voltage
and current, respectively. Therefore, discrepancies are expected. See text for
details.

∆MPort Edge
Port Region

10 cm

Fig. 11. Detailed view of the mesh in the port region of the structure
presented in 13, highlighting the patch height ∆M = 1.25 mm.

for which the FIT approach is problematic due to domain
truncation. These cases can be characterized as those structure-
load combinations that sustain DC components at late time as
an effect of rectification from nonlinear loads. Two canonical
structures that can be used as templates are the dipole and
the single loop depicted in Fig. 8 (network macromodels have
10 and 20 poles, respectively), together with voltage-limiting
and current-limiting diode terminations, whose characteris-
tics are depicted in Fig. 9. The dipole with voltage-limiting
diodes and the loop with current-limiting diodes support a
DC voltage and current, respectively, when excited by an
incident gaussian pulse (Ê = 80 V m−1, ωc = 2π · 1.5 GHz,
bw = 2, bwr = −6, see eq. (17)). The corresponding late-
time responses depicted in Fig. 10a and d, respectively, show
indeed significant differences between our proposed approach
and FIT. Conversely, the dipole with current-limiting diodes
and the loop with voltage-limiting diodes do not support a
late-time DC component, and correspondingly the FIT and
the proposed approach match closely (Fig. 10b and c).

Throughout the following, we will only consider structures
with voltage-limiting terminations having a conducting path
even if the ports are open-circuited. In addition to being good
templates for the energy-selective shielding applications, these
loaded structures allow for accurate validation.

B. Effects of Port Modeling in MoM

The lumped port geometry and the corresponding different
implementations available in the adopted field solvers provide
another cause for potential differences in the computed results.
Ideally, we would like to model each lumped port as defined
by a pair of nodes on adjacent metal structures, located at
a given finite distance ∆ which is much smaller than the
smallest wavelength of interest. This lumped port realization
is directly available in the FIT solver that we use for val-
idation. Conversely, the adopted MoM solver (as typical in
both research and commercial codes) only supports delta-gap
feeds [35], which implement infinitesimal gap ports (electric
field only inside gap). Therefore, results from the two solvers
in terms of both port voltages with or without terminations
and network parameters are expected to disagree due to the
different way in which the local fields surrounding the ports
are represented.

Specifically, we found that the impedance parameters com-
puted using the adopted MoM solver are sensitive to the
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Fig. 12. Top panel: Z11 for the structure shown in Fig. 13 computed using the
adopted MoM solver with different local port mesh settings (see Fig 11) with
∆M ∈ {0.5 mm, 2 mm, 4 mm}. Middle panel: Comparison of distributed
and lumped port models available in the adopted FIT solver with port gaps
∆D and ∆L, respectively, in the range 0.5 mm−4 mm. Bottom panel: MoM
and FIT results are in good agreement if ∆M = ∆D = 1 mm.

local meshing of the port region, depicted in Fig. 11. The
top panel of Fig. 12 shows Z11 for the structure of Fig. 13
using ∆M ∈ {0.5 mm, 2 mm, 4 mm}. The sensitivity of the
frequency response is moderate but clearly visible in the
plots. The middle panel of Fig. 12 depicts the same network
parameter Z11 obtained by FIT, using the two available port
implementations in the adopted FIT solver: the “lumped” port
model (dashed lines) and the “distributed” port model (solid
lines) for different gap widths in the range 0.5 mm − 4 mm.
Changing the gap size induces variations in the frequency
response as an effect of the variations in the local mesh, with
however quite different behavior for the two port implementa-
tions. Both FIT models differ from the MoM model, as can be
noted by comparing top and middle panel of Fig. 12. For this
particular structure, there is a combination between port gap
size and local mesh settings in MoM (∆M = ∆D = 1 mm)
for which both MoM and FIT results match accruately (bottom
panel of Fig. 12). For this reason, all results in this paper will
be computed by using these port settings in the MoM and FIT
solvers, so that the influence of different port implementations
is minimized in the validation results.

C. Coupled Loop Antenna

We now apply the presented method to the setup depicted in
Fig. 13, which is chosen as a problem of small complexity. The
ports are terminated with anti-parallel diodes (default model
from [37] with a threshold voltage Vth = 0.4 V). The structure
is illuminated by a low (Ê = 0.01 V m−1) and a high (Ê =

Fig. 13. A three-loop PEC frame, obtained from the structure of Fig. 6 by
adding a third loop of size c = 20 cm to ensure a conducting path even if
the three ports are open-circuited. The port gap is set to ∆ = 1.25 mm.
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Fig. 14. Validation of port voltage and field at observer with FIT for the
loop structure of Fig. 13 under weak (left) and strong (right) incident field.
Top row: port voltages; Bottom row: total electric field at observation point
C.

100 V m−1) amplitude gaussian pulse (ωc = 2π · 0.75 GHz,
bw = 2, bwr = −6). Comparing the induced voltages at port 1
for both excitation amplitudes (see top row of Fig. 14) clearly
shows the nonlinear dependence of the system response on
the excitation amplitude. Once the induced open circuit port
voltage exceeds the threshold voltage of the diodes, voltage
clipping occurs as displayed in the top right panel of Fig. 14.

The bottom row of Fig. 14 shows the computed electric
field in y-direction for an observer located at point C with
coordinates (0, 5,−0.083) m, confirming nonlinear effects also
on local fields. In fact, the maximum field strength for the
weak excitation at the observer (left bottom panel) is roughly
80% of the excitation amplitude, which is significantly larger
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Fig. 15. Box with nonlinearly loaded grid across aperture introduced in [2].
All sides of the box are a = 50 cm, the square aperture is b = 25 cm and the
port spacing is c = 6.25 cm. The grid is modeled using patches with patch
width 2 mm. Nine ports loaded with antiparallel diodes connected to the grid
create a field dependent shield. A gaussian modulated sinusoid with plane
wave fronts excites the structure. The scattered field is measured at observers
inside and outside of the cavity (observers not displayed).
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Fig. 16. The impedance parameters for the box with diode screen depicted
in Fig. 15 computed using MoM and the extracted macromodel show good
agreement.

compared to the strong excitation (right bottom panel), which
is 50% of the excitation amplitude. In the remainder of this
paper we will investigate structures that increase the effect
of this energy selective shielding. In all cases, an excellent
agreement is noted between proposed method and a reference
FIT simulation.

D. Box with a Diode Screen across Aperture

In order to validate our approach also in case of a stronger
energy selective shielding, we investigate the structure pre-
sented in [2] (shown in Fig. 15). The idea behind this design
is the cover the aperture of a cavity with an energy selective
diode grid, which is either transparent for small field strengths,
and opaque for large field strengths. It can be understood as a
more complex version of the coupled loops depicted in Fig. 13
with the difference that all energy entering the cavity must
pass through the diode grid. This structure is computationally
more expensive and exhibits sharper resonances due to the
cavity. These are clearly visible in Fig. 16, which compares
the impedance responses of the passive macromodel (44 poles
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Fig. 17. Port voltage (top panels) and field at observer in y-direction (bottom
panels) for the box with diode screen shown in Fig. 15. See text for details.

used) to the corresponding raw responses obtained by MoM.
In the following, we compute the scattered fields using the
presented method and compare against FIT with the following
settings: all ports of the structure are terminated with anti-
parallel diodes (default model from [37], Vth = 0.4 V),
and the incident field waveform is a gaussian pulse (ωc =
2π · 0.75 GHz, bw = 2, bwr = −6) with both low and
high amplitude, Ê = 0.01 V m−1 and Ê = 100 V m−1,
respectively. The resulting voltages at port 1 are shown in the
top row of Fig. 17, demonstrating the nonlinear behaviour of
the structure like in the previous subsection. The bottom row of
Fig. 17 shows the magnitude of the electric field at an observer
located inside the box, at coordinates (6.25, 25,−6.25) cm.
The strong nonlinear dependence of the field that penetrates
the box on the excitation amplitude is again clearly visible. On
one hand, the transient waveforms are different. On the other
hand, although the ratio between strong and weak excitation
amplitude is 104, the corresponding ratio computed on the
peak-to-peak field amplitude at the observer is only 2 × 103.
Equivalently, the maximum experienced field strength for the
weak excitation at the observer (left bottom panel) is roughly
50% of the excitation amplitude, which is significantly larger
compared to the strong excitation (right bottom panel), which
is 20% of the excitation amplitude. Both proposed method and
FIT provide almost identical results.

In order to quantify the shielding effectiveness of this
structure, we define the shielding factor SF as the ratio of
maximum observed field strength and the amplitude of the
incoming pulse

SF =
‖~Eobs‖∞
‖Einc‖∞

, (19)

where the shielding factor SF depends on the chosen observer,
the pulse waveform, excitation direction and amplitude of the
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Fig. 18. (a): maximum electric field strength at a single observer inside
the box depicted in Fig. 15 for different excitation amplitude. (b): shielding
effectiveness of the same structure as a function of the incident field amplitude,
for different observers inside the box where each line corresponds to a
different location, as indicated by the markers in the pictograph in the top
right. The pictograph shows the cross-section of the middle of the box with
the aperture indicated by the gap in the square.

pulse. Figure 18 shows the shielding properties of the box with
nine diodes (see Fig. 15) for different pulse amplitudes (ωc =
2π ·0.75 GHz, bw = 2, bwr = −6). As expected, the transition
from isolating to conducting of the diodes when increasing the
excitation amplitude leads to an increase in SF. For both very
small and very large field strengths, SF saturates. These limit
cases can in fact be estimated using linear simulations with
specific port terminations, namely open circuits to estimate the
low-energy asymptote and short circuits to estimate the high-
energy asymptote (see Fig. 18). We remark that the results
for both these two limit conditions are available as part of the
proposed modeling and simulation flow. Using the adopted
notation, the open-circuit condition is achieved by setting v =
voc in (15), yielding

~Eobs(t) = c(t) ~ voc(t) + d̄(t) ~ Einc(t) + p̄(t) ∗ Einc(t).
(20)

Conversely, the short-circuit condition is achived by setting
v = 0 in (15), leading to

~Eobs(t) = d̄(t) ~ Einc(t) + p̄(t) ∗ Einc(t). (21)

These equations yield approximations for the transient field
hence the SF v � Vth and v � Vth, providing the upper and
the lower bound for SF, shown in Fig. 18.

The excitation amplitude Etrans leading to the transition from
isolating to conducting diodes can thus be estimated by setting

‖voc‖∞ = Vth in (12), which yields

Etrans = Vth ·

[
‖b(t) ~ Einc(t)‖∞
‖Einc(t)‖∞

]−1

, (22)

which are shown as vertical lines in Fig. 18 for all ports.

VI. CONCLUSION

The work presented here clearly shows that the computation
of electrically large structures that are loaded with multiple
nonlinear elements deserves renewed attention in the com-
putational electromagnetics community. On one side there
are novel applications like nonlinear shielding and nonlinear
metasurfaces that will soon raise the bar above what has
been typically handled by numerical computation so far. The
optimization of structures that are several wavelengths large
and contain hundreds of nonlinear elements are tasks that
cannot be handled by any known method easily at this point.
Hence, there is a need to develop fast and efficient methods.
On the other side we have shown by careful comparison our
own hybrid method with an established commercial solver that
it is far from straightforward to achieve accurate and consistent
results for this type of numerical problem. Hence, there is a
need to further analyze and assess the pros and cons of each
approach and to further develop alternative methods to move
forward. We think that the hybrid method presented here offers
a path to accurate and efficient computation of these types of
problems especially in open spaces and in cases where an
optimization of the nonlinear elements is required. Further
studies will lead us in this direction.
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