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Abstract— In recent years,  Deep Neural Networks have been 

increasingly adopted by a wide range of applications 

characterized by high-reliability requirements, such as 

aerospace and automotive. In this paper, we propose an FPGA-

based platform for emulating faults in the architecture of DNNs. 

The approach exploits the reconfigurability of FPGAs to mimic 

faults affecting the hardware implementing DNNs. The 

platform allows the emulation of various kinds of fault models 

enabling the possibility to adapt to different types, devices, and 

architectures. In this work, a fault injection campaign has been 

performed on a convolutional layer of AlexNet, demonstrating 

the feasibility of the platform. Furthermore, the errors induced 

in the layer are analyzed with respect to the impact on the whole 

network inference classification.  

Keywords— 

I. INTRODUCTION 

In the last years, the use of Deep Neural Networks (DNNs) 
has grown dramatically. DNNs have been adopted in a wide 
range of applications within different industries, such as 
automotive, computer vision, and healthcare [1][2][3]. The 
adoption of DNNs in applications where high-reliability is 
demanded led to an increasing of interest in the study of their 
resilience and tolerance against faults. Due to their 
architecture, DNNs present a massive number of faulting 
points that can be a source of errors. The architecture of deep 
neural networks consists of tens of operational layers 
characterized by few to hundreds of millions of parameters 
implementing various computations such as convolution and 
pooling. The parameters, inputs, and outputs of each layer can 
all be a source of errors in the network. Additionally, the 
device and its specific fault models play a role that can hardly 
be emulated, affecting only parameters and nodes at 
application, topology, or algorithmic level. Nevertheless,  the 
reliability analysis of deep neural networks usually abstracts 
from the real implementation on the hardware, and it is based 
only on the corruption of data and parameters of the layers, or 
topological modifications of the net (e.g., nodes removal). 
Even if the huge amount of memory needed by neural 
networks makes storage one of the main sources of error, soft 
errors in the storage elements are only a subset of the real 
faults that can affect a device. Therefore, reliability and 
resilience evaluation of deep neural networks should not 
ignore errors in data paths and hardware architecture.  

In the last decades, hardware programmable devices (e.g., 
FPGAs and AP-SoCs) have seen wide employing for 
hardware acceleration, hardware emulation, and prototyping 
purposes. Thanks to their reconfigurability at the hardware-
level, a new configuration of the available hardware resources 
can be achieved through the download of configuration data, 
also known as the bitstream, in the configuration memory of 
the device.  

In this work, we propose FireNN, an emulation platform 
to evaluate the reliability of deep neural networks. The novelty 
of the approach is to involve programmable hardware for 

emulating faults affecting the hardware structure of the 
devices implementing the artificial neural networks. The 
platform enables a mixed reliability analysis of artificial 
neural networks combining software and hardware level 
through the extension of PyTorch and PyNQ frameworks [5] 
to support the integration of fault emulation both at the 
application and hardware level. The feasibility of our 
approach has been validated through a fault injection 
campaign emulating SEU effects in the configuration memory 
of the programmable logic of Zynq AP-SoC. Acting on the 
configuration memory, the modification induced on the 
implemented netlist faults not supported by the usual approach 
based on the corruption of weights, data, or topology of the 
network under test [6].  

This paper is organized as follows: Section II provides an 
overview of the related works in the field of fault tolerance of 
deep neural networks. Section III describes the background of 
deep neural networks and AP-SoC. The developed evaluation 
platform is presented in section IV, while the experimental 
results of the reliability analysis on a convolutional layer of 
AlexNet neural network are reported in section V. Finally, 
conclusions and future works are drawn in section VI.  

II. RELATED WORKS 

Several approaches have been explored for quantifying 
fault tolerance of deep neural networks against soft errors. In 
[7], the authors analyze the effect and propagation of errors 
affecting the data and parameters of different layers, using 
different data types. In [8],  a fault injection framework limited 
to the analysis of soft memory faults is presented. Differently, 
in [9], the authors characterize the impact of permanents faults 
using the darknet framework affecting layers for LeNet and 
Yolo convolutional neural networks. All the previous works 
perform analysis on the software layer, independently of the 
hardware. However, [8] reports a silicon validation, but it is 
limited to the faults affecting storage. On the hardware side, 
few works targeted the reliability of neural networks against 
faults affecting the hardware. In [10], the authors perform 
beam experiments and fault injection on different GPU 
architectures. In [6], a reliability analysis based on faults 
affecting the configuration memory of an FPGA device 
implementing a CNN has been executed.  

III. BACKGROUND  

A. Deep Neural Networks 

Deep neural networks (DNN) are artificial neural 
networks made by several computing layers that are 
characterized by the value of their tunable. Convolutional 
neural networks (CNN) are a type of DNN that proved to be 
very performing in several applications, especially visual 
classification. They are typically composed of convolutional, 
pooling, and fully connected layers. The increasing depth of 
DNN architectures brought to network with tens of millions 
of parameters involved [11]. Due to the necessity to manage 
the huge number of parameters, the complex structure of the 
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networks, and the computational demands for the training 
phase, several frameworks have been developed. Between 
them, PyTorch is one of the most successful open-source 
frameworks [12]. 

B. AP-SoCs 

The AP-SoCs are integrated circuits characterized by the 
combination of programmable hardware and a processor 
system. The configurable logic is characterized by 
programmable resources, such as LUTs, DSPs, and point-to-
point interconnections which can be configured to implement 
a target netlist. The device configuration happens by means of 
a stream of configuration data downloaded in the 
configuration memory of the device. The reconfigurability is 
given by the possibility to change on demand the content of 
the configuration memory enabling the use of these devices 
for emulation and prototyping purposes. Moreover, it has been 
proved by several research works how fine-grained 
configuration memory manipulation is able to induce desired 
modifications in the netlist implemented on the device 
[13][14][15].  

IV. THE DEVELOPED EVALUATION PLATFORM 

The proposed platform aims to exploit the 
reconfigurability feature of Zynq AP-SoC [16] to provide a 
first-order analysis of the faults affecting the hardware 
implementing neural networks through modification of the 
configuration memory content to emulate specific hardware 
faults (e.g. stuck-at faults, conflicting connections, delays, and 
others), also belonging to different hardware devices.  

A. Background on FireNN Architecture 

The developed platform is characterized by two 
environments, named FireNN Machine and FireNN Platform, 
typically running on the processor system of the Zynq AP-
SoC and a host computer, respectively. Figure 1 shows an 
overall view of the architecture and modules involved. 
However, the Machine offers an interface to the Platform 
agnostic to the hardware device (i.e., usually the AP-SoC) on 
which it is running. Differently, the backend of the Machine, 
elaborated in the following subsections, is based on hardware-
dependent elements named Gears. For this reason, the FireNN 
Machine is not constrained to the Zynq AP-SoC, and it can 
also run on other devices supporting Python and PyTorch. For 
the sake of clarity, the device on which the Machine runs will 
be identified with the Zynq AP-SoC, in the rest of the paper. 
However, we would like to emphasize that any device for 
which Gears are provided can be easily used. 

The two FireNN environments are coded in Python,  based 
on the PyTorch framework. FireNN Platform running on the 
host computer has features to wrap the PyTorch modules 
selected for the reliability evaluation. Additionally, it manages 
the communication with the FireNN Machine running on the 
processor system. The FireNN Platform provides APIs to 
virtually move the module to the device where the Machine is 
running similar to the APIs dedicated to moving the 
computation between GPUs and CPUs offered by PyTorch. 

The main purpose of the FireNN Platform running on the 
host computer is to offload the computations demand of the 
whole network from the Zynq in favor of a higher-
performance system. Indeed, Zynq devices can present some 
performance issues when running software neural network 
applications, especially related to the required amount of on-
board RAM. Nevertheless, the Machine and the Platform can 
also run on the same emulation device if the performance is 
high enough. 

B. FireNN Platform and Shells 

The FireNN Platform provides the APIs for enabling 
relocation of a neural network submodule (e.g., a 
convolutional layer) to be transparently and remotely 
executed on another device with the aid of the FireNN 
Machine. The relocation APIs mimic the APIs to move the 
computation between GPUs and CPUs provided by PyTorch. 
In detail, the relocation is achieved through the encapsulation 
of neural network basic blocks in a container deriving from 
module class of PyTorch, named Shell. The Shell, which is 
encapsulating the original module, is created by the to_device 
relocation API. Additionally, the to_device API scans the 
structure of the neural network model to insert the Shell in the 
topology of the neural network in the place of the relocated 
module, as shown in Figure 2. The Shell is connected to the 
Machine running on the Zynq, where a Gear related to the 
Shell will be instantiated. In FireNN, a Gear is the hardware-
dependent computational element emulating a layer of the 
PyTorch network. Their characteristics are explained in the 
next subsection. In addition to offering all the functions 
inherited from the encapsulated module, the Shell provides the 
frontend to the user to perform reliability experiments on the 
Zynq side. In particular, the Shell has methods to easily 
execute inference using the original data path, passing through 
the original operative layer, or the new one deployed on the 
Zynq device. It offers APIs to perform injections of different 

kinds of fault supported by the device. 

Moreover, the Shell is equipped with a tuning routine that 
can be used to infer the dimension of input and output data. 
This was necessary because some PyTorch modules are 
agnostic of I/O data dimensions, even if, within the neural 
network, their I/O data dimensions are defined univocally by 

Fig. 2. Relocation of the layer under test to the Zynq through the proposed  

Shell encapsulation mechanism. 

Fig. 1. Schema of architecture and modules. 
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the modules (e.g., fully connected layer) for which I/O data 
dimension need to be defined. 

C. FireNN Machine and Gears  

The Machine is the module providing the mechanism to 
manage the computing layers to be deployed on the hardware.  
Layers are deployed on the AP-SoC with the purpose of 
manipulating the device-based implementation or execution 
of that module to perform reliability analyses.  

The Gears are hardware-dependent implementations of a 
layer, provided with a python driver and descriptor. The Gears 
are the only hardware-dependent elements of the proposed 
evaluation platform. They offer a common interface to be 
easily managed by the FireNN Machine, independently of 
their backend. Differently, the backend is strongly dependent 
on the type of neural network layer that the user wants to test 
and the hardware on which it is implemented. Hence, the 
Gears consist of three parts: the interface; the implementation 
of the operational layer for the specific device; and the driver 
to allow the use of the hardware part through the interface. A 
conceptual schema summarizing the element composing the 
Gears is reported in Figure 3.  

The main operations supported by Gears are the forward, 
deploy, and the injection operations. The forward operation 
has the same role as the forward method in PyTorch. Given 
the input tensor, it performs the operation associated with that 
module and returns the output tensor. This requires that the 
characterizing parameters of the neural network layer (e.g. 
weights, bias, hyperparameters, etc.) are transmitted by the 
Shell during the relocation process. The deploy operation 
executes the step to deploy the Gears backend on the Zynq 
and performs the necessary setup steps for enabling the 
forward operation. Finally, through the injection operation, it 
is possible to insert faults in the layer accordingly with the 
fault models chosen by the user. The injection mechanism is 
able to select bits in the configuration memory related to 
specific resources in order to affect specific elements of the 
network architecture (e.g., connections, DSPs, etc.). The 
Gears injection mechanism for Zynq relies on the PyXEL 
framework [16]. Additionally, the Gears are provided with a 
tunable timeout mechanism to avoid fault-induced endless 
waits. 

The Machine offers a frontend agnostic of the device on 
which it is running. Its main role is to handle the 
communication with the Platform module and manage and 
orchestrate the Gears instances and their usage. In detail, the 
Machine receives and processes commands from the Shells to 
instantiate and perform operations on the Gears associated 
with them. The creation of the Gears instances is managed on-
demand by the Machine. Basing on the commands received 
by the Shells, the Machine instantiates, deploys, runs, and 
injects the Gears associated with the Shell. 

V. EXPERIMENTAL ANALYSIS AND RESULTS 

To confirm the feasibility of the proposed approach, we 
carried out a reliability analysis of a convolutional layer of a 
modified version of the AlexNet neural network model [18]. 

A. Experimental Analysis 

The architecture of the network used in the experimental 
analysis is presented in Figure 4. It is a modified pre-trained 
version, provided by torchvision, of the AlexNet network 
made of 13 layers for feature extraction and 2 fully connected 
layers for classification. The input is a tensor of dimensions 
3×224×224 representing a cropped and normalized RGB 
picture. The network is pre-trained on the ImageNet dataset 
and is able to classify 1000 different categories [18]. The layer 
selected for the reliability analysis is the fifth (i.e. the last) 
convolutional layer of the network. 

The layer is characterized by 590,080 parameters (i.e., 256 
kernels with dimensions each of 256×3×3 and 256 bias). 
Using Vivado HLS, a custom IP Core performing the same 
operation of the convolutional layer under test has been 
developed. In detail, it computes 2-D multichannel 
convolution between input with dimension 13×13 and a 3×3 
kernel with 256 input channels and 256 output channels. Data 
are represented using 32-bits floating-point representations, 
accordingly with the PyTorch model of the network. Data 
transfers between the processor system and programmable 
logic are supported by direct memory access to transfer 
streams of data from the DDR memory to the programmable 
logic and vice versa. 

Typically, the results of the neural networks inference 
phase are reported as a numerical value for each category. 

Using a softmax function, these values are normalized and 

reduced to a probabilistic distribution over the labels. Hence, 

the output of the neural network is characterized by a ranking 

of labels with an associated percentage of confidence.  

B. Experimental Analysis and Results 

A set of images from the ImageNet dataset has been used 
as the test vector. As a first validation experiment, we 
compared the results obtained from the PyTorch and FireNN 
models of the network. The two networks led to the same 
classification results, both in terms of category and 
confidence. These outputs have been taken as golden results 
in order to detect deviations from nominal operations of the 
neural network when the convolutional layer is executed by 
the faulty netlist implemented on the Zynq. The random bitflip 
injections emulate the fault model typically observed in 

Fig. 3. Conceptual schema of the structure of Gears 

Fig. 4. DNN architecture adopted in the experimental analysis. 
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programmable devices affected by SEU. However, through an 
accurate bitstream manipulation, the platform also enables the 
injection of other fault models suited to the platform under 
emulation (e.g., stuck-at faults for ASICs). Please note that, 
due to the intrinsic characteristics of programmable devices, 
not all configuration data bits will generate errors when 
corrupted. To elaborate more, since only a subset of resources 
is used by design implemented on the programmable logic, 
random injections could target unused resources. These 
injections cause errors only if the modification to the unused 
resource will make it conflict with an active one. Moreover, 
we would like to emphasize that the injection of SEUs in the 
configuration memory of the programmable logic does not 
involve only faults related to the parameters and data of the 
network. Changing in the content of the configuration 
memory leads to undesired modification also in the structure 
of the hardware implementation of the layer, affecting data 
path, computational elements (e.g., DSP), interconnections, 
etc. 

We performed 10,000 experiments, injecting a single 
bitflip in the configuration data of the convolutional IP core. 
The injected bits have been chosen randomly among the 
whole configuration memory bits. All the faults are injected 
before inference (i.e. not while the layer is running). A 
corrupted configuration bitstream is generated for each bitflip 
and tested singularly for multiple inferences on the test vector. 
Any deviation from the golden result has been considered as 
an error. The time required for each experiment, from the 
generation of the location to inject until the classification 
output is about 5 seconds. Errors have been classified into four 
groups. The proposed categories of errors are 
misclassification, degradation, timeout, and representation. 
The misclassification error category means that the category 
with the higher confidence obtained as output by the injected 
neural network does not match with the one reported by the 
golden output. The degradation error is a less significant error 
than misclassification. The degradation category gathers the 
outputs that differ from the golden one with respect to the 
confidence value but without changing the classification 
category. The injected faults caused an error that propagated 
until the output, affecting the obtained confidence values. 
Differently from previous categories, timeout and 
representation errors categories prevent the neural network 
from generating a classification output. Timeouts occur when 
injected faults prevent the on-Zynq layer from returning a 
result. In this case, it is not possible to forward the output of 
the layer to the following one and obtain a classification 
output. Finally, a representation error is detected when 
returning data from the Gear cannot be interpreted as a 
number. 

As a result of the reliability evaluation, 915 injections out 

of 10,000 caused errors at the neural network outputs. 

Degradation has been the category with more observed 

occurrences, followed by misclassification with 52.45% and 

44.26% of the total detected errors, respectively. Only a few 

cases of timeout (1.85%) and representation (1.42%) errors 

occurred. Figure 7 reports a comparative graph of the 

detected errors. 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, we presented an evaluation platform to 
analyze errors in a neural network not only at the application 
level but also at the hardware implementation level, fully 
integrated with the PyTorch library. Additionally, the 
platform enables the manipulation of the configuration data of 
AP-SoC to inject specific fault models. As future work, we 
plan to provide a ready set of Gears and fault models targeting 
most common faults, devices, and architecture to permit more 
wide analysis exploiting the proposed platform.  
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