
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Emulation Platform for Evaluating the Reliability of Deep Neural Networks / DE SIO, Corrado; Azimi, Sarah;
Sterpone, Luca. - ELETTRONICO. - (2020), pp. 1-4. (Intervento presentato al convegno 33rd IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT 2020) tenutosi a ita nel 19-21
Oct. 2020) [10.1109/DFT50435.2020.9250872].

Original

An Emulation Platform for Evaluating the Reliability of Deep Neural Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DFT50435.2020.9250872

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2844426 since: 2020-09-08T10:54:02Z

IEEE

978-1-7281-9457-8/20/$31.00 ©2020 IEEE

An Emulation Platform for Evaluating the

Reliability of Deep Neural Network

Corrado De Sio, Sarah Azimi, Luca Sterpone
Dipartimento di Automatica e Informatica

Politecnico di Torino
Torino, Italy

Abstract— In recent years, Deep Neural Networks have been

increasingly adopted by a wide range of applications

characterized by high-reliability requirements, such as

aerospace and automotive. In this paper, we propose an FPGA-

based platform for emulating faults in the architecture of DNNs.

The approach exploits the reconfigurability of FPGAs to mimic

faults affecting the hardware implementing DNNs. The

platform allows the emulation of various kinds of fault models

enabling the possibility to adapt to different types, devices, and

architectures. In this work, a fault injection campaign has been

performed on a convolutional layer of AlexNet, demonstrating

the feasibility of the platform. Furthermore, the errors induced

in the layer are analyzed with respect to the impact on the whole

network inference classification.

Keywords—

I. INTRODUCTION

In the last years, the use of Deep Neural Networks (DNNs)
has grown dramatically. DNNs have been adopted in a wide
range of applications within different industries, such as
automotive, computer vision, and healthcare [1][2][3]. The
adoption of DNNs in applications where high-reliability is
demanded led to an increasing of interest in the study of their
resilience and tolerance against faults. Due to their
architecture, DNNs present a massive number of faulting
points that can be a source of errors. The architecture of deep
neural networks consists of tens of operational layers
characterized by few to hundreds of millions of parameters
implementing various computations such as convolution and
pooling. The parameters, inputs, and outputs of each layer can
all be a source of errors in the network. Additionally, the
device and its specific fault models play a role that can hardly
be emulated, affecting only parameters and nodes at
application, topology, or algorithmic level. Nevertheless, the
reliability analysis of deep neural networks usually abstracts
from the real implementation on the hardware, and it is based
only on the corruption of data and parameters of the layers, or
topological modifications of the net (e.g., nodes removal).
Even if the huge amount of memory needed by neural
networks makes storage one of the main sources of error, soft
errors in the storage elements are only a subset of the real
faults that can affect a device. Therefore, reliability and
resilience evaluation of deep neural networks should not
ignore errors in data paths and hardware architecture.

In the last decades, hardware programmable devices (e.g.,
FPGAs and AP-SoCs) have seen wide employing for
hardware acceleration, hardware emulation, and prototyping
purposes. Thanks to their reconfigurability at the hardware-
level, a new configuration of the available hardware resources
can be achieved through the download of configuration data,
also known as the bitstream, in the configuration memory of
the device.

In this work, we propose FireNN, an emulation platform
to evaluate the reliability of deep neural networks. The novelty
of the approach is to involve programmable hardware for

emulating faults affecting the hardware structure of the
devices implementing the artificial neural networks. The
platform enables a mixed reliability analysis of artificial
neural networks combining software and hardware level
through the extension of PyTorch and PyNQ frameworks [5]
to support the integration of fault emulation both at the
application and hardware level. The feasibility of our
approach has been validated through a fault injection
campaign emulating SEU effects in the configuration memory
of the programmable logic of Zynq AP-SoC. Acting on the
configuration memory, the modification induced on the
implemented netlist faults not supported by the usual approach
based on the corruption of weights, data, or topology of the
network under test [6].

This paper is organized as follows: Section II provides an
overview of the related works in the field of fault tolerance of
deep neural networks. Section III describes the background of
deep neural networks and AP-SoC. The developed evaluation
platform is presented in section IV, while the experimental
results of the reliability analysis on a convolutional layer of
AlexNet neural network are reported in section V. Finally,
conclusions and future works are drawn in section VI.

II. RELATED WORKS

Several approaches have been explored for quantifying
fault tolerance of deep neural networks against soft errors. In
[7], the authors analyze the effect and propagation of errors
affecting the data and parameters of different layers, using
different data types. In [8], a fault injection framework limited
to the analysis of soft memory faults is presented. Differently,
in [9], the authors characterize the impact of permanents faults
using the darknet framework affecting layers for LeNet and
Yolo convolutional neural networks. All the previous works
perform analysis on the software layer, independently of the
hardware. However, [8] reports a silicon validation, but it is
limited to the faults affecting storage. On the hardware side,
few works targeted the reliability of neural networks against
faults affecting the hardware. In [10], the authors perform
beam experiments and fault injection on different GPU
architectures. In [6], a reliability analysis based on faults
affecting the configuration memory of an FPGA device
implementing a CNN has been executed.

III. BACKGROUND

A. Deep Neural Networks

Deep neural networks (DNN) are artificial neural
networks made by several computing layers that are
characterized by the value of their tunable. Convolutional
neural networks (CNN) are a type of DNN that proved to be
very performing in several applications, especially visual
classification. They are typically composed of convolutional,
pooling, and fully connected layers. The increasing depth of
DNN architectures brought to network with tens of millions
of parameters involved [11]. Due to the necessity to manage
the huge number of parameters, the complex structure of the

978-1-7281-9457-8/20/$31.00 ©2020 IEEE

networks, and the computational demands for the training
phase, several frameworks have been developed. Between
them, PyTorch is one of the most successful open-source
frameworks [12].

B. AP-SoCs

The AP-SoCs are integrated circuits characterized by the
combination of programmable hardware and a processor
system. The configurable logic is characterized by
programmable resources, such as LUTs, DSPs, and point-to-
point interconnections which can be configured to implement
a target netlist. The device configuration happens by means of
a stream of configuration data downloaded in the
configuration memory of the device. The reconfigurability is
given by the possibility to change on demand the content of
the configuration memory enabling the use of these devices
for emulation and prototyping purposes. Moreover, it has been
proved by several research works how fine-grained
configuration memory manipulation is able to induce desired
modifications in the netlist implemented on the device
[13][14][15].

IV. THE DEVELOPED EVALUATION PLATFORM

The proposed platform aims to exploit the
reconfigurability feature of Zynq AP-SoC [16] to provide a
first-order analysis of the faults affecting the hardware
implementing neural networks through modification of the
configuration memory content to emulate specific hardware
faults (e.g. stuck-at faults, conflicting connections, delays, and
others), also belonging to different hardware devices.

A. Background on FireNN Architecture

The developed platform is characterized by two
environments, named FireNN Machine and FireNN Platform,
typically running on the processor system of the Zynq AP-
SoC and a host computer, respectively. Figure 1 shows an
overall view of the architecture and modules involved.
However, the Machine offers an interface to the Platform
agnostic to the hardware device (i.e., usually the AP-SoC) on
which it is running. Differently, the backend of the Machine,
elaborated in the following subsections, is based on hardware-
dependent elements named Gears. For this reason, the FireNN
Machine is not constrained to the Zynq AP-SoC, and it can
also run on other devices supporting Python and PyTorch. For
the sake of clarity, the device on which the Machine runs will
be identified with the Zynq AP-SoC, in the rest of the paper.
However, we would like to emphasize that any device for
which Gears are provided can be easily used.

The two FireNN environments are coded in Python, based
on the PyTorch framework. FireNN Platform running on the
host computer has features to wrap the PyTorch modules
selected for the reliability evaluation. Additionally, it manages
the communication with the FireNN Machine running on the
processor system. The FireNN Platform provides APIs to
virtually move the module to the device where the Machine is
running similar to the APIs dedicated to moving the
computation between GPUs and CPUs offered by PyTorch.

The main purpose of the FireNN Platform running on the
host computer is to offload the computations demand of the
whole network from the Zynq in favor of a higher-
performance system. Indeed, Zynq devices can present some
performance issues when running software neural network
applications, especially related to the required amount of on-
board RAM. Nevertheless, the Machine and the Platform can
also run on the same emulation device if the performance is
high enough.

B. FireNN Platform and Shells

The FireNN Platform provides the APIs for enabling
relocation of a neural network submodule (e.g., a
convolutional layer) to be transparently and remotely
executed on another device with the aid of the FireNN
Machine. The relocation APIs mimic the APIs to move the
computation between GPUs and CPUs provided by PyTorch.
In detail, the relocation is achieved through the encapsulation
of neural network basic blocks in a container deriving from
module class of PyTorch, named Shell. The Shell, which is
encapsulating the original module, is created by the to_device
relocation API. Additionally, the to_device API scans the
structure of the neural network model to insert the Shell in the
topology of the neural network in the place of the relocated
module, as shown in Figure 2. The Shell is connected to the
Machine running on the Zynq, where a Gear related to the
Shell will be instantiated. In FireNN, a Gear is the hardware-
dependent computational element emulating a layer of the
PyTorch network. Their characteristics are explained in the
next subsection. In addition to offering all the functions
inherited from the encapsulated module, the Shell provides the
frontend to the user to perform reliability experiments on the
Zynq side. In particular, the Shell has methods to easily
execute inference using the original data path, passing through
the original operative layer, or the new one deployed on the
Zynq device. It offers APIs to perform injections of different

kinds of fault supported by the device.

Moreover, the Shell is equipped with a tuning routine that
can be used to infer the dimension of input and output data.
This was necessary because some PyTorch modules are
agnostic of I/O data dimensions, even if, within the neural
network, their I/O data dimensions are defined univocally by

Fig. 2. Relocation of the layer under test to the Zynq through the proposed

Shell encapsulation mechanism.

Fig. 1. Schema of architecture and modules.

978-1-7281-9457-8/20/$31.00 ©2020 IEEE

the modules (e.g., fully connected layer) for which I/O data
dimension need to be defined.

C. FireNN Machine and Gears

The Machine is the module providing the mechanism to
manage the computing layers to be deployed on the hardware.
Layers are deployed on the AP-SoC with the purpose of
manipulating the device-based implementation or execution
of that module to perform reliability analyses.

The Gears are hardware-dependent implementations of a
layer, provided with a python driver and descriptor. The Gears
are the only hardware-dependent elements of the proposed
evaluation platform. They offer a common interface to be
easily managed by the FireNN Machine, independently of
their backend. Differently, the backend is strongly dependent
on the type of neural network layer that the user wants to test
and the hardware on which it is implemented. Hence, the
Gears consist of three parts: the interface; the implementation
of the operational layer for the specific device; and the driver
to allow the use of the hardware part through the interface. A
conceptual schema summarizing the element composing the
Gears is reported in Figure 3.

The main operations supported by Gears are the forward,
deploy, and the injection operations. The forward operation
has the same role as the forward method in PyTorch. Given
the input tensor, it performs the operation associated with that
module and returns the output tensor. This requires that the
characterizing parameters of the neural network layer (e.g.
weights, bias, hyperparameters, etc.) are transmitted by the
Shell during the relocation process. The deploy operation
executes the step to deploy the Gears backend on the Zynq
and performs the necessary setup steps for enabling the
forward operation. Finally, through the injection operation, it
is possible to insert faults in the layer accordingly with the
fault models chosen by the user. The injection mechanism is
able to select bits in the configuration memory related to
specific resources in order to affect specific elements of the
network architecture (e.g., connections, DSPs, etc.). The
Gears injection mechanism for Zynq relies on the PyXEL
framework [16]. Additionally, the Gears are provided with a
tunable timeout mechanism to avoid fault-induced endless
waits.

The Machine offers a frontend agnostic of the device on
which it is running. Its main role is to handle the
communication with the Platform module and manage and
orchestrate the Gears instances and their usage. In detail, the
Machine receives and processes commands from the Shells to
instantiate and perform operations on the Gears associated
with them. The creation of the Gears instances is managed on-
demand by the Machine. Basing on the commands received
by the Shells, the Machine instantiates, deploys, runs, and
injects the Gears associated with the Shell.

V. EXPERIMENTAL ANALYSIS AND RESULTS

To confirm the feasibility of the proposed approach, we
carried out a reliability analysis of a convolutional layer of a
modified version of the AlexNet neural network model [18].

A. Experimental Analysis

The architecture of the network used in the experimental
analysis is presented in Figure 4. It is a modified pre-trained
version, provided by torchvision, of the AlexNet network
made of 13 layers for feature extraction and 2 fully connected
layers for classification. The input is a tensor of dimensions
3×224×224 representing a cropped and normalized RGB
picture. The network is pre-trained on the ImageNet dataset
and is able to classify 1000 different categories [18]. The layer
selected for the reliability analysis is the fifth (i.e. the last)
convolutional layer of the network.

The layer is characterized by 590,080 parameters (i.e., 256
kernels with dimensions each of 256×3×3 and 256 bias).
Using Vivado HLS, a custom IP Core performing the same
operation of the convolutional layer under test has been
developed. In detail, it computes 2-D multichannel
convolution between input with dimension 13×13 and a 3×3
kernel with 256 input channels and 256 output channels. Data
are represented using 32-bits floating-point representations,
accordingly with the PyTorch model of the network. Data
transfers between the processor system and programmable
logic are supported by direct memory access to transfer
streams of data from the DDR memory to the programmable
logic and vice versa.

Typically, the results of the neural networks inference
phase are reported as a numerical value for each category.

Using a softmax function, these values are normalized and

reduced to a probabilistic distribution over the labels. Hence,

the output of the neural network is characterized by a ranking

of labels with an associated percentage of confidence.

B. Experimental Analysis and Results

A set of images from the ImageNet dataset has been used
as the test vector. As a first validation experiment, we
compared the results obtained from the PyTorch and FireNN
models of the network. The two networks led to the same
classification results, both in terms of category and
confidence. These outputs have been taken as golden results
in order to detect deviations from nominal operations of the
neural network when the convolutional layer is executed by
the faulty netlist implemented on the Zynq. The random bitflip
injections emulate the fault model typically observed in

Fig. 3. Conceptual schema of the structure of Gears

Fig. 4. DNN architecture adopted in the experimental analysis.

978-1-7281-9457-8/20/$31.00 ©2020 IEEE

programmable devices affected by SEU. However, through an
accurate bitstream manipulation, the platform also enables the
injection of other fault models suited to the platform under
emulation (e.g., stuck-at faults for ASICs). Please note that,
due to the intrinsic characteristics of programmable devices,
not all configuration data bits will generate errors when
corrupted. To elaborate more, since only a subset of resources
is used by design implemented on the programmable logic,
random injections could target unused resources. These
injections cause errors only if the modification to the unused
resource will make it conflict with an active one. Moreover,
we would like to emphasize that the injection of SEUs in the
configuration memory of the programmable logic does not
involve only faults related to the parameters and data of the
network. Changing in the content of the configuration
memory leads to undesired modification also in the structure
of the hardware implementation of the layer, affecting data
path, computational elements (e.g., DSP), interconnections,
etc.

We performed 10,000 experiments, injecting a single
bitflip in the configuration data of the convolutional IP core.
The injected bits have been chosen randomly among the
whole configuration memory bits. All the faults are injected
before inference (i.e. not while the layer is running). A
corrupted configuration bitstream is generated for each bitflip
and tested singularly for multiple inferences on the test vector.
Any deviation from the golden result has been considered as
an error. The time required for each experiment, from the
generation of the location to inject until the classification
output is about 5 seconds. Errors have been classified into four
groups. The proposed categories of errors are
misclassification, degradation, timeout, and representation.
The misclassification error category means that the category
with the higher confidence obtained as output by the injected
neural network does not match with the one reported by the
golden output. The degradation error is a less significant error
than misclassification. The degradation category gathers the
outputs that differ from the golden one with respect to the
confidence value but without changing the classification
category. The injected faults caused an error that propagated
until the output, affecting the obtained confidence values.
Differently from previous categories, timeout and
representation errors categories prevent the neural network
from generating a classification output. Timeouts occur when
injected faults prevent the on-Zynq layer from returning a
result. In this case, it is not possible to forward the output of
the layer to the following one and obtain a classification
output. Finally, a representation error is detected when
returning data from the Gear cannot be interpreted as a
number.

As a result of the reliability evaluation, 915 injections out

of 10,000 caused errors at the neural network outputs.

Degradation has been the category with more observed

occurrences, followed by misclassification with 52.45% and

44.26% of the total detected errors, respectively. Only a few

cases of timeout (1.85%) and representation (1.42%) errors

occurred. Figure 7 reports a comparative graph of the

detected errors.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented an evaluation platform to
analyze errors in a neural network not only at the application
level but also at the hardware implementation level, fully
integrated with the PyTorch library. Additionally, the
platform enables the manipulation of the configuration data of
AP-SoC to inject specific fault models. As future work, we
plan to provide a ready set of Gears and fault models targeting
most common faults, devices, and architecture to permit more
wide analysis exploiting the proposed platform.

REFERENCES

[1] A. Karpath et al., "Large-Scale Video Classification with
Convolutional Neural Networks," 2014 IEEE Conference on Computer

Vision and Pattern Recognition, Columbus, OH, 2014, pp. 1725-1732.

[2] F. Falcini, G. Lami and A. M. Costanza, "Deep Learning in Automotive

Software," in IEEE Software, vol. 34, no. 3, pp. 56-63, May-Jun. 2017

[3] Y. LeCun, Y. Bengio and G. Hinton, "Deep Learning" in Nature, vol.

521, pp. 436, May 2015.

[4] W. G. Hatcher and W. Yu, "A Survey of Deep Learning: Platforms,
Applications and Emerging Research Trends," in IEEE Access, vol. 6,

pp. 24411-24432, 2018.

[5] "pynq.io", 2020, [online] Available: www.pynq.io.

[6] B. Du, et al., "On the Reliability of Convolutional Neural Network

Implementation on SRAM-based FPGA" 2019 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT), Noordwijk, Netherlands, 2019.

[7] G. Li et al, "Understanding error propagation in deep learning neural
network (DNN) accelerators and applications", International

Conference for High Performance Computing, Networking, Storage

and Analysis (SC ’17), New York, NY, USA, 2017, Article 8, 1–12

[8] B. Reagen et al., "Ares: A framework for quantifying the resilience of

deep neural networks," 2018 55th ACM/ESDA/IEEE Design

Automation Conference (DAC), San Francisco, CA, 2018, pp. 1-6.

[9] A. Bosio, P. Bernardi, A. Ruospo and E. Sanchez, "A Reliability

Analysis of a Deep Neural Network," 2019 IEEE Latin American Test

Symposium (LATS), Santiago, Chile, 2019, pp. 1-6.

[10] F. F. d. Santos et al., "Analyzing and Increasing the Reliability of

Convolutional Neural Networks on GPUs," in IEEE Transactions on

Reliability, vol. 68, no. 2, pp. 663-677, June 2019.

[11] Khan, Asifullah & Sohail, Anabia & Zahoora, Umme & Saeed, Aqsa.

(2019). A Survey of the Recent Architectures of Deep Convolutional

Neural Networks. Artificial Intelligence Review.

[12] A. Paszke et al., "PyTorch: An Imperative Style, High-Performance
Deep Learning Library". In Advances in Neural Information

Processing Systems 32, Curran Associates Inc, pp. 8024–8035, 2019.

[13] A. Megacz, "A Library and Platform for FPGA Bitstream
Manipulation" 15th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines, Napa, CA, 2007, pp. 45-54.

[14] S. A. Guccione and D. Levi, "JBits: A Java-Based Interface to
FPGA", Proc. 2nd Annual Military and Aerospace App. of

Programmable Devices and Technology Conference, 1999.

[15] K. Dang Pham, E. Horta and D. Koch, "BITMAN: A tool and API for
FPGA bitstream manipulations," Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017, Lausanne, 2017, pp. 894-897.

[16] Xilinx, Inc., “Zynq-7000 All Programmable SoC: Technical reference

manual”, San Jose, CA, USA, July 2018, User Guide, UG585.

[17] L. Bozzoli et al. "PyXEL: An Integrated Environment for the Analysis

of Fault Effects in SRAM-Based FPGA Routing," 2018 International

Symposium on Rapid System Prototyping (RSP), Torino, Italy, 2018.

[18] Alex Krizhevsky, et al. ImageNet classification with deep

convolutional neural networks. Commun. ACM 60, June 2017, 84–90.

Fig. 5. Classification of the occurred errors. Total number of error is 915.

