
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Point Cloud Normal Estimation with Graph-Convolutional Neural Networks / Pistilli, Francesca; Fracastoro, Giulia;
Valsesia, Diego; Magli, Enrico. - ELETTRONICO. - (2020), pp. 1-6. (Intervento presentato al convegno 2020 IEEE
International Conference on Multimedia & Expo - 3D Point Cloud Processing, Analysis, Compression, and
Communication (PC-PACC) Workshop) [10.1109/ICMEW46912.2020.9105972].

Original

Point Cloud Normal Estimation with Graph-Convolutional Neural Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICMEW46912.2020.9105972

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2844357 since: 2020-09-17T12:01:31Z

IEEE

POINT CLOUD NORMAL ESTIMATION WITH GRAPH-CONVOLUTIONAL NEURAL
NETWORKS

Francesca Pistilli, Giulia Fracastoro, Diego Valsesia, Enrico Magli

Politecnico di Torino, Italy

ABSTRACT

Surface normal estimation is a basic task for many point cloud
processing algorithms. However, it can be challenging to cap-
ture the local geometry of the data, especially in presence
of noise. Recently, deep learning approaches have shown
promising results. Nevertheless, applying convolutional neu-
ral networks to point clouds is not straightforward, due to the
irregular positioning of the points. In this paper, we propose a
normal estimation method based on graph-convolutional neu-
ral networks to deal with such irregular point cloud domain.
The graph-convolutional layers build hierarchies of localized
features to solve the estimation problem. We show state-of-
the-art performance and robust results even in presence of
noise.

Index Terms— Point clouds, normal estimation, graph-
convolutional neural networks

1. INTRODUCTION

The increased availability and quality of range-sensing instru-
ments, such as LiDAR, has made point clouds a commonly
used data type. A point cloud can be described as an un-
ordered collection of 3D points sampled from an underlying
surface. Estimating the normal vector to the surface is a fun-
damental task that is part of the pipeline of many point cloud
processing algorithms addressing a variety of problems. For
instance, normals can be used to apply shading effects in com-
puter graphics [1], improve surface reconstruction [2], reg-
ularize segmentation [3] and denoising [4]. Therefore, im-
provements on normal estimation algorithms are significant
as they benefit a large number of downstream tasks.

However, processing point clouds can be challenging due
to their nature as unordered sets of points. Traditional model-
based approaches typically resorted to fitting local geometric
models of the surface [5, 6, 7, 8, 9, 10], encountering model
difficulties in presence of noise. Recently, an interest in deep
learning approaches has grown out of their capability of build-
ing more complex representations that can also be robust to
noise. Nevertheless, extending deep learning approaches to
point clouds is hard due to the lack of a grid-like domain
and the permutation-invariance problem, i.e., the irrelevance
of the ordering of points. PointNet [11] is one of the early ap-

proaches to use deep neural networks on point clouds for the
classification problem; it addresses those issues by applying
the same weights to all points and then merging the informa-
tion with a globally-symmetric function (e.g., a max pool).
However, this construction is sub-optimal as it does not ex-
ploit some of the useful properties that made convolutional
neural networks (CNNs) so successful. In particular, it can-
not create hierarchies of localized features where the hidden
representation of a point is constructed from the features of its
neighbors and then is in turn assembled with the other local
representations to create higher-level features.

Graph-convolutional neural networks [12] are emerging
as a state-of-the-art approach to deal with irregular domains
in the form of a general graph. They are, therefore, natu-
rally suited to process point clouds where a graph can be con-
structed to capture the spatial neighbors of points. The graph
convolution operation used in such networks extends proper-
ties of traditional convolution such as weight reuse as well as
locality and hierarchical compositionality of features to the
graph domain. Indeed, graph-convolutional neural networks
have already been used successfully to address classification
[13], segmentation [14], and generation [15] tasks on point
clouds.

In this paper, we present a graph-convolutional neural net-
work to estimate unoriented surface normals from raw point
clouds. Thanks to graph convolution, the network can create
complex hierarchies of features with a dynamically expanding
receptive field. This allows the proposed method to achieve
state-of-the-art performance, providing robust estimates even
in presence of noise.

2. RELATED WORK

The most well-known method for point cloud normal esti-
mation uses Principal Component Analysis (PCA) [5]. This
method selects a patch of a given size around a point and uses
PCA regression in order to estimate the tangent plane. More
sophisticated surface fitting techniques, such as jet fitting [6],
moving least squares [7], and spherical fitting [10], have also
been introduced. However, the performance of these methods
is very sensitive to the choice of the patch size. If the patch
size is too large, it can lead to oversmoothing, especially near
sharp edges. On the other hand, if the patch size is too small,

C
on

v
1D

B
N

Le
ak

yR
eL

u

G
C

O
N

V

B
N

Le
ak

yR
eL

u

G
C

O
N

V

B
N

Le
ak

yR
eL

u

G
C

O
N

V

B
N

Le
ak

yR
eL

u

Graph

G
C

O
N

V

B
N

Le
ak

yR
eL

u

G
C

O
N

V

B
N

Le
ak

yR
eL

u

G
C

O
N

V

B
N

Le
ak

yR
eL

u

Graph

C
on

v
1DX �̂

Fig. 1. Proposed architecture for normal estimation.

the method can be less robust to outliers.
A different set of approaches [8, 9, 16] employs the

Voronoi diagram of the point cloud to estimate the normals
of the points. These methods preserve sharp edges and they
can provide strong theoretical guarantees on surface approx-
imation and robustness. However, in practice they rely on a
very careful fine tuning of the hyperparameters and they need
a preprocessing step in presence of strong noise.

Recently, learning-based methods [17, 18, 19, 20, 21], es-
pecially the ones based on deep learning, have gained atten-
tion thanks to their capability of learning more sophisticated
representations. However, since point clouds are unordered
sets of points, applying convolutional neural networks to such
data type is not straightforward. For this reason, some meth-
ods preprocess the point cloud in order to obtain a representa-
tion of the data that can be used as input of a standard convo-
lutional neural network. For example, NestiNet [18] employs
a multi-scale point statistics representation which encodes the
local geometry on a grid, while Boulch et al. [20] use a Hough
transform to obtain an image-like representation of the neigh-
borhood of a point. This preprocessing step allows to use
standard convolutional neural networks, at the expense of the
representation power of the method, which is limited by the
handcrafted point cloud features of choice. Instead, PCPNet
[17] proposes a different approach, employing a network ar-
chitecture similar to PointNet [11]. With this approach, each
point of the local patch is processed independently and then
points are aggregated using a global symmetric function. The
main drawback of this approach is that it does not exploit the
neighboring points in a hierarchical way like standard CNNs.

3. PROPOSED METHOD

In this section, we present the proposed graph-convolutional
network to estimate the normal vector associated to each point
of an input point cloud. We first present an overview of the ar-
chitecture of the proposed network. Then, we describe in de-
tail the graph-convolutional layer, which represents the core
of the proposed architecture, and the loss function employed
during training.

3.1. Architecture

An overview of the architecture is shown in Fig. 1. The
network takes as input a patch of N points of a point cloud

and estimates the unoriented normal vector associated to each
point. First, the patch is normalized so that its points have
zero mean and unit standard deviation. Then, the normalized
3D coordinates of the input point cloud are projected onto an
F -dimensional feature space employing a single-point convo-
lutional layer followed by a batch-normalization block and an
activation function. The rest of the network can be described
as a series of two residual blocks, where a skip connection
sums the feature vectors from the input of the block with the
feature vectors at its output. Residual connections are well
known to reduce vanishing gradient issues and provide im-
proved training convergence. The residual blocks represent
the core of the network where the geometrical information is
extracted. Each residual block is composed by three graph-
convolutional layers, each followed by batch normalization
and an activation function. In addition to the feature vectors of
the points, the graph-convolutional layer also requires as input
a graph, describing connections between points. The graph is
computed at the beginning of each residual block as a nearest
neighbor graph using Euclidean distances between the fea-
ture vectors of the points. Since the graph is updated at every
residual block, it is a dynamic graph construction. Such dy-
namic construction has been seen to promote more powerful
feature representations as well as exploiting self-similar pat-
terns [14, 15]. We remark that the graph is shared by all layers
inside each residual block to limit computational complexity.
Finally, after the two residual blocks, a single-point convolu-
tional layer projects the features of the estimated normals to
the 3D space. Notice that, in contrast with other methods such
as PCPNet, which estimates only the normal in the central
point of the patch, the proposed network estimates a normal
for each point in the patch. However, estimates for points at
the edges of the patch may suffer from highly skewed neigh-
borhoods.

3.2. Graph-convolutional layer

The graph-convolutional layer is the main building block of
the proposed network. Graph convolution generalizes the
convolutional operation to data that lie on irregular domains.
In the last years many definitions of graph convolution have
been proposed. In this paper, we employ a lightweight ver-
sion of the Edge-Conditioned Convolution (ECC) [13]. The
ECC is defined as a weighted aggregation of the node features

2

Table 1. Unoriented RMS angle error (degrees).

Proposed Nesti-Net PCPNet PCA Jet HoughCNN

Noiseless 6.47 6.99 8.49 8.31 7.60 10.02
Low Noise 10.73 10.11 11.08 12.00 12.36 11.21
Med Noise 17.53 17.63 18.26 18.38 18.33 22.66
High Noise 22.09 22.28 22.80 23.50 23.41 33.39

Table 2. Angle error percentiles.

90 percentile 95 percentile 99 percentile
Proposed Nesti-Net PCPNet Proposed Nesti-Net PCPNet Proposed Nesti-Net PCPNet

Noiseless 8.50 10.07 12.35 12.43 15.13 17.02 24.04 25.86 29.66
Low noise 15.61 15.39 17.28 22.30 21.46 22.91 38.34 34.73 36.51
Med noise 27.17 26.84 28.67 35.37 35.42 37.19 56.28 58.92 57.08
High noise 35.16 35.17 36.90 45.57 45.59 47.33 65.33 67.66 66.83

restricted to a neighborhood. We use the lightweight ECC
presented in [22], which introduces some approximations in
order to reduce the computation complexity and alleviate the
risk of vanishing gradient.

The graph-convolutional layer takes as input the feature
vectors associated to each point and the graph structure,
which describes the connections between the points of the
patch. The output feature vector hl+1

i ∈ RF of point i at
layer l is obtained as a weighted aggregation performed over
its neighborhood N l

i :

hl+1
i = Wlhl

i +
∑
j∈N l

i

γl,j→i

∑r
s=1 κ

j→i
s θj→i,L

s θj→i,RT

s hl
j

|N l
i |

,

where Wl ∈ RF×F is a trainable matrix representing the
self-loop contribution, and θj→i,R

s ,θj→i,L
s ∈ RF and κj→i

s ∈
R are the outputs of a fully-connected network F l whose in-
put is the difference between the feature vectors of point i and
point j, i.e.,

θj→i,R
s ,θj→i,L

s , κj→i
s = F l

(
hl
i − hl

j

)
.

The network F l is defined as a two-layer multi-layer per-
ceptron, where the second layer is composed of multiple
stacked partial circulant matrices in order to reduce the num-
ber of parameters. The value r is an hyperparameter that
defines the maximum rank of the aggregation weight matrix∑r

s=1 κ
j→i
s θj→i,L

s θj→i,RT

s . The scalar weight γl,j→i ∈ R is
an edge attention term defined as

γl,j→i = exp(−‖hl
i − hl

j‖22/δ),

where δ ∈ R is a decay parameter. This term is inspired
by the graph attention networks proposed in [23] and it helps
to stabilize the network by penalizing the edges that connect
nodes with very distant feature representations.

3.3. Loss Function

During training, we consider as loss function the Euclidean
distance between the predicted normal vectors n̂ and the
ground truth ones n:

L =
1

P

∑
i∈SP

min
(
‖n̂i − ni‖22, ‖n̂i + ni‖22

)
, (1)

where SP is the set containing the P closest nodes to the cen-
tral point of the patch. This is due to the fact that the nodes
far from the center of the patch can suffer from border effects,
due to highly skewed receptive fields. Therefore, even if the
proposed method estimates the normals of all the points of the
patch, we consider only the P nodes closest to the patch cen-
ter. At the same time, we use more points than just the central
point, in contrast with the approach by PCPNet, in order to
improve training efficiency and convergence. Moreover, since
the main goal of the proposed method is to estimate the unori-
ented normals associated to the points, the minimum function
in Eq. (1) selects for each point the normal orientation that
provides the minimum error.

4. EXPERIMENTAL RESULTS

In this section we present a set of experiments aimed at evalu-
ating the performance of the proposed method with respect to
model-based baselines and state-of-the-art deep learning ap-
proaches. In particular, we consider PCA [5], jet fitting [6],
HoughCNN [20], PCPNet [17] and Nesti-Net [18].

4.1. Training and testing details

The training and testing datasets are the same used by PCPNet
[17] and Nesti-Net [18] in order to ensure a fair comparison.
The training data are composed by 8 point clouds with 100000

3

10 20 30 40 50 60 70
Angle Error

0.7

0.75

0.8

0.85

0.9

0.95

1

P
er

ce
nt

ag
e

of
 P

oi
nt

s

Proposed
Nesti-Net
PCPNet

(a) Noiseless

10 20 30 40 50 60 70
Angle Error

0.7

0.75

0.8

0.85

0.9

0.95

1

P
er

ce
nt

ag
e

of
 P

oi
nt

s

Proposed
Nesti-Net
PCPNet

(b) Low noise

20 40 60 80
Angle Error

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

of
 P

oi
nt

s

Proposed
Nesti-Net
PCPNet

(c) Medium noise

20 40 60 80
Angle Error

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

of
 P

oi
nt

s

Proposed
Nesti-Net
PCPNet

(d) High noise

Fig. 2. Cumulative distribution of angle errors for point cloud “star sharp”.

points partitioned into 10000 patches ofN = 800 points each.
During training, a batch of 16 patches is provided as input to
the network and a normal vector is estimated for each of the
points in the patch. However, as explained in the previous
section, only the normals of the P = 250 points closest to the
central point of the patch are considered in the loss function.
A variance-specific model is independently trained for both
our model and PCPNet. White Gaussian noise at three noise
standard deviations is considered to test the robustness of the
proposed method. The same standard deviation levels used
in earlier works are adopted, i.e. 0.012, 0.006, 0.00125 with
respect to the bounding box. We remark that the graph con-
struction in the proposed method uses 15 nearest neighbors
at noiseless and low noise levels and 35 nearest neighbors at
medium-high noise levels. The number of neighbors has been
cross-validated on a validation dataset but not optimized for
the specific standard deviation; rather it has been discretized
into two configurations: one for low noise and one for high
noise. The edge attention hyperparameter is set to δ = 10.
Leaky ReLUs are used as activation functions. The proposed
network is trained for approximately 100 epochs with an ini-
tial learning rate equal to 10−4, then decreased to 10−5 after
60 epochs.

The testing data are 19 point clouds with 100000 points.
Following the protocol of earlier works, a subset of 5000
points per point cloud is chosen for evaluation of the error
metric. For each of these points a patch composed of the near-
est 800 points is provided as input to the network.

4.2. Quantitative results

In order to quantitatively assess the performance of the pro-
posed method, we measure the root mean squared (RMS) an-
gle error for unoriented normal estimation on the 5000 points
per point cloud in the test set. The RMS angle error (in radi-
ans) for unoriented estimation is defined as

E=

√√√√ 1

N

N∑
i=1

[
arcos

(
1−1

2
min(‖n̂i−ni‖22, ‖n̂i+ni‖22)

)]2
,

being ni the ground-truth normal vector at point i, n̂i the
corresponding estimated normal vector and N the number of
points.

Table 1 shows the RMS angle error achieved by the var-
ious methods. For methods having multi-scale variants, the
scale achieving the best result is selected for each standard
deviation. It can be noticed that the proposed method is close
to or improves state-of-the-art results, achieving lower aver-
age errors. In order to gain a deeper insight into the distri-
bution of errors, Table 2 shows a few percentiles of the an-
gle error distribution, averaged over the whole test set with a
one-standard-deviation confidence interval. For instance, the
value of 24.04 degrees for the 99 percentile means that 99%
of the points have a normal estimation error lower than 24.04
degrees. The angle error (in radians) at point i is computed as

Ei = arcos

(
1− 1

2
min(‖n̂i − ni‖22, ‖n̂i + ni‖22)

)
.

It can be noticed that the proposed method achieves lower
values, meaning that it has a shorter tail of the error distri-
bution and consequently fewer points exhibiting high normal
estimation errors. We argue that having a lower proportion of
points with high estimation errors is even more desirable than
lower average error as outliers with high errors can signifi-
cantly affect the performance of algorithms relying on high
quality normal estimation. Fig. 2 shows the high-error tail of
the cumulative error distribution for point cloud “star sharp”
for the proposed method, Nesti-Net and PCPNet.

4.3. Qualitative results

Fig. 3 visually shows the per-point angle error of the esti-
mated normals with respect to the ground truth for the pro-
posed method, Nesti-Net, PCPNet and PCA at all noise stan-
dard deviations. It can be noticed that the proposed method
shows a lower proportion of points with high estimation er-
rors. It is also noticeable how the proposed method achieves
lower errors in the challenging region constituted by the cen-
tral junction of the star shape. This is an area where PCPNet
in particular suffers from higher errors.

4

(a) Proposed (b) Nesti-Net (c) PCPNet (d) PCA

Fig. 3. Angle errors for point cloud “star sharp” at different level of noise: from a high level of noise (top) to noiseless (bottom).

5. CONCLUSIONS

We proposed a method to estimate unoriented surface nor-
mals from point clouds using a graph-convolutional neural
network. Improvements over state-of-the-art techniques show
that the method can achieve robust estimation even in pres-
ence of noise.

6. REFERENCES

[1] Henri Gouraud, “Continuous shading of curved sur-
faces,” IEEE transactions on computers, vol. 100, no.
6, pp. 623–629, 1971.

[2] Matthew Berger, Andrea Tagliasacchi, Lee M Seversky,

Pierre Alliez, Gael Guennebaud, Joshua A Levine, An-
drei Sharf, and Claudio T Silva, “A survey of surface re-
construction from point clouds,” in Computer Graphics
Forum. Wiley Online Library, 2017, vol. 36, pp. 301–
329.

[3] Alexander JB Trevor, Suat Gedikli, Radu B Rusu, and
Henrik I Christensen, “Efficient organized point cloud
segmentation with connected components,” Semantic
Perception Mapping and Exploration (SPME), 2013.

[4] Chinthaka Dinesh, Gene Cheung, and Ivan V Bajic, “3D
Point Cloud Denoising via Bipartite Graph Approxima-
tion and Reweighted Graph Laplacian,” arXiv preprint
arXiv:1812.07711, 2018.

5

[5] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Mc-
Donald, and Werner Stuetzle, Surface reconstruction
from unorganized points, vol. 26, ACM, 1992.

[6] Frédéric Cazals and Marc Pouget, “Estimating differ-
ential quantities using polynomial fitting of osculating
jets,” Computer Aided Geometric Design, vol. 22, no. 2,
pp. 121–146, 2005.

[7] David Levin, “The approximation power of moving
least-squares,” Mathematics of computation, vol. 67, no.
224, pp. 1517–1531, 1998.

[8] Nina Amenta and Marshall Bern, “Surface reconstruc-
tion by Voronoi filtering,” Discrete & Computational
Geometry, vol. 22, no. 4, pp. 481–504, 1999.

[9] Quentin Mérigot, Maks Ovsjanikov, and Leonidas J
Guibas, “Voronoi-based curvature and feature estima-
tion from point clouds,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 17, no. 6, pp. 743–
756, 2010.

[10] Gaël Guennebaud and Markus Gross, “Algebraic point
set surfaces,” in ACM Transactions on Graphics (TOG).
ACM, 2007, vol. 26, p. 23.

[11] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas, “Pointnet: Deep learning on point sets for
3D classification and segmentation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 652–660.

[12] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst, “Geometric deep
learning: going beyond Euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[13] Martin Simonovsky and Nikos Komodakis, “Dynamic
Edge-Conditioned Filters in Convolutional Neural Net-
works on Graphs,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017, pp.
29–38.

[14] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon, “Dy-
namic graph cnn for learning on point clouds,” ACM
Transactions on Graphics (TOG), vol. 38, no. 5, pp. 146,
2019.

[15] Diego Valsesia, Giulia Fracastoro, and Enrico Magli,
“Learning Localized Generative Models for 3D Point
Clouds via Graph Convolution,” in International
Conference on Learning Representations (ICLR) 2019,
2019.

[16] Tamal K Dey and Samrat Goswami, “Provable surface
reconstruction from noisy samples,” Computational Ge-
ometry, vol. 35, no. 1-2, pp. 124–141, 2006.

[17] Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and
Niloy J Mitra, “PCPNet learning local shape properties
from raw point clouds,” in Computer Graphics Forum.
Wiley Online Library, 2018, vol. 37, pp. 75–85.

[18] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath
Fischer, “Nesti-Net: Normal Estimation for Unstruc-
tured 3D Point Clouds using Convolutional Neural Net-
works,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp.
10112–10120.

[19] Janghun Hyeon, Weonsuk Lee, Joo Hyung Kim, and
Nakju Doh, “NormNet: Point-wise normal estimation
network for three-dimensional point cloud data,” Inter-
national Journal of Advanced Robotic Systems, vol. 16,
no. 4, pp. 1729881419857532, 2019.

[20] Alexandre Boulch and Renaud Marlet, “Deep learn-
ing for robust normal estimation in unstructured point
clouds,” in Computer Graphics Forum. Wiley Online
Library, 2016, vol. 35, pp. 281–290.

[21] Alexandre Boulch and Renaud Marlet, “Fast and ro-
bust normal estimation for point clouds with sharp fea-
tures,” in Computer graphics forum. Wiley Online Li-
brary, 2012, vol. 31, pp. 1765–1774.

[22] Diego Valsesia, Giulia Fracastoro, and Enrico Magli,
“Deep Graph-Convolutional Image Denoising,” arXiv
preprint arXiv:1907.08448, 2019.

[23] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Ben-
gio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

6

