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Abstract—Freezing of Gait (FOG) is one of the most trouble-
some motor symptoms associated with Parkinson’s disease (PD),
characterised by brief episodes of inability to step. It involves
increased risk of falls and reduced quality of life, and correlates
with motor fluctuations and progression of the disease. Hence, the
knowledge of FOG event frequency, duration, daily distribution
and response to drug therapy is fundamental for a reliable
patient’s assessment. In this study, we propose a FOG detection
algorithm that takes as input inertial data from a single waist-
mounted smartphone, and provides information about presence
and duration of FOG episodes. Data acquisition was carried on
38 PD patients and 21 elderly subjects executing a standard
6-minute walking test. More than 3.5 hours of acceleration
data have been collected. A combination of Support Vector
Machine and k-Nearest Neighbour classifiers has been designed.
Sensitivity of 95.4%, specificity of 98.8%, precision of 92.8%
and accuracy of 98.3% in the 10-fold cross validation, and a
detection rate of 84% in Leave-one-Subject-Out validation were
obrained. These results, along with a good time resolution in the
FOG duration identification and very efficient processing times,
make the algorithm a promising tool for reliable FOG assessment
during activities of daily living.

Index Terms—Parkinson’s disease, freezing of gait, inertial
sensor, smartphone, machine learning

I. INTRODUCTION

There is increasing evidence supporting the effectiveness
of modern tele-health systems from both the social and the
economic standpoint [1]. Remote monitoring can enable a
constant, objective, reliable and cost-effective follow-up of
patients, with huge potential applications in a progressively ag-
ing society with an increasing prevalence of neurodegenerative
diseases. Parkinson’s disease (PD) represents an optimal target
for remote monitoring applications. The identification and con-
tinuous tracking of motor complications can be achieved using
lightweight, wearable inertial sensors, allowing the clinicians
to develop a complete clinical picture of each patient, in line
with the modern paradigm of personalized medicine.

PD is the second most common neurodegenerative disorder,
affecting about 3% of individuals over 65 years worldwide.

Main motor symptoms of PD are rigidity, tremor, bradykinesia
and postural instability [2]. Levodopa (L-dopa) is the gold
standard therapy for controlling PD motor symptoms [3].
Nevertheless, in advanced stages, it can affect the natural
evolution of the disease inducing involuntary movements as
well as motor response fluctuations, i.e. alternate periods of
good disease control (on state), with others of poor control
and significant PD symptoms (off state) [4].

Freezing of Gait (FOG) is defined as a brief, episodic
absence or marked reduction of forward progression of the
feet despite having intention to walk [5]. FOG provokes
a high risk of falls, reduces functional independence and
impairs the quality of life of both patients and caregivers [6].
Several subtypes of FOG are recognized [7]–[11], depending
on the main elicitation context (start of walking, turns, passing
through narrow spaces, approaching destination, walking in
open spaces), the manifestations (shuffling with small steps,
trembling in place, complete akinesia) and the duration (cut-
off points: 0-2 , 3-10,11-30, more than 30 seconds [12]). In
[7], the authors performed a study on 19 PD patients to assess
the main FOG subtypes. Trembling in place turned out to be
the most typical FOG manifestation, both in on and in off
conditions.

A thorough knowledge on FOG frequency, duration, nature,
and response to drug therapy can provide the neurologists with
useful information about motor fluctuations and progression of
the disease, allowing them to adjust the therapy and evaluate
its effectiveness. Nevertheless, the clinical assessment of FOG
is challenging for several reasons. Its episodic nature makes
it difficult to appreciate FOG events during the brief, pre-
scheduled follow-up sessions in the medical office. The FOG
occurrence is related to the time elapsed since the last L-dopa
administration, is dependent on the patient’s attention devoted
to gait, and also on many subtle cognitive factors [13]–[15].
Moreover, even though FOG is influenced by anxiety and
pain, a moderate emotional stress (e.g. a medical visit) may
inhibit its manifestation. For these reasons, patients seldom



exhibit FOG during follow-up visits, even though they report
having several episodes at home. Consequently, at present the
FOG assessment is mainly based on anamnesis, questionnaires
administered to the patients, and poorly reliable self-reports
of patients themselves [16], [17]. From these considerations,
it turns clear that long-term observations, possibly carried
on during Activities of Daily Living (ADL), could yield a
significantly improved assessment of this phenomenon. We
believe that a primary condition to enable this scenario is
the use of affordable, low-power and low-cost, easy-to-use
instrumentation such as smartphones. This is in line with the
recent guidelines defined by the Movement Disorder Society
task force [18].

The aim of this study is to devise and experimentally
evaluate a tool for detecting FoG events and estimating their
duration, using inertial data acquired from a single smartphone
positioned on lower back. In perspective, this will be per-
formed during ADL, providing information about the number,
duration and daily distribution of FOG episodes. Such tool is
conceived as a sort of electronic diary replacing the patient’s
self-reports. However, in this preliminary phase, participants
are called to walk back and forth in semi-supervised condi-
tions. This allowed us to test the feasibility of our method,
and to record a sufficient number of FOG events in a safe
environment.
The rest of this paper is organized as follows. In Sect. II we
discuss the state of the art in the field of automated FOG
monitoring. In Sect.III we describe the experimental setup
and the cohort of PD patients enrolled for our experiment.
In Sect. IV the implemented algorithm is described. In Sect V
the achieved results are presented and discussed, and in Sect.
VI conclusions are drawn.

II. BACKGROUND

A variety of wearable sensors have been proposed for
providing objective assessment of FOG. Yet, there is little
agreement concerning the type of sensors to be used, their
number, location on the body, experimental protocols for data
acquisition, and signal processing algorithms. As for sensors,
tri-axial accelerometers have been used either alone [19] or
combined with gyroscopes [20]. As for locations, shin [21]
and waist have been the most employed [22] as single location.
Experimental protocols include Timed Up-and-Go (TUG) task
[23], walking tasks with or without FOG provocation (e.g.
passing through narrow spaces, walking across crowded halls,
negotiate obstacles) [11] or dual tasking (e.g. carrying a glass
of water while walking) [19]. Some authors address uncon-
strained ADL simulated in laboratory [19] or at patient’s home
[24]. All studies foresee video recordings of patients during
data acquisition, with videos labelled by clinicians off-line. At
last, smartphone use in FOG detection was recently explored in
[23], [25], achieving performance comparable to other studies
employing dedicated hardware. In 2018, [26] employed 3
inertial sensors attached on shank, thigh and lower back on 10
PD patients. The experimental protocol included both random
and straight walking. Signals were segmented into 4 s-long

windows, and features in both time and frequency domains
were extracted and input to common Machine Learning (ML)
algorithms, i.e. Support Vector Machine (SVM), Decision Tree
(DT), Random Forest (RF). Results related to FOG detection
were reported for both 10-fold cross validation and Leave-
one-Subject-Out (LOSO). The first experiments led to sensi-
tivity, specificity and accuracy of 92.4%, 95.6% and 95.3%,
respectively; the latter yielded a sensitivity of 78.4%. In the
same year, [27] equipped 21 PD patients with a single Inertial
Measurement Unit (IMU) mounted on waist. Subjects were
asked to perform TUG and simulate ADL. Inertial signals were
segmented into 3.2 s-long windows, and spectral/time features
were extracted. A 1D-Convolutional Neural Network (CNN)
was built, leading to sensitivity, specificity and accuracy of
91.9%, 89.5%, 89.0% respectively. In 2019, [28] used 3-axial
inertial sensors for FOG detection. Sensors were placed on
the knee of 21 PD and 9 control subjects, performing TUG,
turning with various amplitudes and walking with dual tasking.
Recurrence Quantification Analysis was employed for feature
extraction, and SVM for classification. Performance was eval-
uated using Monte Carlo validation, and the achieved error
in FOG classification was less than 5%. In [29] the authors
employ inertial data from the Daphnet Freezing of Gait Data
Set. Signals were acquired by accelerometers placed on ankle,
knee and lower back of 10 PD patients (8 of which manifested
FOG during data acquisition). Patients were asked to walk,
turn and simulate ADL. Signals were segmented into 4 s-
long windows and time and frequency features were extracted.
Different ML models were employed, namely RF, Multilayer
Perceptron (MLP) and Hidden Markov Model (HMM). A
LOSO validation was performed, leading to sensitivity and
specificity of 95% and 75% respectively.

From this brief analysis, we can conclude that a lot of
effort is being devoted to the problem of FOG detection using
inertial sensors. The reported results point out the feasibility of
catching FOG episodes with reasonable accuracy. However, it
must be noticed that most studies perform data acquisition
from inertial sensors mounted on more than one location,
and this limits the possibility for patients to manage such
systems by themselves in domestic environment. Moreover,
signal segmentation is often performed on 4 s-long windows,
and this increases the chance to miss short FOG episodes. This
is a significant limitation, since early FOG manifestations are
typically very short. Finally, most studies achieve suboptimal
specificity, and none reports precision values. However, we
believe that a very high specificity (≥ 98%), together with a
good precision (≥ 80%), is mandatory in order to implement a
reliable and detailed diary of FOG episode number, duration
and circadian distribution. In fact, an excessive false-alarm
rate could impair the clinical usefulness of such a diary. This
opinion is also agreed upon by expert neurologists.

III. MATERIALS AND METHODS

The present study has been performed at the University
Hospital Città della Salute e della Scienza, Turin, Italy, which
hosts the Regional Reference Center for Parkinson’s Disease



and Movement Disorders. In addition, an elderly subject cohort
was enrolled at the Orfanelle nursing home, Chieri, Italy. The
study has been conducted in accordance with the Declaration
of Helsinki and approved by the local Ethics Committee. Par-
ticipants received detailed information on the study purposes
and execution, and written informed consent for observational
study was obtained. Demographic and clinical data were
noted anonymously. Patients agreed to the video-taping of
the procedure after receiving suitable explanations and being
guaranteed that he/she cannot be identified and the videotapes
are not made available to persons different of the authorized
ones. The experiments were carried out in hospital during the
periodically scheduled outpatient visits; hence, the patients’
safety was guaranteed by the presence of the medical staff.

A. Dataset

A total number of 38 PD subjects were included in the
study. The inclusion criteria were a clinical diagnosis of PD
with motor symptoms (either with a medical history of FOG
events or not), and no major comorbidities or vision/cognitive
impairments preventing them from accomplishing the required
tasks. Subjects needing gait assistance (e.g. walking stick,
crutch) were included in the study. Given that the experiment
was conducted during pre-scheduled outpatients visits, all PD
participants were in daily on state, meaning that they had
taken their usual drug dose, and a variable time had elapsed
since then. We also performed data acquisition on 21 elderly
subjects (defined as controls in the rest of this paper). In
this case, the inclusion criteria were no clinically evident sign
of parkinsonism, no severe vision impairment, dementia, and
other significant neurological disorders. Being enrolled in a
retirement home, the age of control subjects was significantly
superior to that of PD patients. However, even though no
stratification by age was implemented, these controls have
been included in the study, as they represent a worst-case
situation for our algorithms in correctly classifying the gait
features of PD patients. In fact, we can expect elderly people to
exhibit challenging gait patterns, in terms of gait velocity, turn
amplitude, wide use of walking aids (42% versus 21% in the
PD patients cohort). Hence, the inclusion of this participants
is useful for the algorithm validation.

Based on anamnesis and FOG questionnaires, 16 PD pa-
tients were subject to FOG events during their ADL (labelled
as anamnestic freezers, aF), while the rest of subjects have
never manifested FOG (anamnestic non-freezers, aNF). How-
ever, it is worth pointing out that only 10 PD patients exhibited
FOG during the protocol execution. In the rest of this paper,
we label as FOG+ the PD subjects who actually experienced
at least one FOG episode during data acquisition, FOG- the
other participants.The characteristics of the participants are
summarized in Tab. I, in terms of age, disease duration, Hoehn
and Yahr1 score. Tab. II report the main demographic data of
the control population.

1The Hoehn and Yahr scale is a commonly used method to evaluate
the disease progression and disability degree. It includes 5 integer plus 2
intermediate stages, with 5 being the worst case.

TABLE I: Characteristics of PD patients with (aF) and without
(aNF) an history of FOG.

Group # subjects
(% male)

Mean
age

(years±SD)

Disease
duration

(years±SD)

H&Y
(mean±SD)

aF 16 (69) 74.6±4.5 9.8±3.5 2.5±0.7
aNF 22 (60) 68.1±9.7 8.3±4.4 2.2±0.4

FOG+ 10 (60) 73.7 ± 4.2 6.8 ± 4.4 2.7 ± 0.7
FOG- 28 (63) 69.3 ± 9.5 9.1 ± 5 2.5 ± 0.8

TABLE II: Characteristics of control subjects.

Group # subjects
(% male)

Mean age
(years±SD) Gait assistance

Control 21 (29) 85.6 ± 7.2 42.8%

B. Smartphone evaluation

In this study, a single Samsung S5 mini smartphone was
employed. The characteristics of the embedded inertial sensors
have been evaluated in terms of sample frequency, range
and resolution, in order to assess their suitability for the
specific data acquisition tasks (Tab. III). The reported sample
frequency of 200 Hz is largely adequate, given that human
activity acceleration signals lay in the 0-20 Hz band [30]. The
accelerometer dynamic range of ± 2g is suitable for human
movement analysis using waist-mounted inertial sensors, given
that its amplitude ranges between±1 g while walking and ±2
g during running [30], [31]. Moreover, the gyroscope range
of ± 2000 dps is in line with that reported on dedicated
hardware (e.g. IMU) in literature [32]–[34]. As reported in
Tab. III, the sensors included in the mentioned smartphone
largely meet these requirements. Then, a suitable location of
the smartphone on the body was investigated, and waist was
identified as that ensuring maximum patient comfort, closeness
to the body center of mass, and possibility to monitor main
PD motor symptoms (e.g. bradykinesia, dyskinesia), also in
accordance with [23], [35]. For the sake of completeness, also
resolution is reported. At last, we have controlled that reported
values were not limited neither by the Operative System or the
application employed, by visual and subsequent computational
analysis of the data exported in CSV files.

TABLE III: Samsung S5 mini sensors characteristics.

Sensor type Range Resolution Sample frequency

Accelerometer ± 2 g 40 mg 200 Hz

Gyroscope ± 2000 dps 60 mdps 200 Hz

C. Experimental protocol

Following their periodic follow-up visit in the outpatients
surgery, patients were asked to perform a Six-Minute Walking
Test (6MWT) [36], a widely employed test thanks to its easy



Fig. 1: Smartphone belt, smartphone position and reference
axes

setting up, patient tolerability and reproducibility [37]. They
were equipped with the smartphone secured on their lower
back (around the third lumbar vertebra) with an elastic band
ensuring the adherence of the smartphone to the body (Fig. 1).
They were asked to walk along a 10-meter hospital corridor at
their preferred pace, possibly using their usual walking aids,
then to turn 180◦ (alternating either direction) and return back
to the starting point. This exercise encompasses several 180◦

turns and is repeated for 6 minutes so that to improve the
chance of eliciting a FOG event. No pre-scheduled pause was
planned during the test execution; nevertheless, the participants
were free of quitting the test in any moment, interrupting
it if tired, and possibly resuming it after a short rest. In
order to ensure safety, the tests were all performed under the
supervision of clinical personnel. For similar safety reasons,
neither dual tasking or obstacle negotiation was included in
the protocol. However, as discussed, turning is actually an
effective FOG provocation task [38], [39] and FOG while
turning is recognized as the most frequent subtype both in
on and in off states [7]. The experimental conditions have
forced us to perform the test on each patient after a variable
time elapsed since the last L-dopa administration (daily-on
condition, where a continuous transition between the two states
can be appreciated). We recall that, even though much more
frequent and of longer duration in the off condition, the most
common FOG manifestations (e.g., trembling in place) are
similar in either state. We remark that we have identified
mainly this FOG subtype; however, classifying different FOG
subtypes was not a goal of the present work. The activities per-
formed during the protocol included walking, turning, stand-
ing, and FOG. The smartphone recorded and locally stored
inertial data by means of SensorLog, a commercial app for
Android 6.0 [40]. Once collected, data were exported in CSV
format and processed offline using MATLAB, version 2018a
for Windows 10. Moreover, the procedure was videotaped,
with proper countermeasures in order to ensure the patients’
privacy, to enable offline FOG evaluation by the clinicians [7].

More than 3.5 hours of acceleration signals were recorded,
gathering 52 FOG episodes (about 5 minutes) on 10 PD
patients (6 ± 3 episode per patient). The histogram of the
duration of captured FOG episodes is reported in Fig. 2. More
than a half of the episodes exhibited a duration inferior to 5
s, even though some of them lasted 20 s or more. This is in
line with the expected distribution of FOG event duration in
daily-on conditions [7], [41]. In the present study, 23% and
42% of the episodes lasted less than 2 s and 3 s respectively.

IV. THE PROPOSED FOG DETECTION ALGORITHM

A supervised classification algorithm has been defined using
different ML algoritms. Both multi-class and binary classifi-
cations were explored, in order to achieve the best accuracy.
SVM, DT, k-Nearest Neighbor (KNN), Logistic Regression
(LR), were employed for comparison with other reported stud-
ies. Moreover, an Artificial Neural Networks (ANN) approach
was considered.

As already discussed, we deem specificity as the most
important performance evaluation metric for the problem at
hand. In fact, suboptimal specificity implies an excessive false
positive rate (i.e. non-FOG misclassified as FOG events), and
this would impair precision in unacceptable way (i.e. the
probability that a detected FOG is actually a FOG event).
Given that we want to use this information as a component
of the patient’s electronic diary, we believe that possibly
missing some FOG event is more acceptable than providing
the clinicians with unreliable information about FOG episode
number, duration and distribution throughout the day. On the
other hand, it is worth noticing that most literature studies
foster sensitivity at the expenses of specificity [27], [29].
Actually, this can be motivated by the different main goal
pursued by these studies, namely providing the patient with a
cueing system triggered by FOG. In this case, the choice of
favouring sensitivity is appropriate, as auditory or tactile cues
may be tolerated even if no FOG really occurs. In any case,
in order to prove clinically useful, a detection system must
necessarily yield high precision besides high accuracy.

Fig. 2: Distribution of FOG episode duration.



A. Data pre-processing

The acceleration data recorded from the smartphone-
embedded 3-axis accelerometer have been pre-processed prior
to be subject to the feature extraction. In more detail, the
following steps have been performed.
Recalibration. Due to possible incorrect positioning of the
smartphone, gravity can contribute differently to the three
components of the 3-D acceleration signal. Thus, for re-
producibility, a recalibration process was performed using
the method proposed in [42]. It consists in a correction of
the accelerometer axis orientation by applying a quaternion
rotation transformation to the device raw data.
Filtering. Acceleration signals were band-pass filtered (0.5-15
Hz) with a fourth-order zero-lag bandpass Butterworth filter,
in order to keep the frequency components of interest and
removing signal mean value and high off-band noise. Cut-off
frequencies were set taking into account that the acceleration
signal during locomotion lies in the band 0.5-3 Hz, whereas
the signal during FOG episodes lies in the band 3-8 Hz [43],
[44].
Labelling. The clinical labelling of FOG episodes is not trivial,
especially when short events are involved, and an universally
recognized gold standard method is debated. In this work,
following common practice, we had each session of data
acquisition labelled by an expert clinician, using a Matlab
Graphic User Interface (GUI), either directly or by examining
the videotapes. The manual labelling of activities other than
FOG by means of inertial data is not trivial as well. We
took care of manually labelling the activities included in the
protocol using the same GUI employed for FOG identification.
In Fig. 3, a segment of inertial data is shown. Standing is
characterized by a reduced movement intensity. The vertical
and anterior-posterior components of acceleration exhibit a
regular pattern during walking, with main peaks representing
contact of feet on the ground. Turning is characterized by an
appreciable reduction in acceleration amplitude (both x- and
z-axis component), together with a significant increase in the
angular velocity around x-axis, followed by a reduction until
zero value is reached again. In this work, the validation of our
labelling has been performed using the videotapes. However,
we are planning to carry out this validation using state-of-the
art gait analysis systems; this is left for future developments.
Segmentation. We have considered a window duration able
to encompass a characteristic signal segment (at least 1 s),
while enabling the detection of short FOG events. In fact, the
temporal resolution achieved by the algorithm, i.e. the capa-
bility of identifying short-duration FOG episodes, is inversely
related to the window duration. A 2s-long window represents
a trade off between resolution and computational efficiency,
keeping in mind that a possible evolution of our tool is the real-
time execution, and that the shortest FOG episodes that carry
significant clinical information exhibit a duration of about 2 s
[8]. Short episodes are deemed important, as they may predict
a worsening of the disease and an impairment of the patient’s
motor conditions.

B. Feature extraction and selection

Candidate features taken into account in the present work
have been identified after a thorough literature research on
FOG detection based on inertial data. Moreover, additional
features were defined after a direct analysis of signal patterns
and spectral content differences between FOG and other
activities included in the protocol. Table IV reports the entire
set of features extracted from inertial signal. The features
marked with an asterisk have been explicitly defined in the
present study. In order to identify the most suitable feature
subset for the classification of FOG episodes, all the addressed
candidate features have been evaluated in each signal window
for all subjects, and keeping the three signal components
(vertical, medio-lateral, anterior-posterior) separated. Then, the
Pearson correlation coefficient r was computed between each
feature and the target (i.e. FOG or non-FOG in case of binary
classification; FOG, walk, turn, stand in case of multiclass
classification). Feature selection was performed keeping those
features which exhibit at least moderate correlation with the
target (i.e. r > 0.4). Among those, a further selection was
performed so that only non-redundant features were kept.
Table IV lists the final subset of features used for the training
of different ML classifiers. A brief description of the features
defined in this study is provided below.

TABLE IV: Feature set extracted in the present study. The
asterisk denotes features explicitly defined for the present
work.

Study Feature

Ti
m

e
D

om
ai

n

[45]
[26], [45]

[46]
[46]
[26]

[26], [47], [48]
[45]

Present study
Present study

Mean
Standard Deviation

Variance
Maximum amplitude
Root Mean Square

Entropy
Correlation between axes

Zero crossing rate*
Number of peaks*

Fr
eq

ue
nc

y
D

om
ai

n

[29]
[49]
[49]
[49]
[29]

[45], [48]
[45], [48]

Present study
Present study

Total Power
Power in locomotor band

Power in Freeze band
Freeze index

Spectral entropy
Kurtosis

Skewness
Dominant frequency*

Freeze ratio*

TABLE V: Selected features.

Feature r p-value

std x-axis 0.56 < 0.0001
std z -axis 0.55 < 0.0001

Dominant frequency x-axis 0.48 < 0.0001
zero crossing rate z-axis 0.44 < 0.0001

freeze ratio z-axis 0.43 < 0.0001

Zero crossing rate. The number of times the acceleration
signal crosses the zero-line.



Fig. 3: An acceleration signal segment, encompassing activities included in the protocol.

Number of peaks. The number of peaks with an amplitude
greater than the standard deviation of the signal in the
window.
Dominant frequency. The frequency value corresponding to
the maximum of Fast Fourier Transform (FFT) in the window
considered.
Freeze ratio. The ratio between the power in the 3-10 Hz
band and the total power, computed using FFT of the signal.

C. Training and test

The initial training set included all the time-windows related
to the three acceleration components, computed on the mea-
sured data of each PD patient. However, given that we wanted
to train several models and optimize their parameters, we had
to limit the computational burden and memory requirement
of this phase. To this end, we defined a reduced training set,
encompassing all the FOG episodes and a 15-s segment for
each activity of each subject (Tab. VI). This reduced set keeps
the variability both in FOG manifestations and in other activity
execution with respect to the complete set, while limiting
the computational complexity. Feature extraction was then
performed on the reduced training set.

TABLE VI: Reduced training set used for the training of
different algorithms.

Activity Signal length (min) Total windows computed

Walk 9.5 568
Turn 8.5 508
Stand 10 598
FOG 4.4 262

The features reported in Tab. V were extracted on the re-
duced training set, and given as input to different ML models.
Many combinations of the parameters were explored and a

tuning procedure was set in order to minimize the misclassifi-
cation error (i.e. optimize the classification accuracy). To this
end, a Bayesian Optimization algorithm, available in Matlab,
was employed. As for SVM, kernel function, kernel scale,
boxconstraint and multi-class method were tuned. Number of
neighbors, distance metric and distance weight were optimized
for KNN algorithm. The number of hidden layers, number of
neurons per hidden layers and type of transfer function were
optimized for ANN.

The results achieved by the several considered algorithms
are listed in Tab. VII for both binary and multi-class classi-
fication methods. One-vs-one approach was not explored for
Linear Regression, as it is not feasible. It can be noticed that

TABLE VII: 10-fold cross validation performance of different
ML models

Classifier Accuracy (%)
One-vs-One

Accuracy (%)
One-vs-All

Decision Tree 88.6 95.7
Linear Regression n.r. 95.2

Linear SVM 86.5 95.4
Quadratic SVM 91.0 98.0

k-Nearest Neighbor 90.6 98.1
Artificial Neural Network 97.9 63.5

quadratic-SVM and KNN yield the best results in terms of
One-vs-All accuracy, with similar performance. For the sake
of completeness, the confusion matrices are shown in Fig. 4.
This let us to question if a combination of such two classifiers
is able to further increase the performance. To this end, we
performed an additional 10-fold cross validation on the same
training set, using a combination of the two classifiers. the
achieved accuracy turned out to be improved, reaching a value
as high as 98.4%.

Then, we performed a test on Control and FOG- subjects,
employing quadratic-SVM, KNN and their combination. Each



Fig. 4: Confusion matrices relative to the best classifiers.

(a) Quadratic SVM (b) KNN

processed window was labelled as “FOG” if and only if both
models classified it as part of a FOG episode. The results are
reported in Tab. VIII. Please notice that this test was performed
only on such groups in order to assess specificity, as such
groups are known to not experiment FOG. It can be noticed
that the combination yields increased specificity. Even though
slight, this improvement highly affects the reliability of the
system, as even a small improvement in specificity implies
a substantial reduction of false positive rate when many true
negatives are included in the data set. Hence, we selected the
quadratic-SVM and KNN classifier combination as the best
configuration for the problem at hand.

TABLE VIII: Specificity yielded by the two best classifiers
and their combination.

Group q-SVM (%) KNN (%) Combination (%)

Control 98.45 99.81 99.89
PD FOG- 97.8 98.2 99.66

V. RESULTS AND DISCUSSION

In this section, we report the performance achieved by
our combined classifier. We recall that the main objective of
this work is to verify whether it is possible to automatically
identify number and duration of FOG events, with prospective
applications during ADL. Table IX reports the performance
achieved by our classification method. The 10-fold cross-
validation on the reduced dataset yields information on the
detection effectiveness when all the inertial data variability
is taken into account. Tests performed on all population
samples allows one to evaluate the false positive rate, so
as to appreciate the detection reliability. When dealing with
control subjects, the data used for validation is not employed
in the training phase. As for PD patients, a small segment
of each patient’s signal was included in the cross-validation
phase, i.e. 15 s of each activity for each patient, out of
the complete duration of the protocol. This may slightly
affect specificity for FOG+ and FOG- patients. However, we
believe that the inclusion of 38 PD patients with different
age, motor conditions, disease progression and gait assistance
needs implies a satisfactory variability degree in the data, and
that further testing on new subjects is likely not to impair

significantly the algorithm performance (as also shown by the
test results performed on the unknown control subjects).

We have performed a Leave-One-Subject-Out (LOSO) val-
idation. LOSO consists in training the classifiers with FOG
episodes from all FOG+ patients except one, which is used
for testing. Such validation is able to assess robustness, i.e. the
capability of the algorithm to detect FOG episodes belonging
to a patient whose inertial data was not included in the training
stage (generalization capability). The resulting detection rate
of 100% , with (84.1 ± 15.6)% of FOG detected in each
patient, is a very promising result.

TABLE IX: Performance of the implemented detector.
CV=cross-validation.

Dataset Evaluation method Performance Value (%)

Reduced dataset
(All PDs) 10-fold CV

Sensitivity
Specificity
Precision
Accuracy

95.4
98.8
92.8
98.3

FOG+ LOSO Detection rate 100

Control Test Specificity 99.89
FOG- Test Specificity 99.66
FOG+ Test Specificity 95.2

Finally, we investigated the distribution of false positives
along the signals. To this end, we counted the number of con-
secutive and non-consecutive windows erroneously classified
by the system; the results are shown in Tab. X. It can be appre-
ciated that no consecutive false events were detected either in
control or FOG- groups, whereas only 2 events involved two
consecutive windows in FOG+ subjects. This result is rather
impressive. In fact, if we limit the algorithm to detect FOG
episodes slightly longer than 2 s, specificity approaches 100%,
and the system can detect FOG with the highest possible
precision. The practical implications of this result deserve
thorough discussion with the expert neurologists; this is left
for future developments of our research.

TABLE X: Final classifier testing

Group Signal length False positives
(consecutive)

Percentage on
total windows

Control 58.3 min 4 (0) 0.11 (0)%
PD FOG- 107 min 22 (0) 0.34 (0)%
PD FOG+ 33.6 min 15 (2) 0.74 (0.1)%

The slightly inferior performance achieved for FOG+ sub-
jects can be explained in terms of the different gait pattern of
these latter with respect of FOG- and elderly subjects. FOG+
patients showed a reduced movement intensity, together with
more fluctuating acceleration signal, clearly appreciable in the
frequency domain. Fig. 5 puts into evidence a shift towards
high frequencies of all signal components (red circles). This
may impair the detection performance, as some features used
for classification (i.e. zero-crossing rate, freeze ratio and
dominant frequency) highly depend on the signal frequency



content. Nevertheless, the system demonstrated sound perfor-
mance in terms of sensitivity and precision. We are confident
that a patient-specific training would gradually weaken such
differences, with significant improvement of the classification
performance.

As already discussed, the time resolution in determining the
duration of a FOG episode depends on the window length. For
a 2s-long window, a maximum error of 1 s at the beginning and
1 s at the end of each FOG episode may occur, thus leading
to a time resolution of 2 s, sufficient for the purpose of the
present study. To better clarify this situation, Fig. 6 reports
a typical FOG episode (red square), along with the detected
window (black line). The signals to the left and right of the
FOG event contain turn and walk, respectively. In this case,
the time resolution in determining the FOG duration is about
1s.

Due to the small feature set and to the basic classifiers
implemented, the computational time (i.e. time employed in
pre-processing, feature extraction and feature computation)
is rather acceptable. As an example, the testing of 6-min-
acceleration requires 4 s. This makes possible to devise a
real-time implementation, hence to trigger a cueing system.
However, this would require some modifications to the algo-
rithm settings so as to further improve sensitivity, as discussed
in Sect. IV. This application is left for possible future devel-
opments.

Finally, the proposed method is compared with similar
recent studies addressing FOG with wearable sensors and ML
techniques. The results are shown in Tab. XI. We remark that
these comparisons must be interpreted with caution, given that
differences between the patients conditions and experimental
set-up may affect the results. However, it can be noticed that

Fig. 5: FFT of the acceleration signals: walking activity of a
FOG- (above) and FOG+ (below) subject.

Fig. 6: Time resolution in detecting FOG.

all performance metrics of the proposed method outperform
the algorithms under comparison. Moreover, the high precision
achieved by our algorithm (i.e. the probability that a window
classified as FOG actually contains FOG) enhances the sensi-
tivity significance. The suboptimal specificity reported in other
studies (max 95.6%, to the best of our knowledge) and the
fact that precision values are seldom reported, may denote an
excessive false positive rate, which would make questionable
the practical usefulness of such systems in detecting FOG
events. However, it must be pointed out that the algorithms
under comparison were meant to trigger auditory cues, thus
a different trade-off between sensitivity and specificity was
addressed.

A limitation of the presented study is that few FOG episodes
(namely, 54 episodes, for a total FOG duration of about
5 minutes) have been recorded. Actually, our experimental
protocol did not address any kind of FOG provocation test
(except for turning); all PD participants were in daily on
state, and no selection based on previous history of FOG
was applied on PD subjects. On the other hand, in [23], [25]
about 10 minutes of FOG events have been registered thanks
to FOG provocation (e.g. dual tasking). In [22], 20 minutes
of FOG have been collected, with all patients being in off
state. In [24], [27], up to 93 FOG minutes are recorded due
to a complex experimental protocol which implements the
tests under L-dopa suppression; however, only 12 minutes are
related to patients in on state. Given the practical experimental
conditions of our feasibility study, it was not possible for us
to enroll patients in off state or under L-dopa suppression; this
kind of experiments is left for future development.
Furthermore, we have been able to capture only two specific
FOG subtypes: elicitation context “turning”, manifestation
“trembling in place” (most cases) or “shuffling with small
steps” (few cases). This could have influenced the acceleration
signal topology, allowing a relatively easy detection; for ex-
ample, complete akinesia may be more difficult to distinguish
from standing than a trembling FOG type. Nevertheless, we
remark that the goal of our study was not to classify different
FOG subtypes, and that the subtypes we have been able to
identify are the most common ones.
In any case, we believe that the quite large number of involved
participants, providing noticeable variability in the execution



TABLE XI: Comparison between the proposed method and similar recent studies.
n. r. = not reported.

Author [26] [27] [29] [28] Present study

Year 2018 2018 2019 2019 2020

Dataset 10 PD 21 PD 10 PD 21 PD, 9 Control 38 PD, 21 Control

Device type Inertial sensors IMU Inertial sensors Inertial sensors Smartphone

Device location Shank, thigh, lower back Waist Shank, thigh, lower back Knee Lower back

Model RF 1-D CNN 1-D CNN SVM SVM+KNN

Window length (s) 4 3.2 4 6 2

Sensitivity (%) 92.4 91.9 n.r. n.r. 95.4

Specificity (%) 95.6 81.9 n.r. n.r. 98.8

Precision (%) n.r. n.r. n.r. n.r. 92.8

Accuracy (%) 95.3 89.0 n.r. 95 98.3

Detection rate in LOPO (%) 78.4 n.r. 95 n.r. 84.3

of the test, improves the significance of our results. Finally, the
results have been worked out adopting a patient-independent
approach. If we implement a subject-dependent training of the
ML algorithms, the performance will significantly improve.
This approach is left for future developments.

VI. CONCLUSION AND FUTURE WORK

Home monitoring of FOG episodes would provide valuable
information to check PD progression, motor fluctuations and
response to drug therapy. To this end, the algorithm designed
in this study yielded promising performance in terms of ro-
bustness, low number of false positives, limited computational
burden and high generalization capability. At present, the
method has been applied on data measured on patients and
elderly subjects performing a 6MWT. A straightforward devel-
opment can be to implement a number of short data acquisition
sessions at different daytimes; the acquired data could be
analyzed at the end of each day, achieving information about
FOG circadian distribution and duration. We plan to include
more FOG episodes in the dataset, recruiting PD subjects with
previous history of FOG, in off state while data acquisition,
during the L-dopa suppression test, and possibly including
other FOG provocation tasks in the experimental protocol.
With such an expanded data set, the classification of different
FOG subtypes may also be addressed. We plan to implement
a more thorough analysis of the PD patient’s gait features,
in order to recognize possible pre-FOG events from subtle
gait variations. In order to achieve a continuous and long-
term monitoring of patient during ADL, we plan to broaden
the set of activities performed during the test, so as to en-
compass most ADL situations. Furthermore, a patient-specific
training of the classificator could be addresses, leading to
further improvement in the detection performance. A real-time
implementation of the algorithm can be foreseen, given the
computational efficiency of the proposed algorithm. We plan to
include more monitoring tasks in the same wearable device, so
as to provide a thorough patient follow-up. Finally, the reduced

latency from FOG episode manifestation to its detection, our
tool could be possibly employed also for enabling some kind
cues (e.g. auditory, tactile) in real-time, in order to solve the
FOG episode itself. In order to be able both to provide a real-
time feedback to patients and to perform state-of-the-art signal
processing, we plan to use smarphone for a real-time soft
processing and for data trasmission to a Raspberry Pi for hard
processing tasks (e.g. Deep Learning applied to time-frequency
images, obtained computing Convolutional Wavelet Transform
of the inertial signals). We strongly believe this approach to be
the most realistic and efficient in a home environment, in view
of a well defined and practical remote-monitorng of patients.
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Català, Joan Cabestany, Eva De Mingo, and Alejandro Rodrı́guez-
Molinero, “Monitoring Motor Fluctuations in Parkinson’s Disease Using
a Waist-Worn Inertial Sensor,” Springer LNCS, vol. 9094, pp. 461–474,
2015.

[36] S. H. Salzman, “The 6-min walk test,” Chest Journal, vol. 135, no. 5,
pp. 1345–1352, 2009.

[37] T. M. Steffen, “Six-minute walk test (6mwt),” 2012.
[38] M. Mancini, A. Weiss, T. Herman, and J. M. Hausdorff, “Turn around

freezing: Community-living turning behavior in people with Parkinson’s
disease,” Frontiers in Neurology, vol. 9, no. 1, pp. 1–9, 2018.

[39] Martina Mancini, Bastiaan R Bloem, Fay B Horak, and Simon J G
Lewis, “Clinical and Methodological Challenges for Assessing Freezing
of Gait : Future Perspectives Assessing the Presence and Severity of
FOG in Clinical Practice,” Movement Disorders, vol. 34, no. 6, pp.
783–790, 2019.

[40] AAVV, “Sensor log,” 2014.
[41] P. Lamberti, S. Armenise, V. Castaldo, M. De Mari, G. Iliceto, P. Tronci,

and L. Serlenga, “Freezing gait in Parkinson’s disease,” European
Neurology, vol. 38, no. 4, pp. 297–301, 1997.

[42] Marco D. Tundo, Edward Lemaire, and Natalie Baddour, “Correcting
Smartphone orientation for accelerometer-based analysis,” MeMeA
2013 - IEEE International Symposium on Medical Measurements and
Applications, Proceedings, pp. 58–62, 2013.

[43] Erika Rovini, Carlo Maremmani, and Filippo Cavallo, “How Wearable
Sensors Can Support Parkinson’s Disease Diagnosis and Treatment: A
Systematic Review,” Frontiers in Neuroscience, vol. 11, pp. 555, oct
2017.

[44] Sinziana Mazilu, Alberto Calatroni, Eran Gazit, Anat Mirelman, Jef-
frey M Hausdorff, and Gerhard Tr, “Prediction of Freezing of Gait in
Parkinson ’ s From Physiological Wearables : An Exploratory Study,”
IEEE J Biomed Health Inform, vol. 19, no. 6, pp. 1843–1854, 2015.

[45] Daniel Rodrı́guez-Martı́n, Albert Samà, Carlos Pérez-López, Andreu
Català, and Joan M.Moreno Arostegui, “Home detection of freezing of
gait using Support Vector Machines through a single waist-worn triaxial
accelerometer,” PLoS ONE, vol. 12, no. 2, pp. e0171764, 2017.

[46] Kemal Polat, “Freezing of Gait ( FoG ) Detection using Logistic
Regression in Parkinson ’ s disease from Acceleration signals,” 2019
Scientific Meeting on Electrical-Electronics & Biomedical Engineering
and Computer Science (EBBT), pp. 1–4, 2019.

[47] Bo Li, Yuqian Zhang, Liang Tang, Chao Gao, and Dongyun Gu,
“Automatic Detection System for Freezing of Gait in Parkinson’s Dis-
ease Based on the Clustering Algorithm,” Proceedings of 2018 2nd
IEEE Advanced Information Management, Communicates, Electronic



and Automation Control Conference, IMCEC 2018, pp. 1640–1644,
2018.

[48] Terry Taewoong Um, Franz Michael Josef Pfister, Daniel Pichler, Satoshi
Endo, Muriel Lang, Sandra Hirche, Urban Fietzek, and Dana Kulić,
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