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A Risk-based Path Planning Strategy to Compute Optimum Risk Path
for Unmanned Aircraft Systems over Populated Areas

Stefano Primatesta1, Matteo Scanavino1, Giorgio Guglieri1, Alessandro Rizzo2

Abstract— The large diffusion of Unmanned Aircraft Systems
(UAS) requires a suitable strategy to design safe flight missions.
In this paper, we propose a novel path planning strategy to
compute optimum risk path for UAS over populated areas.

The proposed strategy is based on a variant of the RRT*
(Rapidly-exploring Random Tree ”Star”) algorithm, perform-
ing a risk assessment during the path planning phase. Like
other RRT-based algorithms, the proposed path planning ex-
plores the state space by constructing a graph. Each time a new
node is added to the graph, the algorithm estimates the risk
level involved by the new node, evaluating the flight direction
and velocity of the UAS placed in the analyzed node.

The risk level quantifies the risk of flying over a specific
location and it is defined using a probabilistic risk assessment
approach taking into account the drone parameters and envi-
ronmental characteristics.

Then, the proposed algorithm computes an asymptotically
optimal path by minimizing the overall risk and flight time.

Simulation results in realistic environments corroborate the
proposed approach proving how the proposed risk-based path
planning is able to compute an effective and safe path in urban
areas.

I. INTRODUCTION

In the last years Unmanned Aircraft Systems (UAS) have
been widely used in many applications both for commercial
and personal use [1].

However, UAS are at the beginning of their expansion. In
fact, the technological progress and the consequently increase
of the autonomy level will enable the use of UAS in more
and more applications [2]. Specifically, UAS will be widely
used in urban areas [3]. In fact, thanks to their flexibility and
low cost, UAS are the ideal platform to sense cities [4]. For
this reason, a UAS is considered as a Flying IoT system and
the term Internet of Drone Things (IoDT) has been coined
in [5].

However, urban areas are complex environments and the
integration of UAS in cities poses important challenges
such as public safety, cybersecurity and privacy [6]. In
particular, urban areas have a high population density and
a possible crash of the UAS on the ground may involve
people and, in the worst case, casualties. For this reason,
the flight over populated areas is strongly restricted by
National Aviation Authorities (NAA), such as ENAC (Ente
Nazionale per l’Aviazione Civile) in Italy and FAA (Federal
Aviation Administration) in the U.S.. Generally, the flying
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over people is permitted only with particular conditions in
order to guarantee an appropriate level of safety.

In Europe, EASA (European Union Aviation Safety
Agency) is working on an European regulation for UAS [7],
[8], in which the specific scenario with the flight over people
is taken into account. EASA proposed the definition of three
risk-based categories: open, specific and certified. For the
open category only UAS with a mass lower than 0.250 kg
and a speed lower than 19 m/s can fly over uninvolved
people, but not over crowd. For the specific category, the
flight over people is permitted only after a risk analysis using
the SORA (Specific Operation Risk Assessment) guidelines
proposed by JARUS (Joint Authorities for Rulemaking on
Unmanned Systems) [9]. SORA is a qualitative approach
and assesses the risk of a flight operation with a multi-
step procedure, defining if an adequate level of safety is
guaranteed and recommending a set of safety requirements
for the UAS and the operation.

In the literature many alternative risk assessment ap-
proaches have been proposed [10]. One of the most popular
methods is the probabilistic risk assessment used in [11],
[12], [13], where the risk is defined as the probability to
cause a fatality per flight hour. The probabilistic risk assess-
ment is a quantitative and high-fidelity approach and can
be used to quantify the risk of a specific flight mission [14].
Moreover, according to [15], the probabilistic risk assessment
seems to be in agreement with SORA. The probabilistic risk
assessment is also used in [16] to compute a ground risk-
based map quantifying the risk of flying over an urban area.

Another interesting study is presented in [17], where the
authors propose a risk assessment framework developed to
provide real-time safety evaluation and tracking to be used
in a UAS Traffic Management (UTM). Instead, a method to
model and assess the risk of UAS is proposed in [18], taking
into account both ground impacts and mid-air collisions.

In general, the risk assessment can be also used to provide
safe flight missions. In [19], a risk-based path planning
is presented using a bi-objective optimization method to
compute a low-risk and time solution for UAS over populated
areas. The same authors, in [20], propose an algorithm
able to compute risk optimal UAS maneuvers estimating a
probabilistic crash area. In [16], a two-stage risk-aware path
planning is proposed to compute a safe path in dynamic
risk-based maps by using a combination of two algorithms:
riskA* and Borderland. In [21], a risk-based path planning
is also used to seek for a safe landing area.

In our previous work [22], we have proposed a risk-
aware path planning based on the RRT* (Rapidly-exploring



Random Tree ”Star”) algorithm with the minimization of
risk costs in a risk-based map. However, this path planning
strategy evaluates risk costs of the risk-based map introduced
in [23], where the risk is computed considering any flight
direction and velocity. In fact, during the generation of the
risk-based map, flight direction and velocity are not known
and the estimated risk is defined considering a large impact
area. As a consequence, the risk could be over-estimated or,
in the worst case, under-estimated compared with the actual
risk considering a specific flight direction and velocity. Thus,
the path planning proposed in [22] does not use a realistic
estimation of the risk.

In this paper, we propose an alternative path planning
strategy able to compute safe routes for UAS over populated
areas. The algorithm is based on the well-known RRT*
algorithm [24] with the minimization of the overall risk and
the flight time. The use of the flight time in the optimization
is essential for two reasons: (i) the risk, expressed in casu-
alties per flight hour (h−1), is proportional with the flight
time, and, (ii) often UAS have batteries with a limited time
of autonomy, then, the flight time is a critical variable to
be considered in the path planning. Unlike the risk-aware
path planning method presented in [22], the proposed path
planning approach does not minimize risk costs of a risk-
based map, but it directly estimates the risk during the
computation of the path. In fact, each time the path planning
extends the graph with a new node, a risk assessment is
performed by estimating the risk caused by the flight over
the new node. This approach increases the complexity of the
algorithm compared with [22], but it evaluates an efficient
and realistic risk obtaining a more effective solution.

This paper is organized as follows. In Section II the ground
risk assessment used by the path planning is described.
In Section III the risk-based path planning is presented,
detailing the proposed strategy and the pseudocode of the
risk-based RRT* algorithm. Section IV reports numerical
results. Our conclusions are drawn in Section V.

II. GROUND RISK ASSESSMENT

In this section, we explain the ground risk assessment used
by the risk-based path planning algorithm.

The ground risk assessment used in this paper is based on
the methodology presented in our previous work [23]. The
risk is defined as the probability to cause a casualty when
the UAS flies over a populated area and it is expressed in
casualties per flight hour, a standard unit used in aviation.
The risk is computed using a probabilistic risk assessment
approach widely used in the literature [11], [12], [25],
computed as a sequence of three conditional events: (i) the
loss of control of the UAS with the consequent uncontrolled
crash on the ground, (ii) the impact with at least one person,
and, (iii) the impacted person suffers fatal injuries. Hence,
the probability to have a casualty Pc is defined as

Pc(x) = Pevent · Pimpact(x) · Pfatality(x), (1)

with x is the origin location in which the risk is computed.
Pevent is the probability that the UAS loses control with the

consequent uncontrolled descent and impact on the ground.
The uncontrolled descent event may happen with different
behaviors depending on the failure type and the UAS config-
uration (i.e. fixed-wing or multi-copter). In [23] four descent
event types are considered: ballistic descent, uncontrolled
glide, parachute descent and fly-away. The descent behavior
is used to estimate the probabilistic impact area, the impact
velocity, the impact angle and the kinetic energy at impact.
Pimpact is the probability to impact with at least one

person after the uncontrolled descent on the ground. It
depends on the population density in the impact area and
the area exposed to the crash.
Pfatality is the probability that the impact with a person

causes a casualty. It is function of the kinetic energy at
impact and of the sheltering factor in the impact area.

The risk is computed for each descent event using a
common procedure:

1) The probabilistic impact area is computed using the
mathematical model of the descent type. As a result,
we obtain a geo-referenced two-dimensional Probabil-
ity Density Function (2D-PDF). For simplicity the 2D-
PDF is represented as a matrix in which each element
represents a geo-referenced location with associated
the probability to impact in the location, the estimated
impact angle and the estimated impact velocity.

2) The 2D-PDF is modified using the wind speed and
direction. Specifically, the 2D-PDF is computed in the
wind frame and, then, the offset caused by the wind is
determined by the drop time and the wind speed.

3) The probabilities Pimpact and Pfatality are computed
using the 2D-PDF and information about population
density and sheltering factor in the impact area.

4) The probability Pc is computed.
Hence, since we assume the independence between failures
and between descent events, the probabilities due to the
descent events are simply added:

Pc(x) = P bal
c (x) + P ug

c (x) + P par
c (x) + P fa

c (x), (2)

with P bal
c , P ug

c , P par
c and P fa

c are the probabilities of casu-
alties for the ballistic descent, uncontrolled glide, parachute
descent and fly-away, respectively.

A. Descent events

A reliable and realistic risk assessment should consider
the behavior of the UAS during the uncontrolled descent on
the ground. In fact, the type of descent determines how the
UAS crashes on the ground, defining the impact area and the
kinetic energy at impact. In [23] four different descent event
types are used:
• Ballistic descent: happens when the UAS loses most of

its lift and the aircraft is subject to a ballistic descent.
• Uncontrolled glide: occurs when the UAS enters in an

uncontrolled descent governed by the glide ratio or
autorotation descent angle, depending on the aircraft
configuration.

• Parachute descent: happens when the UAS descents
with a fully deployed parachute.



• Fly-away: happens when the ground station loses the
operator control authority, while the on-board autopilot
maintains the aircraft stable.

For each descent event type a mathematical model is de-
fined and used to estimate the probabilistic impact area.
Specifically, the 2D-PDF is computed taking into account
drone specifications and initial conditions (e.g. flight altitude
and initial velocity), as well as considering probabilistic
assumptions on parameters. To have more details about the
descent event type and their mathematical model, please refer
to [23], [25], [26].

Figure 1 illustrates an example of probabilistic impact
area. Specifically, this example refers to the DJI Mavic
Pro, a small and lightweight UAS and, according to results
of [23], is suitable to fly over populated areas. Due to the low
mass, only the ballistic descent event involves the required
amount of kinetic energy to cause casualties. In particular,
Figure 1(a) shows the 2D-PDF taking into account a specific
flight velocity and direction. On the other hand, Figure 1(b)
illustrates the 2D-PDF considering all combinations of initial
velocities and flight directions.

B. Probability of Impacting a Person

The probability Pimpact is the probability of impact at least
one person after the uncontrolled impact on the ground of
the UAS. In this work we use a method widely used in the
literature [11], [12], in which the probability is defined as

Pimpact(x) = ρ(x) ·Aexp, (3)

where ρ(x) is the population density at the location x and
Aexp is the area exposed to the crash.

The area exposed to the crash, also called lethal area, is
defined using a method proposed in our previous work [22],
taking into account the dimension of an average person and
of the UAS

Aexp(θ) = π(rp+ruav)2 sin(θ)+(rp+ruav)(hp+ruav) cos(θ),
(4)

where θ is the impact angle, ruav is the radius of the aircraft,
rp and hp are the average radius and height of a person.

As detailed in [23], the risk assessment computes the
probability Pimpact evaluating the probabilistic impact area
and using the estimated impact angle, described by the 2D-
PDF. Hence, the 2D-PDF is used to compute the expected
values of population density and lethal area

Pimpact(x) =
∑

x∈PDF

PDF · ρ(x) ·Aexp(θ(x)), (5)

with ρ and Aexp(θ) are independent variables. The sum
expression considers all the geo-referenced locations of the
probabilistic impact area and their probabilities defined as a
probability density function PDF.

C. Probability of Fatality

The probability Pfatality is the probability that the im-
pacted person suffers fatal injuries. This probability is com-
puted using the method proposed in [12], taking into account

(a)

(b)

Figure 1. A 2D-PDF of the ballistic descent with the DJI Mavic Pro aircraft.
In red, areas with the highest probability of fall, whereas in magenta areas
with probability equal to zero. The UAS flies at an altitude of 30 m, the
wind has a direction of −0.52 rad and speed 4 m/s. In (a) the aircraft
has a heading angle of 0.52 rad and a cruise velocity of 10 m/s, while in
(b) all directions with uniform distribution U(0, 2π) rad and all velocities
with uniform distribution U(0, 10) m/s are considered.

the kinetic energy at impact and the sheltering factor. The
sheltering factor is a parameters that determines how people
on the ground are sheltered by buildings and other obstacles
from a possible impact with a UAS. It is essential to
evaluate it, because the presence of buildings and obstacles
in the impact area reduces the kinetic energy at impact.
In [12] the sheltering factor is an absolute real number in
the range from 0 to infinite. However, according to [27],
it is useless to consider too large values for the sheltering
factor because, after a certain value, a huge kinetic energy
is required to cause a fatality. Then, as defined in [27], we
use a sheltering factor in the range from 0 to 10, where 0
refers to an area with no shelter and 10 to an area with the
maximum level of sheltering factor, such as an industrial
building. Similarly with the probability of impact a person,
the probability Pfatality is computed considering the 2D-PDF



and the estimated kinetic energy at impact. Hence,

Pfatality(x) =
1− k

1− 2k +
√

α
β [ β

E[Eimp(x)]
]

3
E[s(x)]

, (6)

with k = min[1, ( β
E[Eimp(x)]

3
E[s(x)

]
)]. Where s(x) is the

sheltering factor at the location x, Eimp(x) is the estimated
kinetic energy at impact in the location x, the α parameter
is the impact energy for a fatality probability of 50% when
the sheltering factor is equal to 6, and the β parameter is the
impact energy to cause a fatality when the sheltering factor
goes to zero. According to [28], the fatality limit is defined
with β = 34J . In Equation 6, E[·] refers to the expected
value

E[Eimp(x)] =
∑

x∈PDF

PDF · Eimp(x), (7)

E[s(x)] =
∑

x∈PDF

PDF · s(x), (8)

where the sum expression takes into account all the locations
x of the probabilistic impact area and their probabilities
defined as a probability density function (PDF).

III. RISK-BASED PATH PLANNING

In this section we describe the risk-based path planning
strategy proposed in this work. As already explained in the
previous paragraphs, the proposed risk-aware path planning
approach does not use a risk-based map to estimate the risk,
as in [22], but it directly computes the risk during the path
planning phase using the risk assessment method described
in the previous section. However, the risk assessment requires
some essential and detailed information about the population
density and the sheltering factor in the area equivalent to the
state space of the path planning. For this reason, a multi-
layer framework is used, in which each layer contains useful
data of homogeneous nature. Technically, a layer is a geo-
referenced matrix in which each element is associated with
a geo-referenced location and has a specific value dependent
on the type of layer. In this work, the multi-layer framework
is composed by the following layers:

• Population density layer: defines the population den-
sity distribution in the area;

• Sheltering factor layer: defines the sheltering factor of
each element of the layer;

• Obstacles layer: defines the height of buildings and
other obstacles in the area;

• No-fly zone layer: defines in which areas the flight is
not allowed.

While the population density and sheltering factor layers are
used to estimate the risk level, the obstacles and the no-fly
zones layers are used by the path planning to avoid areas
where the flight is not allowed. The multi-layer framework
is illustrated in Figure 2.

Risk-based
RRT*

City Map

Population Density layer

Sheltering Factor layer

Obstacles layer

No-fly Zones layer

Figure 2. The multi-layer framework used by the proposed risk-based path
planning. Layers are used by the path planning to estimate the risk level
and to avoid obstacles at the flight altitude and no-fly zones.

A. Notation and Problem statement

Let X denote the d-dimensional state space, where X is a
measurable metric space that has finite measure L (X ) = k,
where L (·) is the Lebesgue measure of the space with
k < ∞. Each state of the state space is denoted as x ∈ X .
With a slight abuse of notation, here and henceforth we will
refer to x as a state of state space, as the geo-referenced
location corresponding to the state and as a node of the
graph generated by the path planning algorithm. The notation
d(x1, x2) is the Euclidean distance function on X with
d(x1, x2) ≥ 0.

Let Xobs denote the obstacle space that corresponds to
obstacles or no-fly zones. The free space Xfree = X \ Xobs

is the remaining navigable space.
The start and goal states are xstart and xgoal respectively,

with xstart, xgoal ∈ Xfree. The path connecting the start and
goal states is denoted as σ(xstart, xgoal). The optimal path



planning searches for an optimal path σ∗(xstart, xgoal) as
a sequence of states from xstart to xgoal ∈ Xfree, which
minimizes a given cost function Cost(·) ≥ 0. Hence, the
optimal path is the solution of the following program

σ∗(xstart, xgoal) = arg min
σ(xstart,xgoal)∈Xfree

Cost(xstart, xgoal).

(9)
The cost function Cost(·) used in this work will be defined
in the following section.

B. Risk-based RRT* algorithm

The proposed method is based on the well-know RRT*
with the minimization of the risk. RRT* [24] is a sample-
based algorithm able to compute near-optimal solutions even
in high-dimensional spaces. RRT* searches for a solution
by exploring the search space by building an incremental
and asymptotically optimal graph. Practically, nodes are
randomly sampled in the state space and used to extent incre-
mentally the exploration graph. Unlike the RRT algorithm,
RRT* ensures that nodes are reached through a minimum
cost path. As a consequence, RRT* is asymptotically optimal
and the cost of the returned solution converges to the
optimum when the number of nodes tends to infinite. On the
other hand, if a solution does not exist, the algorithm does
not report it and continues to seek for a solution. However, in
general, a termination condition is set to block the algorithm.

In our previous work [22], the RRT* algorithm minimized
a motion cost taking into account the flight time and risk
costs defined by a risk-based map that previously assesses
the risk of flying over an urban area [25]. In this work, we
propose a different approach, in which the risk-based path
planning does not refer to a risk-based map, but assesses the
risk during the exploration of the state space. Practically, the
risk of flying over a populated area is computed at each step
of the algorithm, i.e. during the graph extension and in the
rewiring phase. In fact, each time a new node is sampled
and added to the graph, the algorithm computes the risk
involved by the new edge connecting the state to the graph.
Specifically, the risk is estimated by using the ground risk
assessment method described in Section II.

An example of graph extension and risk assessment is
illustrated in Figure 3. The risk is computed considering the
location of the node, the flight direction and velocity. As
previously detailed, these parameters are used to estimate
a probabilistic impact area, and, then, the ground risk is
computed taking into account the population density and the
sheltering factor in the impact area.

Similarly to RRT*, the algorithm explores the state space
by minimizing a motion cost. In this paper, the algorithm
minimizes the risk in respect of the flight time. In fact, as
described in Section II, the risk is expressed in casualties per
hour and, then, the risk of flying over a specific location is
proportional with the time of overflight the location. Hence,
the motion cost at the node xi in the state space is defined
as

Cost(xi) = Cost(xi−1) +

∫ t(xi)

t(xi−1)

Pc(x) dt (10)

x start

δ

xnear

xrandxnew

PDF ( xnew )

r ball

Figure 3. Example of graph extension with the risk-based RRT*. As
detailed in Algorithm 1, after the definition of a new node xnew, the
algorithm computes the motion cost of moving from xnear ∈ Xnear

to xnew by assessing the risk of flying over xnew considering a specific
flight direction and velocity. The red arrow is the flight direction, while the
ellipsoid is the 2D-PDF defining the probabilistic impact area.

t

∫
t (xi−1)

t (xi)

Pc( x)dt

Cm(xi−1)Pc (x )

Pc (xi−1)

Pc (xi)

t (xstart ) t (xi−1) t (xi)

Figure 4. Representation of the computation of the motion cost at the node
xi considering the risk in respect of the flight time. In orange the motion
cost at the previous node xi−1, while in green the trapezoidal area that
represents the motion cost of moving from xi−1 to xi.

where Cost(xi−1) is the motion cost computed at the adja-
cent node xi−i, while the motion cost from xi−1 and xi is the
integral of the risk Pc(x) on the flight time. In Equation 10,
the cost function Cost(xi) always refers to the motion cost
from the initial node xstart to xi because, typically, the graph
of RRT-based algorithms is rooted from the initial node.

Practically, the risk cost function is computed with an
approximate and incremental method where the integral is
defined as a trapezoidal area between two adjacent nodes

Cost(xi) = Cost(xi−1) + c(xi−1, xi)

= Cost(xi−1) +
Pc(xi−1) + Pc(xi)

2
t(xi−1, xi)

(11)

where t(xi−1, xi) is the time flight expressed in hour to
move from the node xi−1 and the node xi. A graphical
representation of the risk function is shown in Figure 4.

The risk-based RRT* algorithm is a variant of the original
RRT*. The pseudocode of the algorithm is reported in
Algorithm 1, where the algorithm differs from RRT* only
in lines 15 and 26, i.e. where the risk is computed during
the graph extension and rewire procedures.



Similarly to other RRT-based algorithm, risk-based RRT*
constructs a graph G = (V,E) embedded in X and rooted
from xstart, with V is the set of nodes and E is the set of
edges. As result, the algorithm returns a graph with a unique
branch that connects xgoal with xstart, which corresponds
with the solution path.

First of all, the graph G is initialized by inserting xstart as
a node in the set of nodes V and setting the set of edges E
as an empty set. The algorithm executes an iterative routine
(lines from 3 to 34) that continues until a certain number n
of nodes are sampled. Hence, a new node xrand is sampled
(line 4) and the algorithm searches for the nearest node xnear
in the graph. If the Euclidean distance between xnearest and
xrand is higher than the maximum planner range δ, a new
node xnew is defined at the distance δ (line 7), otherwise it
corresponds to xrand (line 9).

Then, if xnew is valid, i.e. it is not inside an obstacle or a
no-fly zone, the algorithm searches for the best parent node
among the near nodes (lines from 12 to 20). Specifically,
the set Xnear consists in all nodes within a ball of radius
rball centered in xnew. According to [24], the radius rball is
defined as

rball = min

{
γ
( log |V |
|V |

)1/d
, δ

}
, (12)

with γ a parameter of the algorithm, d is the dimension of
the Euclidean state space X , and the notation | · | defines the
cardinality of a set.

For each state xnear of the set, the algorithm assesses the
risk of flying from xnear to xnew (line 15) and computes the
motion cost using the formulation of Equation 11 (line 16).
The best parent node is the node that provides the lowest
motion cost. If a parent node exists, the node xnew and the
edge connecting it to the best parent are added to the graph
(lines 22, 23).

In order to guarantee that nodes in the graph are reached
by the minimum cost path, the rewiring routine is executed
(lines from 25 to 32). For each state xnear the algorithm
verifies if the motion cost of the node xnear is lower passing
through the new node xnew. If it is the case, the graph
is updated by setting the node xnew as a new parent of
xnear. The rewiring routine is an essential element of the
RRT* algorithm, because it updates the edges of the graph
evaluating the new node xnew and maintaining an optimal
graph.

At the end of the iterative procedure, the algorithm returns
a solution path as the unique branch in the graph G connect-
ing the node xgoal to xstart. If the graph does not reach the
goal, a solution does not exist.

As demonstrated in [24], RRT* is asymptotically optimal
if the parameter γ satisfies the following inequality

γ > 2

(
1 +

1

d

)1/d(
µ(Xfree)

ζd

)1/d

(13)

where µ(Xfree) is the Lebesgue measure (i.e., volume) of
the free search space Xfree, and ζd is the volume of the unit
ball in the d-dimensional Euclidean state space.

Algorithm 1 risk-based RRT* algorithm
1: V ← {xstart}
2: E ← ∅
3: for i = 1, . . . , n do
4: xrand ← SampleNode()
5: xnearest ← Nearest(G = (V,E), xrand)
6: if d(xnearest, xrand) > δ then
7: xnew ← Saturate(xrand, xnearest, δ)
8: else
9: xnew ← xrand

10: end if
11: if isValid(xnew) then
12: Xnear ← Near(G, xnew, rball)
13: cmin ← InfiniteCost
14: for each xnear ∈ Xnearest do
15: RiskAssessment(xnear, xnew)
16: if Cost(xnear) + c(xnear, xnew) < cmin then
17: xmin ← xnear
18: cmin ← Cost(xnear) + c(xnear, xnew)
19: end if
20: end for
21: if cmin 6= InfiniteCost then
22: V ← V ∪ {xnew}
23: E ← E ∪ {(xmin, xnew)}
24: end if
25: for each xnear ∈ Xnear do
26: RiskAssessment(xnew, xnear)
27: if Cost(xnew)+c(xnew, xnear) < Cost(xnear) then
28: xparent ← Parent(xnear)
29: E ← E \ {(xparent, xnear)}
30: E ← E ∪ {(xnew, xnear)}
31: end if
32: end for
33: end if
34: end for
35: return getPath(G, xgoal)

IV. RESULTS

The proposed risk-based path planning method is imple-
mented in C++ as an executable process in the ROS (Robot
Operating System) framework [29].

The multi-layer framework is implemented using Grid
Map [30], a C++ library with ROS interface to manage two-
dimensional grid maps with multiple data layers. The risk
assessment and the estimation of the probabilistic impact area
is performed using the OpenCV library [31] to provide fast
matrix computation.

The risk-based RRT* algorithm is implemented using
the OMPL (Open Motion Planning Library) library [32]
that consists in many state-of-the-art sampling-based motion
planning algorithms and offers many functionalities to facil-
itate the implementation of a new algorithm.

The proposed strategy is tested considering an area of
Torino (Italy) and taking into account a realistic population
density and sheltering factor data. Figure 5 illustrates the map
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Figure 5. The map from OpenStreetMap of the Torino’s neighborhood
evaluated to test the proposed risk-based path planning strategy.

of Torino’s neighbourhood obtained from OpenStreetMaps
(OSM) with a dimension of 1020× 1170 m.

In order to show the risk involved in this area, Figure 6
shows the risk-based map computed using the method pro-
posed in [23]. The risk-based map is computed assuming the
DJI Mavic Pro aircraft, a small quadcopter with a mass of
about 0.7 kg and considering a cruise speed of 10 m/s. In
order to ensure an appropriate level of safety, the risk of a
flight operation should be lower than a maximum acceptable
risk. As discussed in [12], [33], a conservative ”Equivalent
Level Of Safety” (ELOS) is 1·10−6h−1. The risk-based map
of Figure 6 has an average risk of 1.72 ·10−6h−1 and, taking
into account the ELOS requirement, the Mavic Pro aircraft
can fly only over few areas.

In this paper the path planning is executed considering
some assumptions that simplify the scenario: (i) the path
planning considers flight at constant altitude, then, a two-
dimensional state space is used, in which a node x is
represented with a 2D-position in the space; (ii) the UAS
flies with a constant velocity; (iii) the UAS direction in a
node xi is defined by the direction of the segment connecting
xi−1 and xi, as illustrated in Figure 3.

The proposed risk-based RRT* is used to compute the
minimum risk path in the map of Figure 5. The resulting path
is computed by constructing a graph composed by 10000
nodes, with a maximum planner range of δ = 20 m and
with γ = 1174 satisfying the condition of Equation 13. The
path is reported in Figure 7, while the path length, the motion
cost and the average risk of the path are reported in Table I.
Specifically, the path has an average risk of 1.49 · 10−6h−1,
which is higher than the ELOS. The same path is also
evaluated as in [22] using risk costs of the risk-based map of
Figure 6 obtaining an average risk of 9.85 · 10−7h−1, lower
the the ELOS.

The same path planning problem is also solved using the
risk-aware path planning proposed in [22], where the RRT*
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DJI Mavic Pro: risk-based map

Wind
dir: 0,785 rad
vel: 2 m/s

P
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Figure 6. The risk-based map of the urban area of Figure 5. The risk-based
map is computed with the strategy proposed in [23] and taking into account
the DJI Mavic Pro aircraft at the flight altitude of 30 m and a wind with
direction 0.785 rad and velocity 2 m/s.
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Figure 7. The minimum risk paths computed in the area of Figure 5 and
considering the DJI Mavic Pro aircraft. In green the path computed with
the risk-based RRT* proposed in this paper. In red the path computed using
the risk-aware path planning proposed in [22]. Both paths are computed
considering a flight altitude of 30 m and a wind with direction 0.785 rad
and speed 2 m/s.

TABLE I
COMPARISON BETWEEN THE PROPOSED RISK-BASED RRT* AND THE

RISK-AWARE PATH PLANNING STRATEGY PROPOSED IN [22].

Algorithm
Solve
time
[s]

Path
length

[m]

Optimization
method

Motion
cost

Average
risk
[h]

risk-based
RRT* 2.42 813.12 actual risk 1.21 · 10−4 1.49 · 10−6

risk cost 8.01 · 10−5 9.85 · 10−7

risk-aware
RRT* [22] 0.38 771.31 risk cost 7.64 · 10−5 9.90 · 10−7

actual risk 1.28 · 10−4 1.65 · 10−6



algorithm minimizes risk costs of a risk-based map. Hence,
Figure 7 illustrates the path considering the same starting and
target positions and the risk-based map of Figure 6, while
the characteristics of the path are in Table I. The path has
an average risk of 9.90 · 10−7h−1, but, if the same path is
evaluated using the risk assessment strategy proposed in this
work, the actual risk is 1.65·10−6h−1, higher than the ELOS.

Comparing the results of the two path planning approaches
in Table I, it is clear that the risk assessment used in the
optimization of the risk-based RRT* algorithm estimates a
higher risk level compared with the strategy proposed in [22].
In fact, according to the method proposed in [22], the Mavic
Pro is suitable to flight over the urban area of Figure 5. On
the contrary, it involves an excessive risk using the strategy
proposed in this work. Anyway, both algorithms compute
a near-optimal solution in the map, but they use different
assumptions about the risk assessment, obtaining different
results.

This happens because risk costs of the risk-based map are
defined evaluating a wide impact area and, as a consequence,
the resulting risk is distorted by all values of population
density and sheltering factor distributed in the impact area,
resulting in an overestimated or, in the worst case, an
underestimated risk. Moreover, risk costs are computed con-
sidering all velocities uniformly distributed from 0 m/s to the
cruise speed. Since the risk is generally proportional to the
initial velocity, risk costs estimate a lower risk compared with
the actual risk estimated using a specific cruise velocity. On
the contrary, the proposed risk-based path planning evaluates
a more appropriate impact area and, as a consequence,
estimates a more realistic risk.

However, as expected, the time required to solve the path
planning problem with the proposed approach is higher than
the risk-aware path planning of [22] because the proposed al-
gorithm performs the risk assessment many times during the
exploration of the state space increasing the time complexity
of the algorithm.

The main advantage of the proposed path planning ap-
proach is shown in Figure 8, where the total probabilistic
impact area evaluated along the whole path is drawn on the
map. Specifically, Figure 8(a) illustrates the area analysed
by the proposed approach considering the flight direction
and velocity of each node of the path. On the other hand,
Figure 8(b) shows the area evaluated by the path planning
proposed in [22]. In Figure 8(b) the evaluated impact area
is much greater than the area of Figure 8(a), because the
path planning approach used in [22] minimizes risk costs of
a risk-based map, in which the risk is computed considering
any flight direction of the UAS. In fact, the risk-based map is
generated before the path planning, without any knowledge
about the UAS flight conditions.

The same path is also computed taking into account a DJI
Mavic Mini aircraft, a small and light-weight drone with a
mass of 0.249 kg. The resulting path is illustrated in Figure 9,
while the characteristics of the path are in Table II. The path
has an average risk of 1.91 · 10−7, lower than the ELOS.
It should be noted that the solve time to compute the path
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Figure 8. Comparison between probabilistic impact areas. In (a) the impact
area evaluated by the proposed risk-based RRT* algorithm, while, in (b),
the area evaluated by the risk-aware path planning presented in [22]. The
whole area evaluated by the proposed algorithm is much smaller, because
it estimates a more appropriate probabilistic impact area along the path.

TABLE II
NUMERICAL RESULTS OF THE RISK-BASED RRT* USING THE DJI

MAVIC MINI.

Algorithm
Solve
time
[s]

Path
length

[m]

Optimization
method

Motion
cost

Average
risk
[h]

risk-based
RRT* 1.36 819.98 actual risk 1.56 · 10−5 1.91 · 10−7

risk cost 1.08 · 10−5 1.31 · 10−7

is 1.36 s, lower than the time required to compute the path
with the Mavic Pro. This is caused by a smaller probabilistic
impact area that requires less time to visit all the locations
in the estimated 2D-PDF.

Another interesting scenario is shown in Figure 10 where
the proposed risk-based path planning strategy is used to
compute a path over a big crossroad in the presence of
wind. Specifically, in Figure 10(a) the wind has a direction
of 1.57 rad, while in Figure 10(b) has an opposite direction
of −1.57 rad. As a consequence, the wind modifies the
probabilistic impact areas evaluated during the construction
of the path obtaining two different solutions. Anyway, as
illustrated in Figure 8 the probabilistic impact areas never
lie in the middle of the crossroad that involves a high risk.
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Figure 9. The minimum risk path computed in the area of Figure 5 and
considering the DJI Mavic Mini aircraft. The path is computed considering
a flight altitude of 30 m and a wind with direction 0.785 rad and speed
2 m/s.
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Figure 10. Example of the proposed risk-based path planning approach
applied in an urban scenario with different wind parameters and a flight
altitude of 30 m. In (a) the wind has a speed of 5 m/s and direction
1.57 rad. In (b) the wind has an opposite direction of −1.57 rad. The
resulting paths are different because the estimated impact areas are modified
by the wind.

V. CONCLUSIONS

In this paper, we have presented a novel risk-based path
planning strategy to compute optimum risk path for UAS
over populated areas. The proposed approach uses a variant
of the well-know RRT* with the minimization of the overall
risk along the path and the flight time.

Unlike in our previous work [22], where the RRT* algo-
rithm is used to minimize risk costs of a risk-based map, in
the proposed strategy the risk assessment is performed during
the path planning phase. Specifically, each time a new node is
added to the exploration graph, a risk assessment procedure
is performed evaluating the flight direction and velocity and
estimating a probabilistic impact area. As a consequence,
the proposed risk-based path planning evaluates a more
appropriate and reliable risk compared with the approach
presented in [22].

Results show how the proposed strategy is able to compute
the minimum risk path in an urban area. Moreover, the
computed path is compared with the path planning presented
in [22]. As reported in the results, the proposed path planning
does not compute a path with a lower risk, but it evaluates
a realistic area obtaining a more effective solution. In fact,
with the method proposed in [22], the risk is computed by
using a large impact area because the risk estimated in the
risk-based map evaluates any flight direction and velocity.
This may cause an overestimated or, in the worst case, an
underestimated risk. However, the proposed strategy has a
higher time complexity due to the risk assessment that is
performed multiple times at each iteration of the risk-based
RRT*. Anyway, the path planning can be executed on a
remote server, such as on a Cloud platform, exploiting the
Cloud and parallel computing, reducing the computation time
of the algorithm.

Future works will include the inclusion of kinodynamic
constraints of the vehicle and the adaptation to a tridimen-
sional environment. Also the energy consumption of the
aircraft should be taken into account to obtain an energy-
efficient and safe path for UAS. Moreover, experimental tests
will be conducted on a real robotic platform.
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