
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Design of Unsigned Approximate Hybrid Dividers based on Restoring Array and Logarithmic Dividers / Liu, Weiqiang;
Xu, Tao; Li, Jing; Wang, Chenghua; Montuschi, Paolo; Lombardi, Fabrizio. - In: IEEE TRANSACTIONS ON EMERGING
TOPICS IN COMPUTING. - ISSN 2168-6750. - ELETTRONICO. - 10:1(2022), pp. 339-350.
[10.1109/TETC.2020.3022290]

Original

Design of Unsigned Approximate Hybrid Dividers based on Restoring Array and Logarithmic Dividers

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TETC.2020.3022290

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2844139 since: 2022-03-06T16:47:16Z

IEEE Computer Society

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 1

Design of Unsigned Approximate Hybrid
Dividers based on Restoring Array and

Logarithmic Dividers
Weiqiang Liu, Senior Member, IEEE, Tao Xu, Jing Li, Chenghua Wang, Paolo Montuschi, Fellow, IEEE,

and Fabrizio Lombardi, Fellow, IEEE

Abstract—Approximate computer arithmetic has been extensively studied due to its advantages to further reduce power consumption
and increase performance at reduced accuracy. Although a number of approximate adders and multipliers have been studied, only a
few approximate dividers have been proposed. A logarithmic divider (LD) has low complexity and accuracy, while an exact array divider
(EXD) has a high complexity. Therefore, in this paper, an approximate hybrid divider (AXHD) is proposed. It takes advantage of both
LD and EXD to achieve a tradeoff between hardware performance and accuracy. Exact restoring divider cells are used to generate the
most significant bits (MSBs) of the quotient for attaining a high accuracy while the other quotient digits are generated by using a LD as
an approximate scheme to improve figures of merit such as power consumption, area and delay. To further save hardware resources, a
so-called eliminated approximate hybrid divider (E-AXHD) based on AXHD is also proposed. In this improved design, a reduced width
divider is used to replace the EXD in AXHD. Specifically, for a 16-by-8 design, n/(n + 1) array division is used to replace the n/8

array division (n < 8). The proposed AXHD and E-AXHD are evaluated and analyzed using error and hardware metrics. The proposed
designs are also compared with EXD, LD and previous approximate dividers. The results show that the proposed designs outperform
previous approximate dividers by considering both energy and error. The proposed hybrid dividers are of particular interest for error
tolerant applications such as image processing and machine learning.

Index Terms—Approximate computing, logarithmic divider, restoring array divider, low Power.

F

1 INTRODUCTION

I T is difficult to further reduce power dissipation and im-
prove performance of integrated circuits (ICs) under the

requirement of 100% accuracy. New computing paradigms
have been investigated to deal with these challenges in
IC design. The technical literature shows that over the
years many efforts have been targeting the design of fast
computing systems while generating an output with the
highest possible precision. However, this also results in a
high power consumption and a large hardware complexity.
In many error tolerant or error resilient applications (such
as digital signal processing, machine learning and computer
vision), human perception can mitigate the effects of some
computational errors. Therefore, approximate (or inexact)
computing has been proposed as an innovative technique
for the design of low power and high performance systems
[1]- [5].

Approximate computer arithmetic has been studied due
to its advantages to further reduce power consumption and

• W. Liu, T. Xu, and C. Wang are with College of Electronic Infor-
mation and Engineering, Nanjing University of Aeronautics and As-
tronautics, Nanjing, China, 211106. E-mail: {liuweiqiang, xutao666,
chwang}@nuaa.edu.cn

• J. Li is with School of Information Science and Technology,
ShanghaiTech University, Shanghai, China, 201210. E-mail: li-
jing1@shanghaitech.edu.cn

• P. Montuschi is with Control and Computer Engineering Department. Po-
litecnico di Torino, Torino, Italy, 10129. E-mail: paolo.montuschi@polito.it

• F. Lombardi is with Department of Electrical and Computer Engineering,
Northeastern University, Boston, USA, MA 02115. E-mail: lombar-
di@ece.neu.edu

Manuscript received XX XX, 2020; revised XX XX, 2020.

increase performance at the cost of an acceptable accuracy.
As fundamental operations of an arithmetic processor, ad-
dition and multiplication are very important for achieving
high performance. Therefore, they have been extensively
studied for approximate computing. Error metrics including
the error rate (ER), error distance (ED), mean error distance
(MED), mean relative error distance (MRED) [6] have been
proposed for evaluating the designs of approximate arith-
metic circuits. Approximate adders have been extensively
studied in the technical literature; among the many pro-
posed schemes, designs include both speculative [7]- [8]
and non-speculative transistor-level full adders [9]- [10]. The
operation of multiplication is more complex than addition.
Approximate design techniques can be applied to different
parts of a conventional multiplier, such as operands [13]-
[14], partial product (PP) generation [15], PP tree [16]- [17]
and compressors [18].

Compared to approximate adders and multipliers, ap-
proximate dividers have received less attention in the
technical literature. However, an approximate divider has
been proposed back to early 1960s [13]. The logarithmic
divider (LD) proposed by Mitchell is an approximate di-
vider because it introduces errors during the conversion
from binary to logarithmic operands. Therefore, the division
operation is transformed into a subtraction. As a result,
the design complexity can be significantly reduced with
improved performance at the expense of accuracy. However,
LD introduces large errors which makes it less attractive
for many applications that require high accuracy. Recently,
several approximate dividers have been proposed by either

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 2

simplifying exact designs [19]- [20] or using approximate
operands [22]- [24].

The design of an approximate unsigned non-restoring
divider (AXDnr) has been proposed in [19]. Different AXD-
nrs have been proposed by replacing the logic primitives
with approximate subtractors. Three types of approximate
subtractor cells (AXSCs) are then designed at transistor
level. Exact subtractor cells, which are critical in the op-
eration of the array divider, are truncated or replaced by
AXSCs using various schemes. Both restoring and non-
restoring array dividers have been analyzed for approxi-
mate computing. The main difference between the restoring
and the non-restoring divisions is that the non-restoring
type does not correct the partial remainder if a subtrac-
tion has a negative result. In hardware, the non-restoring
divider has a remainder correction circuit to ensure that
the sign of the remainder is consistent with the dividend.
It has been shown that an approximate unsigned restoring
divider (AXDr) has better performances than AXDnr with
respect to power consumption, while also introducing a
small degradation in accuracy [20]. The same replacement
and truncation schemes of [19] have been applied to a
restoring divider. A high-radix division scheme without
look-up tables has been proposed in [21]. The replacement
and truncation schemes from [19] have also been used to
this high-radix array divider. Generally, approximate array
dividers have high accuracy but also high complexity and
lower performances due to its array structure. Furthermore,
the delay is not significantly improved because only the less
significant part is approximated.

A dynamic approximate divider (DAXD) has been pro-
posed in [22]. Only those selected bits that start from
the most significant “1” are used as the operands. For
different lengths of input operands, leading one detectors
and a barrel shifter are utilized to improve the accuracy.
The lengths of the bits processed by the accurate divider
are adjustable to reduce inaccuracy and power dissipation.
Therefore, the divider size is reduced for low power and
high performance. However, its accuracy is rather low due
to the truncation of the operands; moreover, overflow may
occur.

A round-based high speed yet energy-efficient approx-
imate divider (SEERAD) has been proposed in [23]. This
divider is based on the rounding of the divisor, so that the
division operation can be performed by using only Shift
and Add operations. This simplification highly reduces the
delay at a very small loss in precision. However, as SEERAD
uses the look-up tables, it requires large area and power
consumption.

A fast and energy efficient truncation-based approximate
divider (TruncApp) has been proposed in [24]. The division
operation is performed by multiplying the truncated divi-
dend by the approximate inverse of the divisor. TruncApp
generally improves power consumption over SEERAD.

As discussed previously, by transforming the operands
into the logarithmic domain, approximate division can sig-
nificantly save power and area. However, its accuracy is
rather low. Conventional array dividers are more accurate,
but they also dissipate more power. Therefore, it is possible
to take advantage of both schemes to design approximate
hybrid divider (AXHD). This is accomplished by combining

the exact restoring array divider and the LD as proposed
in this paper. Exact restoring divider cells are used to
correct the errors generated by a conventional logarithmic
divider. The proposed approximate hybrid divider is eval-
uated comprehensively with error and hardware metrics.
They are compared with existing designs. The results show
that the proposed design outperforms previous designs at
an appropriate replacement depth. Applications to image
processing and the softmax function in neural networks are
also provided to show the validity of the proposed designs.

This paper is an extension of our previous work that
was published in [25]. The following new and important
technical contributions have been added to this journal
version:

• The proposed AXHDs are mathematically general-
ized and analyzed in Section 3.

• A new type of truncated approximate hybrid di-
viders (E-AXHDs) is proposed to further reduce the
hardware complexity under the same error level as
the AXHDs, in which a reduced width array divider
is used.

• The proposed AXHDs are further compared with
the latest approximate dividers including AXDrs
[20], approximate operands based SEERADs [23] and
TruncApps [24]. The results show the proposed de-
signs with replacement depth of 12 outperforms all
these previously proposed designs by considering
both energy and error.

• The proposed approximate dividers are applied to
compute the softmax function which is widely used
in the deep neural networks, to show the validity of
the proposed designs.

The paper is organized as follows. Conventional restor-
ing array divider and the logarithmic divider are reviewed
in Section 2. Section 3 presents the proposed designs of
AXHD and E-AXHD in details, inclusive of analysis, ar-
chitectures and examples. Error analysis and hardware e-
valuation of the proposed designs and comparison with
AXDrs, LD and previous approximate dividers are provided
in Section 4. The applications of the proposed design to
image processing and the softmax function is presented in
Section 5. Related works on approximate dividers and the
differences between the proposed designs are illustrated in
Section 6. The conclusions are provided in Section 7.

2 REVIEW AND PRELIMINARIES

This section presents a brief review of conventional restor-
ing array divider, and the LD, as basis for this work.

2.1 Exact Restoring Array Divider (EXDr)

Division is more complex than multiplication, which re-
quires quotient digit selection and the detection of over-
flow. Considering an integer divider, assuming that X is
a dividend and Y is a divisor (non-zero). The results of the
division are Q and R. The expression of the divider can be
written as:

X = Y Q+R (1)

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 3

where, the dividend X and the remainder R have the same
sign and |R| < |Y |. The restoring divider [11] is a widely
used type of array divider. The trial subtraction is performed
in each row. The corresponding quotient digit is 1 (0) if the
trial difference is positive (negative). If the quotient digit is
1, the trial difference is moved as partial remainder to the
next row; otherwise, the partial remainder is immediately
dropped. The term ”restoring” indicates that the remainder
is restored to the correct value if the trial subtraction was
incorrect for the intermediate quotient digit. The restoring
divider cell consists of an exact subtractor cell (EXSC) and
two transistors as shown in Fig. 1; the expressions of EXDCr
are given in Eqs. (2) and (3).

EXSC

Q X Y

BoutBin

R

1 1 1

1

1 1

Fig. 1: An exact restoring divider cell (EXDCr) [20].

R = Q(X ⊕ Y ⊕Bin) +QX (2)

Bout = X ⊕ Y Bin+XY (3)

An 8-by-4 exact restoring divider is shown in Fig. 2 [20].
Generally, a n-by-n/2 (n-bit dividend and n/2-bit divisor)
restoring array divider consists of n2/2 subtractors and its
critical path delay is O(n2). Therefore, the array divider is
rather complex and slow. The red lines in Fig. 2 show the
critical paths.

EXDCr EXDCr EXDCr EXDCr

EXDCr EXDCr EXDCr EXDCr

EXDCr EXDCr EXDCr EXDCr

EXDCr EXDCr EXDCr EXDCr

0

0

0

0

Y [3:0]

X [7:0]

Q [3:0]

R [3:0]

Fig. 2: A conventional unsigned 8-by-4 restoring array
divider [20].

Fig. 3 shows the operation of an 8-by-4 exact restoring
array divider. For example, consider X = 157 and Y = 12
as dividend and divisor, respectively. The expression of the
quotient is as follows:

Q3 = X7 +Bout3 (4)

Qn = Rn+1 +Boutn, 0 ≤ n ≤ 2 (5)

The quotient and the remainder obtained from the 8-by-4
exact restoring divider are 13 and 1, respectively.

1 1 0 0X： Y：0 0 1 1 1 0 11

0 1 1 1Row3： 0 1 1 1 1 0 00

Row2：

Row1：

Row0：

D3： Bout3：1 Q3：1 R3：0 1 1 1

0 0 1 11 1 1 1 1 0 01D2： Bout2：0 Q2：1 R2：0 0 1 1

1 0 1 01 1 0 1 1 0 00D1： Bout1：1 Q1：0 R1：0 1 1 0

0 0 0 11 0 1 1 1 0 01D0： Bout0：0 Q0：1 R：0 0 0 1

Fig. 3: Example of 8-by-4 exact restoring divider with
X=157 and Y=12.

2.2 Logarithmic Divider (LD)

The operands of a LD are given by the dividend X and the
divisor Y .X and Y are both positive integers, different from
zero, because the cases when either X or Y , or both are zero
are usually handled separately. k is the exponent, and m is
the fractional part of the mantissa. They are expressed as
follows:

X = 2k1(1 +m1) (6)

Y = 2k2(1 +m2) (7)

where, k1 and k2 are the so-called characteristics of X and
Y , respectively and represent the position of the leading one
bits. m1 and m2 are in the range of [0,1). The logarithm of a
quotient, i.e. Q, is equal to the difference of the logarithms
of the dividend and divisor.

Q =
X

Y
= 2k1−k2

1 +m1

1 +m2
(8)

log2Q = k1 − k2 + log2(1 +m1)− log2(1 +m2) (9)

As shown in [13], log2(1 +m) ≈ m when 0 ≤ m < 1, the
approximate quotient can be expressed as follows:

log2Q ≈ k1 − k2 +m1 −m2 (10)

Therefore, Eq. (10) can be calculated by subtractions. There
are four steps in the conventional LD proposed by Mitchell
[13]: leading one detection, binary-to-logarithm conversion,
mantissa subtraction and logarithm-to-binary conversion.
The leftmost one bit is detected by the leading one detector
(LOD). The binary-to-logarithm converter (BLC) converts
the input operands into logarithms. Only the most signif-
icant bit is converted to logarithm, the logarithm of the
mantissa is aromatically truncated by default. The division
is performed by a mantissa subtraction with the Subtractor
in the logarithmic domain (Fig. 4), while the EXSC cells in
Section 2.1 are employed to implement the subtractor. The
logarithm-to-binary converter (LBC) converts the subtrac-
tion result back to a binary number as the final quotient.
The LD is shown in Fig. 4 [13]. As the LD is inherently
approximate, the remainder is not provided. Furthermore,
conventional restoring array dividers overflow when X is
large and Y is small, while the LD does not overflow.

3 PROPOSED APPROXIMATE HYBRID DIVIDERS

In this section, the proposed approximate hybrid dividers
(AXHD and E-AXHD) are presented in details.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 4

LOD LOD

BLC BLC

Subtractor

LBC

X[15:0] 16 Y[7:0]8

19 10

19k + m

Q[15:0] 16

k1 + m1 k2 + m2

Fig. 4: A 16-by-8 unsigned logarithmic divider.

3.1 Derivation of the Proposed AXHD

A LD consumes significantly less power and requires less
area than conventional array dividers [13], in which the
rows for the subtraction operations require more hardware
and area compared with the simple subtraction of a LD.
However, when the operand width of the LD is large, the
accuracy decreases due to the approximation in the loga-
rithmic conversion. The conventional array dividers include
restoring and non-restoring designs. As shown in [19]- [20],
the hardware performance of the restoring array divider
is better compared with the non-restoring array divider.
Therefore, a new AXHD combining the exact restoring array
divider and the LD is proposed in this section. Its design
principle is to use the exact division for the most signifi-
cant bits and an approximate logarithmic division for the
remaining bits. The trade-off is therefore between accuracy
and hardware performance (power, delay and area).

Let n be the total bit-width of the dividend (i.e. X) and
h be the least significant bits that will be sent to the LD
(so defined as the replacement depth). For unsigned integer
division, the dividend is firstly segmented into two parts:
X1 which is the (n − h) most significant bits and X2 which
is the h least significant bits; the divisor is Y (n/2 bits). X1

and Y are processed by the exact restoring array divider
to generate the exact partial quotient (Q1) and the n/2 bit
partial remainder R1. Then, R1 and X2 are concatenated
as the dividend for the LD to generate the approximate
quotient Q2, where Y is still the divisor. Therefore, the
(n − h) most significant bits of the quotient (i.e., Q1) are
generated by the restoring array divider and the h least
significant bits of the quotient (i.e., Q2) are generated by
the LD. The final Q is the concatenation of Q1 and Q2.

The expression of the proposed AXHD can be derived as
follows. X is on n bits and Y is on n/2 bits. X is split into
two parts: X1 and X2 are on (n−h) and h bits, respectively.
By dividing X by Y we get Q on n bits.

The expression of the exact quotient from the restoring
array divider (i.e. Q1) is given by:

Q1 =
X1 −R1

Y
× 2h (11)

By dividing X1 by Y , we get Q1 on (n− h) bits. The partial
remainderR1 is in a range of [0, Y), by definition of division.
Therefore, R1 is on n/2 bits. The expression of X is given
by:

X = Q1 × Y × 2h +R1 × 2h +X2 (12)

This implies that the expression of Q is given by:

Q =
X

Y
= Q1 × 2h +

R1 × 2h +X2

Y
(13)

Q1 has on the most significant (n − h) bits that are not
zero, and hence Q1 × 2h is on n bits and occupies the most
significant part with non-zero bits and the least significant
part (h bits) equals to zero.

When h < n/2, R1 has n/2 bits and therefore T = R1 ×
2h +X2 is on (n/2 + h) bits, where the n/2 most significant
bits are covered by R1 and the least h significant bits by X2,
i.e. by concatenation. When h > n/2, the upper h − n/2
bits of R1 must be 0 and the lower n − h bits of R1 are
selected. Therefore T = R1×2h+X2 is on n bits, where the
n−h most significant bits are covered by R1 and the least h
significant bits by X2, i.e. by concatenation. As per (6) and
(7), the following expressions are then obtained.

T = 2k1(1 +m1) (14)

Y = 2k2(1 +m2) (15)

where, k1 and k2 represent the position of the leading most
significant bits. m1 and m2 are the mantissa parts and in
the range of [0,1). According to the approximation method
in Eqs. (9)-(10), the expression of the approximate quotient
(i.e. Q2) is given by:

Q2 =
T

Y
≈ 2k1−k2 + (m1 −m2)× 2k1−k2 (16)

When h < n/2, This implies that T/Y is a (n/2 + h) by
n/2 division. So, Q2 is n/2 + h bits. The lower h bits of Q2

are selected, because the higher n/2 bits must be 0. When
h > n/2, This implies that T/Y is a (n) by n/2 division. So,
Q2 is n bits. The lower h bits of Q2 are selected, because the
higher n− h bits must be 0.

Therefore, the final Q is obtained as Q = Q1 × 2h + Q2

by a simple concatenation. Although the value of m1 −m2

is different, the value of 1 +m1 −m2 is always larger than
0.

Q =
X1 −R1

Y
× 2h + 2k1−k2 × (1 +m1 −m2) (17)

The errors in the final quotient are from the LD because
the array divider is exact. Therefore, the accuracy of the
proposed AXHD decreases by increasing h; at the same
time, performance is improved by the use of a simpler LD.
The accuracy can be controlled by the replacement depth
and the appropriate value of h should be selected according
to the accuracy requirement of a specific application.

Table 1 lists all symbols, the definitions and bit-widths
used in AXHD.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 5

TABLE 1: Symbols, the Definitions and Bit-Widths Used in
AXHD.

Symbols Definition Bit-width
X Total Dividend n
Y Divisor n/2

X1 Dividend of EXD n− h
X2 Partial Dividend of LD h
R1 Remainder of EXD n/2
T Dividend of LD n/2 + h

Q1 Quotient from EXD n− h
Q2 Quotient from LD h
Q Total Quotient n

3.2 Hardware Architectures of the AXHD
The proposed AXHD is shown in Fig. 5. As mentioned pre-
viously, conventional restoring array divider may overflow
when X is large and Y is small, while the logarithmic di-
vider does not. Therefore, extra rows are added to the array
to avoid overflowing by computing more trial subtractions.
For a 16-by-8 exact restoring divider, 8 extra rows are added,
in which both the quotient and the remainder are 16-bit
wide.

In the proposed AXHD, the partial remainder generated
by the restoring divider cells is concatenated with X2 and
computed by the LD for the remaining quotient digits.
Therefore, (n-h) rows of divider cells make up an exact
divider whose input dividend is (n-h)-bit wide. In partic-
ular, h=n corresponds to a full LD and h=0 corresponds
to an exact array divider. If h is sufficiently large, then a
very simple hardware can be expected for implementing the
exact division part.

16-h Rows of

EXDCrs

Logarithmic

Divider

X1[15:h] 16-h Y[7:0]8

16-h||h partial remainder||X2

the first 16-h quotient

digits
the last h quotient digits

16 Q[15:0]

X[15:0]

X2[h-1:0]

8

h

Q1[15:h]

Q2[h-1:0]

Y[7:0]

Fig. 5: 16-by-8 AXHD based on restoring array and
logarithmic dividers.

Fig. 6 depicts the detailed block diagram of the proposed
AXHD which combines the restoring array and logarithmic
divider for h=14. The first two rows of the exact restoring
divider cells correspond to (16-h)=2 and compute X[15]
and X[14] with Y[7:0]. The partial remainder R[15:14] is
concatenated with X[13:0] to form the dividend for the LD
computing the division with Y[7:0] as the divisor.

The length of the quotient digits required by the array
divider cells can be adjusted by h. A small h results in more

EXDCr EXDCr EXDCr EXDCr

EXDCr EXDCr EXDCr EXDCr

Y [7:0]

X1 [15:14]

Q1 [15:14]

0 0 0

0

0 0

EXDCr

0

EXDCr

EXDCr

0

EXDCr

EXDCr

0

EXDCr

EXDCr

EXDCr

0

0 0 0 0

0

0

LOD

LOD

BLC

BLC

Subtractor
LBC

(Shifter)

R1||X2

16

8

19

10

19

k + x

k1 + m1

k2 + m2

Q2 [13:0]

X [15]

X [14]

X2 [13:0]

Y [7:0]

Concatenation

Q [15:0]

Fig. 6: A detailed block diagram of the 16-by-8 AXHD for
h=14.

accurate results at the cost of both higher power consump-
tion and hardware complexity. As mentioned previously, a
logarithmic divider is used for the least quotient bits; thus,
the remainder is not available. However, the computation
of the remainder is naturally not required in terms of an
approximate division.

3.3 The Proposed Eliminated AXHD (E-AXHD)
In this section, an improved eliminated approximate hybird
divider (E-AXHD) is proposed. For a conventional 16-by-8
array divider, each row is fixed with eight subtractor cells.
However, for the proposed AXHD design, the number of
subtractor cells per row can be reduced. The reason is that
when the dividend is smaller than the divisor, the lower
significant bits of the divisor have no effect on the result.
After selecting the replacement depth h, the (n − h) most
significant bits of the dividend are processed by the array
divider. Since the bit-width of the divisor is 8 bits, when
h > 8, (n−h)-by-8 array divider can be replaced by a (n−h)-
by-(n − h + 1) array divider with no loss of precision. For
example, consider X1 = 1101 and Y = 10010010 as the
dividend and divisor, respectively; so and the quotient re-
sult is 0. However, using X1 = 1101 divided by Y = 10010
as alternative, the result of the quotient is still 0. Note that
this improvement can be only applied when h > 8. Table
2 lists the number of subtractor cells reduced by E-AXHD
compared with AXHD at the same replacement depth.

TABLE 2: Reduced Number of Subtractor Cells in
E-AXHDs.

h ...9 10 11 12 13 14 15
Saved Cells (#) 0 6 10 12 12 10 6

Fig. 7 is the diagram of the proposed E-AXHD. The
(n − h) most significant bits of the dividend is selected.
For selecting the divisor, the position of the leftmost one
is obtained by the leading one detector (LOD); then the
following n − h + 1 bits are selected. For example, when
h = 12, the 4-by-8 array divider is replaced by a 4-by-5
array divider in E-AXHD. Suppose that Y = 10010010 is
the divisor; so as k > 5, 5 bits are selected from left to right
as the divisor. Suppose Y = 00000110 is the divisor, then
as k < 5, 5 bits are selected from the right to the left as the
divisor. All other processing steps are the same as AXHD.
Without affecting the accuracy, E-AXHD can further reduce

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 6

the hardware by eliminating the redundant subtractor cells
compared with AXHD.

LOD

X[15:0]

16

Y[7:0]

8

Q[15:0]

Truncated

(n-h)-by-(n-h+1)

Array divider

16-h+1

k

16-h

h 16-hR

Logarithmic divider

16

Q1[15:h]

Q2[h-1:0]

Fig. 7: 16-by-8 E-AXHD based on restoring array and
logarithmic dividers.

Fig. 8 depicts the detailed block diagram of the pro-
posed E-AXHD which combines the restoring array and
logarithmic divider for h=14. Compared with Fig. 6, it can be
seen that E-AXHD significantly reduces hardware resource
consumption than AXHD at h=14.

X1 [15:14]

Q1 [15:14]

0
EXDCr

0

EXDCr

EXDCr

0

EXDCr

EXDCr

EXDCr

0

0

0

LOD

LOD

BLC

BLC

Subtractor
LBC

(Shifter)

R1||X2

16

8

19

10

19

k + x

k1 + m1

k2 + m2

Q2 [13:0]

X [15]

X [14]

X2 [13:0]

Y [7:0]

Concatenation

Q [15:0]

LOD

8

Y [7:0]

Truncated

4

k1

3

k2

3

k2

Fig. 8: A detailed block diagram of the 16-by-8 E-AXHD for
h=14.

3.4 Division Examples Using AXHDs
A detailed example that is compatible with Fig. 6 is shown
in Fig. 9. In this example, the dividend is given by 43382
and the divisor is 84. The steps to calculate the approximate
quotient using AXHD are given as follows:
Step 1: Segment X =1010100101110110 into X1=10 and

X2=10100101110110.
Step 2: The restoring array divider receives X1 as dividend

and Y =01010100 as divisor and generates the partial
quotient Q1=00 and the partial remainder R=10.

Step 3: The partial remainderR from the exact array divider
is concatenated with X2=10100101110110 to form
the dividend R||X2=1010100101110110 of the LD.
Q2=00001000000101 is generated by the LD with
divisor Y .

Step 4: The final approximate quotient Q=00001000000101
is generated by concatenating Q1 and Q2.

The final result shows that the difference between the
exact quotient (i.e., Q=516) and the approximate quotient
(i.e., Q=517) is 1. In this work, the designs of both 16-by-8
and 8-by-4 AXHDs will be further studied. The error and
hardware evaluation are presented in the next section.

0 1 0 0X Y

Exact Restoring Divider Logarithmic Divider

1 0X1

0 1 0 0Y

h=14

R||X2

Y

LOD

1 1 1 0 1 1 0

0 1 0 0

0

1 1 1k1

k2

BLC 0 1 1 1 0 1 110

0 0

Suber

LBC

0 1 1 1 0 1 110

0 0 0 1 0 1

AX_QEX_Q

1 1 1 0 1 1 00

0

0

0

0 1 0 1 0 0 11 100 1

1010

1001011 0

1010

1

11

010101111

111 0 0 1 0

000000 0 11

00010000

0 0 0 1 0 1000100000 0 0 1 0 000010000 0 000

Row1

Row0

Bout1：1 Q15：0 R1：0 1

Bout0：1 Q14：0 R：1 0

Fig. 9: Example of the proposed 16-by-8 AXHD (h=14).

4 ERROR AND HARDWARE EVALUATION

For approximate arithmetic circuits, several metrics have
been used to measure the error of the approximate designs.
The Normalized Mean Error Distance (NMED), the Mean
Relative Error Distance (MRED) and the maximum absolute
error (MAE) [6] are widely used to evaluate the error char-
acteristics. The NMED is defined as the mean error distance
normalized by the maximum output of the accurate design.
The MRED is defined as the mean value of the relative error
distance that is the error distance over the absolute accurate
output. The MAE is defined as the maximum absolute value.
Therefore, these metrics are used for the error evaluation of
the proposed designs. The error results are generated using
exhaustive simulation (216 for 16-bits and 28 for 8-bits).

For the hardware evaluation, the delay, area, power and
energy are provided. The proposed designs are described at
gate-level in Verilog HDL and verified by Synopsys VCS.
All designs are then synthesized by the Synopsys Design
Compiler using the NanGate 45 nm Open Cell Library [28].
In the simulation of each design, a supply voltage of 1.25
V and room temperature are assumed. The constraints for
max area and delay are set to zero µm2 and 1 ns, respec-
tively. The average power consumption is found using the
Synopsys Power Compiler with a back annotated switching
activity file generated from the random input vectors. After
synthesis, the tool generates a gate-level netlist in Verilog.
The netlist is used to perform a static timing analysis (STA)
to find the timing information. The actual test stimuli is
given to the simulator along with the testbench (.v). After
simulation, the simulator generates a value change dump
(.vcd) file which records all actual transitions at the circuit
nodes. All designs are synthesized and optimized using the
default compiler options. The components, including EXD-
Cr and LOD cells are synthesized using the same process.

Abbreviations for all approximate dividers in this paper
are shown in Table 3.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 7

TABLE 3: Abbreviations for Approximate Dividers.

AXHD Approximate Hybrid Divider Combined with
Restoring Array and Logarithmic Dividers.

E-AXHD Eliminated Approximate Hybrid Divider
based on AXHD.

AXDr(i) [20] Approximate Restoring Array Divider
with Replacement Schemes of i.

SEERAD(i) [23]
The High Speed yet Energy-efficient

Rounding-based Approximate Divider
with Security Level of i.

TruncApp(i) [24] The Truncation-based Approximate Divider
with Truncation Length of i.

4.1 Error Evaluation
16-by-8 and 8-by-4 are the most widely used designs. For
example, in many image processing applications, the 8-bit
divider is usually used; in machine learning applications,
the 16-bit divider is the most common size for low power
design. Therefore, in this section, we have provided the
error and hardware results for both 16-by-8 and 8-by-4
designs. AXHD can only generate the quotient. The NMED,
MRED and MAE of the integer quotient are provided in
Table 4 for both 16-by-8 and 8-by-4 designs, respectively.
The exact array divider is accurate divider, so it is not shown
in the table. As h increases, more errors are introduced due
to the increased bits allocated to the LD in the design. In
both 16-bit and 8-bit designs, the error of AXHD increases
logarithmically with a linear increase of h. Both the NEMDs
and MREDs grow with an increase of h. However, when
h > n/2, the error grows slower. Therefore, a better tradeoff
between error and hardware performance can be achieved
by using a large value of h, as further studied in the
following subsection.

TABLE 4: NMED (10−6), MRED (%) and MAE of 8-by-4
and 16-by-8 AXHDs.

Design
8-by-4 16-by-8

h
NMED
(10−6)

MRED
(%) MAE h

NMED
(10−6)

MRED
(%) MAE

AXHD

1 0 0 0 2 0.32 0.03 0
2 0.29 0.26 4 4 2.17 0.15 13
3 0.83 0.63 7 6 8.99 0.45 21
4 1.71 1.08 8 8 33.5 1.15 47
5 3.19 1.52 11 10 89.2 1.83 92
6 4.32 1.7 14 12 140.9 2.00 115
7 4.91 1.76 17 14 179.7 2.03 121
8 4.91 1.76 21 16 188.6 2.04 134

E-AXHD is an improved design of the 16-by-8 AXHD,
and its NMED, MRED and MAE are the same as the 16-by-8
AXHD at the same replacement depth. However, compared
with AXHD, performance has been further improved, as
described in detail in the next subsection.

4.2 Hardware Evaluation
Previous approximate array dividers [20] have no significant
improvement in terms of delay and area. For a divider
with an approximate configuration, the approximation takes
place at the subtractor array; so the delay and area of the
inexact dividers is almost the same as the exact counterpart.
In the proposed designs, the delay and area have been
improved significantly when the replacement depth h is
large because the delay and area of the LD are small.

One of the goals of an approximate design is to reduce
the power consumption by tolerating computational errors.
And energy is used to evaluate the performance of the
designs, which is derived from the product of power con-
sumption and delay. The power consumption, delay, area,
energy of the E-AXHD and its improvement (%) over AXHD
are reported in Table 7 at different values of replacement
depth for 16-by-8 design. As shown in Table 7, E-AXHD
has reduced power, delay, area and energy by up to 14.0%,
12.8%, 15.4%, and 22.2%, respectively, compared with AX-
HD.

TABLE 5: Hardware Results for the 16-by-8 E-AXHDs.

Depth
(h)

Power
(µw)

Delay
(ns)

Area
(µm2)

Energy
(pJ)

9 1024(0%) 4.99(0%) 1010(0%) 5.1(0%)
10 831(6.1%) 4.08(8.1%) 870(6.3%) 3.4(12.8%)
11 685(11.6%) 3.29(11.8%) 740(11.8%) 2.3(20.7%)
12 613(14.0%) 2.98(8.0%) 668(13.8%) 1.8(21.7%)
13 571(13.9%) 2.46(9.6%) 598(15.4%) 1.4(22.2%)
14 534(13.3%) 2.02(8.2%) 540(14.4%) 1.08(20.0%)
15 506(7.7%) 1.5(12.8%) 501(9.4%) 0.76(19.0%)

4.3 Comparison with Approximate Dividers

As per their performance, AXHDs are selected with replace-
ment depths of 4, 8 and 12 for further comparison with
other approximate dividers such as AXDr3 [20] with a TR
scheme, SEERAD [23] and TruncApp [24]. As per the results
in Section 4.2, the E-AXHD designs with replacement depths
of 10, 12 and 14 are selected to further compare with other
approximate dividers. SEERAD and TruncApp are recently
proposed approximate dividers. SEERAD is designed based
on rounding the divisor so that the division operation can be
performed using only Shift and Add operations. SEERADs
with all levels (from 1 to 4) are selected. In TruncApp, the di-
vision operation is performed by multiplying the truncated
dividend by the approximate inverse of the divisor. Trun-
cApp (3), TruncApp (4) and TruncApp AM (5) are selected
in this work, because they are the best choices among other
truncation based approximate dividers as per the MRED
and NMED values. In TruncApp AM, the approximate mul-
tiplier is used. Moreover, AXDr3, SEERAD and TruncApp
show better performance compared with other approximate
dividers. The parameters of the proposed 16-by-8 designs
as well as those of AXDr3, SEERAD and TruncApp dividers
are reported in Table 8. As AXHDs and AXDr3 TRs have
different replacement depths, h=4, 8 and 12 are chosen for
comparison due to the good tradeoff between accuracy and
hardware performance.

As shown in Fig. 10, the proposed designs are more ac-
curate compared with SEERADs and TruncApps. However,
in SEERAD and TruncApp, the delay is better compared
with AXHDs and E-AXHDs. SEERAD (1) has the smallest
delay and energy but also the largest NMED. TruncApp
designs have low energy dissipation and relatively small
NMED value. AXDr3 using the TR scheme generally has
a small NMED but the energy dissipation is large due
to the complex array circuitry. Different applications have
different requirements for accuracy and energy consump-
tion. Generally, the proposed AXHD and E-AXHD designs

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 8

TABLE 6: Comprehensive Comparison of Approximate
Dividers.

Architecture Area
(µm2)

Delay
(ns)

Power
(µw)

Energy
(pJ)

MRED
(%)

NMED
(10−4)

SEERAD(1) 1187 1.21 572 0.69 15.58 764
SEERAD(2) 1732 1.5 981 1.47 8.52 411
SEERAD(3) 2006 1.85 1492 2.76 4.97 223
SEERAD(4) 3481 2.45 2993 7.33 2.71 109

TruncApp(3) 1401 1.35 520 0.7 9.8 523
TruncApp(4) 1628 1.6 683 1.09 4.22 188

TruncApp AM(5) 1612 1.63 652 1.06 3.76 147
AXDr3 TR(4) 1316 8.84 1876 16.58 0.01 0.01
AXDr3 TR(8) 1224 8.75 1595 13.95 0.29 0.10
AXDr3 TR(12) 1126 8.57 1288 11.04 2.86 1.55

AXHD(4) 1523 7.83 2130 16.68 0.15 0.02
AXHD(8) 1184 5.69 1279 7.28 1.15 0.34
AXHD(12) 775 3.24 712 2.31 2.0 1.41

E-AXHD(10) 870 4.08 831 3.4 1.83 0.89
E-AXHD(12) 668 2.98 613 1.8 2.0 1.41
E-AXHD(14) 540 2.02 534 1.08 2.03 1.80

0 2 150 250 400 600 800

NMED(10
-4

)

0

2

4

6

8

10

12

14

16

18

E
n
er

g
y
(p

J)

AXHD

E-AXHD

AXDr3_TR

SEERAD

TruncApp

Fig. 10: Trade-off between Energy and NMED of the
proposed AXHDs, E-AXHD, AXDr3 TRs, SEERADs and

TruncApps.

have a higher accuracy and moderate energy consumption
compared with SEERAD and TruncApp.

5 APPLICATIONS

Among the error-tolerant applications, image processing
and visualization are some of the most frequently found in
the literature so appropriate for testing and benchmarking
approximate computing systems [26]. In this section, im-
age processing involving pixel division (only for quotient
calculation) are studied using the proposed AXHDs and E-
AXHDs. The proposed AXHDs and E-AXHDs are applied to
change detection and background removal [27]. Moreover,
the proposed designs is also applied to the softmax layer in
deep neural networks (DNN).

5.1 Pixel Division
16-by-8 AXHDs and E-AXHDs and EXDr are used to com-
pute the inputs of 8-bit grayscale images for pixel division.
To perform a 16-by-8 division for this application using

two 8-bit grayscale images, the pixel values of the first
image are multiplied by 64 as dividends. The peak signal-
noise ratio (PSNR) (based on the mean squared error) at
different replacement depths is provided to show the differ-
ence between exact and approximate results. The power is
measured with the specific benchmark data.

5.1.1 Change Detection
The output image from the change detection only shows the
difference between two input images. If there is a change,
the pixel of the intensity-change region in the image shows
a significant difference between the two inputs images. Oth-
erwise, the output image has pixels with a single value. Fig.
11 shows the 2 input images and 4 output images processed
by EXDr, E-AXHD, SEERAD and TruncApp. E-AXHD(14),
SEERAD(2) and TruncApp(4) have been selected for fair
comparison, because they have similar energy consumption.
Table 9 provide the PSNR results of the proposed AXHDs
and E-AXHDs with various replacement depths.

TABLE 7: PSNR Results of AXHDs and E-AXHDs with
Different Replacement Depths for Change Detection.
Depth

(AXHD) 1 2 3 4 5 6 7 8

PSNR
/dB Inf Inf 84.69 64.99 61.32 54.17 39.87 39.71

Depth
(E-AXHD) 9 10 11 12 13 14 15 16

PSNR
/dB 39.71 39.71 39.71 39.71 39.71 39.71 39.71 39.71

(a) Input image 1 (b) Input image 2 (c) EXDr

(d) E-AXHD(14)
(39.7dB)

(e) SEERAD(2)
(27.5dB)

(f) TruncApp(4)
(33.4dB)

Fig. 11: Change detection using EXDr, E-AXHD, SEERAD
and TruncApp.

As can be seen in Table 9, when h is smaller than 8,
the proposed AXHDs generate results with high PSNRs.
When h is larger than 8, the PSNR (39.71) does not further
decrease, because the input dividend is fully computed by
the logarithmic divider, however the power can be further
reduced. The PSNR of the output image processed by E-
AXHD(14) is higher than those generated by SEERAD(2)
and TruncApp(4) in Fig. 11.

5.1.2 Background Removal
Background removal consists of removing background il-
lumination from a image so that the foreground objects
can be separated for a more clear visualization and/or
further processing. Similar to change detection, there is no
significant loss of accuracy when the replacement depth h is

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 9

1 and 2 for background removal. The PSNR decreases when
the replacement depth h increases. When the replacement
depth h is larger than 7, the PSNR converges to 27.12. The
results for the proposed E-AXHD with h=14, SEERAD(2)
and TruncApp(4) are shown in Fig. 12. The proposed E-
AXHD(14) show similar results as the exact dividers.

The PSNR decreases with larger replacement depth. The
h value can therefore be selected according to the required
PSNR threshold value, and determine the required hard-
ware resources.

TABLE 8: PSNR Results of AXHDs and E-AXHDs with
Different Replacement Depths for Background Removal.

Depth
(AXHD) 1 2 3 4 5 6 7 8

PSNR
/dB Inf Inf 74.17 62.95 56.07 50.32 43.04 27.12

Depth
(E-AXHD) 9 10 11 12 13 14 15 16

PSNR
/dB 27.12 27.12 27.12 27.12 27.12 27.12 27.12 27.12

(a) Illuminated image (b) Background image (c) EXDr

(d) E-AXHD(14)
(27.1dB)

(e) SEERAD(2)
(15.8dB)

(f) TruncApp(4)
(21.4dB)

Fig. 12: Background removal using EXDr, E-AXHD,
SEERAD and TruncApp.

5.2 Softmax Layer
The softmax function is widely used in the final layer of
the DNN to deal with multi-classification problems. Softmax
function can produce a probability distribution for predicted
output classes. Different from other functional layers in
DNN, the softmax layer contains exponentiation and divi-
sion operation. To further evaluate the effectiveness of the
proposed approximate dividers, we have applied them to
the softmax function. The softmax function can be expressed
as follows [32]:

P =
ex

TWj∑K
k=1 e

xTWk

(18)

where, P is the predicted probability for the jth class given a
sample vector x and a weighting vector w. K is the number
of classes.

In the Softmax application, the division is performed
by 16-by-32. Therefore, the bit width of the divisor is set
to 32 bits in the proposed design, and the range of the
approximate replacement depth h is still [0,16]. In this work,
the MINST database for the handwriting digits is used [33].
Initially, the number of labels is set to 10. Then training
data samples are used for training. Finally, testing data is
applied to the approximate designs to find the probability
of a correct classification.

The results are reported in Table 9. The probability ob-
tained by using the exact division is 92.5%. The results show
that the proposed AXHDs and E-AXHDs have a probability
of more than 90% for h < 6 and around 86.5% when h > 10.
The approximate designs can be selected according to the
accuracy requirements of different neural networks.

TABLE 9: Probability of AXHDs and E-AXHDs with
Different Replacement Depths for Softmax Layer.

Depth
(AXHD) 1 2 3 4 5 6 7 8

Probability(%) 92.5 92.4 92 91.4 90.7 89.8 88.6 87.4
Depth

(E-AXHD) 9 10 11 12 13 14 15 16

Probability(%) 86.8 86.6 86.5 86.5 86.5 86.5 86.5 86.5

In order to further validate the proposed approximate
dividers, it is applied into the softmax function based multi-
classification problem (the proposed approximate divider
replaces the exact dividers). The case study is to classify the
objects in the urban environments from processed remote
sensing images. The data file is an attribute image derived
from hyperspectral airborne and elevation images provided
by the National Ecological Observatory Network (NEON)
[34]. The image is processed to form a data set consisting of
six layers to be labelled. There are five types of labels, which
are asphalt, concrete, grass, trees and buildings. Based on
the softmax function, the softmax regression algorithm is
added. The labeled data training set is then used. For each
label attribute, a random gradient descent function is used
to calculate the weight. After the training, the activation
function is used to determine whether the attribute belongs
to the output Class, and then use iterative methods to
minimize classification errors and try to adjust the internal
parameters of the classifier until the error (also known as
loss) converges to a minimum value. Finally, the test set
is used to evaluate the trained classifier. The classification
results using both exact dividers and the proposed approx-
imate dividers are shown in Table 12. It can be seen, the
classification accuracy from the approximate design can still
reach above 90% when h < 12, which proves that the
trained classifier using the proposed approximate divider
is acceptable for similar data sets.

TABLE 10: Classification Results from the Softmax
Regression Classifier.

Classes Asphalt Concrete Grass Tree Building
EXDr 0.996 0.988 0.990 0.995 0.993

AXHD (h=4) 0.955 0.948 0.949 0.954 0.950
AXHD (h=8) 0.932 0.922 0.925 0.930 0.926

E-AXHD (h=12) 0.908 0.893 0.896 0.904 0.899

6 RELATED WORKS

In this section, the differences between the proposed designs
and state-of-the-art approximate dividers are discussed and

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 10

presented.
Both the AXDr [20] and DAXD [22] are based on the

array structure. AXDr replace the exact subtractor cells with
approximate versions while DAXD reduce the bit-width of
the array. However, both have large area and long delay due
to the array structure. Compared with AXDr and DAXD,
the proposed hybrid designs take advantage of logarithmic
operation, which further reduces the hardware consumption
and the delay.

SEERAD [23] and TruncApp [24] convert division into
multiplication for simplification. Although this structure
can greatly improve the speed performance, hardware is
further increased due to the use of a multiplier and look-
up tables. Furthermore, their errors are significantly larger
than the array based designs. Compared with SEERAD and
TruncApp, the proposed designs use exact array divider for
most significant bits to achieve a higher accuracy. At the
same time, the logarithmic operation can further reduce the
hardware complexity.

7 CONCLUSION

This paper has presented a detailed design, analysis and
evaluation of novel hybrid approximate dividers based on
both restoring array and logarithmic schemes. The LD has
been combined with a conventional array divider, because it
has the advantage of low power consumption. Different de-
sign sizes (16-by-8 and 8-by-4) and the replacement depth h
have been considered to evaluate performance and the error
characteristics of these inexact hybrid dividers. By replacing
the last rows of exact cells by the logarithmic divider, a good
tradeoff between accuracy and hardware performance (i.e.
power, delay and energy) has been achieved. The proposed
dividers have been analyzed using error and hardware met-
rics; the results have shown that the proposed AXHDs and
E-AXHDs perform better than other approximate dividers,
especially when the replacement depth h was large. The
proposed hybrid dividers could be of interest for image
processing applications.

ACKNOWLEDGMENT

This work has been supported by the National Natural
Science Foundation of China under Grant 61871216, the
Fundamental Research Funds for the Central Universities
China under Grant NE2019102 and the Six Talent Peaks
Project in Jiangsu Province (2018-XYDXX-009). The work of
F. Lombardi is supported by the National Science Founda-
tion (USA).

REFERENCES

[1] J. Miao, A. Gerstlauer and M. Orshansky, “Multi-level approximate
logic synthesis under general error constraints”, in Proc. IEEE/ACM
International Conference on Computer-Aided Design (ICCAD),
2014, pp. 504-510.

[2] J. Han and M. Orshansky, “Approximate computing: an emerging
paradigm for energy-efficient design”, in Proc. 18th IEEE European Test
Symposium (ETS), 2013, pp. 1-6.

[3] S. Venkataramani, S. Chakradhar, K. Roy and A. Raghunathan,
“Approximate computing and the quest for computing efficiency”, in
Proc. 52nd Annual Design Automation Conference (DAC), 2015,
Article 120, 6 pages.

[4] Q. Xu, N.-S. Kim and T. Mytkowicz, “Approximate Computing: A
Survey”, IEEE Design & Test, vol. 33, no.1, pp. 8-22, 2016.

[5] L. Leem, H. Cho, J. Bau, Q.A. Jacobson and S. Mitra. “ERSA:
Error resilient system architecture for probabilistic applications”, in Pro.
Design, Automation and Test in Europe (DATE), 2010, pp. 1560-
1565.

[6] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders”, IEEE Trans. Computers, vol. 63,
pp. 1760-1771, 2013.

[7] S.-L. Lu, “Speeding up processing with approximation circuits”, Com-
puter, vol. 37, pp. 67-73, 2004.

[8] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo and Z. H. Kong, “Design of
low-power high-speed truncation error tolerant adder and its application
in digital signal processing”, IEEE Trans. VLSI Syst., vol. 18, pp. 1225-
1229, 2010.

[9] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie and C. Lucas, “Bio-
inspired imprecise computational blocks for efficient VLSI implementation
of soft-computing applications”, IEEE Trans. Circuits Syst.: Part I
Regular Papers, vol. 57, pp. 850-862, 2010.

[10] V. Gupta, D. Mohapatra, A. Raghunathan and K. Roy, “Low
power digital signal processing using approximate adders”, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol.
32, pp. 124-137, 2013.

[11] J. E. Robertson, “A new class of digital division methods”, IRE
Transactions on Electronic Computers, vol. EC-7, no. 3, pp. 218-222,
Sept. 1958.

[12] H. H. Guild, “Some cellular logic arrays for non-restoring binary
division”, Radio and Electronic Engineer, vol. 39, no. 6, pp. 345-348,
June 1970.

[13] J. Mitchell, “Computer multiplication and division using binary loga-
rithms”, IRE Trans. Electron. Comput., vol. 11, pp. 512-517, 1962.

[14] S. Hashemi, R. Bahar and S. Reda, “DRUM: A dynamic range
unbiased multiplier for approximate applications”, in Proc. IEEE/ACM
Int. Conf. Computer Design (ICCD), 2015, pp. 418 - 425.

[15] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han and F. Lombardi, “Design
of approximate radix-4 Booth multipliers for error-tolerant computing”,
IEEE Trans. Computers, vol. 66, pp. 1435-1441, Aug. 2017.

[16] Y.-H. Chen and T.-Y. Chang, “A high-accuracy adaptive conditional
probability estimator for fixed-width Booth multipliers”, IEEE Trans.
Circuits Syst. I: Reg. Papers, vol. 59, pp. 594-603, 2012.

[17] G. Zervakis, K. Tsoumanis, S. Xydis, N. Axelos and K. Pekmestzi,
“Approximate multiplier architectures through partial product perfora-
tion: power-area tradeoffs analysis”, in Proc. ACM Great Lake Symp.
VLSI (GLSVLSI), 2015, pp. 229-232.

[18] A. Momeni, J. Han, P. Montuschi and F. Lombardi, “Design and
Analysis of Approximate Compressors for Multiplication”, IEEE Trans.
Computers, vol. 64, no. 4, pp. 984-994, 2015.

[19] L. Chen, Jie Han, W. Liu, and F. Lombardi, “Design of approximate
unsigned integer non-restoring divider for inexact computing”, In Proc.
Great Lakes Symp. VLSI (GLSVLSI), pp. 51-56, 2015.

[20] L. Chen, Jie Han, W. Liu, and F. Lombardi, “On the design of
approximate restoring dividers for error-tolerant applications”, IEEE
Trans. Computers, vol. 65, pp. 2522-2533, 2016.

[21] T. Aoki, K. Nakazawa, and T. Higuchi. “High-radix parallel VLSI
dividers without using quotient digit selection tables”, In Proc. 30th IEEE
Int. Symp. Multiple-Valued Logic (ISMVL), pp. 345-352, 2000.

[22] S. Hashemi, R. Bahar, and S. Reda. “A low-power dynamic divider for
approximate applications”, In Proc. 53rd Annual Design Automation
Conference (DAC), p. 2-6, 2016.

[23] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari,
and M.Pedram, “SEERAD: A high speed yet energy-efficient rounding-
based approximate divider”, in Proc. Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1481-1484, 2016.

[24] S. Vahdat, M. Kamal, A. Fayyazi, A. Afzali-Kusha, M. Pedram,
and Z. Navabi, “TruncApp: A truncation-based approximate divider for
energy efficient DSP applications”, in Proc. Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 1635-1638, 2017.

[25] W. Liu, J. Li, T. Xu, C. Wang, P. Montuschi and F. Lombardi, “Com-
bining Restoring Array and Logarithmic Dividers into an Approximate
Hybrid Design”, in Proc. 25rd IEEE Symp. Computer Arithmetic
(ARITH), pp. 80-86, 2018.

[26] A. Yazdanbakhsh, D. Mahajan, P. Lotfi-Kamran, H. Esmaeilzadeh,
“AXBENCH: A Multi-Platform Benchmark Suite for Approximate Com-
puting”, IEEE Design and Test, vol. 34, no. 2, pp. 60-68, 2017.

[27] R. Fisher, S. Perkins, A. Walker and E.
Wolfart. Pixel division. [Online]. Available:
http://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm, 2003.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, 2020 11

[28] Nangate 45nm Open Cell Library. http://www.nangate.com/.
[29] U. Qidwai and C.H. Chen, “Digital Image Processing: An Algorithmic

Approach with MATLAB”, CRC Press, 2009.
[30] The USC-SIPI Image Database [Online]. Available:

http://sipi.usc.edu/database
[31] B. Parhami, “Computer Arithmetic: Algorithms and Hardware Designs:

Oxford University Press”, 2000.
[32] B. Yuan, “Efficient hardware architecture of softmax layer in deep

neural network”, in Proc. 29th IEEE International System-on-Chip
Conference (SOCC), 2016.

[33] Y. LeCun, C. Cortes, C. Burges, The MNIST
Database of handwritten digits. [Online]. Available:
http://yann.lecun.com/exdb/mnist/, 2019.

[34] Wolfe J, Jin X, Bahr T, et al. “Application of softmax regression and
its validation for spectral-based land cover mapping”. The International
Archives of Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, 2017, 42: 455.

Weiqiang Liu (S’10-M’12-SM’15) is currently a
Professor and the Vice Dean of College of Elec-
tronic and Information Engineering, Nanjing U-
niversity of Aeronautics and Astronautics (NU-
AA), Nanjing, China. He received the B.S. de-
gree in Information Engineering from NUAA and
the Ph.D. degree in Electronic Engineering from
Queens University Belfast (QUB), Belfast, Unit-
ed Kingdom, in 2006 and 2012, respectively. In
Dec. 2013, he joined the College of Electron-
ic and Information Engineering, NUAA. He has

served as a Guest Editor of Proceedings of the IEEE and Associate
Editors of IEEE Transactions on Circuits and Systems I: Regular Paper,
IEEE Transactions on Emerging Topic in Computing and Computers,
IEEE Transactions on Computers, and a Steering Committee Member
of IEEE Transactions on Multi-Scale Computing Systems. He is the Pro-
gram Co-Chair of IEEE Symposium on Computer Arithmetic (ARITH),
and program members for a number of international conferences. His
research interests include emerging technologies in computing systems,
computer arithmetic, hardware security and VLSI design for digital signal
processing and cryptography. He has published one research book by
Artech House and over 100 leading journal and conference papers. He
is a Senior Member of the IEEE and the Chinese Institute of Electronics.

Tao Xu received the B.Sc. degree in Electronic
Information Engineering from the Kunming U-
niversity of Science and Technology, Kunming,
China, in 2015. He is pursuing his Master de-
gree at the College of Electronic and Information
Engineering, Nanjing University of Aeronautics
and Astronautics (NUAA), Nanjing, China. His
research interests include computer arithmetic
and approximate computing.

Jing Li received the B.Sc. degree in Electronic
Information Science and Technology from Nan-
jing University of Aeronautics and Astronautic-
s (NUAA), Nanjing, China, in 2018. He is cur-
rently pursuing the Master degree with Shang-
haiTech University, Shanghai, China. His current
research interests are computer vision and ma-
chine learning.

Chenghua Wang received the B.Sc. and M.Sc.
degrees from Southeast University, Nanjing, Chi-
na, in 1984 and 1987, respectively. In 1987, he
joined the College of Electronic and Information
Engineering, Nanjing University of Aeronautics
and Astronautics, Nanjing, where he became a
full Professor in 2001. He has published 6 books
and over 100 technical papers in journals and
conference proceedings. He is the recipient of
more than ten teaching and research awards at
the provincial and ministerial level. His current

research interests include design and test of integrated circuits, and
circuits & systems for communications.

Paolo Montuschi (M’90-SM’07-F’14) is a Ful-
l Professor in the Department of Control and
Computer Engineering and a Member of the
Board of Governors (BoG) at Politecnico di Tori-
no. Previously, he served as Chair of the Depart-
ment from 2003 to 2011. His research interests
include computer arithmetic and architectures,
computer graphics, electronic publications, se-
mantics and education. He is an IEEE Fellow,
an IEEE Computer Society (CS) Golden Core
member, a recipient of the “Distinguished Ser-

vice” and the “Spirit of the Computer Society” awards. He is currently
serving as the acting Editor-in-Chief of IEEE Transaction on Emerging
Topics in Computing. He served as Editor-in-Chief of IEEE Transactions
on Computers (2015-18), as the Chair of the CS Awards Committee
(2017-18), and as a member of the IEEE Publications Services and
Products Board (2018-20). Previously, he served in a number of Boards
and Committees, including the IEEE Products and Services Committee
and the BoG of the CS. He is a life member of the International Academy
of Sciences of Turin and of Eta Kappa Nu (the Honor Society of IEEE).
In March 2017, he co-founded the first HKN Student Chapter in Italy.

Fabrizio Lombardi (M’81-SM’02-F’09) graduat-
ed in 1977 from the University of Essex (UK)
with a B.Sc. (Hons.) in Electronic Engineering.
In 1977 he joined the Microwave Research Unit
at University College London, where he received
the Master in Microwaves and Modern Optics
(1978), the Diploma in Microwave Engineering
(1978) and the Ph.D. from the University of Lon-
don (1982). He is currently the holder of the
International Test Conference (ITC) Endowed
Chair Professorship at Northeastern University,

Boston. In the past Dr. Lombardi was the Editor-In-Chief of the IEEE
Transactions on Computers and the inaugural Editor-in-Chief of the
IEEE Transactions on Emerging Topics in Computing. Currently, he is
the Editor-in-Chief of the IEEE Transactions on Nanotechnology. Since
2019, he serves as the Vice President for Publications of the IEEE
Computer Society. His research interests are bio-inspired and nano
manufacturing/computing, VLSI design, testing, and fault/defect toler-
ance of digital systems. He has extensively published in these areas
and coauthored/edited seven books. He is a Fellow of IEEE.

