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A NOTE ON THE HRT CONJECTURE AND A NEW
UNCERTAINTY PRINCIPLE FOR THE SHORT-TIME FOURIER

TRANSFORM

FABIO NICOLA AND S. IVAN TRAPASSO

Abstract. In this note we provide a negative answer to a question raised by M.
Kreisel concerning a condition on the short-time Fourier transform that would imply
the HRT conjecture. In particular we provide a new type of uncertainty principle
for the short-time Fourier transform which forbids the arrangement of an arbitrary
“bump with fat tail” profile.

1. Introduction

A famous open problem in Gabor analysis is the so-called HRT conjecture, con-
cerning the linear independence of finitely many time-frequency shifts of a non-trivial
square-integrable function [13]. To be precise, for x, ω ∈ Rd consider the translation
and modulation operators acting on f ∈ L2(Rd):

Txf(t) = f(t− x), Mωf(t) = e2πit·ωf(t).

For z = (x, ω) ∈ R2d we say that π(z)f = MωTxf is a time-frequency shift of f along
z. The HRT conjecture can thus be stated as follows:

Conjecture. Given g ∈ L2(Rd) \ {0} and a set Λ of finitely many distinct points
z1, . . . , zN ∈ R2d, the set G(g,Λ) = {π(zk)g}Nk=1 is a linearly independent set of
functions in L2(Rd).

As of today this somewhat basic question is still unanswered. Nevertheless, the
conjecture has been proved for certain classes of functions or for special arrangements
of points. We address the reader to the surveys [14, 15], [16, Section 11.9] and the
paper [23] for a detailed and updated state of the art on the issue. As a general
remark we mention that the difficulty of the problem is witnessed by the variety of
techniques involved in the known partial results, and also the surprising gap between
the latter and the contexts for which nothing is known. For example, a celebrated
result by Linnell [21] states that the conjecture is true for arbitrary g ∈ L2(Rd) and
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for Λ being a finite subset of a full-rank lattice in R2d and the proof is based on
von Neumann algebras arguments. In spite of the wide range of this partial result,
a solution is still lacking for smooth functions with fast decay (e.g., g ∈ S(Rd)) or
for general configurations of just four points. The problem is further complicated by
numerical evidence in conflict with analytic conclusions [10].

A recent contribution by Kreisel [19] proves the HRT conjecture under the assump-
tion that the distance between points in Λ is large compared to the decay of g. The
class of functions g which are best suited for this perspective include functions with
sharp descent near the origin or having a singularity away from which g is bounded.
It should be highlighted that reconstruction and interpolation problems in the same
spirit (i.e., involving sufficiently separated atoms) were already considered in more
general settings such as coorbit theory: see for instance the “piano reconstruction
theorem” [6, Thm. 25] and [7, Prop. 8.2].

Kreisel’s paper ends with a question on the short-time Fourier transform (STFT).
Recall that this is defined as

Vgf(x, ω) = 〈f, π(z)g〉 =

∫
Rd
e−2πit·ωf(t)g(t− x)dt, z = (x, ω) ∈ R2d,

for given f, g ∈ L2(Rd), where 〈·, ·〉 denotes the inner product on L2(Rd). The STFT
plays a central role in modern time-frequency analysis [12].

Question 1. Given f ∈ L2(Rd) and R,N > 0, is there a way to design a window
g ∈ L2(Rd) such that the “bump with fat tail” condition

(1) |Vgf(z)| < |〈f, g〉|
N

, |z| > R,

holds?

From a heuristic point of view this would amount to determine a window g such
that Vgf shows a bump near the origin and a mild decay at infinity; that is, the energy
of the signal accumulates a little near the origin and then spreads on the tail (hence
a fat tail). This balance is unavoidable in view of the uncertainty principle, which
forbids an arbitrary accumulation near the origin [11, 24]. The design of waveforms
associated with peaky phase-space representations is a relevant problem in radar
signal analysis. We cannot frame here the huge engineering literature on the issue;
we just mention the comprehensive monograph [25] and the papers [1, 17, 18, 26] for
various aspects of this topic.

A positive answer to Question 1 would prove the HRT conjecture by [19, Theorem
3]. In fact we prove that the answer is negative as a consequence of the following
result, which can be interpreted as a form of the uncertainty principle for the STFT
[2, 8, 9, 20].
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Theorem 1.1. Let g(t) = e−πt
2

and assume that there exist R > 0, N > 1 and
f ∈ L2(Rd) \ {0} such that

(2) |Vgf(x, ω)| ≤ |〈f, g〉|
N

, |ω| = R.

Then

(3) R >

√
logN

π
.

This result is indeed a negative answer to Question 1 since |Vgf(x, ω)| = |Vfg(−x,−ω)|.
In fact, a stronger result can be proved in the case where the cylinder in (2) is replaced
by a sphere.

Theorem 1.2. Let g(t) = e−πt
2

and assume that there exists R > 0, N > 1 and
f ∈ L2(Rd) \ {0} such that

(4) |Vgf(z)| ≤ |〈f, g〉|
N

, |z| = R.

Then

(5) R ≥
√

2 logN

π
.

Moreover, (4) holds with R =
√

2 logN/π if and only if f(t) = ce−πt
2

for some
c ∈ C \ {0}.

We conjecture that these results extend, in some form, to general f, g ∈ L2(Rd).
For example, we expect that in general Vgf cannot descend in the frequency direction
more quickly than the Fourier transform of g. However a precise formulation seems
not trivial to state and prove.

2. Proof of the main results and remarks

Proof of Theorem 1.1. An explicit computation shows that

|Vgf(x,−ω)| =
∣∣∣∣∫

Rd
e2πit·ωe−π(t−x)

2

f(t)dt

∣∣∣∣ = e−πω
2|Φf(z)|,

where we set

Φf(z) =

∫
Rd
e−π(t−z)

2

f(t)dt, z = x+ iω ∈ Cd.

Notice that Φf is an entire function on Cd, since differentiation under the integral
sign is allowed. Define

Ma,R = sup
z∈Qa,R

|Φf(z)|, Qa,R = {z = x+ iω ∈ Cd : |x| ≤ a, |ω| ≤ R},
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where a > 0 will be fixed in a moment. The maximum principle [22] implies that |Φf |
takes the value Ma,R at some point of the boundary of Qa,R. Since f, g ∈ L2(Rd), Vgf
vanishes at infinity (e.g. [4, Corollary 3.10]), so that Vgf(x,−ω)→ 0 for |x| → +∞,
uniformly with respect to ω ∈ Rd. Therefore Φf(x+iω)→ 0 for |x| → +∞, uniformly
with respect to ω over compact subsets of Rd. This shows that for sufficiently large
a > 0 we have |Φf(z0)| = Ma,R for some point z0 = (x0, ω0) with |ω0| = R.

In view of assumption (2) the following estimate holds:

Ma,Re
−πR2

= |Vgf(z0)| ≤
|Φf(0)|
N

,

where we used the identity 〈f, g〉 = Vgf(0) = Φf(0); therefore

Ma,R ≤
eπR

2

N
|Φf(0)|.

Assume now that R ≤
√

logN/π; this would imply Ma,R ≤ |Φf(0)| and thus Φf
would be constant on Qa,R, hence on Cd by analytic continuation [22]. Since Φf(x+
iω) → 0 for |x| → +∞ as already showed above, we could conclude that Φf ≡ 0,
hence Vgf ≡ 0 and then f ≡ 0, which is a contradiction. �

Remark 2.1. Notice that Theorem 1.1 still holds in the case where the cylinder in
(2) is replaced by any other cylinder obtained from the previous one by a symplectic

rotation (cf. [5, Sec. 2.3.2]). Indeed, if Ŝ denotes a metaplectic operator [5] corre-
sponding to S ∈ Sp(d,R) ∩ O(2d,R), condition (2) with z = (x, ω) replaced by S−1z
is equivalent to

|Vg(Ŝf)(x, ω)| ≤ |〈Ŝf, g〉|
N

.

This can be easily seen by using the covariance property [12, Lemma 9.4.3]

|Vgf(S−1z)| = |VŜgŜf(z)|,

the fact that Ŝ is unitary on L2(Rd) and that Ŝg = cg for some c ∈ C, |c| = 1, if

g(t) = e−πt
2

[5, Prop. 252].

Remark 2.2. The estimate for R in (3) is sharp. Consider indeed a dilated Gaussian

function fλ(t) = e−πλ
2t2, 0 < λ ≤ 1; a straightforward computation (see for instance

[3, Lemma 3.1]) shows that

Vgfλ(x, ω) = (1 + λ2)−d/2e
−2πi x·ω

1+λ2 e
−π λ

2x2

1+λ2 e
−π ω2

1+λ2 .

Condition (2) is thus satisfied if and only if

R ≥
√

(1 + λ2)
logN

π
,
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and letting λ→ 0+ yields the bound in (3).
It is worth emphasizing that there is no non-zero f ∈ L2(Rd) such that the optimal

bound in (3) can be attained, in contrast to other uncertainty principles for the STFT.

Proof of Theorem 1.2. Recall the connection between the STFT and the Bargmann
transform of a function f ∈ L2(Rd) [12, Prop. 3.4.1]:

(6) Vgf(x,−ω) = 2−d/4eπix·ωBf(z)e−π|z|
2/2, z = x+ iω ∈ Cd,

where the Bargmann transform is defined by

Bf(z) = 2d/4
∫
Rd
f(t)e2πt·z−πt

2−πz2/2dt;

(here g(t) = e−πt
2

as in the statement). This correspondence is indeed a unitary
operator from L2(Rd) onto the Bargmann-Fock space F2(Cd), i.e. the Hilbert space

of all entire functions F on Cd such that e−π|·|
2/2F ∈ L2(Cd), cf. [12, Sec. 3.4] (see

also [27, 28]).
We now argue as in the proof of Theorem 1.1. After setting

MR = sup
z∈BR(0)

|Bf(z)|, BR(0) = {z ∈ Cd : |z| ≤ R},

the maximum principle implies that |Bf | takes the value MR on some point z with
|z| = R and moreover MR > 0 (otherwise by analytic continuation we would have
Bf = 0 and therefore f = 0). Condition (4) then implies

MR ≤
eπR

2/2

N
|Bf(0)|.

If R <
√

2 logN/π we obtain MR < |Bf(0)|, which is a contradiction. If R =√
2 logN/π then MR = |Bf(0)| and therefore Bf(z) = C, z ∈ Cd, again by the

maximum principle and analytic continuation, with C 6= 0. On the other hand, a
direct computation and the injectivity of the Bargmann transform show that Bf(z) =

1 (hence |Vgf(z)| = 2−d/4e−π|z|
2/2) if and only if f(t) = 2d/4e−πt

2
. This gives the last

part of the claim. �
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