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Dirk Sudholt is a Senior Lecturer at the University of Sheffield,
UK, where he is heading the Algorithms research group. He
obtained his PhD in computer science in 2008 from Dortmund,
Germany, under the supervision of Prof. Ingo Wegener. His
research focuses on the computational complexity of randomized
search heuristics such as evolutionary algorithms and swarm
intelligence. Most relevant to this tutorial is his work on runtime
analysis of diversity mechanisms and the benefits of crossover in
genetic algorithms. Dirk has more than 100 refereed publications
and won 8 best paper awards at GECCO and PPSN.

Giovanni Squillero is an associate professor of computer science at
Politecnico di Torino, Department of Control and Computer
Engineering. His research mixes the whole spectrum of bio-inspired
metaheuristics, computational intelligence, and selected topics from
machine learning; in more down-to-earth research lines, he develops
approximate optimization techniques able to achieve acceptable
solutions with limited amount of resources. Up to April 2020,
Squillero is credited as an author in 3 books, 33 journal articles, 10
book chapters, and 146 papers in conference proceedings; he is also
listed among the editors in 15 volumes.
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Relevant Publications

Practical diversity-promoting mechanism are surveyed in a
paper (Squillero and Tonda, 2016):

“Divergence of Character and Premature Convergence: A Survey of

Methodologies for Promoting Diversity in Evolutionary Optimization”. In-

formation Sciences, Special issue on Discovery Science, 329.

Theoretical parts are described the following book
chapter (Sudholt, 2020):

The Benefits of Population Diversity in Evolutionary Algorithms: A Survey

of Rigorous Runtime Analyses. In Benjamin Doerr and Frank Neumann

(Eds.): Theory of Evolutionary Computation - Recent Developments in

Discrete Optimization, Natural Computing Series, Springer.

Recent theoretical and empirical results are featured in Edgar
Covantes Osuna’s thesis (Covantes Osuna, 2019):

E. Covantes Osuna. Theoretical and Empirical Evaluation of Diversity-

preserving Mechanisms in Evolutionary Algorithms: On the Rigorous Run-

time Analysis of Diversity-preserving Mechanisms in Evolutionary Algo-

rithms. PhD thesis, University of Sheffield, 2019.
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What this tutorial is about

A view on population diversity from theory and practice

Surveying approaches to maintain and promote diversity

An overview of diversity-related runtime analyses of EAs

Insights into which diversity mechanisms work best for
particular problems – and why!

Trying to understand how diversity mechanisms work, how to
use them and how to improve on them.

What this tutorial is not about

Focus on static single-objective problems

No in-depth coverage of island models/distributed EAs (see
survey (Sudholt, 2015) and a tutorial at PPSN 2018)

4 / 69 Dirk Sudholt & Giovanni Squillero Theory and Practice of Population Diversity in EC

975

mailto:d.sudholt@sheffield.ac.uk
mailto:squillero@polito.it
https://gecco-2020.sigevo.org/
https://doi.org/10.1145/3377929.3389892


Agenda

1 Introduction

2 How Diversity Benefits Exploration – Case Study on TwoMax

3 How Diversity Benefits Crossover

4 Conclusions and Outlook

5 / 69 Dirk Sudholt & Giovanni Squillero Theory and Practice of Population Diversity in EC

What is Diversity in EA?

The only illustration in Darwin’s On the Origin of Species by
Means of Natural Selection, or the Preservation of Favoured Races
in the Struggle for Life (London: John Murray, 1859)
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Diversity in Natural Evolution: Principle of Divergence

“The principle of divergence is simplicity itself: the more the
coinhabitants of an area differ from each other in their ecological
requirements, the less they will compete with each other; therefore
natural selection will tend to favor any variation toward greater
divergence” (Mayr, 1992)

“The principle, which I have designated by this term is of high
importance, and explains, as I believe, several important facts”
(Darwin, 1859)

“[It] causes differences, at first barely appreciable, to steadily
to increase, and the breeds to diverge in character, both from
each other and from their common parent”

“The varying descendants of each species try to occupy as
many and as different places as possible in the economy of
nature”
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Diversity in Artificial Evolution: Premature Convergence

“Premature convergence is the well-known effect of losing
population diversity too quickly, and getting trapped in a local
optimum” (Eiben and Smith, 2015)

That is: The tendency of an algorithm to converge towards a
point where it was not supposed to converge to in the first
place (probably an oxymoron)

Premature convergence is the single most taxing problem
of EC
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Divergence of Character vs. Premature Convergence

Holland was aware of this problem since his first works, see
the discussion on the “lack of speciation” (Holland, 1992)
Endemic problem: in EC a true environment is messing and
there is no advantage to diversify

Figure: Environment vs. Fitness landscape
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Niches

Niche: subspace in the environment with a finite amount of
physical resources that can support different types of life

Niches favor the divergence of character in natural evolution

Are there niches in the fitness landscape? How to create
niches since the environment is missing?
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Levels in EC

Levels in Biology

Genotype: the genetic constitution of an organism

Phenotype: the composite of the organism’s observable
characteristics or traits

Fitness: individual’s ability to propagate its genes (well,
almost)
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Levels in EC

Levels in EC — a modest proposal (Squillero and Tonda, 2016)

Fitness: how well the candidate solution is able to solve the
target problem

Genotype: the internal representation of the individual, i.e.,
what is directly manipulated by genetic operators

Phenotype: the candidate solution that is encoded in the
genotype

the intermediate form in which the genotype needs to be
transformed into for evaluating fitness
if genotype can be directly evaluated: genotype and phenotype
coincide
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Levels in EC

Simple representation: Genotype and Phenotype coincide

More common situation: Genotype and Phenotype differ
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Artificial Niches

Niching in EC: grouping similar individual

similar spatial positions (i.e., islands)
similar genotypes (i.e., niching)
similar phenotypes

Explicit vs. implicit neighborhood

Several approaches are based on niching (far more than those
who include “niching” in their name)
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Diversity in EC

Detecting whether two individuals are clones, i.e., identical, is
often an easy task at any level

However, individuals that look identical at a given level may
be different at a previous level (aliasing)

Different fitness values imply different phenotypes, different
phenotypes imply different genotypes
Fx 6= Fy =⇒ Px 6= Py =⇒ Gx 6= Gy , but the reverse
implications are not true.
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Diversity in EC

What is diversity?

A distance metric, i.e., how far an individual is

... from (a subset of) the whole population

... from another single individual

A property of the individual (amount of novelty), but at what
level?

Phenotype
Genotype
Fitness

A property of the whole population, but at what level?

Phenotype
Genotype
Fitness

Fx ≈ Fy =⇒ Px ≈ Py =⇒ Gx ≈ Gy ?
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Diversity in EC

How can diversity be measured?

Fitness

Usually trivial

Phenotype

Usually ad-hoc

Genotype

Different genotypes in the population
GP subtree frequency
Edit distance (a.k.a., Levenshtein distance)
Entropy and free energy
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Mechanisms for promoting diversity in EC

Caveat

The end goal an the optimization process is reaching better
solutions in less time

Promoting diversity has often been seen as the key factor to
improve performances

Promoting diversity is a mere means goal (yet a quite
important one)

No distinction is made here whether the means goal is to
preserve existing diversity or to increase diversity
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Mechanisms for promoting diversity in EC

A methodology for promoting diversity alters the selection
probability of individuals during parent or survival selection.

Definition

p̄x |Ψ = px |Ψ · ξ(x |Ψ)

p̄x|Ψ is the selection probability of individual x given that all
individuals in set Ψ are also chosen

px|Ψ is the selection probability of individual x without diversity
promotion when all individuals in set Ψ are also chosen

ξ(x |Ψ) is the corrective factor introduced by diversity promotion

Mere definition: we do not imply that a mechanism operates
explicitly on the selection operator, but its effects on selection
probabilities are assessed to classify it
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Mechanisms for promoting diversity in EC

Types of selection:

Parent selection: α (usually non-deterministic)

Survival selection: ω (usually deterministic)

Level of diversity promotion:

Lineage

Phenotype

Genotype

Fitness: used as a proxy for either phenotype or genotype
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Mechanisms for promoting diversity in EC

Lineage-based methodologies: The value of ξ(◦) does not
depend on individual structure nor behavior, but it can be
determined considering circumstances of its birth (e.g., time,
position) — LBMs can be applied to any kind of problem, even in
addition to other diversity preservation methods

Allopatric selection [ω]

Cellular EA [αω]

Deterministic crowding [αω]

Gender [α]

Island model [αω]

Segregation [αω]

21 / 69 Dirk Sudholt & Giovanni Squillero Theory and Practice of Population Diversity in EC

Mechanisms for promoting diversity in EC

Phenotype-based methodologies: Particularly effective when it
is possible to define a sensible distance between genotypes —
PBMs are often used to avoid overexploitation of peaks in the
fitness landscape; promote the generation of new solutions very far
from the most successful ones; preserve variability in the gene pool

Crowded-comparison operator [α]

Extinction [ω]

Gender [α]

Hierarchical fair competition [αω]

Lexicase selection [α]

Random immigrants [αω]

Restricted Tournament Selection [ω]

Tarpeian method [αω]

Vector evaluated genetic algorithm [α]
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Mechanisms for promoting diversity in EC

Genotype-based methodologies: Usually impractical, but
sometimes fitness distance can be used as a proxy for phenotype
distance

Clearing [αω]

Clone extermination [ω]

Delta entropy/pseudo entropy [α]

Diversifiers [αω]

Fitness sharing [αω]

Genetic Diversity Evaluation Method [αω]

Reference points partitioning [ω]

Restricted tournament selection [ω]

Sequential niching [αω]

Standard crowding [ω]

Two-level diversity selection [α]
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Agenda

1 Introduction

2 How Diversity Benefits Exploration – Case Study on TwoMax
The TwoMax Function
No Diversity Mechanism
Avoiding Duplicates
Crowding Methods
Fitness Sharing
Clearing
Conclusions from TwoMax

3 How Diversity Benefits Crossover

4 Conclusions and Outlook
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TwoMax function

TwoMax(x) := max

{
n∑

i=1

xi , n −
n∑

i=1

xi

}

#onesn/2

0

n

n/2 n

global optima

fitness valley

Popular test problem.

Two symmetric branches.

Optima have maximum
Hamming distance.

Optima have a large basin of
attraction (Hamming ball of
radius n/2)

Genotype: 0010111001101
Phenoype: number of ones
Fitness: number of ones or number of zeros
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Goal for TwoMax

#onesn/2

0

n

n/2 n

Goal: evolve a population
containing both optima

Goes beyond maximising fitness

Alternative view: imagine one optimum to be a local one. If
you can find both, you have found the unique global optimum.

Assessing inherent ability to maintain diversity for a long time

Can we find different optima in a single run (no restarts)?

Challenging benchmark for diversity mechanisms

May need to escape one optimum and traverse fitness valley

Mechanisms that can do this are likely to perform well in
other settings.
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(µ+1) EA

Simple baseline EA to focus on effect of added diversity mechanisms.

Algorithm 1 (µ+1) EA

1: Initialise P with µ individuals chosen uniformly at random
2: while stopping criterion not met do
3: Choose x ∈ P uniformly at random
4: Create y by flipping each bit in x independently w/ prob. 1/n.
5: Choose z ∈ P with worst fitness
6: if f (y) ≥ f (z) then y replaces z

Note:
No crossover as crossing individuals from different branches yields poor fitness.

Will discuss benefits of diversity for crossover in the next section.
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Runtime Analysis

Goal

Bounds on the (expected) time for an algorithm to reach a target.

Target for TwoMax: evolve a population containing both optima.

Bounds are mathematically rigorous and scale with problem size n.

Methods

Combining techniques from analysis of algorithms, randomised
algorithms, discrete mathematics and probability theory.

Asymptotic notation (O,Ω,Θ, o, ω)

Markov chain analysis, tail bounds, drift analysis, . . .

Weaknesses

It’s hard! Problems/algorithms must be reasonably simple.

Results are usually specific to particular algorithms and
particular problems or problem classes.
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No Diversity Mechanism

Theorem (Adapted from Theorem 1 in Friedrich et al. (2009))

With high probability, the (µ+1) EA with no diversity-preserving
mechanism and µ = o(n/log n) does not find both optima of
TwoMax in time nn−1. The expected time is Ω(nn).

n/2

0

n

n/2 n

one bit away from 1n

time Ω(nn)

Takeover probability 1− o(1)
even from the most
promising population.
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No Diversity Mechanism

Theorem (Adapted from Theorem 1 in Friedrich et al. (2009))

With high probability, the (µ+1) EA with no diversity-preserving
mechanism and µ = o(n/log n) does not find both optima of
TwoMax in time nn−1. The expected time is Ω(nn).

n/2

0

n

n/2 n

one bit away from 1n

time Ω(nn)

Takeover probability 1− o(1)
even from the most
promising population.
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Avoiding Genotype Duplicates (Clone Extermination)

Idea: only add offspring if their genotype is not contained in the
population [genotype/ω].

Theorem (Adapted from Theorem 2 in Friedrich et al. (2009))

With high probability, the (µ+1) EA with genotype diversity and
µ = o(n1/2) does not find both optima of TwoMax in time nn−2.
The expected time is Ω(nn−1).

Takeover is slightly more difficult, but the same analysis works in
almost the same way.

It is not sufficient to create clones of 0n; you have to create search points
with a single 1-bit.

From a most promising population, search points with fitness n − 1
compete.

Restriction on population size is slightly tougher: µ = o(n1/2) instead of
µ = o(n/log n).
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Fitness Diversity

Idea: avoid storing multiple individuals with the same fitness. If an
offspring x has the same fitness value as y ∈ P then x replaces y
[phenotype/ω].

Theorem (Adapted from Theorem 3 in Friedrich et al. (2009))

The expected time for the (µ+1) EA with fitness diversity to find
both optima of TwoMax is exponential.

n/2

0

n

n/2 n

frontier

High-fitness and low-fitness
individuals compete at the
frontier.

The former tend to suppress
the latter.

Fitness distance is a very bad

proxy of phenotype distance!
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Crowding for TwoMax

Idea: offspring directly compete with their parents.

Mutation-only EAs: offspring compete with their only parent. Then
the population contains µ lineages that evolve independently.

Variants of Crowding

Deterministic Crowding: offspring survives if no worse than
parent.

Probabilistic Crowding: offspring survives with a probability
proportional to its fitness, f (y)

f (x)+f (y) .

Generalized Crowding: mixing the above according to a
parameter φ.

Restricted Tournament Selection: offspring competes against
a similar individual.
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Deterministic Crowding

Idea: offspring directly compete with their parents and survive if
no worse than parent [lineage-phenotype/ω].

The population contains µ lineages that evolve like (1+1) EAs.

Theorem (Adapted from Theorem 4 in Friedrich et al. (2009))

The (µ+1) EA with deterministic crowding on TwoMax reaches
a population of global optima in expected time O(µn log n). Then
the population contains both optima with probability 1− 2−µ+1.

All µ lineages make independent choices whether to reach 0n

or 1n. The probability all end up in the same optimum is 2 · 2−µ.
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(µ+1) EA with Restricted Tournament Selection (RTS)

Idea: create a tournament of w randomly chosen individuals. The
individual with the smallest distance to the offspring compete
against each other and the better one survives [genotype/ω].

Distances used:

Genotypic distance: Hamming distance

Phenotypic distance: difference in the number of ones,

d(z , y) := |
n∑

i=1
zi −

n∑
i=1

yi |.
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Large Window Sizes Are Effective

Theorem 3.1 in Covantes Osuna and Sudholt (2018a) (informal)

If µ = o(
√
n/ log n) and w ≥ 2.5µ ln n then the (µ+1) EA with

RTS is as effective as deterministic crowding.

n/2

0

n

n/2 n

gap
log n

orange green Two types of failure:

bad initialisation
(prob. ∼ 2−µ)

takeover

If w ≥ 2.5µ ln n then
niches never compete
(with high probability)
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Small Window Sizes Can Fail

Theorem 3.4 in Covantes Osuna and Sudholt (2018a)

The probability that the (µ+1) EA with RTS finds both optima on
TwoMax in time nn−1 is at most O(µw/n).
If µw ≤ εn the expected time for finding both optima is Ω(nn).

n/2

0

n

n/2 n

one bit away from 1n

time Ω(nn)

Takeover probability
1− O(µw/n) even from the
most promising population.

36 / 69 Dirk Sudholt & Giovanni Squillero Theory and Practice of Population Diversity in EC

Probabilistic Crowding

Idea: offspring y competes against parent x , accepted w/ prob. f (y)
f (x)+f (y)

.

Theorem (Covantes Osuna and Sudholt (2018a))

With probability 1− 2−Ω(n) the (µ+1) EA with probabilistic
crowding on OneMax or TwoMax does not find a search point
with fitness at least (1 + ε)n/2 in 2cn function evaluations.

OneMax
0 n

2
n(1 + ε) n

2

stochastic drift

Drift ∆ when accepting mutant . . .

. . . with probability 1/2: ∆ ≤ − ε
2

. . . w. p. f (y)
f (x)+f (y) : ∆ ≤ − ε

2 + Θ
(

1
n

)︸ ︷︷ ︸
vanishing bias

Fitness-proportional selection is no better than a blind random walk!

Negative drift theorem (Oliveto and Witt, 2011, 2012): each lineage fails.
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Generalised Crowding (Galán and Mengshoel, 2010)

Introduces a scaling factor φ that diminishes the fitness of the
inferior search point.

Probability of accepting the offspring y over the parent x is:
f (y)

f (y)+φ·f (x) if f (y) > f (x),

0.5 if f (y) = f (x),
φ·f (y)

φ·f (y)+f (x) if f (y) < f (x).

(1)

Special cases:
φ = 1 gives probabilistic crowding
φ = 0 gives deterministic crowding

Results for Generalized Crowding (Covantes Osuna and Sudholt, 2018a)

If φ < 1/(e2n), the (µ+1) EA with generalised crowding is as
effective as deterministic crowding on TwoMax.

If φ = Ω(n−1+ε), the expected time on TwoMax is exponential.
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Fitness Sharing

Fitness Sharing

Idea: similar individuals have to share resources, so share their
fitness.

Fitness is derated by a measure of similarity:

f (x ,P) :=
f (x)∑

y∈P sh(x , y)
sh(x , y) := max

{
0, 1−

(
d(x , y)

σ

)α}
.

Possible distances:

Genotypic distance [genotype/ω]: Hamming distance

Phenotypic distance [phenotype/ω]: difference in the number

of ones, d(z , y) := |
n∑

i=1
zi −

n∑
i=1

yi |.
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(µ+1) EA with Fitness Sharing

Theorem (Oliveto, Sudholt, and Zarges (2014, 2019))

The (µ+1) EA with phenotypic fitness sharing and µ ≥ 3 always
finds both optima in expected time O(µn log n).

Phase 1: larger true fitness means higher shared fitness
→ all individuals climb up

Phase 2: at some point, at the latest once the population
contains two copies of 0n, the worst individual on the branch
survives and tunnels through the fitness valley.

Note: µ ≥ 3 is needed, µ = 2 is not enough:

Theorem

Success probability of a (2+1) EA with fitness sharing is
0 < c < 1/2 (i. e. worse than 2 independent runs)
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Fitness Sharing with Offspring Populations

What about fitness sharing in a (µ+λ) EA?

Overpopulation: if a cluster creates many offspring, the shared
fitness of all derates, and the whole cluster may go extinct.

#onesn/2
0

n

n/2 n

Results

With probability 1− o(1) the (2+λ) EA with 2 ≤ λ = O(1) will
reach a population on one branch only.
The (2+2) EA needs time Ω(nn/2) with probability 1− o(1).
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Population-based Fitness Sharing

Theorem (Friedrich et al. (2009))

The (µ+1) EA with phenotypic fitness sharing selecting the best
population P∗ = arg max{

∑
x∈P′ f (x ,P ′) | |P ′| = µ} finds both

optima on TwoMax for all µ ≥ 2 in expected time O(µn log n).

#onesn/2
0

n

n/2 n

Population is expanding both ways, tunneling through the fitness
valley.
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Clearing

Idea: best individuals are declared “winners” and individuals
within a clearing radius σ have their fitness “cleared” (set to
minimum) [genotype/ω] or [phenotype/ω].

#onesn/2
0

n

n/2 n

Advantages:

Winners always survive (elitism)

Cleared individuals perform random walk on a flat fitness
landscape and can tunnel through fitness valleys
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Clearing

Theorem (Covantes Osuna and Sudholt (2017, 2019b), simplified)

The expected time for the (µ+1) EA with clearing using genotypic
of phenotypic distances, µ ≥ n2/4 and σ = n/2 finding both
optima on TwoMax is O(µn log n).

#onesn/2
0

n

n/2 n

If the population size is large enough, the cleared individuals
perform a random walk and will tunnel through the fitness valley.

Conjecture: population size of µ = O(n) is sufficient as well.
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Summary of Results on TwoMax

Diversity Mechanism
Success probability
in time O(µn log n)

Conditions

No Mechanism o(1) µ = o(n/ log n)

No Genotype Duplicates o(1) µ = o(n1/2)

Fitness Diversity o(1)

Deterministic Crowding 1− 2−µ+1

Probabilistic Crowding 2−Ω(n)

Generalised Crowding 1− 2−µ+1 φ ≤ 1/(e2n)

Restricted Tournament Selection ≈ 1− 2−µ+1 w ≥ 2.5µ ln n

Fitness Sharing 1 µ ≥ 3

Population-based Fitness Sharing 1 µ ≥ 2

Clearing 1 µ ≥ n2/4
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Conclusions from TwoMax Analysis

The choice of diversity mechanism makes a huge difference
(exponential time versus time O(µn log n)).

The choice of parameters and distance measures is crucial.

For fitness sharing, µ = 2 vs. µ = 3 makes a huge difference.
For restricted tournament selection, large window sizes w work
while small ones don’t.
Likewise for the population size in Clearing.

Theory can guarantee which parameters are safe to use.

However, the parameter choice is often conservative –
experiments suggest that less extreme parameters also work
well for the window size w in Restricted Tournament Selection
and the population size µ in Clearing.
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What About Other Functions?

Some analyses only apply to TwoMax (e.g. Fitness Sharing).

Other analyses generalise to wider function classes:

Poor performance of Probabilistic Crowding generalises to a
wide class of functions with bounded gradients
(Covantes Osuna and Sudholt, 2019a).

This can be fixed with very aggressive exponential scaling.

Clearing analysis applies to generalisations of TwoMax,
including multimodal problem classes (Jansen and Zarges,
2016).

Empirical study on these multimodal problems was done
in Covantes Osuna and Sudholt (2018b).

Fitness sharing (with genotypic distances) performed worse
than expected.
Clearing was effective and the only mechanism able to tunnel
through fitness valleys.
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Diversity Mechanisms for Balance

Oliveto and Zarges (2015) did similar analyses on the Balance
function that has a very different fitness landscape to TwoMax.

Diversity Mechanism TwoMax Balance

No Mechanism

No Genotype Duplicates

Fitness Diversity

Deterministic Crowding

Fitness Sharing

The worst mechanism for TwoMax is the best for Balance and
the best for TwoMax performs poorly on Balance.
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Scheme of a Genetic Algorithm

Now: Examples where diversity benefits crossover in standard GAs.

Algorithm 2 Scheme of a (µ+λ) GA

1: Initialise P with µ individuals chosen u. a. r.
2: while stopping criterion not met do
3: for i = 1, . . . , λ do
4: Choose p ∈ [0, 1] uniformly at random.
5: if p ≤ pc then
6: Select two parents x1, x2.
7: Let y := crossover(x1, x2).
8: else
9: Select a parent y .

10: Flip each bit in y independently w/ prob. 1/n.
11: Add y to P ′.
12: Let P contain the µ best individuals from P ∪ P ′; break ties

according to a specified tie-breaking rule.
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Scheme of a Genetic Algorithm

Recombination

mixes together two or more solutions to create the offspring
associated with the idea of exploration

Mutation

performs a (usually small) change in an individual
associated with the idea of exploitation

When all parents are very similar, the effectiveness of
recombination is limited

The ability to explore remote parts of the search space is
impaired

Conventional wisdom suggests that increasing diversity
should be generally beneficial
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Real Royal Road Functions (Jansen and Wegener, 2005)

First rigorous proof that crossover can make a difference between
polynomial and exponential expected runtimes.

Denoting by b(x) the length of the longest block consisting of ones
only (e. g. b(100111011) = 3), then

Rn(x) =


2n2 if x = 1n,

n|x |1 + b(x) if |x |1 ≤ 2n/3,

0 otherwise.

Theorem (Theorem 3 in Jansen and Wegener (2005), simplified)

The expected optimization time of the (n+1) GA with 0 < pc < 1
constant, breaking ties towards including individuals with the
fewest duplicates in P ∪ P ′, on Rn is O(n4).

Diversity ensures different large blocks of 1s evolve and crossover
recombines them: 1111111000 + 0001111111 = 1111111111

52 / 69 Dirk Sudholt & Giovanni Squillero Theory and Practice of Population Diversity in EC

Diversity and Crossover Speed Up Hill Climbing

Diversity and crossover even help on OneMax:=
∑n

i=1 xi .

Theorem (Sudholt (2012, 2017), strongly simplified)

The expected time of the (2+1) GA with 0 < pc < 1 constant,
breaking ties towards including individuals with the fewest
duplicates in P ∪ P ′, on OneMax is 1.35n ln n + O(n).

Twice as fast as the fastest mutation-only EA (up to small-order terms).

Neutral mutations create different building blocks
Diversity helps these to survive
Uniform crossover easily recombines different building blocks:
1101001 + 1100101 = 1101101.

How important is diversity in the tie-breaking?

(2+1) GA with uniform random tie-breaking has expected time
2.22n ln n (Corus and Oliveto, 2018, Oliveto et al., 2020).

Worse constant, though still better than mutation-only EAs (2.71).

53 / 69 Dirk Sudholt & Giovanni Squillero Theory and Practice of Population Diversity in EC

Solving Coloring Problems with Diversity and Crossover

Ising Model: color a graph with 2 colors, maximising the number
of edges whose end points have the same color.

bit-flip symmetry

all colorings that only use one color are optimal

synchronisation problems: parts of graphs are colored
differently

on bipartite graphs it’s equivalent to Vertex Coloring
with 2 colors (seeking different colors):

Ising Model Vertex Coloring

≡
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Coloring Rings

Theorem (Fischer and Wegener (2005), simplified)

A (2+2) GA with 2-point crossover and population-based fitness
sharing colors rings in expected time O(n2).

Factor n faster than mutation-only EAs (semi-rigorous proof).

0 1 1 0 0 0 0 1 1 0

0 0 1 1 0 1 0 0 1 1

Fitness Sharing

0 1 1 0 0 0 0 1 1 0

1 0 0 1 1 1 1 0 0 1

Crossover

0 1 1 1 1 1 1 1 1 0
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Coloring Trees

Theorem (Sudholt (2005))

A (2+2) GA with 2-point crossover and population-based fitness
sharing colors binary trees in expected time O(n3).

All mutation-only EAs need exponential expected time!

+

=
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Jumpk : A Function With Tuneable Difficulty

Jumpk (Jansen and Wegener, 2002): “jump” of k bits required.

0 10 20 30

0

10

20

30

40

n − k 1-bits

optimum 1n

number of 1-bits

F
it

n
es

s

Genotypes of local optima: 111001110111 (k 0-bits).

Expected time of (1+1) EA on Jumpk is O(n log n + nk).
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Crossover on Jumpk

Success probability for mutation: ∼ n−k .

0 0 1 1 1 1 1 1
1 0 1 1 1 1 0 1

Crossover may set disagreeing bits to 1, agreeing 0s must all be
flipped by mutation.

0 1 1 0 1 1 1 1
1 0 1 1 1 1 0 1

Best case (perfect diversity): prob. 4−k of jump to optimum.

Superpolynomial gap for k = log n

4k nk

n = 10 100 2099
n = 100 10,000 2 · 1013

n = 1000 1,000,000 8 · 1029
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Escaping from Local Optima with Emerging Diversity

Superpolynomial gap for GAs avoiding genotype duplicates (Jansen
and Wegener, 2002, Kötzing et al., 2011).

Analyses used vanishing (unrealistic) crossover probabilities

Crossover pessimistically assumed harmful for diversity

Does crossover really harm diversity without diversity mechanisms?

Theorem 6 in Dang et al. (2016a, 2018), simplified

The expected optimization time of the (µ+λ) GA with pc = 1 and
µ = n on Jumpk is O(nk−1 log n).

Observations from the analysis

Diversity emerges naturally

Crossover helps create diversity by mixing genes

Interplay of mutation and crossover is a catalyst for diversity
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How Crossover+Mutation Create Diversity on Jump

some diversity

001111
001111
001111
001111
010111
010111

good diversity

001111
001111
001111
010111
010111
011101

Emergence of more species

crossover

011111surplus of 1-bit

mutation

back-flipping a random 1-bit
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Escaping from Local Optima with Diversity Mechanisms

Can results be improved through explicit diversity mechanisms?

Dang et al. (2016b): use diversity mechanisms as a tie-breaking
rule for selection.

Expected times on Jump (Dang et al., 2016b) (simplified for k ≥ log n)

Mechanism Best runtime
No mechanism O(nk−1 log n)
Duplicate elimination O(nk−1)
Duplicate minimization O(nk−1)
Deterministic crowding O(ne5k2k)
Convex hull maximisation O(n2 log n + 4k)
Hamming distance maximisation O(4k)
Fitness sharing O(4k)
Island model O(4k)
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Conclusions on Crossover and Diversity

In the absence of diversity, crossover is useless.

Diversity mechanisms promote and maintain different
“building blocks” in the population that can be combined
effectively.

Constant-factor speedups for hill climbing (OneMax).

Larger speedups for Real Royal Roads, Jump and Coloring
problems.
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Conclusions

Maintaining and promoting diversity in evolutionary algorithms is a
very important task.

Benefits of diversity

Enhance the exploration capability of EAs

Prevent premature convergence

Improve robustness

Enable crossover to work more effectively

Observations

There is a multitude of diversity mechanisms and it is difficult
to decide which mechanism performs best.

Runtime analysis can quantify the performance of EAs
enhanced with diversity mechanisms.

Diversity can also emerge naturally, without any mechanisms.

Which mechanism performs best depends on the problem.
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Future Work

Future theoretical work

Study other diversity mechanisms

Performance on other multimodal problems (e. g. multimodal
problem class by Jansen and Zarges (2016)).

Diversity in other bio-inspired paradigms, e. g. PSO

Bridging theory and practice

Theoretically analyse more practically relevant scenarios

Extract practical guidelines from theoretical work

Combine empirical and theoretical work

Design diversity mechanisms that perform well across a wide
range of problems
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