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What you should get out of this talk

e ML and EC share a common ancestor, there is evidence for interbreeding
between the two fields, and eventually diverged for good, practical reasons

e Synergies

o Success stories of ML used in EC
o Success stories of EC used in ML

¢ Challenges
o Evolutionary Machine Learning

e Opportunities

o How could ML and EC still be beneficial to one another?
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15 volumes.
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modeling of complex systems, evoluticmag optimization and machine
learning. He is currently chair of COST Action CA15118 FoodMC, a European
networking project on in-silico modelling in food science. Alberto Tonda
authored 29 scientific papers published in refereed international journals, 2
books and over 50 contributions in international conferences.

Quick (and dirty) summary of Machine Learning

You have data, collected from a specific phenomenon
You would like to develop a predictive model for the phenomenon
Classical approach
o Develop ad-hoc algorithm with human knowledge
Machine Learning (ML) approach
o Use generic (existing) algorithm, able to...
o ...extract and reproduce information from data
o ...provide predictions for unseen data
o Basically, the predictive model leams from available (training) data



Quick (and dirty) summary of Machine Learning

e Restate learning task as an optimization problem
e Solve the optimization problem relying on data

Learning

Task

Outline

e Introduction

o Acommon origin?

o Shared themes and crossways

o Popular moments in Al and EC
e Synergies

o EAcan solve ML problems
Neuroevolution
Discovering coresets
Adversarial ML
Reinforcement learning and
Competitive Co-evolution

o 0 0 0

S Optimization
Problem

e Challenges
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Performance

Black magic/Trustworthiness
Large vs. Small Data
Number of features
Overfitting

e Opportunities

o
(o]
(+]
o

(+]

Capacity vs Fitting
Stochastic optimization in ML
EA can solve ML problems
Toward white-box ML
(Explainable Al)

Exploring embeddings
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Quick (and dirty) summary of Machine Learning

e \We assume some background knowledge of Neural Networks
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A common origin?

Both ML and EC scholars point to the very same paper as the starting point
of their fields:
o Turing AM. Computing “Machinery and Intelligence”. Mind. 1950 Oct 1;LIX(236):433-60
The term “Machine Learning” was popularized by Arthur Samuel in a paper
describing an evolutionary approach for playing checkers
o Samuel AL. Some Studies in Machine Leaming Using the Game of Checkers. IBM Journal of
Research and Development. 1959 Jul;3(3):210-29,
Seminal works in EC explicitly refer to the “Machine Learning” keyword
o E.g., Goldberg DE, Holland JH. “Genetic Algorithms and Machine Learning”. Machine
Learning. 1988 Oct 1,3(2):95-9

o Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. 1% ed. USA:

Addison-Wesley Longman Publishing Co., Inc.; 1989. 372 p.

Shared themes and crossways

Some boosting methods creates an ensemble of learners, removing points
that have been already solved and focusing on the remaining ones
Some EAs that target the creation of multiple populations for cumulatively
solving a problem remove the part of the problem that have been already
solved and focus on the remaining ones

CMA-ES on the BBOB-2009 Function Tosthed.

Hansen, 2008. Benchmarking a Bi-Popwation
| GECCOU8

Freund, Y., & Schapire, R. E. 1985 A
decision-theorelic  generalization of on-fine
| leamming and an application fo boosting.
| Springer, Berfin, Heidelberg,

Shared themes and crossways

e Learning without the need of human expertise
e DeepMind's AlphaZero
o “Mastering chess and shogi by self-play with a general reinforcement learning algorithm”
e Fogel's Blondie24
o “Evolving neural networks to play checkers without relying on expert knowledge”
e “Overlapping subsquares” vs. “Convolutional neural network”

Siver D, Hubert T, Schrittwieser J, Antonoglou I, Lal M, Guez A,
&l al. “Mastering chess and shogi by setf-play with a general
reinforcement learning algorithm™. arXiv:171201815 [cs]. 2017
Dec.

Chellapilla K, Fogel DB. “Evolving neural |~
networks to play checkers without relying on
expart knowledge®. |EEE Transactions on
Neural Networks. 1999 Nov; 10(6):1382-91.

Shared themes and crossways

e Reinforcement Learning in ML is important and likely to play a pivotal role in

the future

o AlphaZero can be described as “a generic reinforcement learning algorithm”

o Deep Reinforcement Learning (DRL) and Deep Q-Networks (DQNs) were demonstrated able
to achieve impressive results

o Multi-Agent RL (MARL) and Multi-Agent Deep RL (MADRL) are emerging techniques to
handle problems where multiple agents need to communicate and cooperate

o Reinforcement Learning did play a pivotal role in EC

o Holland's Learning Classifier Systems (LCS) are rule-based systems able to evolve and
generalize set of g-Learning-like rules

o Cooperative Coevolution is a well-known technique in EC to handle problems where multiple
agents need to communicate and cooperate
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Shared themes and crossways Shared themes and crossways

e Reinforcement Learning shares similarities with Co-evolution e Example of competitive co-evolution for games: Core Wars
o In (Deep) RL, agents are trained on data, play against each other o Aplayer in the game is a program in Redcode (similar to assembly)
o Their games generate new data, that is then used to train the agents even more o Player and opponent are executed one line at a time, alternatively
o In modern applications, agents are deep NNs, that replace the classical tables o Objective of the game is to force opponent to execute a non-valid instruction

Using competitive co-evolution, a Redcode program (WhiteNoise) was created

e (Competitive) Co-evolution for games
o WhiteMoise was the champion of a competitive hill for months

o Each individual in the population represents a different style of play
o Individuals play against each other, obtaining a relative fitness score e - [pMARS 8.5 (2/20/96) X11 version . |
o The "learning” is modeled as the individuals' genome

o Successful individuals “hand down” part of their style of play to children

Como, F., Sanchez, E., & Squilero, G. (2005). |

Evouvmg- assembly programs; how games help
ion. IEEE i

on Evolutionary Computation, 9(6), 695-706,

Shared themes and crossways Popular moments in Al / ML
e Genetic Programming has been used for Symbolic Regression since the e 1997: DeepBlue defeated then-reigning world chess champion Garry
1990s Kasparov in a six-game match
e Regression is a popular application in modern ML e 2011: Watson defeated two renowned champions at Jeopardy
2016: AlphaGo sealed 4-1 victory over Go grandmaster

Lee Sedol

amm
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Popular moments in Al / ML Popular moments in EC

1964: Der Spiegel published an article on using Evolutionary Computation for

e 1997: DeepBlue defeated then-reigning world chess champion Garry .
Kasparov in a six-game match solving aerodynamic problems
2011: Watson defeated two renowned champions at Jeopardy e 2017: Facebook admits using an evolutionary tool for uncovering
2012: AlexNet achieved an astonishing top-5 error of 15.3% in ImageNet critical software bugs : rorsc

Large Scale Visual Recognition Competition
e 2016: AlphaGo sealed 4-1 victory over Go grandmaster
Lee Sedol

Synergies — EA can solve ML problems

e Problems in ML can have vast, irregular search spaces
e Current solutions are hand-designed or heuristic
e EAs can provide alternative, non-human, (possibly) better solutions!

Synergies
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Synergies — Neuroevolution

e Exploit EC to generate/tweak hyperparameters of neural networks (NNs)
o Mumber of neurons, number of layers, types of layers, learning rate, etc.
o Currently practitioners copy what worked (e.g. ImageNet) and modify it manually
o Neuroevolution uses EAs to explore space of possible NN topologies (see other tutorial)
e NEAT (and HyperNEAT, and EXAMM)
o Stanley KO, Miikkulainen R. “Evolving Neural Networks through Augmenting Topologies”.
Evolutionary Computation. 2002 Jun;10(2):99-127.
o D'Ambrosio DB, Gauci J, Stanley KO. "HyperNEAT: The First Five Years". In: Growing
Adaptive Machines: Combining Development and Leaming in Artificial Neural Networks.
Berlin, Heidelberg: Springer; 2014.
o Desell T, EISaid A, Ororbia AG. “An Empirical Exploration of Deep Recurrent Connections
Using Neuro-Evolution”. In: Applications of Evolutionary Computation. Cham: Springer
International Publishing; 2020. p. 546-61.

Synergies — Finding coresets with EAs

e The search space for coresets is vast

o Variable (unknown) number of samples in the coreset

o Consider all possible samples in the training set + prototypes (virtual samples)
e The problem might be multi-objective!

o As removing training samples will likely lower the performance of the ML algorithm

o There are two conflicting objectives: lower number of samples in coreset, keep error low
e Finding coresets with EAs

o Individual representation: list of indexes, referring to samples in training set

o OR matrix of variable size, where each line represent a prototype (virtual sample)

o Fitness function: average performance of a ML algorithm in a cross-validation
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Synergies — Finding coresets with EAs

e |ssues with large ML datasets (in number of samples and features)

o Hard to interpret for humans

o Training a ML algorithm on the whole dataset takes a considerably long time

(or it is outright impossible)
e Coresets

o A coreset is the minimum number of training samples that
does not lower performance of ML technigues “too much”
o They represent the “typical samples” for all the classes

(for classification)

o They can be samples already in the dataset, or virtual (also

called prototypes)
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Synergies — Finding coresets with EAs

BaggingClassifier - acc. 0.9478

BaggingClassifier - acc. 0.9701
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O P, SQUILLERD G.. TONDA A . . .
2019. Evolutionary Discovery of Coresels for -1 o 1 2 3
Classification, DOI: 10.1145/3319619. 3326846




Synergies — Finding coresets with EAs Synergies — Adversarial ML

RidgeClassifier - acc. 0.8824

3 - — . RidgeClassifier - acc. 0.9804 e Adversarial ML (sometimes called “Generative”)
i et v test " o Once a ML model (e.g. a classifier) is trained, find counterexamples badly classified
21 - x X errors 2 . : :::r:e o Counterexamples can provide more insight on the inner working of the algorithm
+a ; o Adversarial ML pits a second ML algorithm AGAINST the model
. i‘_m # s 1{ &3y o The second ML algorithm generates samples, using output of the trained model as feedback
of " g 0o{ "w . ¥ipe
" sa ™ § bt s DATA SAMPLE
4 A R e | ol A _‘ B
L
+ o b FEEDBACK
-2
-21 =
T T T T "l BARBIERO P, SQUILLERO G. TONDA A -I‘.l IO 1 é 3
-2 -1 0 1 2019, Evolutionary Discovery of Coresefs for i FEEDBACK IS MORE COMPLEX
Classification, DOI: 10.1145/3319619. 3326846 ‘ WORK IN PROGRESS , THAN JUST PREDICTED CLASS
Synergies — Adversarial ML Synergies — Adversarial ML

GIBBON

| CAN ONLY APPLY SMALL
MODIFICATIONSTO IMAGES,
SO THAT A HUMAN WOULD

STILL RECOGNIZE THEM

1196



K. EYKHOLT et al. 2018. Robust

Synergies — Adversarial ML Synergies — Adversarial ML omagiel ceplolon ) L

Modals, hitps:/farxv.org/pd/1707 08945 pdf

Lab (Stationary) Test Field (Drive-By) Test
Physical road signs with adversaral Video sequences taken under

perturbation under different conditions different driving speeds

“panda” “gibbon”
57.7% confidence 99.3% confidence Cropping, KFra'r::
https://openai.com/blog/adversarial-example-research/ e s
Stop Sign — Speed Limit Sign Stop Sign —+ Speed Limit Sign
[ 4. SU et al. 2019, One pixal attack for fooling
H H deap  newal  melworks, IEEE TEC H H
Synergies — Adversarial ML s S Synergies — Adversarial ML
e Adversarial ML is an optimization problem e Fooling text classification with EAs
o Genome is a series of modifications applied to images o Li, D., Vargas, D. V., & Kouichi, S. (2019, June). Universal
o Fitness is feedback from the trained ML model {(minimize correct class confidence) Rules for Fooling Deep Neural Networks based Text
o Search space is vast (all possible samples!) Classification. https://arxiv.org/pdf/1901.07132. pdf

e EAs can be applied to adversarial ML! e |[nteresting resources on Adversarial ML
o A particularly clever example is a ONE-PIXEL adversarial attack! o Embeddings, hitps:/fwww. nds-on-the-definition.com/
o Genome is just the position and permutation of one pixel in an image introduction-to-embeddings-with-neural-networks/
o Fitness is "confidence” (probability) associated to each class o Image generation, hitps://thispersondoesnotexist.com/
o Algorithm used was differential evolution o Text generation, hitps://talktotransformer.com/
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Challenges

Challenges — Black magic/Trustworthiness

e The limited acceptance of EC in the industrial world may also be explained by

their inherent stochasticity, non-reproducibility of the results

o

s

e The relatively slow acceptance of ML in the industrial world may be explained

Yet, many industrial processes are based on random variations or non reproducible
... and most EC results are “almost” reproducible

by the difficult interpretability of the resulting models

o

Relying on intrinsically stochastic processes like stochastic gradient descent is not usually
considered a diriment problem
Mon-interpretable models may be incorrect, biased or lead tor unfair results

Challenges — Performance

e The limited acceptance of EC in the industrial world may be explained by its
inability to tackle real-size problem
The time required to produce a reasonable solution is often not acceptable
Most published studies focus on toy problem (most notably, Holland original
works)

o EAs are theoretically parallelizable at the level of generation, allowing an almost-linear
increase performances

o Unlike other methodologies, an EA can be stopped at any moment providing the best solution
found so far (trade off time/quality)

Challenges — Large vs. Small Data

e Traditional ML techniques have been designed in order to process huge
amount of data, such as images or documents fetched over the internet

e A growing number of applications require careful analyses of a reduced
amount of data that are either scarce or expensive

e ML models need to be tweaked if not completely rethought
o E.g., Zero-Shot/N-Shot/Few-Shot learning models
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Challenges — Number of features Challenges — Overfitting

e High-dimensional spaces are well known to behave differently from e Overfitting is one of the most pressing issues in ML
low-dimensional ones (curse of dimensionality) e ML model has been trained on data
e EC/ML tools often need to reduce the number of variables to operate o Itfits the training data really well
. o It DOES NOT generalize for unseen data
ff I
o _eCtNe_y 3 i ) . o The trained model captures unique properties of the training data. ..
e Dimensionality reduction: the process of reducing the number of variables o ..ihat only exist for those data
under consideration
o Feature selection (e.g., recursive feature elimination) v B
o Feature extraction (e.g., principal component analysis, latent semantic analysis)
o Representation learning (e.g., autoencoders)
X
Just right! overfitting
Challenges — Overfitting Challenges — Overfitting
e Example: classification male/female e Example: classification male/female
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Challenges — Overfitting

e Overfitting is hard to estimate: predict performance on data you don't have?
e Solutions focusing on data
o Split data in training (validation) and test
o n-fold cross-validation is a popular choice
e Solutions focusing on the model
o Expert knowledge on symptoms of overfitting (e.g. large values for single weights in NNs)
o Try to mitigate the symptoms (e.g. regularization, drop-out, ...)
e Overfitting remains an open issue, no guarantee the model is not overfitted

Opportunities — Capacity vs. Fitting

e Capacity: # of functions that a ML model can select as a possible solution
e Fitting: error with respect to the training data
e |deally, we want to use the CORRECT CAPACITY for the target problem

Degree 1 Degree 4 Degree 15
MSE = 4.08¢-01(+/- 4.25¢-01) MSE = 4,326.02(+/- 7.08¢-02) MSE = 1,836 +08(+/- 5.480+08)
— Model — Model I — Model
True function True functisn A True functss
. Samples » samples N . Samples
a l, » ! ﬂ \
- ™ If \
\ | \

| I|
"-_“ o - | || 1l
L .

Opportunities

Opportunities — Capacity vs. Fitting

e Not only, but we want to minimize capacity and maximize fitting
o Simpler ML models have a better chance
at generalizing (less risk of overfitting) Best Sk of Dferent Sizes e e
o And of course, we'd like to fit the training - e =
data as much as possible s E e ey
e A multi-objective (MO) problem!
o ML community so far has seldom treated
it as MO
o EAs work really well for MO problems
(state of the art)
o EA-based solutions for ML exploit MO
optimization
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Opportunities — Capacity vs. Fitting

e Why are ML experts not framing the problem as MO?
o (Zhang et al., 2016) shows a puzzling result
o Deep networks with WAY larger capacity than necessary, do not overfit as badly as they could
o In some way, the “correct solution” in the space of NN weights is a stronger attractor than
“complete overfit"

Zhang, C., et al. 2016. Undorstanding doep
leaming requires rethinking  generafization.
hitps:/laniv.org/abs/1611.03530

Schmidt, M., & Lipson, H. 2009. Distiling
free-form natural laws from experimental data.
Science, 324(5823), 81-85.

Opportunities — White-box ML

e Symbolic regression

o (Genome: a binary tree, representing an equation °
o Fitness: minimize error wrt training data; also "complexity”
(number of terms)
o Success story for EAs: published in Science, ° °

commercial product Eurega from start-up Nutonian
e Pros and cons

o Models are human-readable (up to a certain size)
Multiple choices of models (less complex, more accurate)

o
o Probably less capacity than NNs ° @
o

Modern developments (Geometric Semantic Genetic
Programming) have higher capacity, but more black-box ( 22— (%) ) + (T *cos(Y ))
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Opportunities — White-box ML

e ML models are often “black boxes"
o They may deliver good results, but are impervious to
human understanding
o “Explainable Al" techniques can be used to have a
better grasp of decision process
o Adversarial ML was an example, there are more
* White-box machine learning?
o Return models that can be understood by humans
o One well-known and explored EA technigue can be
seen as “white-box ML"
o Symbolic regression, used to obtain free-form
equations

THIS 15 YOUR MACHINE LEARNING SYSTET1?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE CTHER SIDE.

MFT{WWM?J

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

http:/iwww.xkcd.com/1838/

Opportunities — Stochastic Optimization in ML

e Optimization over models in ML algorithms

o Deterministic approaches: Decision Trees, Support Vector Machines, ...
o Stochastic approaches: Random Forest, Bagging, Deep Learning, ...

e Interestingly, stochastic algorithms rarely use feedback (pure random!)

o Stochasticity is used to prevent premature convergence

o Or, in case of ensembles, to create weak predictors “specialized” in different parts of the data

TOUR OF ACCOUNTING

OVER HERE
WE HAVE OUR

RANDOM NUMBER
GENERATOR.

¢ Why don’t they use EAs?

NINE NINE
NINE NINE
NINE NINE

AR et D01 et Purnens S e, et

https:/idilbert.com/




Opportunities — Stochastic Optimization in ML

e Deep Learning (DL) employs Stochastic Gradient Descent (SGD)
o Used to optimize the weights of the NN, using backpropagation
o Smaller steps than classical gradient descent
o Takes into account only a small subset of the training data (batch) at each step
o Helps avoiding premature convergence, local optima appear and disappear
e Why don’t they use EA-based methodologies?
o Some evidence from Chapter 5 of “The Deep Learning Book”, by the gurus of DL
o Empirical explorations of the search space of weights of NNs
o Reveals LOTS of saddles, very few local optima
o And SGD is great at escaping local optima
e Basically, they do not need EAs in this case

Goodfellow, |, Bengio, Y. & Courville, A
(2016), Deep leaming, MIT  press.
hitps:iwww.deeplearmingook ong!

Opportunities — Stochastic Optimization in ML

e Another perspective on batches: Lexicase selection

o From the domain of EAs, again applied mostly to Symbolic Regression
When comparing individuals in the same generation, for reproduction or survival
Randomly shuffle the samples, and compare individuals sample by sample, in order
When the performance of two individuals differs on one sample, stop and select best
Improves diversity in the population, allowing “specialists” to survive

o 0 0 0

Hedmuth, T, Spector, L., & Matheson, J. 2014,
Solving uncompromising problems with laxicase
selection. [EEE TEC, 19{5), 630-843.
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Opportunities — Stochastic Optimization in ML

e Interestingly, randomizing training samples is a recurrent idea
e In the domain of EA, it has been used for Symbolic Regression
e As we are EA practitioners, however, it became co-evolutionary

Best batch

Population of batches

Population of predictors .

Schmidt, M., and Lipson, H. 2005. Coevolulion
of finess maximizers and finess predictors.
GECCO Late Breaking Paper.

Opportunities — Exploring Embeddings

e Embeddings are currently a hot research topic
e Project input in a (meaningful) vectorial space
o Displacements and distances in this space have a meaning
o Mostly (but not only) used in Deep NNs
o Building the vectorial space is the hard part
e Used mostly in Natural Language Processing (text) and images
e Well-known example is Word2Vec
o Assign random high-dimensional vector to a specific word
o Optimize, so that words that appear often nearby in text are close together in the vector space



Opportunities — Exploring Embeddings Opportunities — Exploring Embeddings

" .mmﬁﬁ%

?Eﬂw&m'.... :

e “French”, “British”, “American”...
o Adjectives for nationality!
o Mearby, you have “languages”, “countries”
e Also, “England”, “Europe”, “International”, ...

Opportunities — Exploring Embeddings Opportunities — Exploring Embeddings
t ° “Queen”
“Woman" “Woman"
: ’ WOMAN = MAN + KING = QUEEN
WOMAN - MAN ’
/
/ TRANSFORMATION THAT /
/ CAN BE COMPUTED /
“Man” “Man” MASCULINE -> FEMININE
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Opportunities — Exploring Embeddings Opportunities — Exploring Embedding

r R = g o . T =
¢ Another impressive example is Deep painterly harmonization AL A d b Sl ’ N ﬁ~ e
e Nowadays also known as “style transfer” 5 ; : 1 N
o Train Deep NN to classify different styles of paintings (and photos)
o Take last two layers as embedding
o Find position of original photo and target painting inside the embedding
o Compute vector between the two, and slowly move photo towards painting

e The resulting point is then transferred to the pixel space

). A »
& § Luan. F et al 2018 Doop paintorly
.‘_ | harmonization. In Compuler Graphics Forum.
¥ hittps:fandv.orgiabs/ 180403189

Opportunities — Exploring Embeddings Opportunities — Exploring Embeddings

e Exploration of embeddings can provide great insight
o Embeddings taken from NNs encode high-level concepts
o For example, "style of painting”, “muscular
man”, “evil-looking drawing”, ...
e Right now, exploration of embeddings
is at the very beginning
e |f the appropriate fitness function is
discovered, opportunity for EAs

Luan, F. et al. 2018. Desp painlory
harmonization. In Compuler Graghics Forum,
hittps:fandv.orgiabs/ 180403189
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Resources

“The deep learning book”, https://www.deeplearningbook.org/
Scikit-learn, Python module with tons of different ML algorithms,
https://scikit-learn.org/stable/
Z e Keras, Python module with high-level interface to Tensorflow and other deep
Questions? learning libraries, https://keras.iol
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