
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Cost-Effective Person-Following System for Assistive Unmanned Vehicles with Deep Learning at the Edge / Boschi,
Anna; Salvetti, Francesco; Mazzia, Vittorio; Chiaberge, Marcello. - In: MACHINES. - ISSN 2075-1702. - ELETTRONICO.
- 8:3(2020), pp. 49-67. [10.3390/machines8030049]

Original

A Cost-Effective Person-Following System for Assistive Unmanned Vehicles with Deep Learning at the
Edge

Publisher:

Published
DOI:10.3390/machines8030049

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2843394 since: 2020-08-31T10:28:52Z

MDPI

machines

Article

A Cost-Effective Person-Following System for
Assistive Unmanned Vehicles with Deep Learning at
the Edge

Anna Boschi 1,2,* , Francesco Salvetti 1,2,3 , Vittorio Mazzia 1,2,3 and Marcello Chiaberge 1,2

1 Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy;
francesco.salvetti@polito.it (F.S.); vittorio.mazzia@polito.it (V.M.); marcello.chiaberge@polito.it (M.C.)

2 PIC4SeR, Politecnico di Torino Interdepartmental Centre for Service Robotics, 10129 Turin, Italy
3 SmartData@PoliTo, Big Data and Data Science Laboratory, 10129 Turin, Italy
* Correspondence: anna.boschi@polito.it

Received: 13 July 2020; Accepted: 25 August 2020; Published: 28 August 2020
����������
�������

Abstract: The vital statistics of the last century highlight a sharp increment of the average age of
the world population with a consequent growth of the number of older people. Service robotics
applications have the potentiality to provide systems and tools to support the autonomous and
self-sufficient older adults in their houses in everyday life, thereby avoiding the task of monitoring
them with third parties. In this context, we propose a cost-effective modular solution to detect
and follow a person in an indoor, domestic environment. We exploited the latest advancements
in deep learning optimization techniques, and we compared different neural network accelerators
to provide a robust and flexible person-following system at the edge. Our proposed cost-effective
and power-efficient solution is fully-integrable with pre-existing navigation stacks and creates the
foundations for the development of fully-autonomous and self-contained service robotics applications.

Keywords: person-following; robotics; deep learning; edge AI

1. Introduction

Person-following is a well-known problem in robotic autonomous navigation that consists of the
ability to detect and follow a target person with a mobile platform. This task can be achieved with
a variety of sensing and moving systems and has fundamental roles in a variety of applications in
domestic, industrial, underwater and aerial scenarios [1]. Due to the sharp increment of life expectancy
in the last century, the world population has seen a progressive increase in the number of older
people [2]. This trend offers an excellent opportunity for developing new service robotics applications
to provide continuous assistance to autonomous elders in everyday life. These robotic platforms
should be able to identify the target person and follow him to offer their support. Person-following
assumes, thus, a vital role, as a technology necessary to enable a variety of different applications. In this
context, it is essential to develop a system that focuses on robustness to different domestic scenarios
and efficiency to be implemented on low-power devices, without the need for external computing
devices. Moreover, the ability to run a person-following algorithm entirely onboard makes the system
less prone to security and privacy issues, avoiding unnecessary transmission of sensitive information,
such as domestic camera streams.

Generally speaking, a person-following system is composed of a sensing device, a detection
algorithm able to provide an estimate of the target position and a following algorithm to control
the robot’s movements. Indoor robotic platforms use a variety of perception devices, divided into
exteroceptive, such as cameras, LiDARs and ultrasonic sensors, and proprioceptive, such as inertial

Machines 2020, 8, 49; doi:10.3390/machines8030049 www.mdpi.com/journal/machines

http://www.mdpi.com/journal/machines
http://www.mdpi.com
https://orcid.org/0000-0003-0601-9661
https://orcid.org/0000-0003-4744-4349
https://orcid.org/0000-0002-7624-1850
https://orcid.org/0000-0002-1921-0126
http://dx.doi.org/10.3390/machines8030049
http://www.mdpi.com/journal/machines
https://www.mdpi.com/2075-1702/8/3/49?type=check_update&version=2

Machines 2020, 8, 49 2 of 19

measurement units (IMUs), gyroscopes, accelerometers and encoders. Different solutions to the
detection problem can be found in the literature, depending on the used sensors, on the application
scenario and the type of approach [1]. Recent developments in deep learning techniques [3] for
computer vision gave a significant boost to the ability to efficiently extract meaning from visual
information and inspired several solutions for the person-following problem.

Inspired by these approaches, we employed the popular deep learning object detection algorithm
YOLOv3-tiny [4], suitably re-trained for the specific task, to detect the target person from an RGB-D
frame and compute his location with respect to the robot reference frame. The extracted information
was then fed to an efficient control algorithm that generated the suitable linear and angular commands
for the robot actuators to achieve person-following. Moreover, we tested the proposed approach on
several embedded platforms designed explicitly for the edge AI, that consists of deploying artificial
intelligence algorithms on low-power devices. We compared the obtained results with a particular
focus on the trade-off between performance and power consumption. The overall solution proposed
represents a cost-effective, low-power pipeline for the person-following problem that can be easily
employed at the edge as a primary component in complex service robotics tasks.

2. Related Works

Related literature is organized as follows. Firstly, several methods for person-following are
analyzed, with a focus on the sensing devices used and on the strategies used to detect the target.
Then, deep learning techniques for object detection are briefly discussed, with attention paid to recent
developments in edge AI implementations.

2.1. Person Following

The task of recognizing and localizing a person to be followed by a robotic platform has been
widely discussed in the literature since the nineties. Islam et al. [1] reviewed and categorized a large
number of works focused on achieving person-following in a variety of conditions, such as ground,
underwater and aerial scenarios. For what concerns terrestrial applications, important classifications
of the different methods are based on the kinds of devices used to sense the environment and on the
strategy used to detect the target person.

Most ground applications use a simple unicycle model that controls the robot 2D motion in
polar coordinates, with a linear velocity on the xy plane and angular velocity about the z-axis [5].
The chosen detection system should, therefore, be able to find the target position and distance from the
robot. Several systems use laser range finders (LRF) measures that directly provide a set of distances,
which are clustered and interpreted to extract relevant features. People are localized usually by means
of leg [6–11] or torso identification [12–14]. However, these methods mainly rely on static features
extracted from 2D point clouds that frequently lead to a poor detection quality. Visual sensors are much
more informative since they allow one to sense the entire body of the target, but simple RGB cameras
are not enough since a distance measure is also needed. The two main categories of visual sensors
able to catch depth information are stereo and RGB-D cameras. Several works [15–20] use the first
approach to approximate the distance information by triangulation methods applied on two or more
RGB views of the same scene. However, the most used visual sensors for person detection are RGB-D
cameras [21–32] that are able to get both RGB images and depth maps by exploiting infrared light.
Several methods employ sensor fusion techniques to merge information from different kinds of sensing
systems. For example, Alvarez et al. [33] used both images to detect the human torso and lasers to track
the legs, Susperregi et al. [34] used an RGB-D camera, lasers and a thermal sensor; and Wang et al. [35]
used a monocular camera with an ultrasonic sensor. Hu et al. [36] adopt eda human walking model
using a combination of RGB-D data, LRF leg tracking and robot odometry and a sonar sensor for
obstacle avoidance during navigation. Koide et al. [14] used LRF data to detect people in the scene,
and then cameras to identify them and extract relevant features. Cosgun et al. [8], on the other hand,
manually selected the target from an RGB-D view of the environment, and then tracked it with LRF leg

Machines 2020, 8, 49 3 of 19

identification. Merging data from multiple sensors allows one to increase detection accuracy, but with
high increases in the system’s complexity and costs. Furthermore, the presence of multiple sources of
data requires hardware with high computational power to enable real-time processing. Since our focus
was on developing an embedded, cost-effective, low-power system, we selected a low-cost RGB-D
camera as the only sensing device.

Focusing on vision-based methods, different strategies can be adopted to detect the person in
the environment. Mi et al. [26], Ren et al. [25] and Chi et al. [29] all adopted the Microsoft Kinect
SDK that directly provides skeleton position. Satake et al. [16,17] used manually designed templates
to extract relevant features and find the target location. Munaro et al. [23], Brookshire [15] and
Basso et al. [22], instead, adopted histograms of the oriented gradients (HOG) method for human
detection originally proposed by Dalal et al. [37]. More recently, machine learning techniques have
been used to solve the person-following task. Chen et al. [19] used an online AdaBoost classifier
initialized on a manually-selected bounding box of the target person. Chen [31], instead, used an
upper-body detector based on an SVM to get the human position and extract relevant features used
during the tracking phase. More recently, deep learning models have been employed to further boost
detection accuracy. Chen et al. [18] proposed a CNN-based classifier trained on a manually-selected
target with an online learning procedure. Masuzawa et al. [28] adopted the YOLO method [38] to
identify the person due to its high results in both precision and recall rates. Wang et al. [20] also
employed YOLO as a person detector, but only to predict the initial position of the target, since they
are not able to run the algorithm in real-time due to hardware limitations. Jiang et al. [30] jointly used a
DCNN-based detector and a PN classifier based on random forests to enhance person localization and
tracking. Finally, Yang et al. [32] used a DNN to identify a bounding box image to be scored against
the pre-registered user image.

Exactly as in [20,28], we purpose a person-following approach based on the YOLO network,
but our methodology is different from theirs. We use a newer and smaller version of YOLO
(YOLOv3-tiny), and the re-training and the optimization of the network involve:

- Eliminating the tracking part and relating an additional filter thanks to the continuous detection
of the target, so reducing the computational complexity of the solution;

- Running the detection at the edge, so it can be easily realized on the neural board accelerator,
without adding an expensive onboard computer (low-cost).

2.2. Deep Learning for Real-Time Object Detection

Object detection is a field of computer vision that deals with localizing and labeling objects inside
an image. Before the recent huge developments in deep learning techniques, object detection was
classically performed with machine learning methods such as the cascade classifier based on Haar-like
features [39] or coupled with feature extraction algorithms like the histograms of oriented gradients
(HOG) [37,40]. With the recent developments in deep learning, considerable improvements in both
the accuracy and efficiency of object detection algorithms have been achieved. Current techniques
are split into region proposal methods and single-shot detectors. The former firstly identifies areas
inside the image that most likely contain objects of interest, abd then feeds them to a second stage
that predicts label and bounding box dimensions. In this category, we find algorithms such as
R-CNN [41], fast R-CNN [42] and faster R-CNN [43]. Single-shot detectors, on the other hand, treat the
detection task as a regression problem and directly perform both localization and labeling with a
single stage. This method makes them generally faster than region proposal techniques, but with
slightly less accuracy. The most known single shot detectors are SSD [44] and YOLO [38], with its
evolutions YOLOv2 [45], YOLOv3 [4] and YOLOv4 [46]. Lightweight versions of these methods, such
as YOLOv3-tiny, have been specifically developed to be implemented in low-power real-time systems
and therefore are most suitable for service robotics applications.

Recently, several advancements have been made in edge AI, where deep neural networks are
deployed on low-power real-time embedded systems [47]. This field of research has principally

Machines 2020, 8, 49 4 of 19

flourished thanks to the release of hardware platforms specifically designed to accelerate deep neural
network inferences. NVIDIA released boards with onboard GPUs, such as Jetson TX2, AGX Xavier
and Nano. Intel produced two generations of USB hardware accelerators called Neural Computing
Stick (NCS), and recently Google released its own Coral board and USB accelerator, able to boost
inference performance using the Tensor Processing Unit (TPU) chips. In the literature can be found
several works which apply optimization techniques to object detection algorithms to deploy them on
embedded devices with hardware acceleration [48–52].

In our work, we fine-tuned a pre-trained YOLOv3-tiny network for the person detection task,
and we propose a cost-effective person-following system that can generate suitable velocity commands
for the robotic actuators, based on RGB-D images. The proposed methodology was extensively tested
with several edge AI devices in order to compare performance and power consumption for the different
possible configurations. Finally, a potential implementation of the proposed system was integrated
and tested with a standard robotic platform.

The rest of the paper is organized as follows. Section 3 presents the dataset used in the
re-training and the hardware setup. Section 4 discusses the proposed methodology with an extensive
description of the detection mechanism and the control algorithm. Finally, Section 5 presents the
experimental discussion, the performance comparison on the considered hardware platforms and the
final complete implementation.

3. Materials and Data

The network adopted was pre-trained with the COCO dataset, which contains 80 classes of objects
with their respectively bounding box and marks. Subsequently, a technique named transfer learning [53]
was adopted to realize the re-training and the fine-tuning of the network using a smaller dataset
composed by the person class only. In this way, a custom version of the network YOLOv3-tiny was
produced, optimizing it for accurate and efficient detection. That network was tested and compared
with the original model, producing some metric evaluation results. The deep learning network
was evaluated on different edge AI devices by assessing the performance of each of them in terms
of inference speed and power consumption. Finally, a specific hardware solution was selected to
assemble a robotic platform and test it in a real environment.

3.1. Data Description

The images of people used to create the person dataset were extracted from the OIDv4 [54]
dataset, which are divided into training, validation and testing. During the re-training phase, we used
6001 images, divided into the training set, 5401, and the test set, 600. The dimension of the images was
imposed to be equal to 416 × 416 during training, in order to be more coherent with the pre-trained
input dimension of the original network and the native resolution, 480 × 640, of the depth camera.

3.2. Hardware Description

The main request to fulfill is the necessity of a real-time response in each step that makes up
this robotic application: person detection algorithm, data elaboration, control of the robot and the
navigation into the indoor environment. All these operations must be as instantaneous as possible to
avoid the loss of the person to follow—extremely probable in case the person moves away from the
robot view.

For what concerns the embedded implementation of the neural network, different platforms were
evaluated and are shown in Figure 1 and summarized in Table 1: a Raspberry Pi 3 B+ with Intel NCS,
a Raspberry Pi 3 B+ with Movidius NCS2, a Coral USB Accelerator, an NVIDIA Jetson AGX Xavier
developer kit and an NVIDIA Jetson Nano.

The Neural Computing Sticks (NCS) are USB dedicated hardware accelerators specifically used
to perform deep neural network inferences. Both the first and the second generations of the NCS have
been tested: the first has a Myriad 2 Vision Processing Unit (VPU), while the second has Myriad X

Machines 2020, 8, 49 5 of 19

VPU and reaches eight times the performance of the previous version. These two components request
a USB 3.0 or 2.0 interface so that they can be easily used with cheap single-board computers such as a
Raspberry board.

Figure 1. The analyzed embedded devices to deploy deep neural networks at the edge. Top left:
Raspberry Pi 3 B+ with Intel NCS. Top right: NVIDIA Jetson AGX Xavier. Center left: Coral USB
Accelerator. Center right: Raspberry Pi 3 B+ with Movidius NCS2. Bottom: NVIDIA Jetson Nano.

The Coral USB Accelerator, released in 2019, is an on-board edge TPU coprocessor able to reach
high-performance machine learning inference, with a limited power cost, for TensorFlow Lite models.
The board can work at different clock frequencies: maximum or reduced. These frequency types are
one the twice of the other, so using the maximum frequency there is an increase of the inference speed
with a consequent increase of the power consumption.

The NVIDIA Jetson AGX Xavier, released in 2018, is a System-On-Module able to guarantee high
performance and power efficiency. The board contains DRAM, CPU, PMIC, flash memory storage
and a dedicated GPU for hardware acceleration, so it has been specifically realized to perform rapidly
different neural network operations. The kit is also supplied with several software libraries as NVIDIA
JetPack, DeepStream SDKs, CUDA, cuDNN, and TensorRT. It is possible to set different power mode
configurations also selecting the number of CPU cores utilized: 10 W (2 cores), 15 W (4 cores), 30 W
(2, 4, 6 or 8 cores).

The NVIDIA Jetson Nano is a lightweight, powerful computer explicitly designed for AI in order
to run multiple neural networks in parallel for image elaboration. The board mounts a 128-core
NVIDIA Maxwell GPU, a Quad-Core ARM Cortex-A57 MPCore CPU and a 4 GB LPDDR4 memory
and reaches the peak performance of 472 GFLOPs. It can work in two power modes: at 5 W or 10 W
without the support of Tensor cores during the inference acceleration.

The complete hardware selected for testing in the test environment is an upgrade of the
TurtleBot3 Waffle Pi from ROBOTIS (https://emanual.robotis.com/docs/en/platform/turtlebot3/
specifications/), a standard robotic platform supported by ROS and extremely used by developers.
This robot uses as on-board PC the Jetson Xavier developer kit (https://developer.nvidia.com/
embedded/jetson-agx-xavier-developer-kit), and it has been equipped with an additional camera
sensor, an Intel RealSense Depth camera D435i (https://www.intelrealsense.com/depth-camera-

https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/
https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/

Machines 2020, 8, 49 6 of 19

d435i/). This low-cost depth camera, ideal for navigation or object recognition applications,
is composed of an RGB module and two infrared cameras separated by a wide IR projector.

Table 1. The main specifications of the embedded HW for edge AI taken into account for the
experimentation. The price indicated for each device is referred to the commercial value at the time of
the publication.

Intel NCS Intel Movidius
NCS2

Coral USB
Accelerator

NVIDIA Jetson
AGX Xavier
Developer Kit

NVIDIA
Jetson Nano

AI
performance

100 GFLOPs
(FP32)

150 GFLOPs
(FP32)

4 TOPs
(INT8)

32 TOPs
(FP32)

472 GFLOPs
(FP32)

HW
accelerator

Myriad 2
VPU

Myriad X
VPU

Google
Edge TPU
coprocessor

512-core NVIDIA
Volta GPU with 64
Tensor Cores and
2x NVDLA Engines

128-core NVIDIA
Maxwell GPU

CPU N.A. N.A. N.A.

8-core NVIDIA
Carmel Arm
v8.2 64-bit CPU
8MB L2 + 4MB L3

Quad-core ARM
Cortex-A57
MPCore processor

Memory 4 GB LPDDR3 4 GB LPDDR3 N.A.
32 GB 256-bit
LPDDR4x
136.5 GB/s

4 GB 64-bit
LPDDR4
25.6 GB/s

Storage N.A. N.A. N.A. 32 GB eMMC 5.1
Micro SD card slot
or 16 GB eMMC
5.1 flash

Power 1 W 1.5 W 1 W 10/15/30 W 5/10 W

Size 73 × 26 mm 73 × 26 mm 65 × 30 mm 100 × 87 mm 70 × 45 mm

Weight 18 g 19 g 20 g 280 g 140 g

Price $70 $74 $60 $700 $99

4. Proposed Methodology

The goal of this research was to develop an autonomous, real-time, person-following assistive
system able to promote the aging-in-place of independent elderly people.

The workflow of our solution is exposed here. Firstly, the detection and localization of
the person in the environment are realized, using the RGB-D information from the camera and
a neural network specifically designed for fast and accurate real-time object detection, YOLOv3-tiny.
Successively, the information about the position of the person with respect to the robot reference frame
is used to create a tailored control algorithm, using a linear trend for the linear velocities and a parabolic
trend for the angular velocities. In this way, the robot can follow the person while remaining at a certain
safe distance from him, thereby avoiding both hitting and losing the target. The pseudo-code of the
overall algorithm is reported in the Algorithm 1.

The proposed algorithm, in the practical implementation, is integrated with the open-source
Robot Operating System (ROS) (https://www.ros.org/) to set the control to the actuators of the robot.
The result is an autonomous, cost-effective person-following system with deep learning at the edge,
easily integrable in different unmanned vehicles.

https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://www.ros.org/

Machines 2020, 8, 49 7 of 19

Algorithm 1: Person-following using an RGB-D camera and YOLOv3-tiny network.

1: Inputs:
Dh×w: Depth Matrix obtained from the camera
xbb: Horizontal coordinate of the center of the bounding box
ybb: Vertical coordinate of the center of the bounding box
xc: Horizontal coordinate of the center of the camera frame
Ndetection: Number of the detections provided by the network

2: Initialize:
Fmoreperson ← 0
Vlinear(0) ← 0
Vangular(0) ← 0
Ttime ← 0
i← 1

3: while True do
4: if (Ndetection == 0) then
5: Vlinear(i) ← Vlinear(i−1)

6: Vangular(i) ← Vangular(i−1)

7: if Ttime > t then
8: reset: Ttime
9: Vlinear(i) ← 0
10: Vangular(i) ← 0
11: end if
12: else if (Ndetection == 1) then
13: dx ← (xc − xbb)
14: depth← D[ybb, xbb]
15: Vlinear(i) ← linearvelocity(depth)
16: Vangular(i) ← angularvelocity(dx)
17: reset: Ttime, Ndetection
18: else
19: if Ttime > 1
20: reset: Ttime
21: Vlinear(i) ← 0
22: Vangular(i) ← 0
23: Fmoreperson ← 1
24: end if
25: reset: Ndetection
26: end if
27: VelocityController(Vlinear(i) , Vangular(i))

28: if (Fmoreperson == 1) then
29: stop the algorithm for a prefixed time
30: reset: Fmoreperson, Ttime
31: end if
32: i ++
33: acquire next Inputs
34:end while

4.1. Person Localization

By using a re-trained version of YOLOv3-tiny for object detection and the RGB-D camera chosen
for this application, it is possible to detect and localize a person in space interactively. In fact, once the
network is optimized, the precision and recall values allow one to have a continuous detection of the
target without the use of a tracker algorithm or additional filter to support the control implementation.
That means the use of the network is sufficient to realize real-time person-following, while reducing
the computational cost and other power consumption. These considerations are supported both from
the average precision AP50 obtained from the re-trained network, and the specific use case taking
into account: a self-sufficient older person in his or her home environment. As the target to follow is

Machines 2020, 8, 49 8 of 19

an elderly person, its moving velocity is reduced so the tracker is superfluous and consequently the
control is smooth, and this is also supported thanks to the reduced speed of the robot.

Object detection is an important area of research, interested in the processing of images and videos
to detect and recognize objects. You only look once (YOLO) [4,38,45] is the object detection method
commonly used in the real-time processing image applications. This model, based on a feed-forward
convolutional neural network, is considered an evolution of the single-shot-multibox detector (SSD)
concept with the idea of predicting both the bounding boxes and the class detection probability simply
analyzing the image once. Its architecture is based on a single neural network trained end-to-end to
increase the accuracy and to reduce the predictions of false positives on the background.

The operations done by the network can be divided into four steps:

1. The input image is processed with a grid cell as a reference frame.
2. Each grid cell generates bounding boxes and predicts their confidence rate. The confidence rate

depends on the accuracy of the network during the detection.
3. Each grid cell has a probability score for each class. The number of classes depends on the dataset

used during the training process of the network.
4. The total number of bounding boxes is minimized by setting a minimum confidence rate and

using the non-maximum suppression (NMS) algorithm to obtain the final predictions that can
be used to generate the final output: an input image with the bounding boxes over the detected
objects with the reference classes and the accuracy percentages.

During the evolution of the YOLO architecture, incremental improvements can be recorded in
the different versions developed, starting from YOLOv2, which includes many features to increase
the performance, until reaching YOLOv3 and YOLOv4, the last two versions of the model, in which
there are notable improvements in the capability of the network to detect objects. In our proposed
methodology, we suggest a re-trained and optimized version of YOLOv3-tiny, which is the lightweight
version of YOLOv3 with a reduced number of trainable parameters. In Table 2 is the structure of the
modified architecture of YOLOv3-tiny for only the class person.

Table 2. YOLOv3-tiny architecture designed to work with only class person and an input size of
416× 416. The network after training is further optimized to be deployed onboard the robotic platform.

Layer Type Size/Stride Filters Output

0 Convolution 3 × 3/1 16 416 × 416 × 16
1 MaxPooling 2 × 2/2 208 × 208 × 16
2 Convolution 3 × 3/1 32 208 × 208 × 32
3 MaxPooling 2 × 2/2 104 × 104 × 32
4 Convolution 3 × 3/1 64 104 × 104 × 64
5 MaxPooling 2 × 2/2 52 × 52 × 64
6 Convolution 3 × 3/1 128 52 × 52 × 128
7 MaxPooling 2 × 2/2 26 × 26 × 128
8 Convolution 3 × 3/1 256 26 × 26 × 256
9 MaxPooling 2 × 2/2 13 × 13 × 256
10 Convolution 3 × 3/1 512 13 × 13 × 512
11 MaxPooling 2 × 2/1 13 × 13 × 512
12 Convolution 3 × 3/1 1024 13 × 13 × 1024
13 Convolution 1 × 1/1 256 13 × 13 × 256
14 Convolution 3 × 3/1 512 13 × 13 × 512
15 Convolution 1 × 1/1 255 13 × 13 × 18
16 YOLO
17 Route 13
18 Convolution 1 × 1/1 128 13 × 13 × 128
19 Up-sampling 2 × 2/1 26 × 26 × 128
20 Route 19 8
21 Convolution 3 × 3/1 256 26 × 26 × 256
22 Convolution 1 × 1/1 255 26 × 26 × 18
23 YOLO

Machines 2020, 8, 49 9 of 19

4.1.1. Person Detection and Localization Implementation

The RGB camera frames are the input data that feed the re-trained YOLOv3-tiny network for the
class person. As already introduced, the full input image is treated in functional regions represented
as a grid of cells. In each region, bounding boxes are weighted by the predicted probabilities, and the
predictions are the result of single network evaluation.

In order to localize the position of the person in the video frame, it is sufficient to use the
bounding box information provided by the network. As it is depicted in Figure 2, the bounding box
of the detected person directly provides the coordinates of the angle, x, y, with respect to the R0
reference frame.

Figure 2. Video frame structure. It represents the reference frame (RF) transformation adopted to
compute the pixel coordinates of the center of the bounding box detecting the person with respect to
a new RF (R1), the one used during the calculation of the angular velocity control signals for the robot.

By using the information of the center, with respect to R0, it is possible to calculate the coordinates
of the midpoint of the person detected with respect to the new reference frame R1 (xp, yp):

xp = xc −
(

x +
w
2

)
(1)

yp = yc −
(

y +
h
2

)
(2)

where xc and yc are respectively 319 and 239 pixels due to the image resolution, 640 × 480, of the
camera taken as reference in this study.

The xp and yp coordinates are necessary to locate the person in the 2D space and xp; in particular,
is fundamental to develop the angular control algorithm, to adjust the rotation of the robot.

Once known, with the pixel coordinates of the center of the bounding box detecting the person, it is
possible to obtain the distance between the robot and the person by merely extracting this information
from the corresponding pixel of the depth camera matrix. The dimension of that matrix is equal to
the resolution of the acquired RGB frame, and for each pixel position, there is a value in millimeters
representing the distance of the camera from what it sees. Since the limits of the depth computation,
of the camera taken as reference in this study, are 0.105 m and 8 m, the values of the depth matrix
range from 0 to 8000.

The depth value extracted represents the missing coordinate to localize a person in the 3D
environment. The z coordinate is strictly necessary to realize the linear velocity control algorithm,
which is able to regulate the forward or backward movement of the robot.

Machines 2020, 8, 49 10 of 19

4.1.2. Detection Situation Rules

Three possible detection situations are taken into account by controlling the output value, Ndetection,
of the network:

1. Nothing detected: If nothing is detected, the robot stops. Differently, suppose the robot loses the
person it is following. In that case, it continues to move in the direction of the last detection with
the previous velocity commands for a pre-imposed time t. After that, if nothing is detected again,
the robot stops.

2. One person detected: The robot follows the movement of the person while remaining at a certain
safe distance from him.

3. More than one person simultaneously detected: The robot stops for a prefixed time and then it
restarts the normal detection operation. There could be many other solutions to implement,
for example, a person tracking algorithm to follow one of the people detected [55–57]. In particular,
the presence of a tracking algorithm or an additional filter will have to be considered if the use
case is changed—for example, in case this approach will be used in an office environment.

However, for this specific application, it has been decided to block the robot directly because
it has been assumed that the person using it should be self-sufficient, living in the house alone.
Therefore, if the person receives visits, it would be unpleasant and unnecessary to have a robot
following him inside the house.

4.2. Person-Following Control Algorithm

The linear and the angular velocity are regulated using different functions, so, in order to obtain
a correct control algorithm, it is necessary to combine them simultaneously.

4.2.1. Angular Velocity Control

The angular velocity is proportional to the horizontal coordinate, xp, of the center of the bounding
box detecting the person, computed with respect to the reference frame located in the center of the
frame of the camera. It has a parabolic trend in order to make the movements of the robot smoother
and more natural. By considering this reference frame, the dx value is positive if the person is on the
left side of the frame or negative if it is on the right side. Figure 3 shows a graphical representation of
how the dx value is obtained.

Figure 3. The RGB frame of the camera showing how the dx value, adopted in the computation of
the angular velocity, is obtained. This value is equal to the horizontal coordinate of the center of the
bounding box detecting the person in the frame.

Machines 2020, 8, 49 11 of 19

The controller function generated has the dx value, measured in pixel, as input, and gives as
output the angular velocity, vangularθ , according to the following formula:

vangularθ =

maxvel ·dx2

3202 , if dx ≥ 0
minvel ·dx2

3202 , if dx < 0
(3)

The terms maxvel and minvel , which are equal and opposite values, are the upper and the lower
limits of the angular velocity of the robotic platform. The number 320 pixels stands for the maximum
number of pixels for each side (left and right) of the video frame because the resolution of the image
received from our camera is 640 × 480.

4.2.2. Linear Velocity Control

The linear velocity depends linearly on the distance between the robot and the person detected
depthm measured in meters. In particular, it is in function of the value obtained from the depth matrix
of the camera in the center point of the bounding box detecting the person. This control can be
represented by a linear trend divided into three regions. In the first region, the distance is superior
compared to the set upper limit mvelupperlimit

, so here the robot moves straight on following a linear
proportional trend until it reaches its maximum speed saturating to that value. In the second region,
there is a stop condition; in fact, the robot is at the safety distance from the person and remains there to
avoid losing the person. The zero value is also assigned when the distance is 0 m, in order to avoid a
particular case in the code. In fact, the depth value obtained from our camera has a limit of 0.105 m,
so nothing should be detected at a lower distance. The final region is between the limit of the camera:
0.105 m and the distance lower-limit mvellowerlimit

. In this condition, the robot goes back following a
linear proportional trend until it reaches its maximum negative speed saturating to that value. Here is
reported the formula responsible for the linear velocity vlinearx:

vlinearx =

depthm ·m1 + q1, if depthm > mvelupperlimit

0, if mvellowelimit
< depthm ≤ mvelupperlimit

or depthm = 0

depthm ·m2 + q2, if depthm ≤ mvellowelimit

(4)

The values m1, q1, m2 and q2 were found using the equation of the straight line passing through
two points.

5. Experimental Discussion and Results

In this section, we firstly discuss some technical details of the re-training procedure of the
tiny version of YOLOv3. Then experimental evaluations are discussed for both the model and its
deployment on the selected embedded devices. Finally, we present our platform implementation
that represents one of the possible practical configurations to realize the person-following solution
presented with this work.

5.1. Person Detector Training and Optimization

In order to obtain a lightweight and efficient network for the detection of the target, we modified
the original model to classify and localize the class person only. Using OIDv4 [54], we collected a set
X of 6001 training samples, reserving 600 of them for testing. Making use of transfer learning [58],
we started our training from a pre-trained backbone, from layer 0 to 15 in Table 2. That greatly
speeds up the training, drastically reducing the number of samples required to achieve a high level
of accuracy. We trained for 20 epochs with a linear learning rate decay and an initial value of
η = 0.0001. We adopted momentum optimization [59] with β = 0.9 and a batch size of 32. The training

Machines 2020, 8, 49 12 of 19

procedure lasted approximately one hour on a workstation with an NVIDIA RTX 2080 Ti and 64 GB of
DDR4 SDRAM.

It is possible to observe the effectiveness of the re-training procedure from Table 3. The re-trained
version of YOLOv3-tiny gains more than 30% of average precision (AP) at 0.5 of intersection over unit
(IOU). Moreover, the resulting single-class network is 23% faster, in terms of inference latency, than the
multi-class counterpart. That is due to the reduced number of features maps in the final detection
section of the network, from layer 15 to 23 of Table 2.

Table 3. Average precision at 0.5 IOU for person class before and after re-training. It is clear how
transfer learning is so effective at improving the performance of the tiny version of the YOLOv3 model,
increasing the metric score by more than 30%.

Network AP50 Gain

YOLOv3-tiny 19.21 %

YOLOv3-tinyperson 49.30 % 30.09 %

Finally, we optimized the resulting re-trained model with two different libraries: TensorRT and
TensorFlow Lite (https://www.tensorflow.org/lite). Optimization is a fundamental process and
aims at reducing latency, inference cost, accelerator compatibility, memory and storage footprint.
That is mainly achieved with two distinct techniques: model pruning and quantization. The first
one simplifies the topological structure, removing unnecessary parts of the architecture, or favors
a more sparse model introducing zeros to the parameter tensors. On the other hand, quantization
reduces the precision of the numbers used to represent model parameters from float32 to float16 up to
int8. That can be accomplished after the training procedure (post-training quantization) or during the
training procedure (quantization-aware training), adding fake quantization nodes inside the network
and making it robust to quantization noise. Indeed, optimizations can potentially result in changes in
model accuracy, and so any operation must be carefully evaluated.

In order not to affect the accuracy of our YOLOv3-tiny implementation, we applied basic pruning
optimizations with the TensoRT library, removing unnecessary operations and setting to zero irrelevant
weights. Indeed, person detection is a critical step in our solution, and it requires the maintenance
of a certain level of performance. Nevertheless, in order to test also the performance of the custom
TPU ASIC of the Coral Accelerator, we produced a full integer model with TensorFlow-Lite optimizer
to be compatible with the hardware of the device. When only applying model pruning we obtained
an insignificant accuracy loss; with 8-bit precision the model loses 22% of its original AP50. Indeed,
darker scenes, with partially occluded and small targets, are not precisely detected anymore. However,
latency and inference costs are significantly reduced using this extreme optimization procedure.

5.2. Inference with Edge AI Accelerators

After the training and optimization procedures, the re-trained model was deployed on the
different edge device configurations presented in Section 3. We tested the performance in terms of
absorbed power and frame rate in order to outline different hardware solutions for our proposed
cost-effective person-following system. A single-board computer, Raspberry Pi 3B+, was used for all
configurations that require a host device.

Firstly, we measured the power consumption of the different solutions at an idle condition,
and then we executed the model for approximately five minutes to reach steady-state behavior.
We directly measured the current absorbed from the power source, thereby obtaining the power
consumption of the entire system.

Since the Jetson boards allow the user to select different working power conditions, we tested
all of them. The results are presented in Table 4. The second version of the Intel Movidius Neural
Stick achieves a higher frame rate with less power consumption. However, either Jetson Nano running
modes reach higher performance at the expense of higher current absorption. On the other hand,

https://www.tensorflow.org/lite

Machines 2020, 8, 49 13 of 19

Jetson AGX Xavier achieves a much higher frame rate on all running modes, but with other levels of
power consumption. Finally, full integer quantization greatly reduces the latency of the model running
at more than 30 fps with only 7 W. However, as previously stated, the accuracy loss in this last case
could compromise the correct functioning of the entire system in certain types of application.

Table 4. Comparison between different devices’ power consumption levels and performances achieved
with the re-trained and modified version of YOLOv3-tiny. The fps * achieved with the Coral Accelerator
are obtained with an int8 weights precision.

Device Mode Val [V] Imean [A] P [W] fps

Raspberry Pi 3B+ IDLE 5 0.61 3.075 N/A
RP3 + Neural Stick 1 RUNNING 5 1.2 6 4
RP3 + Neural Stick 2 RUNNING 5 1.12 5.6 5
Jetson Nano IDLE 10W 5 0.32 1.6 N/A

RUNNING 10W 5 1.96 9.8 9
RUNNNING 5W 5 1.4 7 6

Jetson AGX Xavier IDLE 30W 19 0.35 6.65 N/A
RUNNING 30W 19 0.91 17.29 30+
RUNNING 15W 19 0.82 15.58 28
RUNNING 10W 19 0.62 11.78 15

RP3 + Coral Accelerator MAX 5 1.40 7 30+ *

5.3. Platform Implementation

We tested the proposed cost-effective person-following system in a real environment with the
configuration presented in Table 5; the specifics about its hardware components have been already
introduced in Section 3.2. Figure 4 shows the assembled robot adopted for this application.

Table 5. Hardware configuration adopted for practical simulations. Jetson AGX Xavier and Coral USB
Accelerator are used to run the model onboard.

HW Materials

Robotic Platform TurtleBot3 Waffle Pi

Edge AI Device NVIDIA Jetson AGX Xavier

RGB-D camera Intel RealSense Depth Camera D435i

The tests, performed in a real environment, show robot behavior consistent with expectations.
The person detection algorithm is high-speed and reached a high level of performance. The network
improvement, obtained from the re-training, is considerable (30.09%), and this implies optimal real-time
results and perfect control of the movements of the robot that follows the person.

By testing the network on the Jetson Xavier board, we have obtained a high frame rate (30+ fps
at the maximum power of the board), as presented in the Table 4. These results affect the velocity of
the detection algorithm that runs in real-time, and consequently the frequency of the overall control
system, running on the Jetson Xavier, which ranges between 18 and 27 Hz.

Machines 2020, 8, 49 14 of 19

Figure 4. TurtleBot3 Waffle platform with NVIDIA Jetson AGX Xavier and Intel RealSense Depth
camera D435i onboard.

During the experiments, conducted in the test environment, we have noticed that using all the
outputs of the network to modify the control velocity could be counterproductive because it causes
a continuous variation of the inputs of the robot control and consequently a not regular movement
of the robot. Differently, imposing the updating of the output of the robot command velocity each
2 Hz, the tests give optimal results: the robot follows the target always in real-time, but with a notable
increase in the smoothness of its movement. It is essential to underline that the implementation of
the control adopted has been explicitly designed for the use case taken into account, considering an
elderly person as the target and the speed limits of the considered robotic platform: ±0.26 m/s for
linear velocity and ±1.8 rad/s for angular velocity. These limits are reasonable for the considered
indoor application since walking sessions are usually short and performed with very limited speed
and frequent pauses. However, the control rule can be easily adapted to more performing prototypes
if a higher linear speed limit is needed.

During the test phase, the presented control of the robot has been perfected, in particular,
considering the characteristics of the platform:

- The optimal distance limits able to define the three areas of the linear velocity control are defined
as mvellowelimit

= 1.7 m and mvelupperlimit
= 1.9 m. In the range between these two values the robot is in

the safe distance zone, so it can only rotate because the linear velocity stays at zero, in order to
avoid the generation of any dangerous situations for the target person.

- The best linear increment is computed during both the forward and backward movements of
the robot.

Thus, the final obtained values of m1, q1, m2 and q2, presented in Section 4, for our platform
implementation, are reported in Table 6. Moreover, in Figure 5a the developed angular velocity
and linear velocity behaviors are represented while taking into account maxvel and minvel of the
robotic platform.

It is important to underline that the initial linear velocity control has been designed with different
slopes and without singularities. However, during the test phase, trouble has been highlighted:
the robot in the restart moving phase proceeded so slowly that it was unable to follow the target
without losing it correctly. That is the reason for the introduction of the step singularities, visible on
Figure 5b, that, thanks to the small linear velocity of both the robot and the target (the older person),
allow one to have a balanced movement and not jerky.

Machines 2020, 8, 49 15 of 19

Table 6. The values m1, q1, m2, q2 identified, after a test phase, as the best choice of the linear control
algorithm, taking into account the robot adopted in our case study, are here reported.

Straight Line Points

1◦: (m1, q1)
P1 (1 m, 0.23 m/s)

P2 (3 m, 0.26 m/s)

2◦: (m2, q2)
P1 (1 m, −0.23 m/s)

P2 (0.3 m, −0.26 m/s)

(a) (b)

Figure 5. In (a) is the angular velocity control plot, computed considering 640 × 480 as the resolution
of the camera frame and the limit value of the angular velocity ±1.8 rad/s. Instead, in (b) is shown
the linear velocity control function, computed considering the depth camera range (from 0.105 m to
8 m), the limit value of the linear velocity of the robotic platform ±0.26 m/s and the safety distance
respected inside the interval between 1.7 and 1.9 m.

The overall system has been tested in several environments with different light conditions and
target velocities verifying the correctness and completeness of system functionality. The final result
meets the demands of an accurate real-time application; the robot moves in safety, consistent with the
movements of the person, limiting the chances of losing the target to chase.

We can conclude that we have not realized a simple object tracker, but a person-following
method that focuses on cost-effectiveness, since it cuts unnecessary computations to have a low-cost,
functional system. Besides, the detection is realized at the edge, so the network is optimized to run
on neural accelerators. In this way, it is not necessary to have an expensive computer onboard the
robot, which would imply both the increase of the price and the consumption of additional power.
The reduction in computational cost and power consumption let us use different types of hardware,
presented in Table 1, associated with their respective performances, reported in Table 4.

6. Conclusions

We proposed a cost-effective person-following system for self-sufficient older adults assistance
that exploits latest advancements in deep learning optimization techniques and edge AI devices to
bring inference directly on the robotic platform with high performance and limited power consumption.
We tested different embedded device configurations, and we presented a possible practical
implementation to realize the suggested system. The discussed solution is easily replaceable and
fully-integrable in pre-existing navigation stacks. Future research may integrate the person-following
method with concrete applications and monitoring tools for self-sufficient older adults.

Machines 2020, 8, 49 16 of 19

Author Contributions: Conceptualization, M.C.; methodology, A.B.; software, A.B. and V.M.; validation, A.B.
and V.M.; data curation, A.B., F.S. and V.M.; writing—original draft, A.B., F.S. and V.M.; writing—review and
editing, A.B., F.S. and V.M.; project administration, M.C.; funding acquisition, M.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work has been developed with the contributions of the Politecnico di Torino
Interdepartmental Centre for Service Robotics PIC4SeR (https://pic4ser.polito.it) and SmartData@Polito
(https://smartdata.polito.it).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Islam, M.J.; Hong, J.; Sattar, J. Person-following by autonomous robots: A categorical overview. Int. J.
Robot. Res. 2019, 38, 1581–1618. [CrossRef]

2. World Population Ageing 2019 (ST/ESA/SER.A/444); Population Division, Department of Economic and Social
Affairs, United Nations: New York, NY, USA, 2020.

3. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
4. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
5. Pucci, D.; Marchetti, L.; Morin, P. Nonlinear control of unicycle-like robots for person following.

In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, 3–7 November 2013; pp. 3406–3411.

6. Chung, W.; Kim, H.; Yoo, Y.; Moon, C.B.; Park, J. The detection and following of human legs through
inductive approaches for a mobile robot with a single laser range finder. IEEE Trans. Ind. Electron. 2011,
59, 3156–3166. [CrossRef]

7. Morales Saiki, L.Y.; Satake, S.; Huq, R.; Glas, D.; Kanda, T.; Hagita, N. How do people walk side-by-side?
Using a computational model of human behavior for a social robot. In Proceedings of the Seventh Annual
ACM/IEEE International Conference on Human-Robot Interaction, Boston, MA, USA, 5–8 March 2012;
pp. 301–308.

8. Cosgun, A.; Florencio, D.A.; Christensen, H.I. Autonomous person following for telepresence robots.
In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany,
6–10 May 2013; pp. 4335–4342.

9. Leigh, A.; Pineau, J.; Olmedo, N.; Zhang, H. Person tracking and following with 2d laser scanners.
In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA,
USA, 26–30 May 2015; pp. 726–733.

10. Adiwahono, A.H.; Saputra, V.B.; Ng, K.P.; Gao, W.; Ren, Q.; Tan, B.H.; Chang, T. Human tracking and
following in dynamic environment for service robots. In Proceedings of the TENCON 2017–2017 IEEE
Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 3068–3073.

11. Cen, M.; Huang, Y.; Zhong, X.; Peng, X.; Zou, C. Real-time Obstacle Avoidance and Person Following Based
on Adaptive Window Approach. In Proceedings of the 2019 IEEE International Conference on Mechatronics
and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 64–69.

12. Jung, E.J.; Yi, B.J.; Yuta, S. Control algorithms for a mobile robot tracking a human in front.
In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura,
Portugal, 7–12 October 2012; pp. 2411–2416.

13. Cai, J.; Matsumaru, T. Human detecting and following mobile robot using a laser range sensor. J. Robot.
Mechatron. 2014, 26, 718–734. [CrossRef]

14. Koide, K.; Miura, J. Identification of a specific person using color, height, and gait features for a person
following robot. Robot Auton. Syst. 2016, 84, 76–87. [CrossRef]

15. Brookshire, J. Person following using histograms of oriented gradients. Int. J. Soc. Robot. 2010, 2, 137–146.
[CrossRef]

16. Satake, J.; Chiba, M.; Miura, J. A SIFT-based person identification using a distance-dependent appearance
model for a person following robot. In Proceedings of the 2012 IEEE International Conference on Robotics
and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 962–967.

https://pic4ser.polito.it
https://smartdata.polito.it
http://dx.doi.org/10.1177/0278364919881683
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/TIE.2011.2170389
http://dx.doi.org/10.20965/jrm.2014.p0718
http://dx.doi.org/10.1016/j.robot.2016.07.004
http://dx.doi.org/10.1007/s12369-010-0046-y

Machines 2020, 8, 49 17 of 19

17. Satake, J.; Chiba, M.; Miura, J. Visual person identification using a distance-dependent appearance model
for a person following robot. Int. J. Autom. Comput. 2013, 10, 438–446. [CrossRef]

18. Chen, B.X.; Sahdev, R.; Tsotsos, J.K. Integrating stereo vision with a CNN tracker for a person-following
robot. In International Conference on Computer Vision Systems; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 300–313.

19. Chen, B.X.; Sahdev, R.; Tsotsos, J.K. Person following robot using selected online ada-boosting with stereo
camera. In Proceedings of the 2017 14th Conference on Computer and Robot Vision (CRV), Edmonton, AB,
Canada, 16–19 May 2017; pp. 48–55.

20. Wang, X.; Zhang, L.; Wang, D.; Hu, X. Person detection, tracking and following using stereo camera.
In Proceedings of the Ninth International Conference on Graphic and Image Processing (ICGIP 2017),
Qingdao, China, 14–17 October 2017; p. 106150D.

21. Doisy, G.; Jevtic, A.; Lucet, E.; Edan, Y. Adaptive person-following algorithm based on depth images
and mapping. In Proceedings of the IROS Workshop on Robot Motion Planning, Vilamoura, Portugal,
7–12 October 2012.

22. Basso, F.; Munaro, M.; Michieletto, S.; Pagello, E.; Menegatti, E. Fast and robust multi-people tracking from
RGB-D data for a mobile robot. In Intelligent Autonomous Systems 12; Springer: Berlin/Heidelberg, Germany,
2013; pp. 265–276.

23. Munaro, M.; Basso, F.; Michieletto, S.; Pagello, E.; Menegatti, E. A software architecture for RGB-D people
tracking based on ROS framework for a mobile robot. In Frontiers of Intelligent Autonomous Systems; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 53–68.

24. Do, M.Q.; Lin, C.H. Embedded human-following mobile-robot with an RGB-D camera. In Proceedings of the
2015 14th IAPR International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 18–22 May
2015; pp. 555–558.

25. Ren, Q.; Zhao, Q.; Qi, H.; Li, L. Real-time target tracking system for person-following robot.
In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016;
pp. 6160–6165.

26. Mi, W.; Wang, X.; Ren, P.; Hou, C. A system for an anticipative front human following robot.
In Proceedings of the International Conference on Artificial Intelligence and Robotics and the International
Conference on Automation, Control and Robotics Engineering, Kitakyushu, Japan, 12–15 July 2016; pp. 1–6.

27. Gupta, M.; Kumar, S.; Behera, L.; Subramanian, V.K. A novel vision-based tracking algorithm for a
human-following mobile robot. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 1415–1427. [CrossRef]

28. Masuzawa, H.; Miura, J.; Oishi, S. Development of a mobile robot for harvest support in greenhouse
horticulture—Person following and mapping. In Proceedings of the 2017 IEEE/SICE International
Symposium on System Integration (SII), Taipei, Taiwan, 11–14 December 2017; pp. 541–546.

29. Chi, W.; Wang, J.; Meng, M.Q.H. A gait recognition method for human following in service robots. IEEE Trans.
Syst. Man Cybern. Syst. 2017, 48, 1429–1440. [CrossRef]

30. Jiang, S.; Yao, W.; Hong, Z.; Li, L.; Su, C.; Kuc, T.Y. A classification-lock tracking strategy allowing a
person-following robot to operate in a complicated indoor environment. Sensors 2018, 18, 3903. [CrossRef]
[PubMed]

31. Chen, E. “FOLO”: A Vision-Based Human-Following Robot. In Proceedings of the 2018 3rd International
Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2018), Dalian,
China, 12–13 May 2018; Atlantis Press: Beijing, China, 2018.

32. Yang, C.A.; Song, K.T. Control Design for Robotic Human-Following and Obstacle Avoidance Using an
RGB-D Camera. In Proceedings of the 2019 19th International Conference on Control, Automation and
Systems (ICCAS), Jeju, Korea, 15–18 October 2019; pp. 934–939.

33. Alvarez-Santos, V.; Pardo, X.M.; Iglesias, R.; Canedo-Rodriguez, A.; Regueiro, C.V. Feature analysis for
human recognition and discrimination: Application to a person-following behaviour in a mobile robot.
Robot. Auton. Syst. 2012, 60, 1021–1036. [CrossRef]

34. Susperregi, L.; Martínez-Otzeta, J.M.; Ansuategui, A.; Ibarguren, A.; Sierra, B. RGB-D, laser and thermal
sensor fusion for people following in a mobile robot. Int. J. Adv. Robot. Syst. 2013, 10, 271. [CrossRef]

35. Wang, M.; Su, D.; Shi, L.; Liu, Y.; Miro, J.V. Real-time 3D human tracking for mobile robots with multisensors.
In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 5081–5087.

http://dx.doi.org/10.1007/s11633-013-0740-y
http://dx.doi.org/10.1109/TSMC.2016.2616343
http://dx.doi.org/10.1109/TSMC.2017.2660547
http://dx.doi.org/10.3390/s18113903
http://www.ncbi.nlm.nih.gov/pubmed/30424577
http://dx.doi.org/10.1016/j.robot.2012.05.014
http://dx.doi.org/10.5772/56123

Machines 2020, 8, 49 18 of 19

36. Hu, J.S.; Wang, J.J.; Ho, D.M. Design of sensing system and anticipative behavior for human following of
mobile robots. IEEE Trans. Ind. Electron. 2013, 61, 1916–1927. [CrossRef]

37. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
20–25 June 2005; pp. 886–893.

38. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 779–788.

39. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI,
USA, 8–14 December 2001; pp.511–518.

40. Felzenszwalb, P.; McAllester, D.; Ramanan, D. A discriminatively trained, multiscale, deformable part model.
In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK,
USA, 23–28 June 2008; pp. 1–8.

41. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

42. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1440–1448.

43. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of twenty-ninth Conference on Neural Information Processing Systems, Montreal,
QC, Canada, 7–12 December 2015; pp. 91–99.

44. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox
Detector. Lect. Notes Comput. Sci. 2016, 21–37. [CrossRef]

45. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

46. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection.
arXiv 2020, arXiv:2004.10934.

47. Mittal, S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform.
J. Syst. Archit. 2019, 97, 428–442. [CrossRef]

48. Xu, X.; Amaro, J.; Caulfield, S.; Falcao, G.; Moloney, D. Classify 3D voxel based point-cloud using
convolutional neural network on a neural compute stick. In Proceedings of the 2017 13th International
Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin,
China, 29–31 July 2017; pp. 37–43.

49. Kang, D.; Kang, D.; Kang, J.; Yoo, S.; Ha, S. Joint optimization of speed, accuracy, and energy for embedded
image recognition systems. In Proceedings of the 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 715–720.

50. Cao, S.; Liu, Y.; Lasang, P.; Shen, S. Detecting the objects on the road using modular lightweight network.
arXiv 2018, arXiv:1811.06641.

51. Yang, T.; Ren, Q.; Zhang, F.; Xie, B.; Ren, H.; Li, J.; Zhang, Y. Hybrid camera array-based uav auto-landing
on moving ugv in gps-denied environment. Remote Sens. 2018, 10, 1829. [CrossRef]

52. Mazzia, V.; Khaliq, A.; Salvetti, F.; Chiaberge, M. Real-Time Apple Detection System Using Embedded
Systems With Hardware Accelerators: An Edge AI Application. IEEE Access 2020, 8, 9102–9114. [CrossRef]

53. Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep Transfer Learning with Joint Adaptation Networks. arXiv 2016,
arXiv:1605.06636.

54. Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.;
Duerig, T.; et al. The open images dataset v4: Unified image classification, object detection, and visual
relationship detection at scale. arXiv 2018, arXiv:1811.00982.

55. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric.
In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China,
17–20 September 2017; pp. 3645–3649.

http://dx.doi.org/10.1109/TIE.2013.2262758
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1016/j.sysarc.2019.01.011
http://dx.doi.org/10.3390/rs10111829
http://dx.doi.org/10.1109/ACCESS.2020.2964608

Machines 2020, 8, 49 19 of 19

56. Chen, L.; Ai, H.; Zhuang, Z.; Shang, C. Real-Time Multiple People Tracking with Deeply Learned Candidate
Selection and Person Re-Identification. In Proceedings of the 2018 IEEE International Conference on
Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6.

57. Mitzel, D.; Leibe, B. Real-time multi-person tracking with detector assisted structure propagation.
In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops),
Barcelona, Spain, 6–13 November 2011; pp. 974–981.

58. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In International
Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2018; pp. 270–279.

59. Polyak, B.T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math.
Math. Phys. 1964, 4, 1–17. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Person Following
	Deep Learning for Real-Time Object Detection

	Materials and Data
	Data Description
	Hardware Description

	Proposed Methodology
	Person Localization
	Person Detection and Localization Implementation
	Detection Situation Rules

	Person-Following Control Algorithm
	Angular Velocity Control
	Linear Velocity Control

	Experimental Discussion and Results
	Person Detector Training and Optimization
	Inference with Edge AI Accelerators
	Platform Implementation

	Conclusions
	References

