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Abstract

The present work deals with the progressive damage analysis of composite laminates subjected to low-velocity

impact. We develop a numerical model using higher-order structural theories based on the Carrera Unified For-

mulation (CUF) with Lagrange polynomials and resulting in a 2D refined layer-wise model. To model damage,

we use a combination of the continuum damage-based CODAM2 intralaminar damage model to account for

fiber and matrix damage within the ply, and cohesive elements to account for delamination between successive

composite plies. We carry out numerical assessments for the case of a linear elastic composite plate subjected

to impact, to compare the current framework with standard approaches based on 3D finite element (FE) anal-

ysis. We, then, consider the elastoplastic analysis of a bimetallic laminated plate to compare the performance

of the proposed layer-wise model and 3D-FE approaches, for the case of nonlinear impact analysis. The final

assessment considers progressive damage due to low-velocity impact, and the results are compared with available

literature data. The numerical predictions show a good correlation with reference experimental and simulation

results, thus validating the current framework for impact analysis of composite structures. Comparisons of the

proposed layer-wise structural models with those based on 3D finite elements demonstrate the improved compu-

tational efficiency of the CUF models in terms of model size and analysis time.

Keywords: CUF, low-velocity impact, higher-order structural modeling, continuum damage mechanics



1 Introduction

Fibre-reinforced composites are a popular choice of engineering materials due to their superior mechanical prop-

erties, such as high specific strength and stiffness, resulting in light-weight structures. However, due to their

layer-wise nature, composites tend to have fairly modest interlaminar properties making them quite vulnera-

ble to transverse loads. An example is low-velocity impacts due to various events such as tool drop during

maintenance or runway debris. Such events cause composite damage which may not be evident during a visual

inspection and hence is termed as barely visible impact damage (BVID). Delamination is especially significant

since it leads to a substantial reduction in structural stiffness. The issue of impact is thus a matter of high

practical importance and needs to be taken into account in the design phase of the composite structure.

Several experimental investigations have been performed over the past few decades on the effect of impact on

fibre-reinforced composites [1–4]. The high cost of such experimental campaigns motivates the development of

computational tools to investigate the effects of impact loads on laminated composites. Numerical approaches

to impact analysis of composite structures are generally classified based on the type of damage modelling used

in the analysis. Fully discrete damage models employ interface elements, typically in the form of cohesive zone

modelling (CZM), both within the ply to capture intralaminar matrix cracks, and between plies to capture

delamination. For instance, Bouvet and co-workers developed a numerical model with discrete interface ele-

ments for low-velocity impact modelling [5, 6]. Discrete models have the advantage of being able to explicitly

model the interaction between intralaminar matrix cracks and delamination, resulting in improved predictive

capabilities [7]. Other works on the discrete modeling approach for low-velocity impact include [8–11]. Fully

discrete models generally have high predictive accuracy, but at the cost of very high computational overheads,

making such a modeling approach impractical for large-scale composite structures. A popular alternative to

fully discrete modeling is the use of continuum damage mechanics (CDM) based material models to describe the

intralaminar behaviour, while cohesive elements are applied between consecutive plies to account for delamina-

tion. This combined approach has a relatively lower computational cost compared to fully discrete approaches,

while maintaining reasonable predictive accuracy, and making it a popular choice for the numerical modeling of

laminated composites under impact loading. Several investigations on low-velocity impact using this approach

have been reported in the literature, for instance, [12–16].

The progressive damage modelling of composites under impact is a computationally intensive task, and con-

siderable efforts have been made in reducing the numerical cost. A common strategy is the use of single-step

global/local approaches, where the impact area is discretized with a finer mesh relative to the global structural

model. The two disparate meshes are often connected at the interface via tie constraints. Such a technique

was used with a fully 3D-FE modeling approach in [17, 18]. A similar technique involving solid-shell coupling,

where the global composite structure was modelled using shell elements while the impact region was modelled

with solid elements, was used in [11].

The present work is motivated by the need for a computationally efficient numerical framework for the impact



analysis of composite structures. The numerical models used in this work utilise higher-order structural theories

based on the Carrera Unified Formulation (CUF) [19], a hierarchical framework to generate 1D and 2D models

with enhanced kinematics by the use of expansion functions over the cross-section and through the thickness,

respectively. The use of kinematic enrichment functions results in refined beam and plate/shell models that

can accurately evaluate 3D stress fields in a computationally efficient manner [20]. The current work is part

of efforts towards the development of a CUF-based virtual test platform for the nonlinear analysis of compos-

ite structures. Previous works associated with this development include the nonlinear analysis of thin-walled

structures [21, 22], micromechanical and multiscale analysis of composites [23, 24], delamination analysis of

laminated composites [25], contact analysis of physically linear and nonlinear beams [26, 27], as well as pro-

gressive damage analysis of composite laminates [28], where composite damage is described via the CODAM2

intralaminar damage model [29–31]. The current work extends the works of [26–28] towards the development of

a framework capable of performing impact analysis of fibre-reinforced composite structures. For the first time,

in this paper, CUF models are evaluated for low-velocity impact, including a set of material nonlinearities.

The paper is divided as follows - Section 2 describes CUF and the development of higher-order structural theo-

ries. Section 3 discusses the implementation of the node-to-surface contact algorithm used in the present work.

Numerical assessments on low-velocity impact are presented in Section 4, and finally the concluding remarks

are given in Section 5.

2 Structural theories and FE formulation
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Figure 1: Layer-wise modelling of composite laminates in CUF

The structural modeling and FE formulation follow the same approach described in [28] in which a detailed

explanation of the implementation of the CODAM2 material model and explicit time integration within the

CUF framework can be found. Considering a general layered structure, such as that in Fig. 1, the layer-wise



2D CUF model defines the displacement field as

u(x, y, z) = Fτ (z)uτ (x, y), τ = 1, 2, . . .M (1)

where the expansion function Fτ (z) describes the kinematic approximation through the thickness of the plate,

and uτ (x, y) are the generalized displacements. The choice of the expansion, Fτ , and the number of terms in the

expansion, M, determines the structural theory used in the analysis and is a choice of the user. In the current

work, 1D Lagrange polynomials are used as expansion functions through the thickness. According to CUF

terminology, such a combination is referred to as the Lagrange-Expansion (LE) class. LE results in a layer-wise

model, as shown in Fig. 1, with purely displacement degrees of freedom (DOF). A detailed explanation of the

use of Lagrange polynomials as expansion functions can be found in [19].

2.1 Finite element formulation

The stress and strain fields are

σ = {σxx, σyy, σzz, σxy, σxz, σyz}

ε = {εxx, εyy, εzz, εxy, εxz, εyz}
(2)

The linear strain-displacement relation is

ε = Du (3)

with the linear differential operator, D, defined as

D =
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The constitutive relation is

σ = Csecε (4)

where Csec is the secant stiffness matrix depending on the material model used in the analysis. The current

work uses the CODAM2 intralaminar damage model [29, 30]. The damaged stress state is then represented by

σ. The in-plane geometry is discretized using 2D quadrilateral finite elements (FE), using nodal interpolation

functions Ni(x, y), leading to the following 3D form of the displacement field

u(x, y, z) = Ni(x, y)Fτ (z)uτi (5)



The semi-discrete balance of momentum is

Mü = Fext − Fint (6)

where M is the mass matrix, and Fext and Fint are the external and internal force vectors, respectively. The

transient nonlinear problem is solved explicitly using the central difference time integration scheme [32]. The

interlaminar damage is addressed via cohesive elements as detailed in [25].

2.2 Nonlinear shear response

The current work extends the previous implementation of the CODAM2 material model reported in [28] by

taking into account the nonlinear in-plane shear response, as described in [33]. The in-plane shear constitutive

formulation, before matrix damage initiation, is then modified as

τ12 =


|γ12|
γ12

τ(|γ12|), for |γ12| = γ∗12

|γ12|
γ12

G0
12〈|γ12| − γ

p
12〉, for |γ12| < γ∗12

(7)

where τ(|γ12|) is the experimentally obtained nonlinear shear behaviour. G0
12 is the initial shear modulus and

〈·〉 is the Macaulay operator. γ∗12 is the maximum shear strain over time and γp12 is the inelastic shear strain,

which is computed as

γp12 = γ∗12 − τ∗12/G0
12 (8)

where τ∗12 is the shear stress corresponding to γ∗12. Matrix damage initiates once the failure initiation criterion

reaches unity, i.e. F2 = 1.0, and since only the elastic internal energy is responsible for the damage process, the

elastic component of the shear strain is determined as follows

γe12 = γ12 − γp12|F2=1 (9)

where γp12|F2=1 is the inelastic shear strain at the onset of matrix damage. The equivalent transverse strain (see

Eq. 19 of Ref. [28]) is then computed as

εeq2 =
√

(γe12)2 + (ε22)2 (10)

After matrix damage is initiated, the shear stress is computed as

τ12 = R12G
0
12(γ12 − γp12|F2=1) (11)

where R12 = (1− ω1)(1− ω2) is the stiffness reduction factor computed using the damage variables ωi.



3 Contact mechanics

3.1 Forward increment Lagrange multiplier

The current work enforces contact constraints via the forward increment Lagrange multiplier algorithm, based

on the works of Carpenter et al. [34]. A modification is necessary to avoid singularity problems in a fully explicit

analysis. The displacement constraints at time tn+1 are combined with Lagrange multipliers at time tn. This

process is referred to as the forward increment Lagrange multiplier approach and ensures the non-singularity of

the system. Considering this approach, the incremental equation of motion is

Mün + Fint(un, u̇n) + GT
n+1λn = Fext (12)

subject to

Gn+1{un+1 + X} = 0 (13)

where M is the diagonalised mass matrix, G is the contact constraint matrix, X is the nodal position vector in

the reference configuration, and λ is the vector of Lagrange multipliers. The central difference scheme is used

for the explicit integration of Eq. 12, leading to

un+1 = u∗n+1 + ucn+1 (14)

where

u∗n+1 = ∆t2M−1[Fext − Fint] + 2un − un−1 (15)

λn = [∆t2Gn+1M
−1GT

n+1]−1Gn+1{u∗n+1 + X} (16)

ucn+1 = −∆t2M−1GT
n+1λn (17)

For the incremental solution of Eqs. 14-17, a trial solution is first obtained for the incremental displacement,

denoted by u∗n+1, where the effect of the contact forces λ are not considered. The updated position of the

contact nodes (x∗n+1 = u∗n+1 + X) is then determined, and, then, the penetration check is performed. The

constraint matrix is assembled, and used in Eq. 16 to calculate the Lagrange multipliers, λ, which have the

physical meaning of contact forces. The incremental displacement due to contact is computed from Eq. 17,

and the updated displacements are then determined using Eq. 14. Further details of the forward increment

Lagrange multiplier approach within explicit time integration schemes can be found in [34].

3.2 Node-to-surface contact

The current work uses the Lagrange multiplier approach described in Section 3.1 in conjunction with node-

to-surface contact discretisation of the contact surfaces. In such an approach, the target surface is discretised



using 2D contact patches while the surface of the contacting body is discretised with contact nodes, as shown

in Fig. 2. The constraint matrix G then takes the following form

Contacting body

Target

Contactor nodes

Contact surface

Figure 2: 2D schematic representation of node-to-surface contact discretisation

G =


N1 0 0 . . . Nm 0 0 −1 0 0

0 N1 0 . . . 0 Nm 0 0 −1 0

0 0 N1 . . . 0 0 Nm 0 0 −1

 (18)

where N and m are the nodal interpolation function and number of nodes of the contact surface element,

respectively. The last three columns of G represent the constraints of the contact node DOF, for the node

associated with the given contact surface element. Determining the contact point on the element surface, where

the contact node penetrates the contact surface, is performed via closest point projection, described in [35, 36].

The constraint matrix thus assembled is used in Eq. 16 to determine the contact forces.

4 Numerical examples

4.1 Elastic impact in a square composite plate

The first numerical assessment involves the linear elastic analysis of a square composite plate. The motivation of

this example is to compare standard modelling approaches, i.e. 3D-FE, with the proposed modelling approach

based on 2D higher-order layer-wise theories; specifically, in terms of the model size and required analysis time for

comparable accuracy of the stress field. The composite laminate is quasi-isotropic, with a ply stacking sequence

of [90/45/0/ − 45]2s and ply thickness of 0.125 mm. The material system considered is an IM7/8552 carbon

fibre reinforced polymer (CFRP), and its material properties are in Table 1. The composite plate is clamped at

all four edges and subjected to a transverse impact at its centre via a 16 mm diameter spherical impactor with

an initial velocity of 5 m/s. A schematic representation of the structure is in Fig. 3. The structural modelling

of the composite plate adopts a series of 2D-CUF models, and, for verification purposes, 3D-FE models from

ABAQUS/Explicit. The three ABAQUS models have 1,3 and 5 solid (C3D8R) elements to model the individual

ply thickness, respectively. The CUF models consider increasing expansion orders to model each ply through its
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Figure 3: Schematic representation of the square [90/45/0/ − 45]2s quasi-isotropic composite plate under
transverse low-velocity impact

Table 1: Material properties of the IM7/8552 CFRP system

E1 [GPa] E2 [GPa] E3 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23 ρ [kg/m3]
165.00 9.00 9.00 5.60 5.60 2.80 0.34 0.34 0.50 1700.00

thickness, denoted as CUF - LEx, where x specifies the order of the Lagrange expansion; also, one CUF model

uses three LE1 per each layer. Table 2 provides model information for the various numerical models, along with

the computational size and analysis time. The ABQ-Coarse (1 element/ply) model is kinematically equivalent,

through the thickness, to the CUF-LE1 (1 LE1/ply) model, while the same holds for the ABQ-Medium (3

elements/ply) and CUF-3LE1 (3 LE1/ply) models.

The in-plane normal stress σxx and shear stress σxy, through the laminate thickness at the point [x=48, y=48],

are plotted in Fig. 4a and Fig. 4b, respectively. The interlaminar shear stress σyz, through the thickness at the

point [x=40, y=40], is shown in Fig. 5. The points are in the impacted region as one of the aims of this section

is to verify the capabilities of the structural models to detect stress fields where damage initiation could take

place. The results suggest that

1. The in-plane stress components, as reported by the various numerical models, are in agreement with each

other as seen in Fig. 4. As well-known, the proper detection of the in-plane components does not require

the refinement of the structural model or the mesh.

2. Significant differences are visible, on the other hand, in the interlaminar shear stress σyz, plotted in Fig.

5. The use of a single solid element to model the ply thickness in 3D-FE does not result in accurate

stress evaluation. A similar trend is present in the CUF model with a single linear expansion, i.e., CUF

(1 LE1/ply). The use of higher-order thickness expansions, or multiple LE1 per layer, in CUF leads to a

converged solution.



Table 2: Model information for the linear elastic stress analysis of the [90/45/0/ − 45]2s composite plate
subjected to low-velocity impact

Model Discretisation of the composite laminate DOF Analysis Time∗ [hh:mm:ss]

ABQ - Coarse 102,400 C3D8R (1 element/ply) 334,611 0:09:04

ABQ - Medium 307,200 C3D8R (3 elements/ply) 964,467 1:15:06

ABQ - Refined 512,000 C3D8R (5 elements/ply) 1,594,323 3:16:33

CUF - LE1 48 Q9 elements in-plane (1 LE1/ply) 10,659 0:10:29

CUF - LE2 48 Q9 elements in-plane (1 LE2/ply) 20,691 0:37:55

CUF - LE3 48 Q9 elements in-plane (1 LE3/ply) 30,723 1:30:46

CUF - 3LE1 48 Q9 elements in-plane (3 LE1/ply) 30,723 1:38:53
∗ The reported run-times are based on analyses performed on a desktop computer using a single core.

(a) σxx (b) σxy

Figure 4: In-plane stress components through the thickness of the square composite plate
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Figure 5: Interlaminar shear stress σyz through the thickness of the square composite plate

3. Increasing the number of elements through the thickness in the 3D-FE models results in stress fields

approaching that of the converged CUF results. This is in line with the findings reported in [20].

4. The accurate evaluation of the 3D stress field is significant since it constitutes an input for composite

damage models, in the case of a fully nonlinear progressive damage analysis. Inaccurate stress field

predictions due to limitations of the structural model can significantly influence failure initiation and

propagation.

5. Although the stress fields were obtained via the constitutive law, an almost perfect continuity was achieved

at the interfaces.

6. In the case of the CUF models, the coarsest mesh, which results in converged interlaminar stresses is the

CUF-LE2 model, with a single quadratic expansion (LE2) per ply of the laminate. This model requires

about 76x fewer DOF and achieves over a 5x speed-up in analysis time, compared to the refined ABAQUS

model, for comparable quality of results. The speed-up in analysis time may be higher. The current values

are most likely due to differences in the implementation of the contact algorithm. In fact, in purely linear

cases or nonlinear cases with no contact, significantly higher speed-ups were achieved [24, 37].

4.2 Elastoplastic analysis of bimetallic laminated plate

The objective of the current numerical assessment is to evaluate CUF layer-wise models’ performance, compared

to 3D-FEA, for the case of nonlinear impact analysis. Metal plasticity is considered as the source of material

nonlinearity. The structure presented previously in Section 4.1 (Fig. 3) is considered, but, in the present analysis,

the plate is a bimetallic 16-layer laminate, composed of two materials M1 and M2 whose elastoplastic properties



are listed in Table 3. The stacking sequence of the metal laminate is [M1/M2]4s. The metallic constituents are

assumed to be elastic-perfectly plastic. The plate is impacted at its center by a spherical impactor of diameter

16 mm, with an initial velocity of 5 m/s. The impact problem is analyzed using CUF layer-wise models, and

reference solutions are obtained using 3D-FEA in ABAQUS/Explicit. Details of the models developed with the

two approaches are presented in Table 4. The vertical deflection uz and the equivalent plastic strain, along the

y-axis at the impact surface of the bimetallic plate, are plotted in Fig. 6 and Fig. 7, respectively. The 3D

distribution of equivalent plastic strain at the impact site is shown in Fig. 8. The results indicate that

1. The deformation predicted by the CUF model is in good agreement with 3D-FE models, as seen in Fig.

6. For the case of 3D-FE, insufficient mesh refinement leads to errors in the predicted deformation.

2. As seen in Fig. 7 and Fig. 8, the current approach is able to accurately quantify the extent as well as the

morphology of the plastic zone.

3. The CUF model requires approximately 80x fewer degrees of time and provides over a 3.6x speed-up in

analysis time, for comparable quality of results.

Table 3: Material properties of the elastoplastic materials used for the bimetallic plate

Material Young’s Modulus E [GPa] Poisson’s ratio ν [-] Yield stress σy [MPa]

Material-1 (M1) 210.0 0.3 210.0
Material-2 (M2) 70.0 0.3 110.0

Table 4: Model information for the elastoplastic analysis of the bimetallic plate subjected to low-velocity impact

Model Discretisation of the bimetallic plate DOF Analysis Time∗ [hh:mm:ss]

ABQ - Coarse 102,400 C3D8R (1 element/layer) 334,611 00:24:18

ABQ - Refined 270,848 C3D8R (2 elements/layer) 856,251 01:55:12

CUF-LW 48 Q9 elements in-plane (1 LE1/layer) 10,659 0:31:29
∗ The reported run-times are based on analyses performed on a desktop computer using a single core.

4.3 Progressive damage analysis of a circular plate

This numerical assessment consists of the progressive damage analysis of a circular composite plate subjected

to a transverse low-velocity impact. The study is based on [14], which provides reference experimental and

numerical results. A schematic representation of the structure is in Fig. 9. The material is an HTS40/9772

unidirectional CFRP, and its properties are in Table 5. The laminate consists of a [0/90]2s stacking sequence

with a ply thickness of 0.25 mm, leading to a laminate thickness of 2.0 mm. The laminate is fully clamped at

all edge nodes. The impactor is a rigid sphere of diameter 15 mm, with an initial prescribed velocity v0 = 3.83



0 25 50 75 100

-4

-3

-2

-1

0

V
e

rt
ic

a
l 
d

e
fl
e

c
ti
o

n
 u

z
[m

m
]

y [mm]

ABQ-Coarse

ABQ-Refined

CUF-LW

Figure 6: Vertical deflection uz along the y-axis at the impact surface of the bimetallic plate
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Figure 7: Equivalent plastic strain along the y-axis at the impact surface of the bimetallic plate
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Figure 8: Distribution of the equivalent plastic strain at the impact site of the bimetallic plate



m/s, and kinetic energy of 7.35 J. The numerical models adopted CUF models with a varying level of in-plane

z
y

x

⌀ = 15 mm

v0

⌀ = 75 mm

Figure 9: Schematic representation of the [0/90]2s composite plate under transverse low-velocity impact by a
spherical indenter with a kinetic energy of 7.35 J

Table 5: Properties of the HTS40/9772 unidirectional CFRP material system [14]

E1 [GPa] E2 [GPa] E3 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23 Density [kg/m3]

153.0 10.3 10.3 6.0 6.0 3.7 0.3 0.3 0.4 1600.0

XT [MPa] XC [MPa] YT [MPa] YC [MPa] S12 [MPa] S23 [MPa] GT1 [kJ/m2] GT2 [kJ/m2] GC1 [kJ/m2] GC2 [kJ/m2]

2537.0 1580.0 82.0 236.0 90.0 40.0 91.6 0.22 79.9 1.1

Table 6: Properties of the cohesive layer [14]

Property Mode I Mode II Mode III

Elastic modulus [GPa/mm] 1373.3 493.3 493.3

Interlaminar strength [MPa] 62.3 92.3 92.3

Interlaminar fracture toughness [kJ/m2] 0.28 0.79 0.79

mesh refinement and through-thickness expansions, to investigate their effects on the accuracy of the numerical

predictions. Delamination is included via cohesive elements between successive plies, adopting the mixed-mode

cohesive constitutive model described in [38]. Further details on the development and FE formulation of the

cohesive element in the CUF framework are in [25]. The properties of the cohesive layer are in Table 6. Model

data related to the discretization used and computational costs are in Table 7. As a representative example, the

in-plane discretization of the CUF model with 192 Q9 elements is in Fig. 10. The first study investigates the

influence of the in-plane discretization on the quality of the results. A quadratic (LE2) ply thickness expansion



Table 7: Details of the structural models used for the progressive damage analysis of the [0/90]2s composite
plate subjected to transverse low-velocity impact

Model Discretisation of the composite laminate DOF Analysis Time∗ [hh:mm:ss]

CUF - 132 Q9/LE2 132 Q9 elements in-plane (1 LE2/ply) 39,816 5:13:44

CUF - 192 Q9/LE1 192 Q9 elements in-plane (1 LE1/ply) 38,448 6:45:13

CUF - 192 Q9/LE2 192 Q9 elements in-plane (1 LE2/ply) 57,672 8:46:22

CUF - 192 Q9/LE3 192 Q9 elements in-plane (1 LE3/ply) 76,896 11:37:57

CUF - 260 Q9/LE2 260 Q9 elements in-plane (1 LE2/ply) 77,832 11:49:58
∗ The reported run-times are based on analyses performed on a desktop computer using 6 cores.

Figure 10: Schematic representation of the 192 Q9 in-plane discretisation used for the [0/90]2s circular composite
plate



function is considered in all cases. The impact force-time curves for the considered CUF models are in Fig.

11. Based on the results of the in-plane mesh convergence study, the 192 Q9 mesh (see Fig. 10) is selected

for further investigations. The next study considers the influence of the thickness expansion function on the

accuracy of the result. The structural models have linear (LE1), quadratic (LE2), and cubic (LE3) ply thickness

expansion functions. The impact force-time curves obtained with these models are plotted in Fig. 12. Reference

experimental and simulation curves obtained from [14] are reported in all cases for comparison. Contour plots

of the damage variables after impact, for the case of the 192 Q9 - LE3 model, are in Fig. 13, and the predicted

delamination at the ply interfaces in Fig. 14.
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Figure 11: In-plane mesh effect of the impact force-time response for the [0/90]2s circular composite plate.
Reference experimental and numerical data from [14]

The results suggest that

1. The use of linear expansions (LE1) results in significant oscillations. Progressive refinement through the

thickness using LE2 and LE3 functions results in a smoother and more accurate global response. Based

on the results from Section 4.1, the beneficial influence of higher-order thickness functions confirms the

importance of accurate transverse shear stresses.

2. The numerically predicted morphology of the damage, see Fig. 14, shows a good agreement with [14] in

which Figs. 8 (a) and (b) show experimental and numerical delaminated zones. Likewise, the morphologies
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(b) Fibre tensile damage
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Figure 13: Predicted damage at the impact region of the [0/90]2s circular composite plate
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Figure 14: Predicted delamination at the ply interfaces of the [0/90]2s circular composite plate

of different damage mechanisms in Fig. 13 are in good agreement with Figs. 10(a) and 10(b) of [14].

3. The difference between the experimental and converged CUF results in the unloading phase is attributed

to the fact that the CUF models do not consider friction at the contact interfaces or account for plastic

indentations of the laminate at the impact zone, both of which are mechanisms for energy dissipation.

Nevertheless, a good general agreement is observed between experimental and CUF curves, including the

accurate prediction of the peak load.

4. One of the advantages provided by the proposed layer-wise scheme is the direct modelling of the damage

states at each layer. The predicted damage state shows significant saturated matrix damage, with a small

amount of unsaturated fibre damage. This indicates that matrix damage is the primary energy dissipation

mechanism within the laminate.

5 Conclusions

The objective of the current work is the development of a novel numerical framework based on higher-order

structural theories for the impact analysis of composite structures. The Carrera Unified Formulation is used

to generate 2D layer-wise structural models. Each ply of the laminate is explicitly modelled using Lagrange

polynomial-based thickness expansion functions. The intralaminar composite damage is modelled using the

CODAM2 material model, and delamination at the ply interface is taken into account using cohesive elements

based on a mixed-mode cohesive constitutive law. Numerical assessments were first performed considering the

linear elastic material behaviour to compare the stress predictions of the CUF layer-wise models with that of

the standard approach, i.e., 3D-FE. The next assessment was the elastoplastic analysis of a bimetallic laminated

plate, to compare the performance of CUF and 3D-FE models for nonlinear impact analysis. The final numerical

assessment was the progressive damage analysis of a [0/90]2s circular composite plate composed of HTS40/9772

unidirectional carbon fibre reinforced polymer. The main conclusions drawn from the present work are the

following:

1. The proposed numerical framework based on layer-wise 2D-CUF theories can accurately simulate com-

posite laminates subjected to impact loads, as verified concerning reference 3D-FE.



2. 3D-FE models require expensive meshes due to the necessity of fine through the thickness discretization

and aspect ratio constraints. The detection of the interlaminar stress is particularly demanding. 2D CUF

models enrich the kinematics through the thickness and, having just in-plane aspect ratio constraints, can

deliver accurate predictions with one- to a two-fold reduction of DOF.

3. CUF layer-wise models are demonstrated to have significant computational efficiency, compared to 3D-FE

models, for the case of nonlinear impact analysis.

4. The progressive damage analysis of composite laminates subjected to low-velocity impact, performed

using the present approach, shows a good agreement with experimental reference results and numerical

predictions reported in the literature, thus validating the proposed framework for such a class of problems.

The presented results constitute preliminary investigations of the analysis of composite structures under low-

velocity impact using CUF. Future works include further implementations such as frictional contact to improve

the predictive capabilities of the numerical framework and the use of global/local and adaptive cohesive layer

insertion techniques to reduce the computational costs.
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