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ABSTRACT

The use of low frequency waves is the most practical means to investigate nonlinear elastic properties of hysteretic media, such as the strain
dependence of wave velocity. Indeed, the rapid increase in damping as a function of frequency makes high frequency waves unable to
provide sufficient strain energy to successfully excite nonlinearity. The drawback is that low frequency waves are not suitable for imaging,
due to their long wavelength and resulting intrinsic averaging of nonlinear effects over large spatial scales. To address this, we propose here
an amplitude modulation of swept sources that allows us to correlate the frequency at which harmonics are detected with the position of the
source of nonlinearity, taking advantage of the different strain distributions in the sample at different frequencies.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0016357

Low frequency excitations are often used to characterize the non-
linear elastic response of hysteretic elastic media, which is due to the
presence of grain boundaries,' * contact features,* or damaged areas.”*
Low frequency excitations, either monochromatic or sweeps, have the
advantage of generating sufficiently large strain amplitudes in the sam-
ple to generate a significant nonlinear signature, whatever the analysis
conducted to detect it: harmonics generation,” " resonance frequency
shift, ' breaking of the superposition principle, ' or others.

Sinusoidal excitations at constant (monochromatic) or linearly
varying (sweeps) frequency have the advantage of averaging over the
nonlinearity present in the sample, thus increasing the detection sensi-
tivity of nonlinear sources.'”"” They also allow us to separate contribu-
tions due to damping and velocity nonlinearities””*" and a fast and
efficient monitoring of conditioning and relaxation, i.e., the transition
to metastable elastic states when samples are excited at constant strain
amplitude.”” " Thus, in general, low frequency excitations provide a
response, which is locally generated but globally averaged, which
makes them unsuitable for imaging. At the same time, particularly in
granular media, high frequency nonlinear imaging is unfeasible, due to
the huge increase in attenuation with increasing frequency.

Theoretical approaches have been proposed to localize damage
using continuous waves, either by testing the sample using different

modes”™’ or by exploiting the generation of sidebands when exciting

the sample with simultaneous excitations in two different resonance
modes.”* Both approaches take advantage of the dependence of the
spatial distribution of strains on the excited modes. Also, experimental
methods have been proposed where the dependence of the third har-
monic amplitude on the distance between the defect location and the
transducer was used to localize the crack.”” However, both approaches
are impractical since scanning is not always feasible and repeated mea-
surements at the increasing mode number (and thus frequency) could
be problematic because of the appearance of not purely longitudinal
modes that imply deviations from the underlying theory. Here, we fol-
low an approach in which we still aim to obtain strain maxima at dif-
ferent frequencies at different positions, as in Refs. 26 and 27. Using
amplitude and frequency modulated sources, the measurement
requires a single acquisition and the spectrum of frequencies used is
always in a narrow range around the lowest longitudinal mode.

In our study, we considered three cylindrical glass samples with
localized damage and one prismatic concrete sample with distributed
damage. The sample properties are reported in Table I. Ultrasonic
through-mode measurements were performed by attaching to the
bases of the sample two MATEST C370-02 piezoelectric transducers
(emitter and receiver) with a flat frequency response in the frequency
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TABLE I. Geometrical properties of the tested samples. Physical properties are reported in the supplementary material.

Geometry Defect
Sample Material Shape Diameter/base Length Position Size Type
A Glass Cylinder 1.0cm 8.2cm 0.65cm=1/10 0.25cm Bulk
B Glass Cylinder 2.0cm 25.2cm 13.0cm=1L/2 1.5cm Subsurface
C Glass Cylinder 0.8cm 15.0cm 3.7cm=L/4 0.40 cm Bulk
¢} Concrete Prism 2.1cm 19.8cm Distributed

range of interest. Generation and acquisition were performed using a
TiePie Handyscope HS5-XM. Signals were amplified using a linear
voltage amplifier (Falco Systems WMA-300, 50x). A large sampling
rate of 3.125 MSa/s was used. Swept signals were generated with line-
arly distributed frequencies around the fundamental longitudinal
mode,

F(t) = App(t)cos(p(t)) 0<t<T,

w1 — Wy 5
() = ot +——7—1",
where wy < @, < ®; and T is the sweep duration, fixed at T = 3s. o,
is the frequency of the fundamental longitudinal mode (or one of the
lowest modes). The amplitude dependence on time will be discussed
below. Samples were placed horizontally on a foam layer, which,
together with the use of small and light transducers, ensures that the
propagation occurs in a system with free-free boundary conditions. This
assumption was also verified a posteriori comparing the vibrational
modes of the sample obtained experimentally with those obtained from
Finite Element calculations imposing free-free boundaries.

Detected signals are analyzed in the frequency domain (using a
standard Fast Fourier Transform analysis) where particular attention
is focused on the frequency components generated within the propa-
gating medium around the third harmonic 3wy < @ < 3w,) since in
hysteretic elastic media, odd harmonics generally have higher ampli-
tudes than even ones.

The sample geometry and the experimental setup configuration
agree with good approximation to a one-dimensional problem. Thus,
for a given sample of length L, the solution of the displacement at
x=1L, i.e, received by the transducer localized at the edge of the sam-
ple, can be written as:”'

U(L, t) = Agy ()l +9]

1

Uo
Auut(w) -
\/ cosh?(aL) — cos?(kL) (2)
B tan (kL)
¢ = —arctan (m>,

where k is the wave number, « is the attenuation coefficient, and U, is
the suitably calibrated source amplitude. We recall that the phase wave
velocity is ¢ = @/k and the material quality factor is Q = @,/ 0c.
From Eq. (2), the strain distribution along the sample can be
obtained,”’

e(x,t) = = CeélO+ (3)

where the phase is not relevant in this context and the strain amplitude
is

Aout (w)

Clx,w) = .
V(R +92) [cosh? (L — x)) — cos? (K(L — x))]

(4)

The standard sweep source (using a Classical sweep: C-sweep) is
generated by assuming Afnp(t) = Ay = constant (see Fig. 1). The out-
put signal reaches a maximum value when the input frequency corre-
sponds to the resonance frequency of the sample (the resonance
frequency of the sample is close to 41 kHz, and the sweep is in the
range 30kHz-42kHz). Since time is equivalent to frequency, the
Hilbert transform of the output signal corresponds to the resonance
curve and defines the function A, () [see Eq. (2)]. Equation (4) then
allows us to obtain the strain distribution C(x, @), which is reported
in Fig. 2(a). As expected, the strain is localized in the center of the sam-
ple and at a frequency close to the fundamental resonance frequency.

In Fig. 2(c), the function C(x = xg, ®) is plotted vs frequency
both close to the edge of the sample (xo = L/10, blue line) and in the
center of the sample (xo = L/2, red line). A defect located in either
position gives an optimal nonlinear response at @ = ¢,, with a
smaller nonlinear response when the nonlinear scatterer is located
close to the edge because of the lower strain amplitude. This limitation
makes C-sweeps inefficient for imaging and defect localization. We
remark here that the nonlinear response of a sample is proportional to
some power of the strain amplitude at the location of the defect.
Therefore, since strain amplitude is related to frequency and position
(see, e.g., Ref. 27), it follows that the nonlinear response depends on
where the defect is located and on the wave frequency. Further effects
due to the frequency dependence of the nonlinear parameters could be
present, but are negligible when working in a narrow frequency range.

Classical sweep Amplitude modulated sweep
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FIG. 1. Input and output time signals. Data taken on sample A (glass cylinder with
a crack close to the edge).
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FIG. 2. Strain distribution maps C(x, «) (upper row) and strain vs w for a given x
(lower row). Data are obtained using Egs. (2) and (4) and data from Fig. 1. The res-
onance frequency of the sample is close to 41 kHz.

We now introduce an Amplitude Modulated Sweep (AM-sweep).
For imaging, it would be desirable that the maximum strain at each
position occurs at a different frequency. This can be achieved by
appropriately modulating the amplitude of the source in order to
obtain a response in x = L with the same amplitude at each frequency,
i.e., constant in time. The choice Ay (t) = Ao/ Aou(t), with A,,, being
the output signal derived from the C-sweep excitation, allows us to
reach this goal with a reasonable approximation (less than 1 dB ampli-
tude variation in the output signal). The AM-sweep and the corre-
sponding recorded signal are shown in the right column of Fig. 1. The
calculated strain distribution map is presented in Fig. 2(b).

The latter shows that a shift of the maximum strain toward lower
frequencies when x/L decreases is visible. This is clarified in Fig. 2(d). If
the nonlinear scatterer is around or at xo = L/2, the maximum strain is
at the resonance frequency (=41kHz), so that we expect a maximum
nonlinear response at this frequency. When the defect is closer to the
edge, the maximum of the strain is at a lower frequency, thus corre-
sponding to an expected maximum in third harmonic amplitude at
lower frequencies. We are far from an optimal condition since, contrary
to the case of the classical sweep [see Fig. 2(c)], the strain dependence
on o for a selected x is almost flat and the maximum (detectable fitting
the curve with a quadratic function as shown by dashed lines) is very
broad. As a consequence, an imaging procedure could not simply rely
on associating the position of the defect with the one at which strain is
maximum for the frequency at which harmonics are maxima. Still, the
shift of the frequency centroid to lower frequencies when moving
toward the edge of the sample (decreasing x) is evident and regular. As
we will show, efficient imaging can be obtained exploiting the informa-
tion contained in the curve representing the strain amplitude vs fre-
quency, i.e., “integrating” over the full range of w.

We have measured the response for both C-sweeps and AM-
sweeps on sample A (glass with crack at the edge), sample B (glass
with crack in the center), and sample O (concrete with distributed
nonlinearity). Measurements have been taken at increasing input
amplitudes. The reference amplitude for the AM-sweep was chosen to
have similar output amplitudes at the resonance frequency for the C and

ARTICLE scitation.org/journal/apl

AM sweeps. Recorded signals were analyzed to extract the frequency
spectrum S(, Ajyp). The map of the spectrum is shown in Fig. 3 for the
three samples around the third harmonic frequency w = 3w;.

The C-sweep response is the same, independent of the damage
position: the optimal nonlinear response is always obtained at a fre-
quency w = w,. The AM-sweep generates a nonlinear response,
which is strongly dependent on the crack location. In the case of sam-
ple A (crack close to the edge), the maximum of the third harmonic
amplitude is generated at w = 0.8w,, in excellent agreement with
expectations from Fig. 2(d). The widening of the bandwidth of the
generated third harmonics is also a consequence of the amplitude
modulation (see the supplementary material).

An imaging procedure can be proposed defining a function M(x)
as discussed below (more details are given in the supplementary
material). To illustrate the approach, we consider the case of sample A
(glass with a crack close to the edge) and in Figs. 4 and 5, we consider
two representative positions along the sample: x = 0.45cm (in the
cracked area) and x=1.52 (close to the cracked area). For a given
experiment (e.g., at the highest amplitude of excitation), the third har-
monic amplitude A;(w) is derived from the time signal [green line in
subplots 4(a) and 5(a)]. From the output signal amplitude, the strain
amplitude ¢(w) is derived for each position along the sample (green
curves in subplots b).

For both A3(w) and e(®), a threshold at 3 dB below the maxi-
mum (as usually done in signal analysis) is considered. The binarized
harmonic amplitude B;(w) (set to 1 or 0 when Aj; is above/below the
threshold) is shown as a blue line in subplots (a). We also introduce,
as a weight for later calculations, the averaged value w = (B;). The
binarization procedure allows us to filter out the eventually present
small contributions of harmonics generated by weak nonlinear sources
different from the crack. The thresholded strain ¢(®) is shown as a
black line in subplots (b). The two curves (B; and €) are superimposed
in subplots () of Figs. 4 and 5, zooming in a narrow frequency range.
The superposition of the two curves allows us to identify different sit-
uations, depending on frequency:

* Positive indication of damage: both third harmonic and strain
amplitudes are positive [yellow region in subplots (c)]. We define
a positive damage indicator at location x for the corresponding
frequency m(x, w) = w;

* Negative indication of damage: the third harmonic amplitude is
zero, but strain is high (positive) [cyan region marked with NS in
subplot (c) of Fig. 5]. If the damage was present, harmonics would
have been expected at that frequency due to the high strain. The
third harmonic amplitude is positive, but strain is small (zero): cyan
region marked with NH in subplots (c). The generated third har-
monics in the output signal should have been generated from other
positions, with the strain at the selected x being too small. In both
cases, a negative value is assigned tomm=w-—1;

* Indifferent indication of damage: both third harmonic and strain
amplitudes are zero. There is neither a positive nor a negative
indication of the presence of damage, and thus, m =0.

The function m(x,®) can be calculated for each x and for the
two selected cases as shown in Figs. 4(d) and 5(d).

An indicator of the presence of damage can be introduced com-
bining positive and negative indications of damage in the full fre-
quency interval wy < @ < wy,
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In Fig. 6, results are shown for the three glass samples. A photo of the
sample is shown, with the crack well visible in all cases. Below, the
reconstructed image is reported. Results are excellent, especially consid-
ering the low frequencies used to image the small defective area. Of
course, resolution is not high (and improvements could be introduced),
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FIG. 4. Schematic description of the imaging procedure. Analysis at x = 0.45cm.
(a) Third harmonic amplitude (shown in green and binarized in blue) as a function
of w; (b) strain amplitude (shown in green and thresholded in black) as a function
of w; (c) superposition of strain and third harmonic amplitudes in a narrow fre-
quency range; (d) map of the defect probability function m as a function of . Data
taken from sample A (glass with edge crack).
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Amplitude modulated sweep
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glass FIG. 3. Third harmonic maps S(w, Ajy,,)

for the three tested samples and C and
AM sweep input sources.

Sample A
glass

but still for many practical purposes, this level of imaging could be con-
sidered sufficient. Furthermore, despite the apparently poor resolution,
the procedure introduced gives super-resolution, perhaps due to the
introduced binarization procedure: with wavelengths of the propagating
waves about twice the length of the sample (first longitudinal modes,
A = 2L), the image dimension is of the order of A = 1/7.

This work showed that Amplitude and Frequency Modulated
sweep sources of elastic waves generate strain profiles in a 1D sample
that can be controlled and designed “ad hoc” by taking advantage of
the Amplitude Modulation. This approach allowed us to make the
excited low frequency waves sensitive to the position of the existing
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FIG. 5. Schematic description of the imaging procedure as in Fig. 4, but the analy-
sis refers to x = 1.52 cm.
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Sample A. Length = 8.2 cm, diameter = 1cm
Microcracks in x: 0.4 <x<0.9 cm
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FIG. 6. Results of the imaging procedure for the three glass samples: map of M(x).

nonlinear sources. We have introduced a low frequency imaging pro-
cedure, by crucially combining the information on the likeliness that
the defect is at a position x (positive indicator value) with that the non-
linear source is at another position (negative indicator value).

See the supplementary material for details about samples and the
experimental setup and additional results on the procedure.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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