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Recent advances in artificial intelligence (AI) and deep learning (DL) have impacted many scientific fields including biomedical
maging. Magnetic resonance imaging (MRI) is a well-established method in breast imaging with several indications including
screening, staging, and therapy monitoring.+e rapid development and subsequent implementation of AI into clinical breast MRI
has the potential to affect clinical decision-making, guide treatment selection, and improve patient outcomes. +e goal of this
review is to provide a comprehensive picture of the current status and future perspectives of AI in breast MRI. We will review DL
applications and compare them to standard data-driven techniques. We will emphasize the important aspect of developing
quantitative imaging biomarkers for precision medicine and the potential of breast MRI and DL in this context. Finally, we will
discuss future challenges of DL applications for breast MRI and an AI-augmented clinical decision strategy.

1. Introduction

Magnetic resonance imaging (MRI), in particular dynamic
contrast-enhancedMRI (DCE-MRI), is a non-invasive, well-
established breast imaging modality with several indications
in oncology including screening of high-risk women, pre-
operative staging, and therapy monitoring [1].

DCE-MRI interpretation is complex and time-con-
suming, involving the analysis of hundreds of images. +e
time-signal intensity curves of multiple postcontrast se-
quences reflect changes induced by uptake of contrast agent
over time and allow the extraction of both spatial and
temporal patterns, reflective of both tumor morphology and
metabolism. +e clinician is thus faced with an increasingly
large amount of data per patient to determine a diagnosis.
+e heterogeneous, complex, and multidimensional data
stemming from breast imaging, further integrated by sources

of omics data (e.g., genomics), makes it difficult to decipher
the clinical meaning.

+eUSNational Research Council recently proposed the
development of a new taxonomy for human diseases that
integrate the connections between different types of data
(clinical, molecular, imaging, genomic, and phenotype) to
produce a knowledge network [2]. It is obvious that the
effective diagnosis and treatment of an individual patient
requires the integration of multiple information sources
derived from a large number of patients. +us, machine
learning [3], considered as a subset of AI, has been con-
sidered to improve and streamline this process, determining
relevant patterns in these data and consequently supporting
clinical decision-making [4].

+e following are particularly pertinent to radiology and
breast imaging: (1) Can imaging capture clinically relevant
differences and tumor heterogeneity? (2) Can imaging serve
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as virtual digital biopsy? (3) Is there a correlation between
imaging and genomic features? (4) Can imaging together
with genomics improve treatment predictions? (5) Can
therapy be decided based on radiogenomics?

In this context, there are an increasing number of clinical
and biological features extracted from multiparametric
breast imaging techniques that can potentially shed light into
these important questions. Imaging data collected during
routine clinical examination are an important resource for
medical and scientific discovery and for better under-
standing breast cancer phenotypes. +e conversion of these
multiparametric images into mineable data has set the
framework for a new and exciting translational discipline
called “radiomics” [5, 6].

Recent advances in artificial intelligence (AI) have im-
pacted many subspecialties within the field of biomedical
imaging. In breast imaging, AI is becoming a key component
of many applications, including breast cancer diagnosis,
monitoring neoadjuvant therapy, and predicting therapy
outcomes.

AI has been around for over sixty years. +e term AI has
been used lately interchangeably with “pattern recognition”
and “deep learning” in the literature, but their meanings are
quite different. Indeed, in this paper, we distinguish two
classes of pattern recognition algorithms: (a) conventional
machine learning (ML) algorithms based on predefined
engineered (or hand-crafted) features and (b) deep learning
(DL) algorithms. +is distinction is adopted by several
authors in the biomedical field [7, 8].

+e success of DL is based on its ability to automatically
learn from data representations with multiple levels of ab-
stractions [9]. +is is achieved by composing deep neural
networks with multiple processing layers that transform the
images into feature vectors (representations), which are then
used to discriminate disease patterns, perform segmentation,
or other tasks. While DL has become the state-of-the-art
approach in computer vision, essentially replacing con-
ventional machine learning for most applications, it is being
gradually applied in breast MRI from anatomical segmen-
tation to disease classification. DL analysis of breast MRI is
considerably similar to that of advanced computer vision
techniques.

In biomedical imaging, conventional ML approaches are
still widely applied. +eir renaissance stems in particular
from the increasing interest in radiomics. In this discipline,
“engineered” features describing the radiologic aspects of a
tumor such as shape, intensity, and texture are extracted
from regions of interest, usually segmented by an expert.
Indeed, a recent review suggests that roughly 75% of
radiomics studies still rely on hand-crafted features [10].
However, such features are not necessarily optimal in terms
of quantification and generalization for a discrimination
task. AI and deep learning (DL) have the potential to
overcome these challenges and can determine feature rep-
resentations directly from the images without relying on a
time-consuming manual segmentation step.

We believe that the combination of large datasets with
DL-powered analysis has the potential to support and im-
prove clinical decision-making in the near future. +e

ongoing realization of precision medicine is one of the
driving forces for implementing AI techniques in breast
cancer research. +e goal of this narrative review is to an-
alyze how DL is being applied to breast MRI in order to
highlight potential benefits, as well as challenges and di-
rection for future applications. We start by providing an
overview of fundamental techniques in AI, highlighting
differences between conventional ML and DL, and conclude
by providing a future perspective on how AI, and DL in
particular, will be leveraged for breast MRI in the future.

2. Introduction to Data-Driven Approaches in
Breast MRI

Data-driven approaches are based on collecting medical
imaging data, extracting meaningful features, and learning
to classify patterns according to a specific clinical task, e.g.,
to determine if the specimen is normal or malignant. +ey
are classified into two broad categories: supervised and
unsupervised.

Supervised learning requires a class label for training
purposes. +e training process updates the weights of the
trained model by optimizing the difference or error between
the computed output and the desired output, given by the
correct class label. After training is completed, an unknown
pattern can be classified according to the learned weights.

On the contrary, when class labels are missing, we can
resort to an unsupervised learning approach. In this case, the
training process searches for similarities within the input
data, categorizing them into groups or clusters. Similarity
can be determined based on a measure of distance, e.g.,
correlation or Euclidean distance. In the testing phase, an
unknown pattern is assigned to the group or cluster to which
it is most similar. Unsupervised learning algorithms were
often used for lesion segmentation and other image pro-
cessing tasks, whereas supervised learning is most often used
to build predictive models, e.g., to discriminate malignant
from benign cases [11]. Table 1 gives an overview of the main
data-driven techniques used in breast MRI.

2.1. Brief Overview of Traditional Neural Networks and Deep
Neural Networks. Artificial neural networks (ANNs) rep-
resent simple computational models that mimic information
processing in the brain [44, 45]. +e ANNs have several
processing layers each having a predefined number of
neurons. +e neurons are connected to each other via
weights or synapses. +e first layer is the input layer that
mimics the neurobiological sensory input information. +e
following layers process the input information. +e output
layer is the decision layer regarding the class membership of
the unknown input pattern. +e number of neurons in the
input layer is equal to the number of features describing the
unknown input pattern, while the number of neurons in the
output layer is equal to the number of different classes/
categories to be learned. +e number of hidden layers and
neurons is problem-oriented. In most applications, neurons
and layers are added gradually if needed to improve the
overall learning. +is type of feedforward ANN architecture
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processes the patterns from bottom up and saves the in-
formation about the learned patterns in the weights. +e
mutual interconnections are adapted during the learning
process to reflect the variations in the input data. ANNs are
excellent candidates for processing noisy, inconsistent, or
probabilistic information [46].

Multilayer perceptrons (MLPs) represent the first pop-
ular type of neural network. +ey are feedforward ANNs
with a prespecified architecture regarding the number of
neurons and layers. +e weights or interconnections be-
tween the neurons are adapted during the learning process.
Every single pattern is processed in a forward direction and
traverses every single layer.

Like MLPs, deep neural networks have many hierar-
chical layers and process information progressively from the
input to the output layer. DL extracts pattern from high-
dimensional image data and uses them as discriminative
features, while ML uses hand-crafted features. Recently
proposed DL models have multiple layers of nonlinear in-
formation processing, feature extraction, and transforma-
tion and can be applied for pattern analysis and
classification.

Deep learning techniques have emerged as a novel and
powerful modality to detect objects in images [9] and are
therefore very appealing for processing of biomedical im-
ages. +ey are characterized by their depth, i.e., the number
of hidden layers between the input and output layers, which
can range between 6 and 7 layers up to the hundreds of most
recent applications [47, 48].

+e most common DL architecture in image analysis is
the convolutional neural network (CNN) [8, 9, 47].+emain
component of CNNs is the convolutional layer, which is
composed by a series of trainable convolution-based filters,
and transforms the input into a feature map. +e use of
convolutional filters reduces the number of parameters
compared to traditional MLPs since weights are shared
across the entire input space and supports hierarchical

representations by stacking convolutional layers on top of
each other. It was empirically observed that different layers
serve different purposes.+e first layer learns the presence or
absence of edges at particular orientations, intensity or color
patches, and other low-level image features.+e second layer
finds motifs by identifying particular arrangements of edges
independent of local edge variations. +e third layer com-
bines these motifs together into larger combinations cor-
responding to parts of known objects. Subsequent layers
continue the assembling process and detect objects as the
result of these combinations. +e convolutional filters are
trained along with the final classifier in an end-to-end
procedure unifying in the same learning framework, i.e.,
both feature extraction and classifier training. Several var-
iants of CNNs have been proposed in order to perform
different visual tasks including classifications, object de-
tection, and segmentation. A detailed overview of base and
more advanced neural network architectures is provided in
recent publications [8, 49].

2.2. Conventional Machine Learning versus Deep Learning.
Machine learning techniques have become more sophisti-
cated over the years and have improved in their perfor-
mance. However, especially, the traditional neural networks
have seen a renaissance in the past few years due to an
increase in computation power and big data. DL is the result
of these two developments.

Traditional neural networks (as well any other con-
ventional ML technique) cannot directly process image data.
+us, a computer-aided diagnostic system requires careful
engineering and expert knowledge to design a feature ex-
tractor that transforms the pixel values of the image into a
suitable feature vector. +is feature extraction process
usually requires many steps, including normalization, seg-
mentation of the lesion boundary, and then feature ex-
traction [15]. +is feature vector then serves as the input of a

Table 1: Brief overview of common data-driven techniques used in breast MRI.

Technique Advantages Disadvantages References
Supervised learning

Ensemble of decision
trees

Decision using branches
Variable significance and feature selection are

included
Prone to overfitting

[12–14]

[15, 16]

Random forest High performance
Compared to decision trees Prone to overfitting [14, 17, 18]

[19]

Support vector
machines

Transforms nonlinear classification problem into
linear one

High accuracy

Difficult computation in high-dimensional
data space

[20, 21]
[22, 23]
[24]

Neural networks Weights need to be adapted for training
Multiclass classification No strategy to determine network structure

[25–27]
[28, 29]
[30, 31]

Deep learning State-of-the-art in image-derived features Computationally intensive
Hard to interpret

[32, 33]
[34–36]
[37–39]

Unsupervised learning
Clustering (k-means) Brief training duration Number of clusters must be known in advance [40, 41]
Topological data
analysis

Interpretable data mapping
Discovery of variable relationships Divided clusters due to mapping [28, 42, 43]
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classifier that detects important clinical patterns of the
image. Likewise, many ad hoc algorithms were developed for
breast and lesion segmentation [50, 51].

Deep learning belongs to the group of representation
learning techniques, which learn directly the optimal rep-
resentation by optimizing a loss function, e.g., a classification
loss. +e most important aspect of DL, which significantly
departs from conventional ML techniques and traditional
neural networks, is the fact that these layers of low- to high-
level features are not designed by human engineers but are
learned based on representation learning. Figure 1 exem-
plifies the differences between conventional and deep
learning in breast lesion classification.

Deep learning faces two major challenges in medical
imaging: (1) effectively training deep learning neural net-
works requires very large annotated datasets, and (2) the
joint analysis of multimodal images requires high-level
features that extract the global and local information hidden
in these images.

Training a large neural network from “scratch” (i.e.,
from random initialization) requires thousands or mil-
lions of data points. Despite recent progresses, collecting
large-scale dataset is still difficult in the medical domain
[52]. A possible compensating strategy is to transfer
knowledge from domains where data are abundant. +e
most standard procedure for transfer learning exploits
existing network architecture pretrained on large datasets
like ImageNet [53]. +e CNN can be used as an off-the-
shelf feature extractor, in which case only the final clas-
sifier is trained; alternatively, the network can be fully or
partially fine-tuned with a limited amount of medical
images [54].

+e second challenge is related to the nature of breast
MRI imaging, which provides complex three-dimensional
anatomical and functional information. In DCE-MRI,
multiple scans are acquired at different time intervals before
and after intravenous contrast injection. In the multi-
parametric MRI setting, this is pushed even further by
combining conventional T1-weighted (T1W) and T2-
weighted (T2W) images, diffusion-weighted imaging
(DWI), and DCE-MRI sequences, where each sequence
provides a distinct contrast yielding a unique signature for
each tissue type [55, 56]. In conventionalML, ad hoc features
were defined to take into account spatiotemporal image
variations, e.g., to properly define tumor kinetics, often
extracted after a preliminary coregistration step which aligns
all imaging volumes to reduce motion artifacts [15, 57].
CNNs were initially proposed to deal with two-dimensional,
low-resolution, RGB images and therefore need to be
adapted in order to effectively process multiparametric in-
puts and encode both volumetric (spatial) and temporal
changes [56]. When transfer learning from ImageNet, re-
searchers have proposed creative solutions to exploit pre-
trained CNNs by mapping different timepoints or
anatomical planes to different input channels [32, 58–61]. In
general, DL offers unprecedented opportunities to extract
high-level features from multiple low-level images and may
also alleviate the need for an intermediate registration step
[62].

3. Materials and Methods

+e primary goal of this narrative review was to identify the
most important applications and current research trends in
DL applied to breast MRI. A thorough search was conducted
in the key databases in the biomedical and engineering
domains, i.e., Springer Link, Web of Science, IEEE Xplore,
PubMed, and Google Scholar, using the search keywords
“breast cancer,” “MR imaging,” and “deep learning.” Ad-
ditional studies were retrieved by cross-checking reference
lists from extracted articles or based on the authors’ expe-
rience. Only original research articles published as full text
and in English were considered. Given that the introduction
of deep learning in medical imaging is relatively new [49]
and the rapid pace of technological evolution, only articles
published after 2016 were included in the search. Two au-
thors reviewed the titles and abstracts for relevance, e.g., to
exclude papers that pertained to other types of cancers or
anatomical districts, other imaging modalities, or not based
on deep learning. +e following studies were excluded:
reviews, systematic reviews, editorials and letters, opinion
papers, and articles that did not include a description of the
methodology. We included conference proceedings and
preprints that are widely used by the engineering and
computer science communities.

+e primary aim was to categorize the studies according
to the following research questions: (1) what are the main
applications of DL in breast MRI? (2) What are the DL
architectures currently applied in breast MRI? (3) What are
the evaluation criteria used for their assessment? (4) What
are the datasets used? (5) What are their performances?
+erefore, a systematic approach to data extraction was
followed to produce a descriptive summary of study char-
acteristic. Each study was categorized according to the main
task that the methodology was designed to solve and
assigned to one of the following categories: segmentation,
lesion detection, lesion classification, radiomics, predictive
modeling, and others [11]. We further analyzed the most
important applications by extracting the following infor-
mation: description of the DL technique, dataset charac-
teristics (size and type of sequences), and performance.
When multiple articles were published on the same tech-
nique or dataset, the most recent or complete work was
included in the systematic review.

4. Perspectives of AI and Deep Learning in
Breast MRI

Overall, 61 studies were considered in this systematic review,
as detailed in Figure 2.

+e majority of studies falls within the broad scope of
computer-aided detection/diagnosis. Twelve studies (20%)
focus on segmentation of either the breast region (5 studies)
or the lesion boundaries (7 studies), which is a key pre-
processing step for many subsequent applications.

Only 6 (10%) studies focus on automatic lesion detection
or Computer-Aided Detection (CADe) applications,
whereas 26 (42%) focus on classification of benign vs.
malignant lesions or Computer-Aided Diagnosis (CADx).
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+e very high sensitivity of breast MRI, in addition to its
primarily diagnostic role, has traditionally shifted the in-
terest of researcher towards CADx applications.

CADe applications are designed to automatically detect
and localise breast lesions, usually to serve as a second-
opinion, reduce the risk of false negatives, and streamline the
reading process. +e output may be a bounding box or other

marker, which indicates the lesion [63] or, more commonly
in breast MRI, a pixel-wise segmentation mask [64, 65]. In
breast DCE-MRI, sensitivity and prevalence are usually very
high, but the reading process is complex and time-con-
suming: for this reason, CADe developers have been tra-
ditionally focused on reducing reading time and provide
more reproducible results than manual segmentation [51].

Texture

Histogram
Detection

Predefined engineering features
Feature engineering

Convolution layers for feature map extraction

Fully connected layers for high-level resolution and classification
Pooling layers for feature aggregation and spatial invariance

Deep learning
input OutputHidden layers

Increasingly higher
level features

Expert knowledge
Shape

Classification

Figure 1: Differences between conventional and deep learning in breast MRI for the lesion discrimination task.+e upper part of the image
represents the traditional radiomic-based processing. Features such as texture, shape, and histogram are fused to describe the tumor. +ese
engineered features are defined based on expert knowledge. +ey are extracted from an accurate segmentation which may be performed
automatically or, more often, in a semiautomatic fashion by an expert radiologist. +e lower part shows the DL-based processing. Several
deeper layer features from low level (edges) to high level (objects) are automatically learned by the network. +is approach does not require
an explicit segmentation step and can be directly applied to the raw images, trained only from lesion-level class labels.

61 unique records
identified through

database search

33 records included 
in the qualitative

review

28 records excluded
(not relevant or other

exclusion criteria)

61 records included
in the final qualitative

review

30 records identified
through other sources

(a)

Classification
42.6%

Others
8.2%

Detection
9.84%

Radiomics
19.7%

Segmentation
19.7%

(b)

Figure 2: Flowchart shows selection of studies for inclusion in the narrative review (a); selected studies are further characterized according
to the main focus (b).
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CADx systems may start from the output of a CADe
system or, more frequently, from an input ROI, usually a
bounding box, manually delineated by the radiologist. A
segmentation algorithm may be used to locate the lesion
boundary for volumetric analysis or feature extraction.
Lesion detection, segmentation, and classification are
often tackled as separated, consecutive processing steps,
and hence, most papers focus on either one of these steps.
In the remainder of this chapter, we will follow this
distinction to focus on the unique characteristics of each
task. However, the reader must bear in mind that, in DL,
it is usually beneficial, in terms of performance and
computing time, to combine multiple tasks in a single
architecture, a technique usually denoted to as multitask
learning. For this reason, several authors are increasingly
tackling multiple tasks, e.g., lesion segmentation and
classification, simultaneously [64].

Finally, an additional 12 studies (20%) focus on ex-
traction of biomarkers or predictive models, in particular
for the prediction of response to neoadjuvant chemo-
therapy (9 studies). +e remaining five studies (8%) in-
clude additional applications such as the estimation of
breast density [34] or issues related to normalization and
preprocessing of MRI data [62, 66–68]. Our findings are
consistent with previous reviews and with clinical indi-
cations for breast MRI, which include screening of high-
risk women, characterization of equivocal findings at
conventional imaging, presurgical staging, therapy re-
sponse monitoring, and searching for occult primary
breast cancer [1, 11].

Sections 4.1–4.4 review segmentation, detection, classi-
fication, and biomarker applications, respectively.

4.1. Segmentation. Segmentation is a key preprocessing step
for both CADx and radiomic applications. Table 2 shows a
summary of papers describing segmentation applications in
DL.

Some studies have focused on the identification of the
breast region, which consists in the identification of the
breast-air and breast-pectoral muscle edges, usually with the
goal of removing unwanted pixels from further computation
[61, 69, 71, 73, 74]. +e main challenge is detecting the ill-
defined boundary between the breast and the pectoral
muscle, which is further complicated by the presence of the
heart and wide intersubject variability.

Other authors have focused on the segmentation of
lesion boundaries [60, 70, 72, 74–77]. +e uneven class
distribution between malignant and benign lesions, the
presence of small lesions in large image matrices, and the
presence of other neighboring anatomical structures such as
vessels and breast parenchyma represent themain challenges
to accurate lesion segmentation.

+e primary evaluation method for biomedical image
segmentation is the Dice coefficient [78]. +e Dice coeffi-
cient is a measure of spatial overlap ranging from 0, indi-
cating no spatial overlap between two sets of binary
segmentation results, to 1, indicating complete overlap. It is
computed as follows:

Dice(S,GT) � 2
|S∩GT|

|S| +|GT|
, (1)

where |S∩GT| is the area of the overlap between the seg-
mentation S and the ground truth GT and |S| and |GT| are
the areas of the segmentation and ground truth, respectively.
Since the task of segmentation can be represented as a voxel-
by-voxel classification, where each voxel is assigned to a
distinct class, it is also common to report the by-voxel ac-
curacy (ACC), sensitivity (Sn), and specificity (Sp).

U-net [79] represents the state-of-the-art of segmenta-
tion in biomedical image processing and is indeed the most
widely used technique for both lesion and breast segmen-
tation [60, 69, 71, 72]. +e U-net architecture (shown in
Figure 3) builds upon the fully convolutional network and is
composed of two sections: a descending part, which com-
presses the input in a semantically rich latent space to
capture context, and an ascending part, which outputs a
segmentation map with K channels, one for each type of
tissue. +e U-net architecture is symmetric and introduces
skip connections between the downsampling and upsam-
pling paths, which provide both local and global information
to the upsampling convolutions and allow precise locali-
zation of each pixel. Despite the 3D nature of breast MRI,
almost all available techniques apply a 2D U-net to each slice
and then collate the results in a 3D volume
[60, 61, 69–71, 73]. +is allows a substantial saving in model
parameters over 3D convolutions; experimentally, both
approaches were found to have comparable results [66].

U-net has shown superior performance to other pixel-
based, atlas-based, and geometrical-based approaches.
Within the field of breastMRI, a head-to-head comparison is
provided by Piantadosi et al. [61], who reported a Dice
coefficient between 0.9 and 0.96 for deep learning-based
approaches, compared to 0.6–0.63 (pixel-based), 0.69–0.92
(geometrical), and 0.69 (atlas-based) for non-deep learning
approaches.

In the case of breast segmentation, it is normally suffi-
cient to use the precontrast scan, whereas for enhancing
lesions, a combination of pre- and postcontrast scans are
needed to detect contrast agent uptake. For instance,
Piantadosi et al. used three well-defined temporal acquisi-
tions (precontrast, 2 minutes and 6 minutes after contrast
agent injection, also known as the 3TP method) as three
separate inputs to a single network [60]. Other authors have
directly encoded spatiotemporal information using a com-
bination of recurrent and convolutional neural networks
[80].

4.1.1. Segmentation of Fibroglandular Tissue. +e breast is
composed of fatty and fibroglandular tissue (FGT). Breast
density, defined as the percentage of FGT within the breast,
is an important aspect of breast cancer diagnosis, as dense
breasts are associated with an increased risk of breast cancer
and reduced mammography sensitivity [81]. Given the high
interrater variability associated with visual assessment [81],
automatic breast density estimation has been widely in-
vestigated, most commonly based on mammography [82]
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and, to a lesser extent, on MRI [34, 83, 84]. A possible way to
estimate breast density is to classify each voxel as either fat or
FGTand thus estimate the percentage of volume occupied by
the latter. In this regard, an interesting application of U-net

for the segmentation of FGT is presented in [34]. Two
different approaches are compared: (1) breast and FGT
segmentation performed in two consecutive steps using 2
separate U-nets (2C U-nets) and (2) breast and FGT

Table 2: Segmentation applications in breast MRI.

DL technique Evaluation results Used dataset Reference

2D U-net applied slice-by-slice

Dice� 95.90± 0.74
Acc� 98.93± 0.15
Sn� 95.95± 0.69
Sp� 99.34± 0.17

42 patients DCE-MRI [69]

3TP U-net

Dice� 61± 11.84
Acc� 99± 0.01
Sn� 68.28± 9.73
Sp� 100± 9.73

35 DCE-MRI 4D data [60]

GOCS-DLP shape prior based on semantic
segmentation based on DL Dice� 77± 13 117 patients DCE-MRI, T2- and T1-weighted

images [70]

2D U-net applied slice-by-slice Dice� 97 50 DCE-MR images [71]

Hierarchical multistage U-net with dice loss Dice� 72± 24
Sn� 75± 23

Training set: 224 DCE-MRI cases; test set: 48
DCE-MRI cases [72]

Comparison of 2D U-net and 2D SegNet models
with transfer learning from DCE-MRI to DWI Dice� 72± 16 Training: 39 DCE-MR cases and 15 DWI-MR

cases; testing: 10 representative DWI-MR slices [73]

2D U-net applied slice-by-slice to multiplanar
sections followed by voxel-level fusion

Dice� 96± 0.3
Acc� 99.16± 0.13
Sn� 96.85± 0.47
Sp� 96.85± 0.47

Training: 42 + 88 T1-weighted MRI series (10-
fold cross-validation) [61]

+e most common performance measures are the Dice coefficient and the by-voxel accuracy (ACC), sensitivity (Sn), and specificity (Sp). All performance
values reported are percentages.

Input
image

Output
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256 128
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128 64 64 K

Convolution and nonlinearity

Upconvolution

Maximum pooling
Copy Blocks copied from descending
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Figure 3: Deep learning network with U-net architecture. Reprinted with permission from [34].
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segmentation performed in a single step using 3-class U-net
(3CU-net), as shown in Figure 4.+e average Dice values for
FGT segmentation obtained from 3C U-net, 2C U-nets, and
atlas-based methods were 85.0, 81.1, and 67.1, respectively,
thus indicating that the 3C U-net is a more reliable approach
for breast density estimation. +e authors observe that both
U-net-based methods were minimally affected by intensity
inhomogeneities typical of MRI even though no bias-field
correction was applied as a preprocessing step [85]; this
suggests that a deep neural network is able to learn and
compensate for the bias field in a given training set [34].

4.2. Detection of Breast Lesions. Table 3 shows a summary of
papers describing lesion detection applications in DL. While
lesion segmentation algorithms, illustrated in Section 4.1,
usually operate from a manually defined input ROI, CADe
systems operate on the entire volume, with the goal of
detecting lesions accurately, i.e., with high sensitivity, low
false-positive rate, and good segmentation quality. +e
output may a bounding box or other marker which indicates
the lesion [63] or, more commonly in breast MRI, a pixel-
wise segmentation mask [64, 65]. Detection and lesion
segmentation may be tackled by a single network or by
dedicated submodules.

Evaluation of CADe systems is usually performed by
free-response receiver operative curve (FROC) analysis [89].
It is a variant of the receiver operating curve (ROC) para-
digm where the number of detections for an image is not
constrained, as CADe systems may generate an arbitrary
number of lesion candidates. Each lesion candidate is
assigned a score, and candidates with score higher than a
given threshold (or operating point) are shown to the
radiologist.

In particular, the FROC curve plots the fraction of
correctly localized lesions as a function of the average
number of false positives (FPs) per image, where each point
in the curve corresponds to a different threshold. +e FROC
curve is not bounded; hence, a convenient summary mea-
sure like the area under the ROC curve is not readily
available. Starting from FROC analysis, the authors may
select an optimal operating point at which sensitivity and
FPs/image are reported: the choice of the operating point
depends on the desired balance between sensitivity and
specificity, but it is also possible to select multiple operating
points, e.g., corresponding to high-sensitivity or high-
specificity settings. For instance, Maicas et al. achieved a
sensitivity of 80% at 8 FPs per image using a model agnostic
saliency model [86] and 80% sensitivity at 3.2 FPs per image
using a method based on deep reinforcement learning [63].
Other authors have selected a computation performance
metric (CPM), where sensitivity values at 1/8, 1/4, 1/2, 1, 2, 4,
and 8 false positives per scan were averaged [64].

As in the case of lesion segmentation, fully convolutional
networks and variants like the U-net architecture are a
common choice for lesion detection [64, 87]. Other authors
leverage on classification networks that are applied on image
patches in a sliding window fashion [65]. Both approaches
output a binary segmentation map. Very different

implementation choices are available within this same ar-
chitecture, based on how to exploit the 4D data provided by
DCE-MRI. In the case of patch-based classification, some-
times, the ROC curve is used to evaluate how well the
network can discriminate lesions from the background;
however, this performance metrics is less common as it
refers to an intermediate output of the CAD system, and as
such, it is not directly interpretable by the end user.

Detection of enhancing lesions requires the processing of
postcontrast frames: Herent et al. [65] relied on a single
postcontrast fat-suppressed sequence, whereas other authors
have used the subtraction volume obtained from precontrast
and the first postcontrast volumes, where the lesion is most
prominent [64]. +e additional T1-weighted (T1W) scans
obtained after the first postcontrast MRI are used for
evaluating contrast enhancement dynamics of a lesion in the
late phase, which provides adjunct information for dis-
tinguishing the benign structures from the malignant ones
[64]. Here, a modular approach may be useful to reduce the
computational time associated with the initial detection step,
reserving late frames or multiparametric imaging for tar-
geted classification analysis on the selected ROIs.

An important contribution to breast cancer detection is
presented in [64]. +e system was based on three-dimen-
sional (3D) morphological information from the candidate
locations. Symmetry information arising from the en-
hancement differences of the two breasts is exploited by
implementing a multistream CNN, which simultaneously
processes and combines features from the target ROI and the
contralateral breast. In a head-to-head comparison, the
proposed system achieves a higher average sensitivity
(0.6429± 0.05387) compared to a previous CADe system
(0.5325± 0.0547) based on conventional image processing
and ML techniques.

U-net

U-net

U-net

2C U-nets

3C U-net

Pnb

Pfat
PFGT

Pnb
Pfat
PFGT

Pbreast

Figure 4: Two different approaches for applying U-net to breast
and fibroglandular tissue (FGT) segmentation. +e upper figure
shows 2C U-nets, where two consecutive U-nets are used. +e
figure below illustrates the other approach, a single U-net with 3-
class outputs. Pnb, Pbreast, Pfat, and PFGT denote the probability
values of voxels to belong to nonbreast, breast, fat, and FGT, re-
spectively. Reprinted with permission from [34].
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+ere are however other approaches in literature. For
instance, Lu et al. [87] took advantage of different image
modes from breast MRIs (T1W, T2W, and DWI), building a
multistream CNN backbone with shared weights in which
features are extracted from eachmodality, concatenated, and
finally input to a classification model. A radically different
approach is taken in consideration by Maicas et al. [63], who
propose a deep reinforcement learning for accurate lesion
detection. In this framework, a network is used to modify
(translate or scale) a bounding box proposal until the lesion
is found.

4.3. Classification of Breast Lesions. Lesion classification
according to their histological type (benign vs. malignant)
accounts for almost half the research reviewed. Table 4
shows a summary of the most representative papers.

+e vast majority of implementations leverages a clas-
sification network that takes as input a region of interest
(ROI) containing the lesion and outputs a classification
score. Usually, a precise segmentation is not performed as it
is not needed for DL-based methods.

One of the first CNN implementations can be traced
back to Antropova et al. [99], who combined off-the-shelf
pretrained CNN with SVM. While the architectures vary,
following the DL evolution towards deeper and deeper ar-
chitectures, leveraging on a pretrained on ImageNet has
remained very popular in the literature, although more
recent works have shown that fine tuning all layers towards
the task of breast MRI classification is needed to achieve high
performance [32, 58, 93, 94, 96, 97, 100–102].

As for the previous tasks, different variations are
available depending on how information is combined as
input to the pretrained CNN. Since natural images are RGB
(three channels), whereas MRI is grayscale (single channel),
this gives the option to input different pre- and postcontrast
frames to different channels: to this aim, it is possible to
adopt the 3TP method [97] or use the precontrast, first
postcontrast, and second postcontrast frames, as shown in
Figure 5 [100]. Fewer authors have evaluated multiple
combination of sequences or multimodal including DCE-
MRI, T2-weighted MR, and DWI [91, 93, 94]. Our findings
are consistent with previous reviews which included also
conventional ML methods [11].

One of the most challenging aspects of designing deep
neural networks for breast MRI is integrating both temporal

and spatial aspects in feature extraction, especially when
constrained by the available networks designed for 2D
images. In this direction, Antropova et al. [32] exploited
maximum intensity projection (MIP) in order to integrate
spatial information and used subtraction images to compare
pre- and postcontrast frames, effectively reducing the 4D
volume to a 2D image, while retaining information about
enhancement changes throughout the whole lesion volume.
Hu et al. [101] introduced a pooling layer to reduce the
images at the feature level, instead of the image level, as in
the MIP case.

Recurrent neural networks, such as long short-term
memory (LSTM), were also applied to the task of lesion
classification [37, 58, 92]. Morphological features are cap-
tured by a CNN on each ROI, and then, the extracted
features at different time points are used to train a LSTM
network to predict the outcome based on the full DCE-MRI
sequence. An example of recurrent neural network is given
in Figure 5.

Fewer authors have proposed ad hoc CNN architectures,
leveraging directly the 4D nature of DCE-MRI, for instance,
by exploiting 3D convolutional layers [35, 95, 98, 103] and
by extracting features at multiple scales [95]. +ese ap-
proaches are particularly interesting as they allow to capture
the unique properties of DCE-MRI datasets. At the same
time, it becomes necessary to train the network from scratch,
and this requires relatively large-scale datasets to achieve
competitive performance [98].

Comparison of deep learning vs. hand engineered fea-
tures was performed by several authors [90, 94, 100, 104].
Antropova et al. [100] found that a CNN-based classifier
slightly outperformed a conventional CADx design
(AUC� 0.87 vs. 0.86), and a combination of both ap-
proaches performed best (AUC� 0.89). Similar conclusions
were reached in other studies [104]. Other studies, on the
contrary, found that CNN significantly outperformed tra-
ditional radiomics feature extraction [90, 94]. Differences
among studies may be explained by the different experi-
mental setups, the neural network design, and the size of the
training set.

An important aspect to be considered is that the per-
formance of conventional ML approaches saturates quickly
with the training set size, as their discriminative abilities are
mostly due to the fixedmanually engineered features. On the
contrary, deep neural networks continue to grow and learn
as more training data become available. +is phenomenon

Table 3: Detection of breast lesions in breast MRI using DL.

DL technique Evaluation results Dataset References

Model agnostic saliency TPR� 80
FPs/image� 8

117 subjects
DCE-MRI and T1W images [86]

U-net Acc� 94.2 67MR images T1W, T2W, DWI, and DCE-MRI [87]
Patch-based analysis with ResNet50 backbone AUC� 0.817 335MR images of 17 different histological subtypes [65]

Deep Q-network Sn� 80
FPs/image� 3.2 117 DCE-MR and T1-weighted images [63]

Unsupervised saliency analysis and CNN Acc� 86± 2
AUC� 0.94± 0.01 193 DCE-MR images [88]

Two-level U-net and dual-stream CNN CPM� 64.29 Training: 201 DCE-MR images
Testing: 160 DCE-MR images [64]
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was quantitatively evaluated by Truhn and colleagues by
halving the amount of training data available: the perfor-
mance of radiomics with respect to the full-size cohort was
fairly stable (0.80 vs. 0.81), whereas the AUC of the CNN
improved significantly from 0.83 to 0.88 [94]. +is implies
that DL is the most promising development perspective for
lesion classification, as CNN performance is poised to
substantially increase as more training data become
available.

4.4. Deep Learning and Radiomics: Discovering Breast MRI
Biomarkers through Deep Learning. “Radiomics” was first
mentioned by Gillies et al. in 2010 to describe the high-
throughput extraction of quantitative features from images
that result in their conversion into mineable data, as well as
the process of building predictive models from these data
[6]. +e success of this approach and terminology was large,
to the point that conventional feature extraction methods

(including shape, intensity, and texture) are now generally
referred to as “radiomic” features.

+e process of radiomics generally consists of several
closely related steps as follows:

(1) Acquire high-quality standardized imaging data and
reconstruction.

(2) Segment the region of interest (ROI) or the volume
of interest (VOI) manually, automatically, or with
computer-assisted contouring.

(3) Extract a large number of features, in the order of the
hundreds.

(4) Build clinical prediction models (based on feature
selection and machine learning).

+e field of radiomics partially overlaps with CADx, but
the clinical prediction model may target different outcomes
than histopathology, including breast cancer molecular
subtype classification, response to therapy, or association to

Table 4: Selected studies reporting classification of breast lesions in breast MRI using DL.

DL technique Evaluation results Dataset Reference

3D CNN from scratch AUC� 0.739 (2D)
AUC� 0.801 (3D) 143 DCE-MR cases (M: 77, B: 66) [35]

CNN (ResNet50) fine-tuned AUC� 0.97–0.99

Training: 33 patients with 153 lesions
(M: 91, B: 62)

Testing: 74 patients with 74 lesions (M:
48, B: 26)

[90]

Cross-modal DL (mammography and MR), trained
from scratch

Acc� 94
AUC� 0.98

123 DCE-MR+T1W 282
mammography images [91]

Dense convolutional LSTM
Acc� 0.847

Precision� 78.2
Sn� 81.5

72 lesions (M: 27, B: 45) DCE-MRI and
DWI-MRI [92]

DenseNet AUC� 0.811 576 lesions (M: 368, B: 149, FU: 59)
Ultrafast DCE-MRI, T2, and DWI [93]

CNN (AlexNet) fine-tuned from ImageNet on the
second postcontrast frame, LSTM model for final
prediction

Acc� 76
AUC� 0.76

42 DCE-MR images, 67 lesions (M: 42,
B: 25) 10-fold cross-validation [59]

CNN (ResNet34) fine-tuned best three inputs out of 85
combinations

AUC� 0.88 (95%
confidence interval:

0.86–0.89)

447 patients, 1294 lesions (M: 787, B:
507) multiparametric DCE-MR+T2W

10-fold cross-validation
[94]

MIP+ off-the-shelf CNN (VGG) + SVM AUC� 0.88± 0.01 690 DCE-MR cases (M: 478, B: 212)
5-fold cross-validation [32]

Multiscale 3D CNN (trained from scratch) inputs: five
timepoints T1W DCE-MR and T2W AUC� 0.89± 0.01

408 patients (M: 305, B: 103)
multiparametric

DCE-MR
5-fold cross-validation

[95]

Off-the-shelf CNN (VGG) + SVM target: different
molecular subtypes

AUC� 0.65 (pretrained)
AUC� 0.58 (from scratch)

270 DCE-MR images (90 luminal A, 180
other 3 subtypes)

10-fold cross-validation
[96]

3TP-CNN pretrained on ImageNet
Acc� 74

AUC� 0.81
F1� 0.78

39 lesions (M: 36, B: 22)
DCE-MRI sequences

10-fold cross-validation
[97]

+ree-channel (pre- and postcontrast) CNN (VGG)
fine-tuned for classification

AUC� 0.88
(CNN+LSTM)

AUC� 0.84 (CNN-only)

703 DCE-MR dataset (M: 482, B: 221)
80% training + validation, 20% testing [58]

3D ResNet trained from scratch with ad hoc
embedding loss weakly supervised localization with
feature correlation attention map

Acc� 85.5
AUC� 0.902

1715 subjects (M: 1137, B: 578)
Training: 1204 subjects
Testing: 346 subjects

[98]

For each study, we report the number of histologically verified benign (B) and malignant (M) lesions or cases; benign lesions without biopsy with at least 12-
month follow-up (FU) are also indicated. Histology is used as ground truth in all studies.
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genomics or other omics data. Radiomics features or sig-
nature may also play an important role in the discovery of
imaging biomarkers [105]. +e term “biomarker” refers to a
characteristic that is measured objectively, as an indicator of
normal biological processes, pathological changes, or re-
sponse to an intervention. Imaging biomarkers may reflect a
general cancer hallmark, e.g., proliferation, metabolism,
angiogenesis, and apoptosis; specific molecular interactions;
or agnostic features.

Evaluating potential biomarkers or radiomic signatures
is beyond the scope of this paper. We refer here to the
framework for evaluation of Quantitative Imaging Bio-
markers (QIB), proposed by the QIBA Technical Perfor-
mance Working Group in the paper by Raunig and
colleagues [106], but the main principles are also applicable
to radiomics [107].

+e role of DL in radiomics and biomarker discovery is
increasing. In hybrid systems, DL can be applied to

Precontrast (t0) 1st postcontrast (t1) 2nd postcontrast (t2)

Benign versus malignant

Red Green Blue

Fine-tune
VGGNet

(a)

Precontrast (t0) 1st postcontrast (t1) 2nd postcontrast (t2) nth postcontrast (tn)

Pretrained
CNN

Pretrained
CNN

Pretrained
CNN

Pretrained
CNN

[Features]0 [Features]1 [Features]3 [Features]n

Long short-term-memory network (LSTM)

Benign versus malignant

...

...

(b)

Figure 5: Two-step transfer learning approach for leveraging temporal information in pretrained CNN. In the first approach (a), the CNN is
fine-tuned on pseudocolor ROIs, formed by the precontrast and first and second postcontrast frames, mimicking the three channels of an
RGB images. In the second step (b), image features extracted from the trained CNN at each DCE timepoint are used to train an LSTM
network, which learns to distinguish contrast enhancement patterns. Reprinted from [58].
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anatomical imaging and to perform lesion segmentation
prior to feature extraction. DL-based segmentation is faster
and more accurate than traditional methods. Automatic
methods are preferable in terms of reducing inter- and
intraoperator variability [107]. In connection with molecular
imaging, it offers better results when it comes to the vari-
ability in lesion volume parameters associated with lesion
segmentation. DL can also be used also for solving CT-less
attenuation correction in hybrid PET/MRI [108–110].

At the same time, DL can be applied directly to breast
MR images to extract meaningful features that can be used
alongside or replace traditional radiomic feature. While DL
has been primary used as a method for joint feature ex-
traction and classification, i.e. to classify tumors as benign or
malignant, it is not restricted to image classification. DL can
be used to build a wide variety of predictive models [96, 111],
as well as predictive biomarkers by summarizing many
multimodal breast MR images into compact feature vectors
[56].

+us, the output of the DL neural network will not only
provide a lesion classification result but also a quantitative
value as a summary of high-dimensional images. As a
representation learning technique, DL can provide imaging
biomarkers. +is is also known as “DL-based radiomics”
since the resulting hierarchical features of the hidden layers
can be employed as radiomics features. +e reproducibility
of DL-based features has been less investigated; however,
they may be less sensitive to changes in image appearance
and quality, as they have been designed and pretrained on
natural images that exhibit a large variability in illumination
and contrast [112].

In [39], a CNN was designed for breast tumor seg-
mentation, while a subsequent radiogenomic analysis
showed that the trained image features had a comparable
performance for identifying luminal A subtype breast
cancer. DL has also been employed for breast cancer mo-
lecular subtype classification based on feature maps of the
last fully connected layer [36].

In [113], a DWI-based DL model was proposed for the
preoperative prediction of sentinel lymph node metastasis in
patients with breast cancer. +e model combined the CNN
and the bag-of-features (BOF) model, which provided rel-
evant feature descriptors based on the DL; accurate feature
selection was achieved based on BOF. Figure 6 describes this
model.

In addition, the importance of DL techniques in the
evaluation and prediction of neoadjuvant chemotherapy has
been described in several papers [33, 38, 114–119]. In [33], a
CNN was used for the prediction of pathological complete
response to neoadjuvant chemotherapy from baseline breast
DCE-MRI. A comparison of different DCE-MRI contrast
timepoints with regard to how well their extracted features
predicted response to neoadjuvant chemotherapy was per-
formed in [38] within a deep CNN. Extracted features from
the precontrast timepoint was determined to be optimal for
prediction.

Deep learning methods have been applied to automat-
ically score HER2, a biomarker that determines patients who
are eligible for anti-HER2 targeted therapies [120]. +is

study showed that DL was able to identify cases that are most
likely misdiagnosed within the traditional clinical decision-
making context.

4.5. Specific Characteristics of Breast MRI in Deep Learning
Applications. Most DL-basedmodels in computer vision are
designed to identify the ground-truth class, assuming that it
can be determined with high confidence. In breast MRI, this
translates to using pathological information or, less fre-
quently, radiological reports [11, 89] as the ground truth.
However, compared to RGB image classification, patho-
logical classes are definitely more ill-defined. First, there is a
large interoperator variability among clinicians and pa-
thologists. Secondly, clear-cut discrimination between
normal and pathological cases is not always needed or
possible [52, 89]. Indeed, medical diagnosis is inherently
ambiguous, and DL-based approaches should be able to
embrace this by defining a spectrum of lesions and provide
fine-grained information to monitor a patient’s status and
outcome.

+e extraction of latent and crucial information is the
basis of DL processing. For example, the apparent diffusion
coefficient is used as a cancer biomarker in breast MRI in
spite of its limitations. +e same holds for maximum
standardized uptake value in hybrid processing where a
single semiquantitative parameter summarizes many high-
dimensional image data and represents a predictor for a
patient’s outcome. DL provides much more information
than a conventional imaging parameter and is able to extract
the most discriminative key information from multimodal
data.+e main challenge is how to design a network that can
process such high-dimensional dataset in an effective and
efficient way. Several examples are provided in Section 4.3
although many current approaches are constrained by the
need to leverage pretrained networks on RGB images.

A possible drawback of DL-extracted features is the lack
of interpretability [112]. Engineered features are somehow
related to characteristics that radiologists use in their clinical
assessment, such as lesion size and shape, and may have a
direct interpretation. However, this does not necessarily
hold true for more complicated features, such as those
describing texture. Features extracted from deep neural
networks, however, cannot provide a direct mathematical
formulation that can explain their behavior. Research is
ongoing to accompany DL-based with visual explanations
[112].

Another critical aspect is dealing with small medical
image datasets. +is is tackled by the use of transfer learning
coupled with data augmentation, which generates novel
training samples by applying random transformations such
as rotation, translation, and flipping, thus reducing over-
fitting [49]. Data augmentation may also help by balancing
the often unbalanced classes within medical datasets. Almost
the totality of the reviewed literature uses some form of data
augmentation although few employ techniques specifically
designed for MRI.

An approach that is growing in popularity is the use of
generative adversarial networks (GANs) for medical image
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synthesis [112, 121]. However, synthesizing high-quality 3D
images is particularly challenging, and there is the risk to
introduce spurious and misleading patterns, e.g., that could
mimic lesions in normal cases [122]. +is approach has been
explored in other pathologies, such as brain MRI [123].

An important aspect of MRI is the wide variability in
acquisition parameters across clinical centers. MRI supports
wide variations in scanners, acquisition sequences, parame-
ters, and contrast agents. +e presence of artifacts and patient
motionmay further reduce the accuracy of both segmentation
and classification [62, 66]. Standardization and repeatability
across clinical sites are known issues in all ML applications
and radiomic applications in MR [124]. Most studies in lit-
erature are single-center studies, which may lead to over-
estimating the performance over clinical practice. +e effect
of different acquisition modalities, as well as normalization
approaches that can mitigate those differences [51, 68], need
to be better explored in the context of deep learning.

5. Future Directions and Challenges

+e rapid development of AI will lead to a fundamental
change in medicine and especially biomedical imaging.

Due to the unique ability of breast MRI to capture both
spatial and temporal information, DL needs to be adapted in
both architecture and training to fulfill these requirements.
Our surveys show that although many applications of DL to
breast MRI are emerging, segmentation and lesion classi-
fication are today the most mature technologies. However,
because images contain rich physiologic, pathologic, and
anatomic information, the most important contribution of
DL would not be to perform mere lesion classification but to
extract latent biological, prognostic, and predictive infor-
mation.+e potential of DL in radiomics is largely untapped
as most current approaches are still based on conventional
feature extraction [10]. +e three main challenges in DL-
based biomarkers discovery are excellent prognostic and
predictive information, diagnostic uncertainty, and
leveraging unlabeled image datasets.

In precision medicine, for example, DL is gaining in-
creasingly relevance for finding biomarkers that predict
individual patient outcomes and treatment response. We
expect that DL in combination with radiogenomics will
provide improved prognostic stratification models. In terms
of decision reliability in the clinical settings, DL-based au-
tomated systems should identify cases where determining

the diagnosis is difficult and requires additional diagnostic
tests. DL can be enhanced with Bayesian network modeling,
an excellent candidate for uncertainty measurements, to
address this challenge. Establishing reproducibility of DL-
based features is also a key challenge to overcome for their
application in both clinical and research settings.

From the viewpoint of data availability, the biomedical
imaging field is a unique position, as raw data are largely
available in DICOM format, but annotations are expensive
and time-consuming to acquire. Techniques to leverage
unlabeled or partially labelled datasets have the potential to
greatly advance the application of data hungry DL ap-
proaches. Unlabeled datasets can be analyzed based on
unsupervised, semisupervised, or self-supervised learning,
and the emerging clusters can be used to provide additional
information about the subtypes of breast cancer [54].

6. The Future of BreastMRIAugmentedwithAI

+e roadmap for the future of AI in breast MRI is to create a
safe implementation of AI in which radiologists will not be-
come obsolete as Geoffrey Hinton postulated [125]. On the
contrary, the productivity of radiologists will increase based on
these intelligent and automated systems. Precision medicine in
particular will benefit tremendously from this new technique.

6.1. Potential Impact and Implementation Strategy in Breast
MRI. +e most important task-based categories for the
implementation of AI within the scope of breast MRI are as
follows:

(1) Automated preprocessing such as segmentation,
detection, and classification of images: ML tech-
niques are well-established techniques when it comes
to automatically detecting breast lesions on mam-
mograms and MRI scans. As a natural next step, DL
could be applied to predict the behavior of pre-
cancerous lesions and reduce the number of un-
necessary and invasive biopsies. Our findings
suggests that this is an active and rapidly evolving
research area; however, DL-based techniques are
mostly still in the technical development phase and
require extensive clinical evaluation.

(2) Intelligence augmentation: combining AI and the
expertise of breast radiologists as a new hybrid
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Figure 6: Flow diagram of sentinel lymph node prediction. Reprinted with permission from [113].
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intelligence is, in the near future, the most promising
direction. Interaction between AI and the human
reader needs to be carefully designed and evaluated to
maximize accuracy and avoid pitfalls such as under-
and overreliance [8]. In our literature review, we found
only retrospective, stand-alone performance assess-
ment studies. As the technology becomesmoremature,
evaluating AI systems in human in the loop scenarios
will become of critical importance.

(3) Precision medicine and big data: the emergence of
radiogenomics which links genomics with imaging
phenotypes requires novel AI strategies to process
the large amount of data in order to assess breast
tumor genetics, behavior, and response to neo-
adjuvant therapies. +e potential of DL-based
methods in this context is still largely untapped

(4) Decision support systems: AI should be incorporated
in decision support systems applied to diagnostic
imaging and thus reduce information overload and
burnout among breast radiologists.

7. Conclusion

Medical decisions in breast cancer patients are made by a
detailed interpretation of all relevant patient data including
imaging, genomic, and pathologic data. As shown in this
article, AI and DL have a major advantage for automatically
extracting discriminative features in high-dimensional data
over traditional machine learning methods.+us, AI and DL
will impact the breast imaging field tremendously in ways
mostly related to quantitative analysis. +e multiparametric
MRI images provide a plenitude of quantitative information,
and thus, various AI and DL techniques will be increasingly
applied. Even though there are already automated systems
being employed in breast MRI, AI and DL will enhance the
importance of multiparametric breast MRI by extracting
relevant information from images that will lead to the de-
velopment of very important biomarkers. Future genera-
tions of radiologists will translate breast MRI extracted
information to clinical decision-making and will establish
important biomarkers for precision medicine.
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