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ABSTRACT: 

Road network functional hierarchy classifies individual roads into several levels, for efficient traffic management and road network 
generalization purposes. Automatic and semi-automatic road network extraction methods exist, but the generated products normally 
lack information on its functional hierarchy. This paper presents a methodology for automatically retrieve functional hierarchy for an 
OpenStreetMap derived road network from Floating Car Data, obtaining evenly distributed (e.g. for generalization purposes) or 
dynamic (e.g. to take into account differences in traffic volumes in different moments of the day) classifications. Road network 
elements are classified in function of vehicle speed values: the class distribution generated with the proposed methodology follows a 
linear distribution that can be better exploited for generalization purposes. Furthermore, the methodology allows to clearly distinguish 
different distributions in different moments of the day and days of the week, supporting traffic management activities.

1. INTRODUCTION

Road network functional hierarchy classifies individual roads into 
several levels, in order to manage traffic efficiently by 
segregating through traffic from accessing, parking and non-
motorized traffics (Goto et al., 2016). 

Functional classes can be also used to support road network 
generalisation, in order to efficiently reduce the number of 
features represented at lower map scales, without losing relevant 
information. In cartography, map generalisation is the process of 
deriving from a detailed source spatial database a map or database 
the contents and complexity of which are reduced, while retaining 
the major semantic and structural characteristics of the source 
data appropriate to a required purpose. The primary aim of 
cartographic generalisation is for the resulting map to convey a 
clearly readable image that is aesthetically pleasing (Gülgen, 
2014). One of the main purposes of road network generalisation is 
the reduction of the portrayed number of features, because it is 
not possible to show every road at smaller scales particularly in 
urban areas (Regnauld et al., 2007).  

Several methods for road network automatic and semi-automatic 
extraction from remotely sensed data are able to generate good 
results concerning feature extraction (Wang et al., 2016), but the 
generated products normally lack information such as functional 
hierarchy. 

Volunteered Geographic Information (VGI) initiatives, 

especially OpenStreetMap (OSM), represent in most cases the 

best options to retrieve a harmonised and as complete as possible 

road network. OSM road tagging schema1 includes 7 main 
hierarchical classes, but those classes may not match common 

usage by other organizations, such as local road authorities. 

Looking at OSM <highway> key values 2, it is also clear that the 
worldwide values distribution is clearly biased, and this may 

* Corresponding author
1 https://wiki.openstreetmap.org/wiki/Key:highway

cause problems for a generalization process based on those 

values, especially in urban environments: the first 5 classes in 

numerosity (residential, service, track, unclassified, footway and 

path), represent almost 80% of all the road elements (as of 

16/04/2020) and are all related to lowest hierarchical levels. 

Furthermore, OSM < highway> tagging schema has some 

specific issues such as: 

- unknown road types, that is often the case when the vector

feature is digitised from remotely sensed imagery, without

further processing or survey. In this case, according to OSM

documentation, a generic <road> value should be used;

- the misuse of the <unclassified> value. According to OSM

guidelines, this value is to be used for minor roads of a lower

classification, but which serve a purpose other than access to

properties. The word 'unclassified' is a historical artefact of the

UK road system and does not mean that the classification is
unknown; but within the OSM contributors this leads to

confusion and therefore to a wrong assignation to this class , that

is among the 5 higher classes in numerosity.

A road classified in a low class can be more important than the 

others, i.e. if it plays a bridge role, without which a connected 

network may be broken into two parts. These roads should be 

preserved during the reduction process when deriving smaller 

scale maps or databases (Gülgen, 2014). This aspect is not 

specifically addressed in OSM mapping guidelines and it may 

lead to incorrect generalization results. 

Floating Car Data (FCD) are acquired by On-Board Unit (OBU) 

mounted on vehicles, typically private cars linked to insurance 

policies, and trucks/vans managed in a fleet environment. One of 

the main information acquired by OBU is the position, obtained 

by means of a GPS receiver, using both a temporal and speed 

sampling interval. Other data commonly acquired by these kind 

of services include speed, heading, GPS signal quality, engine 

status (on or off) and vehicle type. FCD are already widely used 

2 https://taginfo.openstreetmap.org/keys/highway#values 
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for traffic analysis and simulation (Ajmar et al., 2019).  Jiang 
(2009) discussed the possibility to use taxi FCD for deriving road 

hierarchy in a relatively small city in Sweden. 

In this paper a methodology to automatically retrieve functional 

hierarchy for an existing road network from a full set of FCD, 

including fleet and private cars, and for a medium-sized city is 

presented. The objective is  to produce a functional classification 

based on real traffic situation and therefore more flexible, e.g. 

capable to produce more evenly distributed (e.g. for 

generalization purposes) or dynamic (e.g. to take into account 

differences in traffic volumes in different moments of the day) 

classifications. Road network hierarchy could be highly 

beneficial in network analysis since their exploitation generally 

leads to easier to follow driving directions, since routes tends to 

have less diversions and vertical signs are generally more visible 

on higher hierarchy roads. Furthermore, hierarchies would allow 
to better fit preferences of different drivers, e.g. truck driver 

normally try to avoid local roads. Additionally, as several routing 

algorithms take into account the road hierarchy as a parameter in 

order to speed-up the processing of finding the shortest path 

(Geisberger et al., 2012) extracting a functional classification 

based on real traffic situation may be useful in cases of medium-

term roads impacts: a collapsed bridge or a prolonged closure of 

a road section affect the normal traffic behaviour, which is also 

influenced by re-routing strategies applied by traffic managers. 

These strategies may also involve the structural characteristics of 

a road (e.g. from two-way to one-way street to increase capacity), 

which are not reflected in authoritative datasets, usually 

considered more stable. This could have a distorting effect on 

navigation which a dynamic hierarchical classification could 

resolve. 

Optimal paths computed by conventional path-planning 

algorithms are usually not “optimal” since realistic traffic 

information and local road network characteristics are not 

considered (Quingquan et al., 2011). Google Maps collects real-

time traffic data with an impress ive number of users (1 billion 

users, as of 10/04/2020) and daily updates (25 million as of 

10/04/2020), but the access to the dataset is not for free3. FCD 

data did not represent a free alternative, but GPS points collection 

through these devices, even if significantly lower in numerosity, 

is more under control and stable, as the equipped fleet is known 

and the device is always on. Furthermore, user profiling can be 

exploited to perform different analysis focusing on different 

traffic modes: i.e. the vehicle type attribute can be exploited to 

differentiate between private and commercial traffic paths. Once 

demonstrated, by means of the comparison between FCD data 

and traffic data measured by fixed sensors, that FCD data can 
represent traffic dynamics, if not in absolute values but at least in 

a relative form, the benefit of its usage become evident. 

Functional classification is particularly relevant for road network 

datasets such as OSM (native or derived) for the issues previously 

mentioned and related on criteria adopted for the <highway> 

tagging process. For authoritative datasets, or more in general in 

cases of datasets generated with more formal acquisition 

specifications, the proposed approach is relevant to provide the 

possibility to generate a dynamic functional class. 

3 https://cloud.google.com/maps-platform/routes/ 
4http://www.geoportale.piemonte.it/geonetworkrp/srv/eng/metadata.sho

w?uuid=r_piemon:face619f-b974-4ed7-b0a1-ec6f42f9f0d9 

2. METHODOLOGY

The FCD sample used consists of approximately 4 million 

records acquired by devices mounted on almost 19.000 vehicles 

collected during an entire week (from 2018-10-05T22:00:00 to 

2018-10-11T21:59:59 CET) in the city of Turin (Italy). The 
representativeness of this sample has been previously discussed 

(Ajmar et al., 2019). 

As reference layer, the EL_STR class stored into the Banca Dati 

Territoriale di Riferimento degli Enti (BDTRE)4 has been used: 

this is an official and authoritative road network dataset released 

by Regione Piemonte public administration. The BDTRE dataset 

is used in 2 ways: 

− to refer FCD GPS positions to a road network feature. FCD

positions has been uniquely assigned to a single BDTRE

network element by means of the identification of the

nearest road feature to the FCD position. Only FCD

positions within 30 m from a BDTRE network feature has
been considered: the 30 m threshold is considered the

Advanced Transport Telematics (ATT) navigation accuracy

requirement for generic services related to vehicle location

(Ochieng, 2002);

− to have a benchmark functional class. The BDTRE dataset

has a functional class definition stored in a field named

“EL_STR_FRC” and subdivided in 6 classes5. For the

purpose of this work, only 5 classes have been used, as the

pedestrian class is not relevant.

BDTRE road network dataset has been dissolved on the basis of 

the road name and the functional class, in order to derive 

geographical homogeneous entity with a relevant continuity ( 
Figure 1). 

Each FCD position has been assigned to the nearest BDTRE 

network element: positions having a distance higher than 30 m 

from any possible target feature have been discarded, in order to 

limit errors linked to GPS accuracy. An FCD density information 

has been calculated for each dissolved road network feature, by 

subdividing the number of FCD positions by the length in meters 

of each single road feature. The density value has been then 

classified into 5 classes applying the Jenks natural breaks 

classification method, defining class breaks with the objective to 

minimize the variance within a single class and maximize the 

variance between classes. Similarly, exploiting the speed value 

natively acquired by OBUs, a mean speed value for each feature 

has been calculated and classified with the same approach above 

described. 

Table 1 and Table 2 display the confusion matrices generated by 

comparing actual BDTRE functional class with the one derived, 

respectively, by classifications based on density and mean speed. 

The total number of compared features (2526) is slightly lower 

than the total number of BDTRE features (2554) as 28 BDTRE 

features (approximately 1 % of the total) had no associated FCD 

positions. The overall accuracy is similar in the 2 cases (51.4% 

for the analysis based on density and 50.1% for the one based on 

mean speed), with omission error generally decreasing while 

moving to lower hierarchy and higher numerosity classes. 

Plotting the normalised distribution of the two values , density and 

speed, against BDTRE functional classes  in a box and whisker 

plot (Figure 2), it is evident that in both cases mean values 

decrease while moving towards lower-level classes. It also 

5http://www.geoportale.piemonte.it/cms/images/bdtre_doc/Specifica2.0.
pdf 
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appears that the classification based on mean speed differentiate 
more among classes. This can be partially explained by the fact 

that, in computing the density, road width has not been 

considered as it was not available in the BDTRE dataset. Based 

on the above mentioned considerations, a classification based on 

speed has been considered more appropriate. 

 

 

 
 

Figure 1 - BDTRE functional classes in the city of Torino (in 

brackets the relative hierarchical level, in square brackets the 
number of network elements in each class). 

 

 

Pred 

 

Act 

1 2 3 4 5 Tot 

Om. 

Error 

(%) 

1 1 0 1 3 3 8 87.50 

2 1 11 63 50 12 137 91.97 

3 2 18 85 167 109 381 77.69 

4 3 7 56 310 402 778 60.15 

5 3 9 40 280 890 1222 27.17 

Tot 19 89 397 839 1182 2526  

Table 1 - Confusion matrix for functional class based on 

density. 

Pred 

 

Act 

1 2 3 4 5 Tot 

Om. 

Error 

(%) 

1 7 1 0 0 0 8 12.50 

2 7 24 60 42 4 137 82.48 

3 4 31 120 170 56 381 68.50 

4 0 13 114 322 329 778 58.61 

5 1 20 103 305 793 1222 35.11 

Tot 19 89 397 839 1182 2526  

Table 2 - Confusion matrix for functional class based on mean 

speed. 

 

 

Figure 2 – Normalised FCD values for density and mean speed 

(Y axes) plotted against BDTRE functional classes (X axes). 

“X” represent mean values, the middle line of the box 

represents the median, the bottom line of the box represents the 

1st quartile, the top line of the box represents the 3rd quartile, 

the whiskers (vertical lines) extend from the ends of the box to 

the minimum value and maximum value. 

3. RESULTS AND DISCUSSION 

OpenTransportMap (OTM) is a road network dataset based on 

OpenStreetMap and accessible in a scheme compatible to 
INSPIRE Transport Network. The OSM tag values for functional 

classification are grouped and mapped into the 6 classes defined 

in the INSPIRE directive, as shown in Table 3 (Jedlička et al., 

2016). In the city of Turin, OTM classes are highly biased, with 

the fourthClass representing almost 80% of all road features 

within the municipality (Figure 7). Similarly to the BDTRE 

dataset, also the OTM dataset has been dissolved based on the 

functional class and name field, in order to obtain more 

continuous but homogeneous features (Figure 2). 
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INSPIRE 

functional classes 
OSM tag values 

mainRoad motorway, motorway_link, trunk, 

trunk_link 

firstClass primary, primary_link 

secondClass secondary, secondary_link 

thirdCLass tertiary, tertiary_link 

fourthClass residential, living_street, unclassified 

fifthClass <all other values> 

Table 3 - Correspondences between INSPIRE road functional 

classes and OSM tag values. 

 
Figure 3 – OTM functional classes in the city of Torino (in 

square brackets the number of network elements in each class ). 

 

The mean speed has been calculated for each OTM feature using 

the same approach applied to BDTRE features : also in this case, 

FCD positions has been uniquely assigned to OTM features 

based on proximity and excluding points with a distance higher 

than 30 m. Similarly to the analysis in BDTRE dataset, also in 

this case not all OTM features (2681) has an associated FCD 
position (2654), resulting in 27 features (again approximately the 

1% of the original dataset) that were not classified. A mean speed 

value has then been calculated for each OTM network elements: 

then, OTM network has been subdivided in 6 speed classes using 

the Jenks natural breaks classification method. The number of 

classes has been selected in order to produce the same numerosity 

as the original OTM functional classes. Figure 4 shows the results 

of this classification: a comparison between the class numerosity 

in the original classification and in the one based on FCD speed 

shows that the distribution of the second one approximate a linear 

decrease while increasing the hierarchical level (higher mean 

speed values). A more continuous distribution allows to perform 

more effective thematic generalization, more adaptable to 

continuous map scale changes. 

 

As mentioned in the introduction, a big advantage in setting up 
functional classes based on dynamic data, such as FCD, is the 

possibility to modify such classes, to adapt to specific traffic 

conditions. Figure 5 displays (with the same colour coding of 

Figure 4) 2 different functional classifications, one related to a 

reference situation for 7:00 AM on a working day, a typical 

morning rush hour in the city of Torino, and one related to 10:00 
PM, corresponding with a situation with less congested traffic 

conditions. The 2 classifications clearly differs in the network 

elements attributed especially to the lower hierarchical classes. 

Applying different hierarchical classes to a route network solver 

may bring to a substantial differences, as shown in the example 

displayed in Figure 6. 

 

The graph in Figure 7 displays the difference in the number of 

OTM network features falling in the different hierarchical 

classes, comparing the original classification with the one based 

on FCD mean speed values considering the entire dataset 

available (FCD all), only those acquired from Monday to Friday 

(weekdays), only those acquired on Saturday and Sunday 

(weekends) or only those acquired within a specific 1 hour 

interval (02:00 AM to 03:00 AM, 07:00 AM to 08:00 AM, 12:00 

AM to 01:00 PM, 05:00 PM to 06:00 PM, 10:00 PM to 11:00 
PM). It is evident that all speed based classifications have very 

similar patterns: weekdays 2:00 and weekdays 7:00 

classifications are affected by a lower number of active vehicles. 

 

The graph in Figure 8 makes the same comparison but 

considering the total length of features in km. Here the difference 

between low traffic conditions (weekdays 2:00 and weekdays 

22:00) becomes clearly evident. 

 

4. CONCLUSIONS 

From this analysis, the provided method for defining road 

network functional classes seems to be effective in generating 

flexible and dynamic functional class ifications, in support to 

various applications such as cartographic generalization and 

traffic management.  

Coupling classification results with more rigorous methods for 

granting paths continuity would also allow to derive products 

best fitted for automatic generalization, granting higher level of 

connectivity within each functional class. 

Further research activities include additional studies on the 
representativeness of FCD based traffic conditions, in order to 

understand if systematic or local correction factors can be applied 

to cope with the relative reduced sample of the actual circulating 

vehicles. This can be performed by comparing FCD positions 

with figures coming from physical sensors, if made available by 

the managing authorities. 
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Figure 4 - Functional classes based on mean speed classification 

(in square brackets the number of network elements in each 

class). 

a) 

b) 

Figure 5 – Dynamic functional classes, for a working day at 

7:00 AM (a) and at 10:00 PM (b) 

 

Figure 6 - Different results of a routing calculation if run in a 

7:00 AM situation (red line) or a 10:00 OM one (blue line).  

 
Figure 7 - Number of network features falling in the 6 INSPIRE 

functional classes in the OTM original dataset and as results of 

the FCD speed based classification. 

 
Figure 8 – Total length (in km) of network features falling in the 

6 INSPIRE functional classes in the OTM original dataset and 

as results of the FCD speed based classification. 

A 

B 
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