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Abstract—The edge computing paradigm allows computation-
ally intensive tasks to be offloaded from small devices to nearby
(more) powerful servers, via an edge network. The intersection
between such edge computing paradigm and Machine Learning
(ML), in general, and deep learning in particular, has brought to
light several advantages for network operators: from automating
management tasks, to gain additional insights on their networks.
Most of the existing approaches that use ML to drive routing
and traffic control decisions are valuable but rarely focus on chal-
lenged networks, that are characterized by continually varying
network conditions and the high volume of traffic generated by
edge devices. In particular, recently proposed distributed ML-
based architectures require either a long synchronization phase
or a training phase that is unsustainable for challenged networks.

In this paper, we fill this knowledge gap with Blaster, a
federated architecture for routing packets within a distributed
edge network, to improve the application’s performance and
allow scalability of data-intensive applications. We also propose
a novel path selection model that uses Long Short Term Memory
(LSTM) to predict the optimal route. Finally, we present some
initial results obtained by testing our approach via simulations
and with a prototype deployed over the GENI testbed. By
leveraging a Federated Learning (FL) model, our approach
shows that we can optimize the communication between SDN
controllers, preserving bandwidth for the data traffic.

Index Terms—federated learning, machine learning, edge com-
puting, routing.

I. INTRODUCTION

The amount of mobile and IoT devices that has become
available in the past few years generates a massive amount
of data, creating several challenges and opportunities for data
and network orchestration. The vast majority of these devices
do not have or cannot meet the computational requirements
to process the data they collect. To close this gap, in recent
years, several solutions have outsourced the responsibility to
perform (some or all) computations to an edge cloud [1]–[3].

Software-Defined Networking (SDN) and network virtu-
alization have attracted interests from both academia and
industry due to the powerful programmability and flexible
management on networks, especially relevant in edge com-
puting. In recent years, innovation has driven network man-
agement in two ways. On the one hand, to scale up network
management capabilities, to address the limited processing
ability, and to provide resiliency to the single controller model,
several studies have proposed to implement the control plane
with logically and physically distributed controllers [4]–[8].
In these circumstances, each controller manages a subset of
switches and synchronizes with other controllers to maintain
a consistent network view.

On the other hand, Artificial Intelligence (AI) has shown
strengths in almost every industry and undoubtedly is helping
the field of computer networking as well. Network manage-
ment has the potential to benefit from AI tremendously, as
some recent work has shown [9]. Collected data underlie
Machine Learning (ML) models, to enable the detection,
classification, and prediction of future network events. Such
information is then beneficial for load balancing, routing,
resource scheduling, and other tasks. Existing ML-based net-
work management solutions are arguably inadequate for chal-
lenged network scenarios, such as an IoT emergency network
deployed to support first responders [10], [11]. Adapting to
the challenged conditions would require too many frequent
re-training, potentially canceling out the benefit of a learning
approach; this is because the continually changing network
conditions would result in considerable traffic growth not
captured by the learning model [12].

In this paper, we design Blaster, an architecture whose aim
is to cope with this knowledge gap. Our design goal is to
merge network softwarization and Federated Learning (FL)
to optimize routing (and other mechanisms) decisions in a
challenged network environment. Our system is inspired by
other FL systems, in which many agents cooperatively train
a machine learning system (via SDN controller applications
in our context) while keeping the training data decentralized.
FL has revealed its potential in several applications, from the
privacy-preserving and security emphasis [13], [14] to the
scalability of a model than needs frequent retraining [15].
However, network management has not taken advantage of
FL yet, although distributed approaches for SDN and edge
computing exist [16], [17].

In our system implementation, we choose the best route ac-
cording to the output of a Long Short Term Memory (LSTM)
model, a type of recurrent neural network that we picked
as a (tunable) regression algorithm. LSTM is typically used
as a solution for deep learning-based time series prediction
problems. Our LSTM receives as input the graph of the
network and a traffic matrix. The output is the future load on
the input links, and the SDN controller (application) can use
this knowledge to adapt routing if a peak load is predicted
(in challenged scenarios). The routing is hence affected by
the state of the network, as opposed to traditional routing
protocol where paths are set once, and future updates do not
encompass the current network load. By combining FL with
deep learning-based routing, we create an intelligent traffic



control system that can handle a large number of information
coming from the switches.

We evaluate Blaster comparing its performance with other
centralized and machine learning bases solutions in simula-
tions and on the GENI testbed [18], an open infrastructure for
testing distributed systems at scale. Our results confirm that
our approach can reduce the number of messages exchanged
among the SDN controllers, speeds up the training of the ML
model, and hence increases data delivery performance.

The rest of the paper is organized as follows: we start
describing related solutions utilizing ML and FL (Section II),
we then clarify the model used by our Blaster system and the
key concepts underlying our approach (Section III). Section IV
shows the design of the proposed architecture and the com-
munication between our SDN agents, while in Section V we
present the evaluation results. Finally Section VI concludes
our paper.

II. RELATED WORK
The core concept behind Federated Learning (FL) ap-

proaches is to train a centralized model on decentralized
data that never leaves the local environment that generated
it. Rather than transferring “the data to the computation”,
FL aims to transfer “the computation to the data”. This
concept was proposed by Google recently [19]–[21], with
the main idea that FL can prevent data leakage. However,
recent improvements have been focusing on overcoming the
analytical challenges [22], [23], or to further improve the
security aspects [24], [25].

The idea behind FL is also very similar to Distributed
Machine Learning. However, the latter covers several aspects,
including distributed operation of computing tasks, distributed
storage of training data, distributed dissemination of model
results, to name a few. Among them, Parameter Server [26] is
a typical element in distributed machine learning. It stores data
on distributed working nodes, allocates data, and computing
resources through a central scheduling node, to train the model
more efficiently. Differently from all these solutions, we focus
on the data privacy protection of the data owner during the
model training, especially in environments in which routing
and other network management operations are inconvenient
or impractical to share. Moreover, in the parameter server, the
central node always takes control, while in our architecture,
a working node represents the data owner, with full data
autonomy and freedom to join a federated learning ecosystem.
Hence, the proposed model faces a more complex learning
environment.

Federated learning particularly fits the edge computing
paradigm, as it provides protocols for coordination and se-
curity of the learning process. In [27], authors considered
the generic class of machine learning models that are trained
using gradient-descent approaches. The authors analyze the
convergence bound of distributed gradient descent from a
theoretical point of view, based on which they propose a
control algorithm that determines the best trade-off between
local update and global parameter aggregation. We share
with this study the design goal, but we consider a different

model, based on Neural Networks and for a different Machine
Learning problem and formulation.

III. MODELING FEDERATED LEARNING FOR ROUTING

In this section, we describe our federated learning model.
We consider N edge computing aggregates. These aggregates
{F1, ..., FN} represent either providers or data owners. Each
aggregate is bound to a domain controlled by a single SDN
controller; each controller attempts to train a machine learning
model by operating on a different data shard {D1, ..., DN}.

In centralized machine learning, the inference system
merges all data and uses D = D1 ∪ ... ∪DN to train a given
model Msum. In our considered federated learning system, the
learning process consists of the aggregate data owners that
collaboratively train a model Mfed. Each aggregate process
(agent) Fi does not need to expose its data shard Di to any
other training processes.

In addition, a design goal of the system imposes that the
accuracy of Mfed, denoted as Accfed, is very close to the
performance of Msum, Accsum. Formally, if we let δ be a non-
negative real number, we say the federated learning algorithm
has δ-accuracy loss if and only if: |Accfed −Accsum| < δ.

Let the matrix Mi denote the data held by each data owner
i, where each row of the matrix represents a sample, and each
column represents a feature. We then denote the features space
as X and the sample IDs space as Y . Following the Vertical
Federated Learning schema [28], we split data such that data
sets among agents share the same sample IDs space but differ
in features. Formally, Xi 6= Xj , Yi = Yj , ∀Mi,Mj , i 6= j.

This is opposed to the simpler Horizontal FL [29], where
agents share the features utilized, but differ for the sample IDs.

A. Federated LSTM for learning how to route

The machine learning model chosen for this study is a Long-
Short Term Memory (LSTM) Recurrent Neural Network.
LSTM is a class of neural networks in which connections
between neural network nodes form a directed cycle. These
connections allow the nodes to memorize information about
what has been computed so far, giving the ability to make use
of sequential information and to exhibit a dynamic temporal
behavior. Our model is thus able to learn the correlation be-
tween changes in the packet distribution and routing decisions
over time.

The key idea of our model is the following: each
controller in the network maintains a version of the model
reflecting the entire network topology. By exploiting the Fed-
erated Learning paradigm, each controller merely has to
send the weights of the (LSTM) neural network, while all
other collected values are kept local, that is, within the SDN
controller application. This data distribution model ensures
the privacy of the data used to train the machine learning
model and keeps the overhead minor (Fig. 1).

The LSTM model has as input the historical values for the
traffic on every link in the network. Given a history of N traffic
values and K links in the topology, we follow the approach
presented in [28], where the matrix is first inverted to apply
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Fig. 1. Overview of the edge network and the LSTM models spread across
the SDN controllers responsible for the subnet. All the values collected by
the controllers are kept local. This data distribution model ensures that data
privacy is preserved, while keeping the overhead minor.

the mechanisms of horizontal FL. For this reason, the model
receives as input a matrix with dimension K ×N instead of
the initial N ×K shape. The output is an array of K values,
stating the predicted traffic for the link i in the future. The
controller can then instruct the switch to avoid suboptimal
links, for example, those predicted to have higher congestion.

The initial paths are decided according to the conventional
learning switch procedure, very common for SDN deploy-
ments. Each switch hence acts as a traditional layer-2 switch,
that learns from the received packets and associates the source
host to the port where the packet is received. After this
initial bootstrap phase, where some packets are flooded, the
controller has a complete mapping host-port that can be used
for further updates. When an excessive traffic is forecast on
one path, an alternative route is selected, choosing the path
with the lowest predicted traffic.

The LSTM model we use in the system is determined by the
number of layers, the number of neurons, i.e., processing units
per layer, and the interconnections between the layers. These
parameters need to be tuned in a preliminary phase, where
parameter exploration can reveal the best configuration. We
found empirically (see Section V) that with a configuration
of 4 layers and 128 neurons, we obtain the best performance
in terms of accuracy and the lowest loss. Adding additional
hidden layers does not improve the performance of the deep
learning system. In the following sections, we show how to
utilize our LSTM model for the (federated) computation of
the future traffic value per link.

IV. SYSTEM DESIGN

The algorithm runs at the edge of the network, where
multiple controllers communicate to reach a consensus, as
described in Fig. 1. The edge of the network is divided
into partitions. Each partition contains different switches to
which hosts and servers are connected. These switches are
managed by a controller (in our implementation, we used
Floodlight). The controller keeps track of the topology and
the metrics coming from the switches, saving these values
on a graph database. All partitions communicate and create
a view of the entire network, while each management agent
(controller) manages the sub-network. The SDN controller

exposes as REST APIs the file descriptor (pickle file) of the
LSTM, that can be used to improve the overall model, by
iterating over the previous model and virtually includes the
other data. This LSTM exchange is thus done periodically, to
guarantee the freshness of information, but not to overload
the controller. Aside from the LSTM data, the controllers
send messages when the topology under control changes.
The graph can evolve, for example, after a failure, and to
address this situation, we manage the hash of the graph
to identify the latest version. The controller detects a new
change in the network employing hash computation: for every
message about a status update, a graph’s hash is calculated
(with SHA256) and compared to the one in memory. If they
match, the message is discarded, as it refers to the same
network topology. In case the hash values are different, the
controller computes the new topology, by leveraging the links
and ports notification of switches. This information is then
sent to all the other controllers. Once the new graph is
obtained, the controller must set potentially new next hops
for all the managed switches, and the information is sent to
them. Usually, topology’s updates are rare; hence messages
sent between controllers often carry LSTM’s weights.

The SDN controllers select the best route for the managed
switches, according to the output of the LSTM model. Such
a model has as input the graph of the network, in conjunction
with the traffic of the links. When a peak load is predicted,
the controller verifies the link is under its control. If not, the
controller neglects this data and continues its work. If the
link is related to a switch controlled, a new route is obtained,
avoiding such a link. This can be easily obtained by applying
Dijkstra, where the link assumes a high weight. Since all
the controllers have a global view of the network, the path
selection process can be easily performed by each of them.

V. EVALUATION RESULTS

We validate the presented algorithm in real case scenarios,
using the GENI [18] virtual network testbed, which provides
physical machines and physical links for testing purposes.
In the following, we deploy obtained different instances of
the algorithm on the GENI testbed, and we evaluate the
practicality of our approach under different conditions. The
testbed consists of at most 25 SDN controllers, where each of
them manages five switches and 25 hosts.

We compare the performance of the two approaches: (i) cen-
tralized, where the controller has the entire history available,
and train the LSTM on it; (i) federated, where the controller
has a small portion of data, but receives the LSTM’s weights
(related to the missing data) from neighbors. To this end, we
compute the Mean Absolute Percentage Error (MAPE) which
is given by:

MAPE =
1

n

n∑
t=1

100×
∣∣∣∣yt − ytyt

∣∣∣∣ , (1)

where yt and yt are the real and the predicted observations.
A small MAPE indicates a small error, hence better perfor-
mance. We ran an edge computing application [10] on the
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Fig. 2. (a-b) MAPE error and the training time, respectively compared to a centralized solution. Take home (a-b): The Loss of details of our distributed
solutions does not translate into a significant performance loss. (c-d) Performance varying % of node failures. Number of messages exchanged for increasing
complexity topology (c), and the number of kB sent (d). Take home (c-d): the overhead is almost independent from the failure rate.
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Fig. 3. Comparison for different routing strategies, highlighting the trade-off
between latency and throughput. Our Blaster algorithm outperforms state-of-
the-art (ML-based) approaches.

GENI testbed, and saved on file the traffic on links through
the Floodlight’s API. We collected a dataset made of more than
50,000 historical samples split into training (80%), validation
(10%), and test (10%); the error is computed on the test only.

Fig. 2(a) shows the MAPE error for the two approaches for
increasing size topologies. In the centralized version, the error
is lower than in federated because the training set is more
significant than in federated cases, hence the model can use
more information and more knowledge. On the other hand, in
our federated architecture, we use fewer values in the training
phase, which leads to higher MAPE. However, the difference
between the two techniques is negligible, and in the worst case,
it is 0.51. Although for a more significant number of nodes,
the MAPE increases, it slightly rises, and we can conclude that
even for our federated use case, MAPE is almost constant for
different topology’s dimensions. In other words, we can state
that the δ quantity previously defined (Section III) is relatively
small and increases when the number of controllers rises.

Furthermore, in Fig. 2(b), we evaluate the time necessary
to train the LSTM model for both centralized and federated
use cases. In the centralized approach, the controller manages
more processes, and the time to train the LSTM network is
particularly high. With our approach, we observed a training
time reduced by 30% when 20 SDN controllers are present
in the network. In this case, the history of the traffic load
is spread across more agents, and each of them can perform
training on a small portion of data.

We then measure the number of messages needed for
updating the models in case of failures in the network. The
notation 05% in the graph, and the similar variants, indicates
a node and link failure probability of 5% throughout the
entire experiment. The first result we can see in Fig. 2(c)

TABLE I
MAPE VALUES COMPARISON FOR DIFFERENT CONFIGURATIONS OF

LAYERS AND NEURONS OF THE LSTM MODEL. THESE QUANTITIES ARE
USED FOR THE DEEP LEARNING MODEL TUNING.

MAPE Neurons

Layers 4 8 16 32 64 128

2 7.51 4.27 3.41 3.54 2.74 2.79
4 8.33 4.18 3.61 3.26 2.88 2.65
6 9.95 4.57 3.85 3.37 2.99 2.81
8 10.08 4.96 3.14 3.10 2.72 2.68

is that updates in the graph do not particularly affect the
messages exchanged, nor the bytes (Fig. 2(d)). We can notice
how increasing the number of nodes increases the messages
exchanged among controllers, and consequently, the number
of bytes. However, even in the presence of numerous topology
updates, the messages required by the protocol do not increase.
When 20% of items can fail, for a large number of nodes in
the network, the messages needed are less than in case of no
failures. These results confirm the scalability of the system
and the protocol, and the responsiveness guaranteed by our
system.

We then evaluate the routing optimization when we apply
our model on a congested network. In particular, we compare
our approach against the Equal-Cost-Multi-Path (ECMP), On-
line Flow Size Prediction (OFSP) [30], a centralized learning
schema, and against MetricMap [31]. ECMP is a well-known
and deployed algorithm, and we use it as a baseline. In OFSP,
the Gaussian Process Regression (GPR) algorithm detects
elephant flows; hence, the least congested path to route such
flows is selected while the ECMP protocol is used to route
mice flows. MetricMap uses the Very Fast Decision Tree
(VFDT) online algorithm to learn and classify traffic. The
routing protocol is atop MintRoute and specified for Wireless
Networks, but can be generalized. Fig. 3 shows the throughput
and delay of communication between two hosts of the network.
While centralized approaches route the traffic on sub-optimal
paths, since the time to re-train the model is time-consuming,
with our Blaster algorithm, routing adjustments are more
immediate and effective.

This strategy is particularly effective for IoT/Edge appli-
cations driven by SDN, when the underlying network has
challenged by unstable conditions, for example, in case of
an emergency network setup by first responders in a natural
or human-made disaster scenario. With our federated model,



traffic is more likely to flow on under-utilized links, that lead
to higher throughput and lower delay compared to all the other
tested protocols.

We report in Table I the MAPE error for the parameter
exploration of the LSTM model. We train the neural network
on the previous dataset, for different combinations of layers
and neurons. Results suggest that, under these conditions, more
layers do not significantly improve performance. Noticeable
improvements instead arise when we increase the number of
neurons in each LSTM layer: 4-layers 128-neurons achieves
the lowest error and therefore guarantees the best model.

VI. CONCLUSION

In this work, we presented Blaster, a federated architecture
for task offloading at the edge of the challenged network.
In the context of an SDN architecture, we realize a multi-
agent control plane, where each controller manages a subset of
switches and synchronizes with other controllers to maintain a
consistent network view. The architecture aims to optimize the
selection of the best path and takes into account the condition
and the global traffic of the SDN network. Each controller
keeps an LSTM model, used for predicting the future traffic
on links based on history. When a peak load is predicted, the
controller must select a new route, to avoid links with high
load and take the ones under utilized. By leveraging Federated
Learning concepts, all the controllers are able to have a global
view of the infrastructure while exchanging very few messages
among them. In such a way, entities involved do not need to
send the entire information, but just a small portion, hence
preserving the bandwidth for the application traffic.
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