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Centralized and distributed online learning
for sparse time-varying optimization

Sophie M. Fosson, Member, IEEE

Abstract—The development of online algorithms to track time-
varying systems has drawn a lot of attention in the last years,
in particular in the framework of online convex optimization.
Meanwhile, sparse time-varying optimization has emerged as a
powerful tool to deal with widespread applications, ranging from
dynamic compressed sensing to parsimonious system identifica-
tion. In most of the literature on sparse time-varying problems,
some prior information on the system’s evolution is assumed to be
available. In contrast, in this paper, we propose an online learning
approach, which does not employ a given model and is suitable
for adversarial frameworks. Specifically, we develop centralized
and distributed algorithms, and we theoretically analyze them
in terms of dynamic regret, in an online learning perspective.
Further, we propose numerical experiments that illustrate their
practical effectiveness.

Index Terms—Time-varying systems; sparse optimization; on-
line learning; dynamic regret; Douglas-Rachford splitting; dis-
tributed iterative soft thresholding.

I. INTRODUCTION

Time-varying optimization has attracted an increasing at-
tention in the last years in machine learning, control, and
signal processing, motivated by the observation that usually
real-world systems vary with time. Examples are widespread,
including big data streams [1], model predictive control [2],
resource allocation [3], online learning [4], dynamic identifi-
cation [5], and tracking moving agents [6]. Other applications
are illustrated in [7], and in the recent survey [8].

Formally, by time-varying optimization, we mean a se-
quence of optimization problems of the kind min ft, where
t = 0, . . . , T is the time variable. If the problem can be solved
off-line, i.e., after time T , then it can be considered as static.
Usually, this is not the case: the goal is to track the optimal
points as long as the optimization problem varies. This calls for
online algorithms, that provide solutions in the system’s time-
scale, which might be very fast. Moreover, the minimization
of ft might involve the processing of large data; therefore, the
development of prompt tracking strategies is challenging.

The literature on online algorithms for time-varying systems
is mainly settled in convex optimization, which encompasses
a number of applications and is mathematically tractable. To
mention some examples, convex functionals are used to model
problems of online system identification in [9], [10], tracking
moving targets in [11], and dynamic magnetic resonance
imaging in [12]. Most of the theoretical analyses on time-
varying convex optimization are oriented towards evaluating
the tracking error at time t. If x?t is the minimizer of ft and xt
is the estimate provided by the online algorithm, the tracking
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error can be defined as a distance between x?t and xt, see,
e.g., [11], [13], [14], [15]. As the system is time-varying, the
tracking error is not expected to converge to zero in time: an
algorithm is considered successful if it guarantees a bounded
tracking error, with a sufficiently small bound.

A different research line addressed, e.g., in [1], [4], [3], [16],
[5], proposes the analysis of the dynamic regret, a popular per-
formance metric in online learning, see [17]. Online learning
is the sub-field of machine learning that aims at iteratively
learning time-varying models, by assuming a game theoretic
or adversarial framework. Specifically, a sequence of rounds
is considered: at each iteration t, a learner plays an action xt;
then, an adversary chooses and reveals a loss function ft. Thus,
the learner suffers a loss ft(xt). In turn, given the knowledge
of ft, the learner plays a new action xt+1, and suffers a
new loss ft+1(xt+1), and so on. The dynamic regret is the
cumulative difference between the learner’s loss ft(xt) and
ft(x

?
t ), the last one being the best possible loss in hindsight.

Differently from the tracking error metric, the dynamic
regret metric evaluates the performance on ft. This is par-
ticularly useful when one aims to control the cost functional.
For example, in system identification (see Section VII.A), ft
describes the features (e.g., consistency with data and sparsity)
of the model that one aims to identify, therefore it is more
relevant to track the value of ft than the error on x?t . Moreover,
the cumulative nature of the dynamic regret well captures
the long-time behavior of systems in which violations of
instantaneous error bounds are admitted. Recently, the use
of dynamic regret has gained an increasing attention in a
number of applications, e.g., online learning [18], [19], dis-
tributed optimization [20], multi-robot coordination [21], video
reconstruction and traffic surveillance [1], network resource
allocation [3], and maneuvering target tracking [16].

The online algorithms proposed in the literature for time-
varying convex optimization are usually based on iterative
procedures. Both centralized and distributed approaches are
developed. Concerning the centralized methods, in [1], a
dynamic mirror descent is proposed; in [4], a gradient descent
strategy is analyzed; in [3], a modified online saddle-point
scheme is studied; in [22], [23], prediction-correction methods
are developed for constrained problems. At the same time,
several distributed schemes are proposed: in [11], decentraliza-
tion is based on the alternating direction method of multipliers
(ADMM); in [24], prediction-correction methods are extended
to networked systems; in [15], distributed gradient-based
methods are proposed for quadratic problems; in [14], the
focus is on continuous-time models; in [25], two decentralized
variants of Nesterov primal-dual algorithm are developed; in
[16], the mirror descent strategy is decentralized. In [20],
a distributed approach based on auxiliary optimization is
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provided.
Within time-varying convex optimization, an important sub-

set is represented by sparsity promoting problems, that is,
problems whose solution is induced to be a vector with
many zero entries. Sparsity is nowadays widely studied as it
makes it possible to build parsimonious models from large
data. In system identification, machine learning, the call for
parsimonious models is rapidly increasing to deal with the
increasing complexity of systems or with the need of running
in small devices, like smartphones. In signal processing, sparse
convex optimization has gained a lot of attention with the
advent of compressed sensing (CS, [26]), which states that
sparse signals can be recovered from few linear measurements.
In system identification, the CS paradigm is exploited in the
estimation of sparse ARX models from a limited number of
observations, see [5], [27], [28].

The literature on sparse time-varying optimization (STVO)
is quite recent and mainly focused on dynamic CS. Most of
the works on the topic assume some prior information on the
system’s evolution. In [29], [30], [31], [32], the aim is to
track time-varying sparse signals which evolve according to
Markov models; a Kalman filtering approach is exploited. In
[33], a finite bound for the tracking error is assessed, under
boundedness assumptions on the the signal and its derivative.
We refer the reader to [12] for a complete review.

The goal of this paper is to develop novel strategies and
theoretical results for STVO, in terms of dynamic regret,
without prior information on the dynamics. The lack of prior
information can be interpreted as an adversarial framework,
where the functional is modified arbitrarily. However, it is
intuitive that a completely disordered evolution cannot be
tracked: the online estimation performance is expected to
improve in case of slowly varying systems.

In the literature on time-varying convex optimization, most
of the theoretical results exploit the assumption that the ft’s
are differentiable, see, e.g., [1], [4], [24], [23], [16], [20]. This
can not be applied to sparse problems, which usually envisage
an `1 regularizer. The non-differentiable case is considered in
[5], [21], where the dynamic regret is analyzed for proximal
gradient methods applied on composite cost functionals.

In particular, in [5] an online algorithm based on iter-
ative soft thresholding (IST) is proposed for STVO from
compressed measurements and analyzed in terms of dynamic
regret. IST corresponds to the proximal gradient method or to
forward-backward splitting applied to `-regularized composite
functionals [34], [35]. This paper extends [5] in two main
directions. First, we propose and analyze a different centralized
online algorithm, based on the Douglas-Rachford splitting
[36], [37], [38]. Second, we develop and analyze an online
distributed algorithm, which extends the distributed iterative
soft thresholding algorithm (DISTA) proposed in [39] to the
time-varying setting. For both centralized and distributed algo-
rithms, we study the dynamic regret and we present numerical
simulations to illustrate their practical effectiveness.

The paper is organized as follows. In Section II, we in-
troduce our specific formulation of STVO. In Section III, we
illustrate the online strategy based on splitting, and in Section
IV, we theoretically analyze it terms of dynamic regret. In

Section V, we propose the distributed online strategy, which
is analyzed in Section VI. Section VII is devoted to numerical
simulations. Finally, we draw some conclusions.

II. PROBLEM STATEMENT

In this paper, we consider STVO problems that can be mod-
eled via composite functionals, given by the sum of a time-
varying cost functional and a sparsity-promoting regularizer.
Specifically, we consider the following model:

min
x∈Rn

ft(x), t = 0, . . . , T

ft(x) := ht(x) + λ‖x‖1
(1)

where λ > 0 and ht’s are quadratic and strongly convex:

ht(x) :=
1

2
xTQtx+ φTt x, (2)

Qt ∈ Rn,n being symmetric positive definite, and φt ∈ Rn.
Strong convexity is often exploited for time-varying op-

timization, because it implies contractivity, hence stronger
convergence properties, as studied in [4], [11], [1], [25],
[24], [23], [16]. In line with these works, we assume strong
convexity. We mention that in [40], a possible alternative to
strong convexity is illustrated, based on bounded α-averaged
operators, which might be investigated in future work.

Problem (1)-(2) is the basis for a large class of STVO
problems; we illustrate some examples.

1) Elastic-net: Let us consider a time-varying CS problem:
given t = 0, . . . , T , we aim at the online recovery of a sparse
signal x̃t ∈ Rn (i.e., x̃t has kt � n non-zero components)
from compressed, linear measurements. More precisely, at
each t, we observe

yt = Atx̃t + et, At ∈ Rm,n, m < n, (3)

where et ∈ Rm is a possible measurement noise. The goal is
to recover x̃t given yt and At, knowing that x̃t is sparse. As
illustrated in [5], this model can be applied for compressed
system identification of linear systems with time-varying pa-
rameters. We specify that the exact knowledge of kt is not
required. According to CS theory, an efficient way to tackle
this problem is the convex relaxation called Lasso, which
consists in the minimization of 1

2 ‖yt −Atx‖
2
2+λ ‖x‖1, where

λ > 0; see [41], [35] for details. The presence of the `1-norm
regularizer supports sparsity. If the number of measurements
m is sufficiently large, x̃t can be recovered via Lasso, with
a bias proportional to the design parameter λ. We refer the
reader to [42] for a complete overview on this topic.

As m < n, the least-squares term in Lasso is not strongly
convex. A variation of Lasso, known as Elastic-net [43],
enjoys this property by the addition of a Tikhonov `2-norm
regularizer:

ft(x) :=
1

2
‖yt −Atx‖22 +

µ

2
‖x‖22 + λ ‖x‖1

λ > 0, µ > 0
(4)

As a difference from Lasso, Elastic-net promotes a grouping
effect of correlated variables instead of selecting just one of
them and discarding the others. Moreover, the solution of
Lasso necessarily has no more than m non-zero values, see
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[44], while this limitation is not present in Elastic-net. The
effectiveness of Elastic-net is exploited in many applications,
ranging from micro-array classification [43] to indoor local-
ization [45]. We remark that λ and µ might be time-varying
as well. In particular, λ is generally designed by using prior
knowledge on the sparsity level kt: the higher the sparsity is,
the higher the weight of the `1 should be, see, e.g., [42]. In
this paper, we assume for simplicity that these parameters are
constant.

2) MPC with sparse control: Quadratic, strongly convex
models are usually exploited in MPC to predict a dynamic sys-
tem behavior and optimize its control. Recently, the problem of
reducing the number of active control inputs in MPC has been
gaining an increasing interest in the literature, see, e.g., [46],
[47]. This is known as sparse control, and can be tackled by
introducing an `1 regularizer. The final aim of sparse control
is to reduce consumption and transmission costs.

3) Sparse iterative learning control: The problem of re-
ducing the number of control inputs is investigated in iterative
learning control (ILC) as well. The purpose of ILC is the
online optimization of repeated systems, with outstanding ap-
plication in robotics and mechatronics. As in MPC, quadratic
cost functionals are widely exploited in ILC [48]. In [49], the
use of `1 regularizers is proven to be effective to obtain a
reliable sparse control.

A. Performance metric: dynamic regret

Our ultimate goal is to solve Problem (1)-(2). More pre-
cisely, we are interested in computing the minimizer x?t =
argmin
x∈Rn

ft(x), which represents to variable to track. In princi-

ple, the problem can be solved at each t through any convex
optimization method, as the ft’s are convex. However, we aim
to solve the problem online, that is, x?t should be estimated
between instant t, when yt and At are revealed, and instant
t+ 1, when the next data acquisition is performed. Therefore,
running a convex optimization algorithm might be not feasible
if the time-scale is fast and the dimension n is large. We
thus aim at developing fast, suboptimal strategies to track the
minima with satisfactory accuracy. The first step to pursue this
goal is to choose a suitable performance metric.

In game theory and online learning, a popular performance
metric is the dynamic regret, denoted by RegdT , which is
defined as follows (see, e.g., [50], [4]):

RegdT (x?1, . . . , x
?
T ) :=

T∑
t=1

(
ft(xt)− ft(x?t )

)
where

x?t := argmin
x∈X

ft(x) (5)

and xt is the action played by the online algorithm in [t−1, t),
thus before that ft is revealed. X ⊆ Rn is the feasible space.
Intuitively, an online algorithm is successful if its RegdT is
sublinear, because this implies that, on average, it performs
as well as the clairvoyant opponent that plays the optimal
action x?t [51], [52]. The possibility of achieving a sublinear
RegdT depends on the evolution and on the regularity of the

ft’s. A quantity that well captures the system’s evolution is
the path length, defined as the cumulative distance between
reference points [4], [52]; in our setting, we can consider∑T
t=1

∥∥x?t − x?t−1∥∥2 as path length.
As to online algorithms, the following requirements are

fundamental: (a) if, for each t, the distance
∥∥x?t − x?t−1∥∥2

between successive minima is bounded, then the estimation
error is bounded; (b) if

∥∥x?t − x?t−1∥∥2 tends to zero, i.e., the
system tends to converge, also the estimation error should tend
to zero. Requirements (a) and (b) are well captured by the
dynamic regret, as illustrated, e.g., in [50], [4].

B. Summary of previous literature on regret analysis

In this section, we briefly overview the previous results
on regret analysis in time-varying optimization and online
learning.

Table I: Main results on static and dynamic regret in the
literature. Each row of the table represents a paper. We
distinguish convex (C) and strongly convex (SC) models,
and we indicate if algorithms are gradient-based (G) or else.
Finally, we specify the main assumptions: β > 0 is a suitable
fixed value; ηt → 0 denotes the need for vanishing learning
parameters, which is undesired for large or infinite time
horizons; ∆t :=

∥∥x?t − x?t−1∥∥2.

ft Alg. Regs
T Regd

T Assumptions

[50] C G O(
√
T ) O

(√
T (1 +

∑
∆t)

)
‖∇ft‖ ≤ β, ηt → 0

[51] SC Newton O(log T ) ‖∇ft‖ ≤ β, ηt → 0

[53] C; SC COMID O(
√
T );O(log T ) ‖∇ht‖ ≤ β

[54] C; SC ADMM O(
√
T );O(log T ) ‖∇ht‖ ≤ β

[55] C; SC ADMM O(
√
T );O(log T ) ‖∇ht‖ ≤ β, ηt → 0

[56] C ADMM O(
√
T ) ‖∇ht‖ ≤ β, ηt → 0

[4] SC G O(1 +
∑

∆t) ‖∇ft‖ ≤ β
[5] El.-net (SC) O-IST O

(
1 +

∑
∆t +

∑
∆2

t

)
[57] C ADMM O(

√
T )

Problems of the kind minx∈Rn
∑
t ft(x) with composite

functionals ft(x) = ht(x)+g(x) are widely considered in the
literature. These problems are intrinsically static: new indirect
data are acquired at each time t to estimate a static optimiza-
tion variable. This is usually analyzed in terms of static regret,
which is defined as RegsT := minx

∑T
t=1

(
ft(xt)− ft(x)

)
.

In Table I, we summarize the main results (in chronological
order) on regret analysis in the literature. Even though our
interest is in the dynamic regret, we also report results on
static regret for completeness.

The main algorithms proposed for the static problem are
COMID [53], based on mirror descent, and different variants
of online ADMM in [54], [55], [56]; in particular, in [56]
a distributed setting is considered. As shown in Table I, all
these methods achieve a static regret of order O(

√
T ) for

convex cost functionals, and in some cases an improvement to
O(log T ) is obtained in case of strong convexity. As illustrated
in the table, most of these methods are driven by decreasing
sequences of parameters, which are generally exploited to
improve the convergence properties. However, this tool can not
be used for tracking problems, where T is possibly infinite.

Less work is devoted to the dynamic regret analysis in
tracking problems. The main result is provided by [4], which
analyzes the dynamic regret of a gradient descent method
for strongly convex functionals. In [5], an online iterative
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soft thresholding (O-IST) method obtains similar performance
limited to the Elastic-net model, while not requiring a bounded
subgradient.

C. O-IST for quadratic problems
Before presenting the main algorithms, we retrieve O-IST

proposed in [5] for Problem (4), and we generalize it to
Problem (1)-(2). This paragraph provides the background to
understand the distributed algorithm presented in Section V.

O-IST consists in performing a soft thresholding iteration
at each t. This is a successful strategy in the sense that RegdT
(see Table I) is sublinear whenever the path length is sublinear.
In particular, this implies that (a) xt converges to x?t when∥∥x?t − x?t−1∥∥2 is null or decreasing as, e.g., 1

tβ
, β ∈ (0, 1], and

(b) we have a steady state tracking error for
∥∥x?t − x?t−1∥∥2 >

c, for some c > 0.
In Algorithm 1, we adapt O-IST [5] to Problem (1)-(2).

Differently from [5], we run r ≥ 1 soft thresholding iterations
at each t, where r depends on the time available between t
and t+1. In Algorithm 1, the operator Sβ : Rn → Rn, β > 0,
is the component-wise soft thresholding operator, defined as
follows: for z ∈ R, Sβ [z] = z − β if z > β; Sβ [z] = z + β
if z < −β; Sβ [z] = 0 otherwise; see, e.g., [35] for details.
Moreover, the dynamic regret analysis for O-IST for Problem
(1) can be straightforward derived from the results in [5].

Step 4 of Algorithm 1 can be derived as follows. Given
a generic problem 1

2x
TQx + φTx + λ‖x‖1, a direct min-

imization over x is not possible, due to the presence of
both the `1 term and the term xTQx which couples the
variables. In order to decouple the variables, a surrogate term
1
2 (x − b)T

[
1
τ I −Q

]
(x − b) can be added, where b ∈ Rn is

an auxiliary variable and τ is designed such that 1
τ I − Q is

positive definite. In this way, the surrogate term is always non
negative, and the global minimum is the same by adding it.
An alternated minimization is then performed: with respect to
b, the minimum is obtained for b = x; with respect to x, the
problem is decoupled and can be solved by soft thresholding
[35], [5]. O-IST is successful in terms of dynamic regret;

Algorithm 1 O-IST for Problem (1)-(2)

input: λ > 0, τ > 0, x0 = 0; at time t = 0, . . . , T , Qt
and φt;
output: in [t, t+ 1), an estimate xt+1 of x?t ;

1: for t = 0, . . . , T do
2: x̊0 = xt; Qt and φt are revealed;
3: for h = 1, . . . , r do
4: x̊h = Sλ [̊xh−1 − τQtx̊h−1 − τφt]
5: end for
6: xt+1 = x̊r
7: end for

however, in practice IST methods are observed to be not very
fast, which, in the online version, reduce the promptness to
sudden changes [5]. For this motivation, in this paper we
develop a faster online strategy based on Douglas-Rachford
splitting, whose convergence properties in the static framework
can be leveraged to obtain good tracking properties in the
dynamic framework.

We remark that accelerated versions of IST might be inves-
tigated as well to speed up O-IST, based, e.g., on Nesterov
accelerations [58] or FISTA [59]. However, these methods are
driven by time-varying, convergent parameters, which makes
their application more difficult in a tracking context, where
the time horizon is possibly infinite. For this motivation, we
focus on splitting methods.

Concerning the distributed setting, in static sparse recovery,
a decentralization of IST is proposed in [39]. By leveraging
[39], in the second part of this work, we develop a distributed
online version of IST and we analyze its dynamic regret.

We specify that an online distributed splitting methods
could be conceived as well, as distributed/parallel splitting
algorithms are widely applied in sparse optimization, see, e.g.,
[60], [61]. However, a rigorous dynamic regret analysis of
an online distributed splitting is rather technical, thus left for
future work.

III. O-DR: ONLINE DOUGLAS-RACHFORD SPLITTING

In this section, we present an online splitting algorithm
to tackle Problem (1), based on the Douglas-Rachford (DR)
method [36], [38]. First, we briefly review the classical batch
DR algorithm in a static framework.

DR is an iterative algorithm that tackles the minimization of
cost functionals of the kind f(x) = h(x)+g(x), x ∈ Rn. The
procedure can be formulated as follows. Given the proximal
operator, defined by

proxγh(z) := argmin
x∈Rn

[
γh(x) +

1

2
‖x− z‖22

]
, (6)

where γ > 0, for each t = 0, . . . , Tstop,

ut = proxγg(2xt − zt)
zt+1 = zt + 2α(ut − xt)
xt+1 = proxγh(zt+1)

(7)

where α > 0, and Tstop is the instant where some stop criterion
is met. The procedure can be equivalently written as

zt+1 = R(zt)

xt+1 = proxγh(zt+1)
(8)

where R := (1−α)I+α(2proxγh−I)(2proxγg−I), I being
the identity operator. The sequence xt is proven to converge to
x? = argmin

h
(x)+g(x) (while zt converges to a fixed point of

R: z? = Rz?) when h and g are proper closed and convex, and
α ∈ (0, 1), see [38] and references therein for more details.
The case α = 1, also known as Peaceman-Rachford splitting
method, converges faster than the case α ∈ (0, 1), under strong
convexity assumptions on h, see [38, Section III].

We remark that DR is equivalent to ADMM [37] for convex
problems h(x) + g(x). More precisely, ADMM tackles more
general problems of kind h(x)+g(z) subject to Ax+Bz = c,
and actually is the dual version of DR. The equivalence
between DR and ADMM is widely studied in the literature,
see, e.g., [62] and references therein. In this paper, we leverage
the DR formulation; however, the ADMM formulation is
possible as well, and yields the same theoretical and numerical
results.
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To apply DR to Problem (1) (for the moment, in the static
case Qt = Q, φt = φ), we set h(x) = xTQx + φTx, and
g(x) = λ‖x‖1. The steps in (7) are made explicit in Algorithm
2. To unburden the notation, we set γ = 1, and we consider
the Peaceman-Rachford version α = 1 [38]. These values are
observed to be suitable for the proposed setting; an optimal
tuning is beyond the scope of the paper and left for future
analysis.

Algorithm 2 Batch DR for Problem (1)-(2)

input: λ > 0, µ > 0, Q ∈ Rn,n, φ ∈ Rn, z0 = 0, x0 = 0
output: at time Tstop, an estimate xTstop of x?

1: for t = 0, . . . , Tstop do
2: ut = Sλ [2xt − zt]
3: zt+1 = zt + 2(ut − xt)
4: xt+1 = [Q+ I]−1 [zt+1 − φ]
5: end for

Afterwards, following the rationale of O-IST, we propose O-
DR, that performs r DR steps at each t. This is summarized
in Algorithm 3.

Algorithm 3 O-DR for Problem (1)-(2)

input: λ > 0, µ > 0, z0 = 0, x0 = 0; at t = 0, . . . , T :
Qt ∈ Rn,n, φt ∈ Rn
output: in [t, t+ 1), an estimate xt+1 of x?t

1: for t = 0, . . . , T do
2: z̊0 = zt, x̊0 = xt, Qt and φt are revealed
3: for h = 1, . . . , r do
4: ůh = Sλ [2x̊h − z̊h]
5: z̊h+1 = z̊h + 2(̊uh − x̊h)
6: x̊h+1 = [Qt + I]−1 [̊zh+1 − φt]
7: end for
8: zt+1 = z̊r+1

9: xt+1 = x̊r+1

10: end for

A. Related literature

The research on online splitting methods is very active
in these years. In particular, the idea of performing one
ADMM/DR iteration at each time step to tackle dynamic
problems is known in the literature. However, previous work
is mainly focused on the online estimation of a static quantity,
which yields to online ADMM/DR procedures different from
O-DR (Algorithm 3). Specifically, in [54], an online ADMM,
called OADM, is proposed to tackle static problems of kind
minx

∑T
t=1 ft(x) + g(x). The idea is to update the estimation

of the global minimum at each t, when new measurements are
acquired, i.e., a new ft is revealed. Then, OADM is conceived
to tackle the online estimation of a static quantity, which is
intrinsically different from the tracking problem proposed in
this paper. Similarly to O-DR, OADM perform one ADMM
iteration at each time step. Differently from O-DR, in OADM a
Bregman divergence term is added to obtain good static regret
properties. The analysis in [54] is specific for static regret;
in particular, some step size parameters of the algorithms are

required to increase or decrease as T , which can not be applied
in a tracking context, where T may be infinite. In [55], the
same static problem is tackled with slightly different online
ADMM procedures, based the addition of proximal operators
or `2 regularization terms. Similarly to [54], the so-obtained
online ADMM procedures work for decreasing/increasing time
step parameters, which requires a finite T , and prevents their
application to tracking problems. The tracking capabilities of
ADMM/DR have been investigated more recently, with partic-
ular attention to specific practical problems. In [63], ADMM is
used for real-time optimization of power systems; in [64], the
tracking capabilities of ADMM are tested in a dynamic beam-
forming problem. The algorithms proposed in these works are
based on the idea of performing one ADMM iteration at each
time step, and bounds for their limit errors are studied. In [65],
ADMM is used to track the solution of a stochastic sequence
of problems, parametrized by a discrete time Markov process.
Finally, in [66], a dynamic ADMM procedure that performs
one ADMM iteration at each time step is analyzed for the
dynamic sharing problem: under technical assumptions (in
particular, the time-varying cost functional is sum of strongly
convex functions), the convergence to a neighborhood of the
optimal time-varying point is proven. Moreover, a numerical
experiment on dynamic Lasso is illustrated, even though Lasso
does not enjoy the above mentioned technical conditions.

IV. DYNAMIC REGRET ANALYSIS FOR O-DR
In this section, we show how RegdT for O-DR depends

on the system’s evolution, in terms of path length. This is
achieved through some intermediate results. For this purpose,
we assume that the evolution of the system is bounded.

Assumption 1. The sequence of minimizers x?t of ft in
Problem (1)-(2) is bounded, i.e., there exist MQ > 0 and
Mφ > 0 such that maxt ‖Qt‖2 ≤MQ and maxt ‖φt‖2 ≤Mφ,
which implies maxt ‖x?t ‖2 ≤M? for some M? > 0.

We remark that this is an assumption on the system’s
evolution, while we do not force any boundedness on the
algorithm’s evolution xt or ft(xt). This is marks a difference
with respect to [4], where the boundedness of ∇ft is required
[4, Assumption 3], which excludes, for example, quadratic cost
functionals over non-compact state spaces.

In [38], a novel convergence rate analysis is proposed for
DR when the cost functional h(x)+g(x) enjoys the additional
properties that h(x) is σ-strongly convex, i.e., h − σ

2 ‖ · ‖
2
2 is

convex, and β-smooth, i.e., β
2 ‖ · ‖

2
2 − h is convex, see [38,

Section II] for details. From that result, we derive the following
corollary on the contractivity of DR for Problem (1)-(2).

Corollary 1. Let us consider the static Problem (1)-(2), that
is, ft = f for each t. Let (xt, zt)t=0,...Tstop be the sequence
generated by batch DR (Algorithm 2) and let (x?, z?) be
its limit point. Then, zt converges Q-linearly to z?; more
precisely, for each t = 0, . . . , Tstop

‖zt+1 − z?‖2 ≤ δ ‖zt − z
?‖2 (9)

where

δ = max

(
1− σ
1 + σ

,
β − 1

β + 1

)
< 1 (10)
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where σ and β respectively are the minimum non-null and the
maximum eigenvalues of Q. Moreover,

‖xt+1 − x?‖2 ≤ q ‖zt − z
?‖2 (11)

where q = δ
1+σ .

Proof. The proof is based on [38, Theorem 2, Corollary
1]. First, we notice that [38, Assumption 2] is satisfied by
Problem (1)-(2): h(x) is β-smooth and σ-strongly convex with
parameters as defined after (10). Therefore, [38, Theorem 2]
holds, which states that zt in Algorithm 2 converges Q-linearly
to z?, with contraction parameter δ as defined in (10).

Since proxh(z) = (Q + I)−1(z − φ), then proxh is 1
1+σ -

Lispchitz continuous. Hence, we prove (11) as follows:

‖xt+1 − x?‖2 = ‖proxh(zt+1)− proxh(z?)‖2

≤ 1

1 + σ
‖zt+1 − z?‖2 ≤

δ

1 + σ
‖zt − z?‖2 .

Now, we exploit Corollary 1 in the dynamic case. For each
ft, let (x?t , z

?
t ) be the limit point of DR, where x?t is the

minimum of ft, and z?t = φt+(Qt+I)x?t , given that (x?t , z
?
t ) is

a fixed point for the map defined by one iteration in Algorithm
2. If r iterations are played at time t, we derive the following
result from Corollary 1.

Corollary 2. For O-DR (Algorithm 3), the following proper-
ties hold:

‖zt+1 − z?t ‖2 ≤ δ
r ‖zt − z?t ‖2 (12)

and
‖xt+1 − x?t ‖2 ≤ q

r ‖zt − z?t ‖2 . (13)

By using Corollary 2, we prove that, at t, the distance be-
tween the played action and the current minimum is controlled
by the distance between successive minima. In the following,
we name:

∆zt := ‖zt − z?t ‖2,
∆?
xt := ‖x?t − x?t−1‖2, ∆?

zt := ‖z?t − z?t−1‖2.
(14)

From Assumption 1, z?t = φt + (Qt + I)x?t is bounded; then,
there exists Mz? > 0 such that ∆?

zt ≤ Mz?. This is used to
prove the following result.

Lemma 1. For O-DR,

(a)
T∑
t=1

∆zt ≤ c1 + c2

T∑
t=1

∆?
zt

(b)
T∑
t=1

∆2
zt ≤ c3 + c4

T∑
t=1

∆?
zt + c5

T∑
t=1

∆?2

zt

where

c1 =
δr

1− δr
(∆z0 −∆zT ) , c2 =

1

1− δr
,

c3 =
δ2r
(
∆2
z0 −∆2

zT

)
+ 4Mz?δ

2r (∆z0 −∆zT ) + 4Mz?δ
rc1

1− δ2r
,

c4 =
4Mz?δ

rc2
1− δ2r

, c5 =
1

1− δ2r
.

(15)

Proof. By the triangle inequality and Corollary 2, for each
t = 1, . . . , T ,

∆zt = ‖zt − z?t ± z?t−1‖2 ≤ ‖zt − z?t−1‖2 + ∆?
zt

≤ δr∆zt−1 + ∆?
zt .

(16)

By summing over t = 1, . . . , T , we prove (a):

(1− δr)
T∑
t=1

∆zt ≤ δr (∆z0 −∆zT ) +
T∑
t=1

∆?
zt .

To prove (b), first we use (16) and the fact that ∆?
zt ≤Mz?:

∆2
zt ≤ δ

2r∆2
zt−1

+ ∆?2
zt + 2δr∆zt−1

∆?
zt

≤ δ2r∆2
zt−1

+ ∆?2
zt + 4Mz?δ

r∆zt−1
.

Then, we sum over over t = 1, . . . , T :
T∑
t=1

∆2
zt ≤

δ2r
(
∆2
z0 −∆2

zT

)
+
∑T
t=1

(
∆?2
zt + 4Mz?δ

r∆zt−1

)
1− δ2r

.

(17)

Since
∑T
t=1 ∆zt−1 = ∆z0 − ∆zT +

∑T
t=1 ∆zt , by applying

(a), we have

T∑
t=1

∆zt−1
≤ ∆z0 −∆zT + c1 + c2

T∑
t=1

∆?
zt .

By substituting this bound in (17), the thesis is obtained, with
constants as defined in (15).

The following two lemmas highlight properties of the
quadratic functional in (1).

Lemma 2. For each t, and for any x ∈ Rn,

ft(x)− ft(x?t ) ≤ α1 ‖x− x?t ‖2 + α2 ‖x− x?t ‖
2
2 (18)

where α1 = MQM
? +Mφ + λ and α2 =

MQ

2 .

Proof. The joint descent theorem, see [67, Corollary 3], states
that given a differentiable h : Rn → R with µ-Lipschitz
gradient, and g : Rn → R, for any x, y, z ∈ Rn, the
following inequality holds: h(x) + g(x) ≤ h(y) + g(y) +
(x − y)T (∇h(z) + ∇̃g(x)) + µ

2 ‖z − x‖
2
2, where ∇̃ denotes

the subgradient. Then, we obtain the thesis by considering
h(x) = xTQtx + φTt x, g(x) = λ‖x‖1, and y = z = x?t ,
and by noticing that ∇h(x?t ) ≤ MQM

? + Mφ, ∇h is MQ-
Lipschitz, and ∇̃g ≤ 1.

Remark 1. We notice that, even though specialized for the
quadratic case, the previous results actually hold for any
functional h(x)+λ‖x‖1 with strongly convex g with Lipschitz
gradient. In this paper, we focus on the quadratic case as
it is the most common example of functionals with Lipschitz
gradient and it is prone to decentralization, see Section V.

Based on these results, we prove the main result.

Theorem 1. O-DR for Problem (1)-(2) (Algorithm 3) has the
following dynamic regret bound:

RegdT ≤η0 +
T∑
t=1

(
η1∆?

zt + η2∆?2

zt + η3∆?
xt + η4∆?2

xt

)
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where ηi > 0, i = 0, . . . , 4 are assessed in the proof.

In particular, this theorem implies that if the path lengths∑T
t=1 ∆?

zt and
∑T
t=1 ∆?

xt are sublinear, then also RegdT is
sublinear, i.e., the algorithm is successful, in line with previous
results shown in Table I.

Proof. From Lemma 2, by considering x = xt,

ft(xt)−ft(x?t ) ≤ α1 ‖xt − x?t ‖2 + α2 ‖xt − x?t ‖
2
2 . (19)

From Corollary 2, we know that
∥∥xt − x?t−1∥∥2 ≤ qr‖zt−1 −

z?t−1‖2 = qr∆zt−1
. Then, by applying the triangle inequality,

‖xt − x?t ‖2 ≤
∥∥xt − x?t−1∥∥2 + ∆?

xt ≤ q
r∆zt−1 + ∆?

xt . (20)

Since (a− b)2 ≤ 2a2 + 2b2 for any a, b ∈ R, we have

‖xt − x?t ‖
2
2 ≤ 2q2r∆2

zt−1
+ 2∆?2

xt . (21)

By substituting (20) and (21) in (19), we conclude:

ft(xt)− ft(x?t ) ≤ α1

(
qr∆zt−1

+ ∆?
xt

)
+

+ 2α2

(
q2r∆2

zt−1
+ ∆?2

xt

)
= ζ1∆zt−1 + ζ2∆2

zt−1
+ ζ3∆?

xt + ζ4∆?2

xt

where ζ1 = α1q
r, ζ2 = 2α2q

2r, ζ3 = α1, ζ6 = 2α2. Now, let
us sum over t = 1, . . . , T :

RegdT =
T∑
t=1

(ft(xt)− ft(x?t ))

≤ κ+
T∑
t=1

(
ζ1∆zt + ζ2∆2

zt + ζ3∆?
xt + ζ4∆?2

xt

)
where κ = ζ1(∆z0 −∆zT ) + ζ2(∆2

z0 −∆2
zT ). Then, we apply

Lemma 1:

RegdT ≤ κ+ ζ1

(
c1 + c2

T∑
t=1

∆?
zt

)
+ ζ2c3+

+ ζ2

(
c4

T∑
t=1

∆?
zt + c5

T∑
t=1

∆?2

zt

)
+ ζ3

T∑
t=1

∆?
xt + ζ4

T∑
t=1

∆?2

xt .

The thesis is obtained with η0 = ζ1c1 +ζ2c3 +κ, η1 = ζ1c2 +
ζ2c4, η2 = ζ2c5, η3 = ζ3, η4 = ζ4.

V. O-DISTA: DISTRIBUTED ONLINE IST

As mentioned in the introduction, several works in the
literature are concerned with distributed methods for online
convex optimization, see, e.g., [11], [14], [15], [24], [25].
For this motivation, we propose a distributed algorithm for
STVO, that consists in a decentralization of the IST algorithm
proposed in [5], based on the DISTA algorithm developed
in[39]. Specifically, we reformulate DISTA for Problem (1)-
(2), and we prove its contraction properties. Then, we analyze
its dynamic regret in Section VI.

Let us consider an undirected graph G = (V, E) where V
is the set of nodes, whose cardinality is denoted by |V|, and
E ⊆ V × V is the set of edges. E enjoys the property: (v, w) ∈
E implies (w, v) ∈ E ; moreover, (v, v) ∈ E for each v ∈ V .
We denote by dv the degree of v ∈ V , i.e., the number of

edges incident to v, while dm and dM are the minimum and
maximum degree of G, respectively.

Let X := (x1, . . . , x|V|) ∈ Rn,|V|. At each t, in the
philosophy of [39, Equation (9)], we formulate the following
problem:

min
X∈Rn,|V|

Ft(X)

Ft(X) :=
∑
v∈V

[
1

2
xTvQv,txv + φTv,txv + λ‖xv‖1+

+
1

2τdM

∑
w∈Nv

‖xw − xv‖22

] (22)

where xw := 1
dw

∑
u∈Nw xu, and τ > 0 is a weight that

will be assessed later. The term
∑
w∈Nv ‖xw−xv‖

2
2 promotes

consensus among the local estimates. Problem (22) is a
relaxation of [39, Problem 8], and does not guarantee to reach
a consensus; more precisely, one can guarantee consensus by
suitably weighting the term

∑
w∈Nv ‖xw − xv‖22, see [39,

Theorem 2] for details. In our experiments, we observe that the
formulation (22) is sufficient to reach a substantial agreement;
therefore, for simplicity, we do not discuss the weight tuning.

The motivation to use xw instead of xw (which would equiv-
alently support consensus) is rather technical; in a nutshell, it
makes easier to split each iteration in two steps: one of local
communication and one of individual descent, as illustrated in
algorithms 4 and 5. Finally, we remark that, differently from
[39], we do not require that G is a regular graph.

At time t, each v ∈ V is assumed to know local data Qv,t ∈
Rn,n and φv,t ∈ Rn. Nodes aim to track the minimizer of
(22), denoted as x?t ∈ Rn, by leveraging local information
and local communication. As for the centralized case of O-
IST, see [5], the minimum of Ft cannot be obtained in closed
form, while it can be achieved via alternated minimization of
a surrogate functional F st . F st (x) is obtained from Ft(x) by
adding a quadratic term to deal and by substituting the local
mean xw with a local auxiliary variable, which makes the
problem separable in each component. More precisely, given
C = (c1, . . . , c|V|) ∈ Rn,|V|, B = (b1, . . . , b|V|) ∈ Rn,|V|, and
Rτv,t := 1

τ I −Qv,t we define

F st (X,C,B) :=
∑
v∈V

[
1

2
xTvQv,txv + φTv,txv+

+λ‖xv‖1 +
1

2τdM

∑
w∈Nv

‖cw − xv‖22+

+
1

2
(xv − bv)TRτv,t(xv − bv)

]
.

(23)

As discussed for O-IST, we assume that τ is designed such that
Rτ,v,t is positive definite. Different τ ’s might be considered
at each node; here we consider a unique value to simplify the
notation.

It is straightforward to verify that Ft(X) = F st (X,X,X),
where X = (x1, . . . , x|V|); moreover, if X?

t = argminFt,

then (X?, X?, X?) = argminF st (X,C,B), which is achieved

by alternated minimization over X ∈ Rn,|V|, C ∈ Rn,|V|,
B ∈ Rn,|V|. In particular, the minimization with respect to
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xv can be done separately in each component, leveraging
the fact that, given a > 0, argmin

x∈R

1
2ax

2 + bx + λ|x| =

Sλ/a [−b/a]. Moreover, since
∑
v∈V

∑
w∈Nv ‖cw − xv‖22 =∑

v∈V
∑
w∈Nv ‖cv − xw‖22 for undirected graphs, the min-

imum with respect to cv is achieved at cv = xv . Finally,
the minimum with respect to bv is bv = xv provided that
Rτ,v,t is positive definite. The so-obtained iterative procedure
is reported in Algorithm 4. As in the centralized case, first, we
illustrate the static case Ft = F ; then, we provide the online
formulation, denoted as O-DISTA, in Algorithm 5.

Algorithm 4 Batch DISTA for Problem (22)

input: λ > 0, τ > 0; for each v ∈ V , xv,0 = 0, Qv , φv ,
Rτv = 1

τ I −Qv
output: at time Tstop, for each v ∈ V , an estimate xv,Tstop
of x?

1: for t = 0, . . . , Tstop do
2: If t is even, for any v ∈ V ,

cv,t+1 = xv,t

xv,t+1 = xv,t

3: If t is odd, for any v ∈ V ,

cv,t+1 = cv,t

xv,t+1 = S λτ
1+dv/dM

[
τRτvxv,t + dv

dM
cv,t − τφv

1 + dv/dM

]

4: end for

Algorithm 5 O-DISTA for Problem (22)

input: λ > 0, τ > 0; for each v ∈ V , xv,0 = 0; at time t,
Qv,t, φv,t, Rτv,t = 1

τ I −Qv,t
output: in [t, t + 1), for each v ∈ V , an estimate xv,t+1

of x̃t
1: for t = 0, . . . , T do
2: for h = 0, . . . , r do
3: For each v ∈ V , x̊v,0 = xv,t
4: If h is even, for any v ∈ V ,

cv,h+1 = x̊v,h

x̊v,h+1 = x̊v,h

5: If h is odd, for any v ∈ V ,

cv,h+1 = cv,h

x̊v,h+1 = S λτ
1+dv/dM

[
τRτv,tx̊v,h + dv

dM
cv,h − τφv,t

1 + dv/dM

]
6: end for
7: For each v ∈ V , xv,t+1 = x̊v,r
8: end for

VI. DYNAMIC REGRET ANALYSIS FOR O-DISTA
In this section, we analyze the dynamic regret for O-DISTA,

by extending the results in [5, Section IV] to the distributed

case. We start by proving the contractivity, under the following
assumption.

Assumption 2. Let τ < minv,t ‖Qv,t‖−22 , and θτ =:
maxv,t ‖τRτv,t‖22 < 1, where Rτv,t = 1

τ I − Qv,t. We assume

that ρ := 2
(

1 + dm
dM

)−2 (
θτ + dM

dm

)
< 1.

Roughly speaking, Assumption 2 holds if the difference
between minimum and maximum degrees is not too large,
which is a reasonable requirement in practice. In particular,
Assumption 2 holds for any θτ if dM = dm, i.e., if G is
regular.

Lemma 3. If X(t) ∈ Rn,|V| is the sequence produced by
O-DISTA, and X?

t ∈ Rn,|V| is the minimizer of (22), then

‖Xt+1 −X?
t ‖F ≤ ρr/2‖Xt −X?

t ‖F (24)

where ‖ · ‖F denotes the Frobenious norm. Then, under
Assumption 2, contractivity holds.

Proof. Let r = 1, and let Γt : Rn,|V| 7→ Rn,|V| be the

map defined by (ΓtX)v = S λτ
1+dv/dM

[
τRτv,txv+

dv
dM

xv−τφv,t
1+dv/dM

]
.

As X?
t = (x?1,t, . . . , x

?
|V|,t) is the minimum of Ft(X), then

(X?
t , X

?
t , X

?
t ) is the minimum of F s(X,C,B), and X?

t is a
fixed point for Γt. Thus, since Sβ is non-expansive [35],∥∥xv,t+1 − x?v,t

∥∥2
2
≤

≤ 1

g

∥∥∥∥τRτv,t(xv,t − x?v,t) +
dv
dM

(xv,t − x?v,t)
∥∥∥∥2
2

where g =
(

1 + dv
dM

)2
and xv = 1

dv

∑
w∈Nv

1
dw

∑
u∈Nw xu.

By applying the Cauchy-Schwarz inequality (
∑n
i=1 ai)

2 ≤
n
∑n
i=1 a

2
i , we compute the following bound:

‖xv,t+1 − x?v,t‖22 ≤

≤ 2

g

∥∥τRτv,t∥∥22 ∥∥xv,t − x?v,t∥∥22 +
2d2v
gd2M
‖xv,t − x?v,t‖22

≤ 2θτ
g

∥∥xv,t − x?v,t∥∥22 +
2d2v
gd2M

∥∥∥∥∥ 1

dv

∑
w∈Nv

(
xw,t − x?w,t

)∥∥∥∥∥
2

2

≤ 2θτ
g

∥∥xv,t − x?v,t∥∥22 +
2dv
gd2M

∑
w∈Nv

‖xw,t − x?w,t‖22

≤ 2θτ
g

∥∥xv,t − x?v,t∥∥22 +
2

gdM

∑
w∈Nv

1

dw

∑
u∈Nw

‖xu,t − x?u,t‖22

≤ 2θτ
g

∥∥xv,t − x?v,t∥∥22 +
2

gdMdm

∑
w∈Nv

∑
u∈Nw

‖xu,t − x?u,t‖22.

By summing over v ∈ V , since∑
v∈V

∑
w∈Nv

∑
u∈Nw ‖xu,t − x?u,t‖22 ≤ d2M

∑
v∈V ‖xv,t −

x?v,t‖22 and g ≥
(

1 + dm
dM

)2
, we obtain ‖Xt+1 − X?

t ‖2F ≤
ρ ‖Xt −X?

t ‖
2
F . The extension to r > 1 is straightforward.

By exploiting the contractivity, the following result can be
proven. Let ∆t := ‖X?

t −X?
t−1‖F .
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Lemma 4. For each t = 1, . . . , T ,

(a)
T∑
t=1

‖Xt −X?
t ‖F ≤ c1 + c2

T∑
t=1

∆t

(b)
T∑
t=1

‖Xt −X?
t ‖

2
F ≤ c3 + c4

T∑
t=2

∆2
t + c5

T∑
t=1

∆t

with constants ci > 0, i = 1, . . . , 5.

The proof is a straightforward extension of the proof of [5,
Lemma 2], and omitted for brevity.

Lemma 5. For each t = 1, . . . , T ,

Ft−1(Xt)− Ft−1(X?
t−1) ≤ 1

τ

(
dM
dm

+ 1

)∥∥Xt−1 −X?
t−1
∥∥2
F
.

Proof. Let us consider the intermediate variables X̊h, h =
0, . . . , r, between t−1 and t, starting from X̊0 = Xt−1. Since
Ft−1 is decreased by O-DISTA, and given (23),

Ft−1(Xt) ≤ Ft−1(X̊1) = F st−1(X̊1, X̊1, X̊1)

≤ F st−1(X̊1, Xt−1, Xt−1) ≤ F st−1(X?
t−1, Xt−1, Xt−1).

Therefore, by applying the Cauchy-Schwarz inequality,

Ft−1(Xt)− Ft−1(X?
t−1)

≤ F st−1(X?
t−1, Xt−1, Xt−1)− Ft−1(X?

t−1)

=
∑
v∈V

[
1

2τdM

∑
w∈Nv

∥∥xw,t−1 − x?v,t−1∥∥22 +

+
1

2
(xv,t−1 − x?v,t−1)TRτv,t−1(xv,t−1 − x?v,t−1)

]
≤ 1

τ

(
dM
dm

+ 1

)∑
v∈V

∥∥xv,t−1 − x?v,t−1∥∥22 .

For any X ∈ Rn,|V|, let us define

Dt(X) := Ft(X)− Ft−1(X)

∆Qv,t := ‖Qv,t −Qv,t−1‖2
∆φv,t := ‖φv,t − φv,t−1‖2 .

(25)

Assumption 3. We assume that supv,t ∆Qv,t and supv,t ∆φv,t

are bounded. Moreover, if ∆Qv,t 6= 0 for at least one v, we
assume that supt ‖x?t ‖ is bounded.

We notice that this assumption is weaker than Assumption
1: φv,t does not need to be bounded; if Qv,t is constant in
time, x?t does not need to be bounded. A possible application is
discussed Section VII-B. Briefly, O-DISTA requires a weaker
boundedness assumption than O-DR, as for O-DISTA the
sequence Ft(Xt) is monotone decreasing, and in particular
Lemma 5 holds, which is not guaranteed for O-DR.

Lemma 6. For any X ∈ Rn,|V| and t = 1, . . . , T ,

Dt(X)−Dt(X
?
t ) ≤ γ1‖X −X?

t ‖F + γ2‖X −X?
t ‖2F (26)

where γ1 =
√
|V| supv,t(∆φv,t + ∆Qv,t‖x?t ‖2) and γ2 =

1
2 supv,t ∆Qv,t .

Proof. Since

Dt(X) =
∑
v∈V

[
1

2
xTv (Qv,t −Qv,t−1)xv + (φv,t − φv,t−1)Txv

]
,

we have:

Dt(X)−Dt(X
?
t ) =

=
∑
v∈V

[
1

2
(xv − x?v,t)T (Qv,t −Qv,t−1)(xv + x?v,t)

]
+
∑
v∈V

(φv,t − φv,t−1)T (xv − x?v,t)

≤
∑
v∈V

∥∥xv − x?v,t∥∥2 [1

2
∆Qv,t

∥∥xv + x?v,t
∥∥
2

+ ∆φv,t

]
≤
∑
v∈V

1

2

∥∥xv − x?v,t∥∥22 ∆Qv,t+

+
∑
v∈V

(
∆φv,t + ∆Qv,t‖x?v,t‖2

) ∥∥xv − x?v,t∥∥2 .
Then, the thesis is obtained by applying Cauchy-Schwarz.

Given these intermediate lemmas, we can now evaluate the
dynamic regret.

Theorem 2. The dynamic regret for O-DISTA (Algorithm 5)
has the following bound:

RegdT ≤ α0 + α1

T∑
t=1

∆t + α2

T∑
t=1

∆t

where αi > 0, i = 0, 1, 2.

Proof. We consider the difference of losses Ft(Xt)−Ft(X?
t )

and we add and subtract Ft−1(Xt) to it. By using that
Ft−1(X?

t ) ≥ Ft−1(X?
t−1), we obtain the following bound:

Ft(Xt)− Ft(X?
t ) ≤

≤ Ft(Xt)− Ft(X?
t )± Ft−1(Xt) + Ft−1(X?

t )− Ft−1(X?
t−1)

= Dt(Xt)−Dt(X
?
t ) + Ft−1(Xt)− Ft−1(X?

t−1).

Then, by applying Lemma 5 and Lemma 6, the last expression
is upper bounded by γ1‖Xt − X?

t ‖F + γ2‖Xt − X?
t ‖2F +

1
τ

(
dM
dm

+ 1
)∥∥Xt−1 −X?

t−1
∥∥2
F
. The thesis is obtained by

summing over t = 1, . . . , T , and by applying Lemma 4.

VII. NUMERICAL RESULTS

In this section, we numerically analyze the algorithms O-
IST, O-DR, and O-DISTA in two time-varying Elastic-net
experiments.1 The first problem is an instance of online iden-
tification of time-varying linear systems; the second problem
is a practical example of moving target tracking based on the
received signal strength (RSS), which has applications, e.g.,
in indoor monitoring and surveillance.

1The code to reproduce the proposed experiments is available at
https://github.com/sophie27/Sparse-Time-Varying-Optimization.
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Figure 1: Dynamic regret. Left column: Experiment 1; right column: Experiment 2. From top to bottom: (1) tr = 12 ms, SNR
= 25dB; (2) tr = 6 ms, SNR = 25dB.

A. Online compressed system identification

Online compressed system identification refers to the on-
line estimation of the parameters of a time-varying system
from compressed measurements. Specifically, we consider a
time-varying autoregressive model with an exogenous input
(TVARX), whose input-output relationship is as follows:
yt =

∑P
p=1 ap,tyt−p +

∑Q
q=1 bq,tut−q + et, where ut, yt ∈ R

respectively are the measurable input and output; et ∈ R is
the measurement error; ap,t, bq,t ∈ R are the time-varying
parameters to be estimated.

The dimensions P and Q are assumed to be unknown,
therefore we initially set sufficiently large bounds P̂ and Q̂
for them and then we look for a parsimonious model using
the `1-norm to promote sparsity.

As in [5], we iteratively collect groups of m measurements
yt := (yt, . . . , yt+m)T . The measurements are compressed,
that is, we choose m < P̂ + Q̂; a Gaussian measurement
noise with SNR=25dB is added.

It is easy to check that we can define At ∈ Rm,P̂+Q̂ as
follows:

yt−1 · · · yt−P ut−1 · · · ut−Q

yt · · · yt−P+1 ut · · · ut−Q+1

...
...

yt+m−1 · · · yt+m−P ut+m−1 · · · ut+m−Q

 .

We revisit the TVARX(1,1) example considered in [68], [5].
The input-output equation is yt = a1,tyt−1 + b1,tut−1 + et,
with P = Q = 1. Assuming P and Q unknown, we

initially overestimate them as P̂ = Q̂ = 10. In other terms,
our goal is to track a time-varying parameter vector x̃t =
(a1,t, . . . , a10,t, b1,t, . . . , b10,t) ∈ Rn, n = 20, with sparsity
k = 2 and constant support, given linear observations, as in
(3). Specifically, x̃t = (a1,t, 0, . . . , 0, b1,t, 0, . . . , 0), then we
refer to components 2,. . . ,10,12,. . . ,20 as to null parameters.
The Elastic-net model (4) is efficient to tackle this problem,
as shown in [5]. By cross-validation, we set λ = 10−2 and
µ = 10−6. We remark that, for stability purpose, it makes
sense to assume At and x̃t bounded, according to Assumption
1. No prior information on sparsity and support is exploited
in the estimation. We consider a time horizon of 1 second
and sampling frequency of 1000 Hz. Two experiments are
conducted. In the first one, a1,t and b1,t are step-wise constant
with few abrupt changes, see [68]. Specifically, we set:

Experiment 1:

a1(t) =

{
− 0.9 if t < 0.5

0.9 otherwise;
b1(t) =


0.7 if t < 0.2

− 0.8 if 0.2 ≤ t < 0.4

0.8 if 0.4 ≤ t < 0.7

− 0.7 otherwise.
(27)

In the second experiment, instead, we test a case of smoothly
time-varying parameters.

Experiment 2:

a1(t) = 0.8

(
1 +

1√
t

)
; b1(t) = 0.9 + 0.1 sin (2 log t) .
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Figure 2: Experiment 1, SNR = 25dB, tr = 12 ms. From left to right, averaged estimates of a1,t, b1,t, null parameters; mean
square error.
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Figure 3: Experiment 1, SNR = 25dB, tr = 6 ms. From left to right, averaged estimates of a1,t, b1,t, null parameters; mean
square error.
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Figure 4: Experiment 2, SNR = 25dB, tr = 12 ms. From left to right, averaged estimates of a1,t, b1,t, null parameters; mean
square error.
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Figure 5: Experiment 2, SNR = 25dB, tr = 6 ms. From left to right, averaged estimates of a1,t, b1,t, null parameters; mean
square error.
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These parameters are chosen so that a1(t) is decreasing
to zero, with convergent path length

∑T
t=1 |a1(t + 1) −

a1(t)|, while b1(t) is oscillating, with sublinear path length∑T
t=1 |b1(t + 1) − b1(t)|, of order log T . We notice that the

path length was defined above on the optimal points x?t , while
here we are evaluating it on x̃t; however, x?t is expected to
be a good approximation of x̃t, then the two path lengths are
somehow equivalent, see [5, Corollary 1]. The input compo-
nents are drawn from a standard Gaussian distribution, and are
periodic with period m. We set m = 12, which corresponds
to a rate compression m

n = 3
5 . This implies a delay of 12

ms to acquire the of set measurements plus the run time. To
prevent an accumulation of delay, the run time of the algorithm
must not exceed 12 ms, so that the algorithm processes the
acquired measurements while the successive measurements are
being acquired. Then, we iterate the algorithms until a prefixed
maximum run time tr ≤ m ms (notice that this approach
is different from that of [5], where a maximum number of
iterations was set). In our simulations, we test tr = 12 ms and
tr = 6 ms.

For O-IST and O-DISTA, sufficient conditions on the
parameter τ have been theoretically provided; specifically,
for each t, τ ≤ ‖At‖−22 for O-IST (see Assumption 1 in
[5]), and τ ≤ minv∈V ‖Av,t‖−22 for O-DISTA, see Lemma
3. In these experiments, we assume to ignore these lower
bounds, and we set τ at each time step: specifically, we use
τ = 2 ‖At‖−22 for O-IST, while for O-DISTA, each node
computes its own τ as 2 ‖Av,t‖−22 . These values are observed
to preserve the convergence properties of the algorithms in
practice. For O-DISTA, we consider a 3-regular ring topology:
there are 4 nodes, each of them taking 3 measurements and
communicating with 2 neighbors.

The results shown in figures 1-5 are averaged over 200
random runs. In Figure 1, we show the evolution of the mean
dynamic regret Regdt /t. Based on our theoretical results, we
expect that Regdt /t decreases to zero (that is, the dynamic
regret is sublinear), when the system is static or when it
evolves with sublinear path length. This behavior is confirmed
by numerical simulations and can be appreciated in Figure 1.
In figures 2-5, we illustrate more details for each experiment.
Specifically, we provide four graphs, respectively depicting the
tracking of a1(t), b1(t), and null parameters, and the mean
square error, defined as MSE= 1

P+Q

∑T/m
s=1 ‖x̃sm − x̂sm‖

2
2,

where x̃t = (a1,t, . . . , aP,t, b1,t, . . . , bQ,t)
T and x̂t is the

estimate (the mean estimate depicted for O-DISTA).
Concerning Experiment 1 (figures 2-3), in general, all the

implemented algorithms are able to track the true parameters.
When the parameters jump between different values (this
occurs at time instants 0.2, 0.4, 0.5, 0.7), all the estimates
are affected by a sudden perturbation. O-DR is observed to
converge faster than O-IST and O-DISTA when the parameters
are constant. After jumps, O-DR adapts faster to the new
parameters. On the other hand, O-DR is locally more sensitive
to jumps: its peaks in correspondence of jumps are more
marked. As expected, the distributed nature of O-DISTA
makes it a bit less prompt than the centralized algorithms.

Moving from tr = 12 ms to tr = 6 ms, we obtain a slight

worsening for all the algorithms, while the response delay
after jumps is reduced. O-DR performance is almost equal
for tr = 12 ms and tr = 6 ms, which suggests that O-DR
almost achieves convergence to the optimal point in 6 ms.

Concerning Experiment 2 (figures 4-5), similar considera-
tions can be drawn. In addition, we observe that O-DR and O-
IST have similar performance when the parameters are slowly
varying (namely, for t ≥ 200 ms), while O-DR is more precise
when the path length is higher (t < 200 ms).

B. Moving target tracking

In the last decade, indoor localization of moving objects
has been gaining attention for purposes such as monitoring
and surveillance, tracking of products in manufacturing indus-
trial lines, control of unmanned vehicles, and location-based
services. While outdoor tracking is mature, due to satellites
technologies, indoor tracking is still challenging, and a variety
of methodologies are proposed for it, see [69] for a complete
overview.

A possible approach to indoor tracking is based on the
distance estimation via RSS, which can be implemented in
low-cost systems such as wireless sensor networks. RSS-
positioning is often associated with CS techniques to obtain an
accurate localization from few measurements, see [70], [71].

In this experiment, we consider the CS model proposed
in [70] and we extend it to the dynamic case, by using an
Elastic-net model. Specifically, we aim to track a moving target
in a 25 × 25 m2 indoor area. The area is assumed to be
subdivided into square cells of side 1 m; the target is well
localized when the cell where it lies is identified. This is a
sparse problem since only one cell over n = 625 is occupied
at each time step. The distance is measured with 36 sensor
nodes, deployed according to a regular grid over the area,
represented by the yellow points in Figure 6. Measurements
are linearly obtained as yt = Ax̃t+ noise, yt ∈ Rm, through
a dictionary A ∈ Rm,n built in a training phase. In the
runtime phase, each sensor nodes takes 4 measurements of
the signal emitted by the target, for a total of m = 144 � n
measurements. As to the transmission, we consider the indoor
model defined by the IEEE 802.15.4 standard, as reported
in [70, Equation 11]. A measurement noise corresponding to
an SNR of 25dB is added. The online tracking is performed
with O-IST, O-DR, and O-DISTA, which are run for 50 ms
at each iteration, this time being sufficiently small such that,
in the next measurement, the target is in the same cell or in
adjacent cell. As to O-IST and O-DR, the data from sensors
are processed in a centralized fusion center, while for O-
DISTA the processing is performed in-network, with local
communications determined by the grid topology depicted
in the third graph of Figure 6; specifically, each node can
communicate with nodes at a maximum distance of 4.5 m.
In Figure 6, we show the path of the target in the 25× 25 m2

area, and the corresponding tracking. We see that the three
algorithms are substantially able to track the path. O-DR is
the most precise and responsive, while O-DISTA is a bit
less accurate. The performance is better visible in Figure 7,
where the distance ‖xt − x̃t‖2 and the cumulative distance
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Figure 6: Indoor tracking of a moving target from RSS compressed measurements, in a 25×25 m2 area. The path of the target
and the corresponding online estimations are depicted. The yellow points denote the sensor nodes.
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Figure 7: Indoor tracking of a moving target from RSS com-
pressed measurements: instantaneous distance and cumulative
distance.

∑t
i=1 ‖xi − x̃i‖2 are shown. A distance of 1 m or of

√
2

m is natural when the target is moving, since the delay for
processing in envisaged: such distances mean that the target
has moved in an adjacent (horizontal/vertical or diagonal) cell.
The distance may be null when the target stops in a cell. On
the basis of this observation, O-DR is optimal, while O-DIST
and O-DISTA present few more delays and missed corners.

Finally, we remark that, in this experiment the dictionary
A is constant, then in Assumption 3, Qt is constant, which
means that x̃t is not required to be bounded. In practice, this

means that the moving target x̃t is not required to move within
a fixed area to match the theoretical features of O-DISTA. On
the other hand, if the area is not priorly fixed, a system of
moving sensors should be provided.

VIII. CONCLUSIONS

In this work, we develop and analyze novel centralized
and distributed strategies for sparse time-varying optimization.
Specifically, we consider quadratic, strongly convex, optimiza-
tion problems with `1 regularization. In this setting, we provide
a rigorous analysis in terms of dynamic regret. Furthermore,
numerical experiments on compressed system identification
and indoor moving target tracking are presented. Future work
will be devoted to extend the analysis to larger classes of
composite problems.
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