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Abstract—In information visualization (InfoVis), the Visual-
izers (graph designers and creators) have to consider multiple
parameters, such as colors and graphic symbols, to obtain a
chart that correctly represents a data set. Along with this,
visualizers must adequately select the combination of these range
of parameters to drive the observers’ attention to the relevant
data. When a visualizer drives the attention to relevant aspects
of the information, she is providing a starting point to read
the graph; this focus point might help the observer to complete
the task faster and more efficiently, minimizing distraction from
unimportant information. Contemporary tools for InfoVis help
visualizers to a certain extent, but most of them currently do not
provide insights or suggestions about the modifications needed
to drive data attention. This article presents the preliminary
results of an exploratory approach to draw the attention to some
specific data subset selected by the graph creator, through a
systematic variation of some preattentive attributes (i.e., color,
texture and orientation). As a first simple method to validate the
feasibility of the approach, a set of charts is created from the same
source data, with exhaustive variations on preattentive attributes.
All generated charts are then automatically evaluated using a
salience map algorithm for data analysis images, to identify their
focus attention point. After that, the algorithm chooses the chart
that best emphasizes the data subset initially specified by the
visualizer. To validate our approach, we have implemented a
prototype tool, and preliminary results confirm that it is possible
to systematically change the attention area of a chart.

Index Terms—saliency, perception, information visualization,
preattentive, highlighting

I. INTRODUCTION

According to Rodrigues et al. [1], Information Visualization
(InfoVis) “provides faster and user-friendlier mechanisms for
data analysis, because the user draws on his/her comprehen-
sion immediately as graphical information comes up to his/her
vision”. This means the human vision system is strongly
related to cognitive and memory processes that take action in
data comprehension [2] and interpretation [3]. Even, attention
controls what visual information is held and stored [4]. Also,
Rodrigues et al. [1] said that carrying out a conscious man-
agement of the human vision system, mainly the preattentive
process, should be the first stage towards the creation of a
chart. The preattentive process takes place at an early stage in
the human vision process and defines potential attention areas

to be detailed. In InfoVis, the preattentive process is related
to the handling of some visual elements called preattentive
attributes [5] (e.g., color, size, shape, spatial position).

All this knowledge about preattentive process has currently
not been thoroughly explored in the InfoVis area, also due
to the rapid expansion of InfoVis techniques on different
knowledge areas not directly related to design or cognitive
processes. However, according to Jänicke et al. [6], ”every
visualization creator would be curious about how a visual-
ization is perceived and what the observers learn from it”.
This viewer perception might be measured by techniques such
as salience detection. Visual saliency models could predict
which areas attract the observer’s visual attention [6]. With this
information about where the observer attention will be focused
at first, the creator could know beforehand where his chart will
start to be read. Also, she could know how well the chart is
aligned with the relevant data. Some contemporary InfoVis
tools (e.g., Tableau) use the preattentive process knowledge
in an implicit manner. For instance, they present charts with
sequential color palettes to highlight, in a natural way, the
most important points (e.g., low and high subset) [7]. However,
these tools do not provide a mechanism to know if the selected
chart (e.g., subset position, shape, color palette) is the one that
better emphasizes the relevant data or how is it perceived by
the observer.

Our main goal is to explore possible approaches for helping
graph creators and designers (hereinafter, visualizers) to draw
the observer’s attention to specific relevant data, selected by
them at design time. To assess the feasibility of the approach,
this paper proposes an exploratory experiment, in which we
first perform systematic chart variations, and then evaluate
their effect using a saliency map algorithm. For the sake
of this first experiment, we consider bar charts, only, and
consider three preattentive attributes, namely, color, spatial
position, and orientation. Chart variations are evaluated using
the saliency map algorithm proposed by Matzen et al. [8]
who modified the standard Itti method [9] to adapt it to the
particular characteristics of InfoVis images. The chart that
better emphasizes the data subset specified by the visualizer
is finally selected. With this approach, we expect to obtain



insights about the feasibility of moving the attention area in
a chart, and about which attributes could generate a greater
impact towards this.

To get further insights about this exploratory approach,
we implemented a prototype tool. In the tool, the visualizer
selects the data subset that she wants the observer to focus
on. Then, the tool generates several chart variations, keeping
the same chart semantics but modifying: a) color palettes,
using sequential and discontinuous palettes; b) spatial position,
changing data subsets in the X-axis; and c) the orientation, by
swapping X and Y axis. All chart variations are evaluated with
a saliency map algorithm [8], to allow the tool to choose the
chart with the largest salience area in the originally selected
data subset.

II. BACKGROUND

In this section, we present an overview about the preat-
tentive process in information visualization and some fun-
damentals about salience maps, which are the basis for our
exploratory approach.

A. Preattentive Process in InfoVis

According to Healy et al. [3], one of the goals of visualiza-
tion is to support visual analysis, exploration, and to discover
novel insights. To achieve this goal, it is important to consider
human perception. How humans perceive images and charts
details can impact a viewer’s efficiency and effectiveness [3]
of their cognitive process. Human vision system attention
has various mechanisms that determine which regions of an
image are selected for more detailed analysis. One of this
mechanisms is the preattentive process that occurs in the
first 200 milliseconds of the vision process. The preattentive
process computes each preattentive attribute in parallel and
then combines them to select specific regions that are per-
ceived without any conscious effort [9]. According to some
researchers [4], [5], the classification of preattentive attributes
are: Form, which bundles line, orientation, length, width,
collinearity, size, curvature, and others; Color, including hue
and intensity; Motion including flicker and direction; Spacial
position made up of 2D position, (stereoscopic) depth, depth
or convex/concave shape from shading.

By knowing how the preattentive process works, it is
possible to change the preattentive attributes for driving the
viewer attention to a specific point. Rodrigues et al. [10]
support this idea by establishing those preattentive stimuli that
constitute the first step in the vision expression process, and
by exploring how this attentive selection and vision support
charts cognition.

Some of the research relating preattentive processes with
InfoVis focuses on how to handle preattentive attributes to:
highlight a subset in a specific chart type [11], highlight a
semantic link across graphs [12], or to increase the amount of
information present in one chart [13]. Most of the preattentive
attributes used to highlight are Color and Form (e.g., size,
shape, orientation). In Carenini et al. [14], the authors proved
that highlighting some data on a chart improves visualization.

They use preattentive attributes (emphasis, bolding, shapes,
etc.) to guide the viewer to focus on specific data members.
This guided focus improves viewer’s performance in a chart
analysis test.

On the other hand, some researchers use algorithms based
on the human preattentive process to predict and measure
where the focus attention area is located in specific chart types.
To do this, they mainly use two preattentive computational
models: saliency maps to predict, and eye-tracking to measure.
For instance, Raschke et al. [15] used eye tracking to analyze
perceptual and cognitive processes of visual tasks on bar
charts. In particular, the authors use eye-tracking techniques to
detect areas of interest. Lastly, Alberts et al. [16] designed an
experiment to study how certain design elements affect where
people look on dashboards. They found some insights about
how preattentive attributes influence dashboards comprehen-
sion.

The closest work to ours is presented by Janicke et al. [6].
They used the model proposed by Itti et al. [9] to evaluate the
quality of visualization images, which allows the visualizer to
choose the best visualization from a set of alternatives. In this
research, the user creates a relevance mask determining the
most significant points in the chart. After this, the user can
also define the degree of influence on three image component
channels (color, intensity, and orientation). Then, Janicke et
al. matched the Itti saliency map with this user relevance map
to know how well visual salience matches data relevance.
However, this approach helped to select the most focused
visualization alternative, among the ones produced by the
visualizer. We are instead aiming at adapting the chart to the
the visualizer relevance map using systematic changes.

These approaches focuses o the creation of patterns, models,
or design guidelines so that a visualizer is informed about
the best way to design her chart type or data. In comparison,
our work is focused on supporting visualizers to “adapt” their
charts, by using chart variations rules as preattentive attributes,
evaluation mechanisms such as salience maps, and various
techniques to select the closest option to meet visualizers’
requirements in relation to highlighting relevant data.

B. Saliency

Koch and Ullman [17] proposed a biological model to
explain the first step in the human vision process, specifically
the preattentive process (section II-A), describing how the
human vision focuses attention across a visual scene. In this
context, Saliency represents the feature map that determines
which locations on an image are more prominent from their
surroundings [2]. To predict this saliency on an image, Koch
and Ullman identified how some scene attributes such as
color, spatial position, and direction among others, can be
represented in early selective visual attention maps. The
combination of these maps, called saliency map, “combines
the information of individual maps into a global measure of
conspicuity” [17]. Itti [9] created a computational model for
detecting saliency based on the Koch and Ullman approach.



Both models, biological and computational, have been
widely used in many algorithms [18]. However, these al-
gorithms were created for natural scenes images, and such
images’ properties are quite different from those of InfoVis
charts [8]. In fact, some research aimed at modifying such a
saliency model to account for the characteristics of InfoVis
images. One of them is presented by Bylinskii et al. [19],
that presented two automated models to predict the relative
importance of the elements (e.g., title text, axis text, data
points) in data visualization and charts designs. The models
are neural networks trained with results on “human clicks” and
with the “importance annotations” tests. In “human clicks”
tests, a blurry image is shown to a participant, and then she
clicks on different parts of the image to reveal small regions. In
the case of ”importance annotations” tests, participants were
asked to label relevant regions in a design, based on Graphic
Design Importance (GDI) dataset [20]. With these two inputs,
their prediction models learn to localize the titles and correctly
weight the relative importance of different design elements
[19]. To sum up, the two trained models can predict saliency
based on the perceived relative weighting of design elements,
disregarding the human perception biological process.

Another study about saliency maps for InfoVis has been
developed by Matzen et al. [8]. They proposed a Data Visu-
alization Saliency Model (DVS) using a modify Itti model.
The Itti algorithm uses the RGB model to compute the
saliency map, but to better approximate human perception,
DVS transforms the input image into the CIE LAB color
space. Also, they combined the Itti-modified algorithm with a
Text Saliency Model, because the observers in InfoVis devote
a disproportional amount of attention into regions contain-
ing text. DVS was tested with the MASSVIS dataset [21],
with CAT2000 [22] and with some images from its creators.
Additionally, the study of Bylinskii [19] is supported by
neural network training with validations performed by crowd-
sourcing, without having a controlled testing environment.
Furthermore, Matzen algorithm combines Bylinskii’s findings
regarding the high observer’s attention on the text regions in
InfoVis images. In our approach, we chose to adopt this latter
algorithm for evaluating the salience of the generated charts, as
an evaluation tool for predicting image salience, and therefore
observers’ focus.

III. APPROACH DESCRIPTION

Our approach starts from a data-set to be visualized, and
one data item that the visualizer wishes to highlight through
changing preattentive attributes. The objective is to identify a
chart, whose attention is focused on the data of interest, by
performing a systematic manipulation of selected preattentive
attributes (color, texture, and orientation). Our exploratory
approach starts with three inputs: the dataset, the focus data
subset, end the color palettes profiles. The former constitutes
the data that is going to be visualized. The latter is a subset
of the dataset defined by the chart creator defines, whose
information is to be highlighted. The visualizer may choose
different color palettes, that will be individually processed.

The output is a group of charts, one for each color palette,
that best emphasize the data subset specified by the visualizer.

Fig. 1. Process of preattentive driven InfoVis

The proposed approach is composed of five main phases,
as illustrated in Fig. 1: 1) Load initial data, 2) Charts System-
atic Construction, 3) Saliency Maps Generation, 4) Salience
Rating, and 5) Plot Final Charts.

In this preliminary investigation of the proposed approach,
we selected three preattentive attributes to change in static
charts: color, texture, and orientation. We choose color be-
cause, according to Triesman and Gormican [23] and Ware [4],
to highlight a specific target, it is more natural to use color
variations than other preattentive properties. Also, color is the
most dominant factor when computing a saliency map [3]. We
decided to use texture because, according to Healey [3], it’s the
second most dominant factor in a saliency map. Additionally,
some preliminary tests were performed, and when a texture is
applied, it is possible to reach a focus area when the chart color
palette does not produce a saliency focal area. Finally, with
orientation, part of form preattentive classification (Section II),
we are interested in taking advantage of the chart ability to
change its orientation without changing its meaning, and test
if it changes or improves the salience in a certain way.

In this initial experiment we also limited our attention to
one type of charts, namely bar charts.

A. Load initial data

Initially, our approach requires three inputs: the data set to
be plotted, the specific data to be highlighted and the profiles
of the palettes. About the data to be focused, in this initial
approximation, it should be a categorical data selected by the
visualizer.

Regarding the palette profiles, the visualizer could select one
through pre-set color palettes. As in most visualization tools,
these palettes can be of various types, among which are se-
quential, divergent and qualitative. We limited the research us-
ing only qualitative palettes taken from COLOURLovers [24]
and filtered by those who were related to the keyword ”data”.
We selected categorical palettes because the positions of the
colors can be shifted without affecting the meaning of the
colors, which would happen with a sequential palette whose
colors must be ”ordered”. For each palette, a profile was
constructed to determine which color in the palette has the
most salience, and if the salience increases using textures or
changing the position on the chart (see Fig. 2). To create such
profiles, the Matzen salience algorithm [8] was used. By using
a bar chart as a baseline, the selected palettes were applied and
then passed through the salience algorithm. At the end of this



step, the colors of each palette were ranked for prominence.
We repeated the same process with texture and orientation
attributes. All these values can be pre-computed are are not
dependent on the specific data-set.

TABLE I
EXAMPLE COLOR PALETTE PROFILE: “DATA FACT” PALETTE

Property Value
Dominant color 4

Vertical 1
Horizontal 1

Vertical with texture 0
Horizontal with texture 0

Table I presents an example of a palette profile. ‘Dominant
color’ represents the color position into the palette of the
most salient color. The other properties are marked with a one
(1) if their presence affects salience in the specified palette.
For example, the Data Fact palette (see Table I) has a clean
saliency with vertical and horizontal orientation, but without
texture. Clean saliency means that only has one dominant
color, on a specific position (vertical or/and horizontal), and
with or without texture. In Fig. 2, the dominant color is number
four (4) in the palette, on the vertical (Fig. 2.a) and horizontal
(Fig. 2.b) position, both without texture. For the prototype, we
didn’t use the palettes without a clean saliency color in one
or more of the combinations.

Fig. 2. Example of Palette Profiling

B. Charts Systematic Construction

In this step, the goal is to systematically create charts, based
on the visualizer’s requirements (color palette and data to be
highlighted). About the colors, the visualizer selects a set of
possible palettes to use in the chart. By taking the color palette
profiles as input, a systematic chart creation is carried out. At
every step, the chart is created by using the color with the
highest salience for representing the data to be highlighted.
Then, the remaining colors in the palette are shifted through
the other data subsets. Several candidate charts are created,
taking into account whether the palette profile establishes that
salience increases with texture and/or orientation.

C. Saliency Maps Generation

In this step, we generate salience maps for each chart
variation created in the previous stage. To accomplish this,
as reported on the study on salience map models and algo-
rithms (see Section II), the selected algorithm was DVS [8],

implemented in Matlab language. The algorithm output is the
image of the chart, enriched by a salience map layer.

D. Salience Rating

In this step, each salience map is evaluated to identify which
charts have the highest saliency values on the area corre-
sponding to the data subset to highlight. The DVS algorithm
has a function that supports this ‘proximity’ evaluation. This
function compares a given set of coordinates with the same
coordinates on the salience map. The coordinates of the data
subset to be highlighted are sent to this function; the function
returns a value between 0.0 and 1.0 that measures the weighted
overlap of the data subset coordinates and the chart salience
areas. The final result of this step is a list with the percentage
of proximity value per each chart variation.

E. Plot Final Charts

The last step is the selection of the best chart. For each
palette selected by the visualizer, the chart with the best prox-
imity percentage is chosen (see Section III-D). The winning
charts are shown to the visualizer, and she can choose the
preferred one.

IV. RESULTS

To validate our approach, we implemented a prototype
tool in Matlab using common libraries for data analysis and
visualization (e.g., App Designer, Plots) and we generated
salience maps with the DVS library [8]. The goal here is to
understand the behavior of the preattentive attributes and the
feasibility of moving the attention area starting from a baseline
chart. In this first round of experiments, we use bar charts as
a baseline on which to apply the systematic variations.

To carry out our evaluation, we selected the Coronavirus
(COVID-19) dataset [25], which consists of data from COVID-
19 Deaths Worldwide as of May 29, 2020. We plotted the
five countries with the most casualties (USA, UK, Italy,
France, and Spain) vs. the number of deaths (103,330, 37,837,
33,142, 28,662, and 27,119 respectively). This combination
was selected because it generates a graph with a considerable
variation between subsets. The other countries have a differ-
ence, in the number of deaths, of at least 17,000 with respect
to the selected five, which makes their bars too tiny compared
with the others. As the bars are small, in the chart they saw
as a line and not as a bar, the changes in color and texture
could be difficult to perceive.

Fig. 3 shows the prototype interface. The visualizer must
first select the database for which she wants to plot the
chart. For the prototype, only Coronavirus Deaths were tested.
Based on the selection of the dataset, the visualizer must then
select the data subset to be highlighted. The next step is to
choose some possible color palettes (three, in the example)
that the visualizer wants to use on his chart (see section
III-A). After that, the visualizer can execute the algorithm
presented in section III. For each color palette selected by
the visualizer, a minimum of one and a maximum of 8 charts
are generated. Four of these charts correspond to the states



Fig. 3. Prototype Saliency Driven Approach

in which the palette obtains salience in the dominant color
(see section III-B). The other four correspond to variations on
the remaining colors (not predominant) of the palette. Fig. 4
shows an example of those variations, with the same palette
profile presented in Table I, and Italy as a the data selected
to be highlight (third data in the chart). Chart b in Fig. 4 is
the chart with the best ranking. The final result is composed
of the charts selected by the algorithm, one per palette, whose
salience map had the highest percentage of proximity to the
data selected by the user (Fig. 3). Additionally, the interface
displays the salience maps of each of those charts.

Based on the prototype results, we found some insights
about preattentive attributes impact. Regarding to preattentive
attribute Color, although we only worked with palettes that had
a predominant color, we found that this predominance could
be stronger or weaker depending on the neighboring colors. In
Fig. 4, it can be seen how the salience is more precise in the
color combination b and less intense in d. It is common, due
to lack of evaluation tools, that if the viewer wants to highlight
some data, she uses the “strongest” color. Nevertheless, it is
possible to have better accuracy, also knowing the incidence
of the neighboring colors.

Concerning to preattentive attribute Texture, in most of the
revised color palettes, the texture made the salience region
wider. Also, in some palettes, only it is possible to obtain a
salience focus on one data if that one has a texture. Otherwise,
the palette has only a soft salience in the text on the charts. In
the “data Color Pie” color palette chart on Fig. 3) the palette
has a texture because without a texture, the saliency would be
on the title, but with the texture is on the data. Nevertheless,
also the texture increase the salience area to much. Even so,
the salience is not as clean as with the other graphics, because
the saliency region is on three data subsets. A future step could
be to achieve systematic handling of the textures to achieve a
more precise salience.

With respect to the preattentive attribute Orientation, we

found that the salience is consistent, with the same predom-
inant color, when the orientation is changed. However, since
the Matzen et al. algorithm has a text recognition component
when some of the data has a long name, the salience region
is enlarged. Fig. 4.c has the same color order than b, but the
saliency area is more expanded at the bottom. That happens
because the name of the four (4) data is large, and it creates
a black text area which will be highlighted most prominently
by the Matzen algorithm.

We found that it is feasible to move the attention area to a
specific data subset. The visualizer can select the data to be
highlighted and the color palettes of her preference. In the end,
she gets information, in the design stage, about what could
be the impact of its color selection on the chart perception.
That is why palette profiling helps the visualizer to evaluate
more than one alternative in the positioning of the colors in
the chart automatically. This support is not available in the
current visualization tools.

Unfortunately, due to the current pandemic situation, we
could not test our approach with final users. Since salience
algorithms are a model of human visual perception, for the
time being we are relying on salience maps as a proxy of
user attention. However, most of the work on these predictive
algorithms in the InfoVis area is relatively recent (3-4 years),
and it has not been extensively studied. Therefore, the next step
in our work will be to evaluate the prototype with end-users.
The planned user studies will evaluate both the precision of
the chosen salience map algorithms and the overall feasibility
and effectiveness of the proposed approach.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented preliminary results of an
exploratory approach about how to draw the attention to a
specific data subset selected by the visualizer, by means of a
systematic variation of preattentive attributes. To accomplish
our goal, we created a set of chart variations using preattentive
attributes (color, texture and orientation). Then, each graph



Fig. 4. Example Chart Variations

was evaluated with a salience map algorithm created for
InfoVis images, to know which data subset was attracting
the observer’s focus. Finally, we selected the one exhibited a
focus closest to the data subset selected by the graph creator.
In order to validate this approach, we developed a tool in
Matlab and used it to test a Coronavirus (COVID-19) dataset.
The results show that it is possible to drive the viewer to
focus her attention on a relevant information selected by the
visualizer. The tool can generate diverse charts depending on
which relevant data was selected to be focused (e.g. Italy or
USA), and the visualizer preferred color palettes. Concerning
the preattentive attributes impact on the chart attention area,
according to the results, color was the attribute that had a
bigger impact on highlighting the proper data subset. Another
insight was that the salience is consistent also when it is
changed the chart orientation.

In conclusion, we demonstrated that it is possible to au-
tomatically modify certain aspects of a graph to meet some
specific needs of its creator. To fully prove our approach, it will
be necessary to do a user evaluation and to contrast the results
obtained in this first investigation. Therefore, it is necessary
continue to looking for a salience algorithm that are better
suited to the characteristics of InfoVis images and obtain a
better precision on which data is being highlighted.
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